钨极氩弧焊的焊接

合集下载

钨极氩弧焊的技术特点及应用

钨极氩弧焊的技术特点及应用

钨极氩弧焊的技术特点及应⽤钨极氩弧焊的技术特点及应⽤⼀、钨极氩弧焊的⼯作原理钨极氩弧焊是利⽤惰性⽓体(氩⽓)保护的⼀种电弧焊焊接⽅法。

从喷嘴中喷出的氩⽓在焊接中造成⼀个厚⽽密的⽓体保护层隔绝空⽓,在氩⽓层流的包围中,电弧在钨极与⼯件之间燃烧,利⽤电弧产⽣的热量,熔化被焊处,并填充焊丝,把两块分离的⾦属连接在⼀起,从⽽获得牢固的焊接接头。

⼆、钨极氩弧焊的特点钨极氩弧焊与⼿⼯焊条电弧焊相⽐主要有以下特点:l、氩⽓是惰性⽓体,⾼温下不分解,与焊缝⾦属不发⽣反应,不溶解于液态⾦属,故保护效果最佳,能有效的保护熔池⾦属,是⼀种⾼质量的焊接⽅法。

2、氩⽓是单原⼦⽓体,⾼温⽆⼆次吸放热分解反应,导电能⼒差,以及氩⽓流产⽣的压缩效应和冷却作⽤,使电弧热集中,温度⾼,电弧稳定性好,即使在低电流下电弧还能稳定燃烧。

3、氩弧焊热量集中,从喷嘴中喷出的氩⽓有冷却作⽤,因此焊缝热影响区窄,焊件变形⼩。

4、⽤氩⽓保护⽆熔渣,提⾼了⼯作效率,⽽且焊缝成形美观,质量好。

5、氩弧焊明弧操作,熔池可观性好,便于观察和操作,技术容易掌握,适合各种位置焊接。

6、除⿊⾊⾦属外,可⽤于焊接不锈钢、铝、铜等有⾊⾦属及合⾦钢。

但氩弧焊成本⾼;⽽且氩⽓电离势⾼,引弧困难;氩弧焊产⽣紫外线强度⾼于⼿⼯焊条电弧焊5—30倍;另外,钨极有⼀定放射性,对焊⼯也有⼀定的危害,⽬前推⼴使⽤的铈钨极对焊⼯的危害较⼩。

三、钨极氩弧焊的分类钨极氩弧焊按操作⽅法可分为⼿⼯钨极氩弧焊和机械化焊接两种。

对于直线焊缝和规则的曲线焊缝,可采⽤机械化焊接。

⽽对于不规则的或较短的焊缝,则采⽤⼿⼯钨极氩弧焊。

⽬前使⽤较多的是直流⼿⼯钨极氩弧焊,直流钨极氩弧焊通常分为两种:1、直流反极性在钨极氩弧焊中,虽很少⽤直流反极性,但是,它有⼀种去除氧化膜作⽤。

所谓去除氧化膜作⽤,在交流焊的反极性半波也同样存在,它是成功地焊接铝、镁及其合⾦的重要因素。

铝、镁及其合⾦的表⾯存在⼀层致密难熔的氧化膜覆盖在焊接熔池表⾯,如不及时清除,焊接时会造成未熔合,在焊缝表⾯还会形成皱⽪或产⽣内⽓孔、夹渣,直接影响焊接质量。

钨极氩弧焊(TIG焊)焊接工艺参数

钨极氩弧焊(TIG焊)焊接工艺参数

钨极氩弧焊(TIG焊)的焊接工艺参数
钨极氩弧焊简称为TIG焊,它使用熔点很高的纯钨或钨合金(钍钨、铈钨)作为不熔化电极的氩气保护焊,故也称不熔化极氩弧焊。

为了确保钨极氩弧焊的质量,必须对焊件与焊丝表面进行清理,去除金属表面的氧化膜、油污等杂质,否则在焊接过程中将会影响电弧的稳定性,产生气孔和未熔合等缺陷.焊接工艺参数如下;
1)钨极直径:
钨极直径主要根据焊件厚度选取.此外,在同等焊接条件下,选用不同的电流种类和极性,钨极电流许用值不同,采用的钨极直径也不同.如钨极直径选择不当,将造成电弧不稳、钨极烧损和焊缝夹钨现象;
2)焊接电流:
当钨极直径选定后,再选择合适的焊接电流.各种直径的钍(铈)钨极许用电流值见表1-001;
3)氩气流量:
氩气流量主要根据钨极直径和喷嘴直径来选取,通常在3~20L/min范围内;
4)焊接速度:
氩气保护层是柔性的,当遇到侧向风力或焊接速度过快时,则氩气气流会产生弯曲而偏离熔池,影响气体保护效果,而且焊接速度会影响焊缝成形,因此应选择合适的焊接速度;
5)工艺因素:
主要指喷嘴形状与直径、喷嘴至焊件的距离、钨极伸出长度、填充焊丝直径等.虽然这些工艺因索变化不大,但对气体保护效果和焊接过程有一定影响,应根据具体情况选择.通常喷嘴直径在5~20mm内选用;喷嘴至焊件的距离不超过15mm;钨极伸出喷嘴长度为3~4mm;填充焊丝直径根据焊件厚度选择。

TIG焊焊接工艺参数:
杨怡平
2011-6-19。

TIG焊(钨极氩弧焊)的原理、特点及应用

TIG焊(钨极氩弧焊)的原理、特点及应用

TIG焊(钨极氩弧焊)的原理、特点及应用钨极惰性气体保护焊是利用高熔点钨棒作为一个电极,以工件作为另一个电极,并利用氩气、氦气或氩氦混合气体作为保护介质的一种焊接方法。

我国通常只采用氩气做保护气,因此又称为钨极氩弧焊,简称TIG焊或CGTAW焊。

1、TIG焊的原理用难熔金属纯钨或活化钨(钍钨、铈钨)作为电极,用氩气来保护电极和电弧区及熔化金属的一种电弧焊方法,通常又称为钨极氩弧焊,其原理如下图所示。

▲钨极氩弧焊的工作原理1—钨极2—填充金属3—工件4—焊缝金属5—电弧6—喷嘴7—保护气体氩气属惰性气体,不溶于液态金属。

焊接时电弧在电极与焊件之间燃烧,氩气使金属熔池、熔滴及钨极端头与空气隔绝。

2、TIG焊的特点(1)优点①用难熔金属钝钨或活化钨制作的电极在焊接过程中不熔化。

利用氩气隔绝大气,防止了氧、氮、氢等气体对电弧及熔池的影响,被焊金属及焊丝的元素不易烧损(仅有极少数烧损)。

因此,容易保持恒定的电弧长度,焊接过程稳定,焊接质量好。

②焊接时可不用焊剂,焊缝表面无熔渣,便于观察熔池及焊缝成形,及时发现缺陷,在焊接过程中可采取适当措施来消除缺陷。

③钨极氩弧稳定性好,当焊接电流小于10A时电弧仍能稳定燃烧。

因此特别适合薄板焊接。

由于热源和填充焊丝分别控制,热量调节方便,使焊接热输入更容易控制。

因此,适于各种位置的焊接,也容易实现单面焊双面成形。

④氩气流对电弧有压缩作用,故热量较集中,熔池较小;由于氩气对近缝区的冷却,可使热影响区变窄,焊件变形量减小。

焊接接头组织紧密,综合力学性能较好;在焊接不锈钢时,焊缝的耐蚀性特别是抗晶间腐蚀性能较好。

⑤由于填充焊丝不通过焊接电流,所以不会产生因熔滴过渡造成的电弧电压和电流变化引起的飞溅现象,为获得光滑的焊缝表面提供了良好的条件。

钨极氩弧焊的电弧是明弧,焊接过程参数稳定,便于检测及控制,便于实现机械化和自动化焊接。

(2)缺点①钨极氩弧焊利用气体进行保护,抗侧向风的能力较差。

钨极氩弧焊原理

钨极氩弧焊原理

钨极氩弧焊原理
钨极氩弧焊是一种常用的焊接方法,其原理是利用气体保护下的电弧将工件进行连接。

下面将介绍钨极氩弧焊的工作原理。

钨极氩弧焊使用钨电极和氩气作为保护气体。

首先,通过电源提供电流,使电极和工件形成电弧。

钨电极由于其高熔点和良好的电导性能,能够在高温下稳定工作。

而氩气则起到了保护作用,防止电弧与外界气体发生反应。

在焊接过程中,电弧使焊件表面加热至熔点,并且通过电极传导热量使焊缝处的材料熔化。

熔化的金属在电弧的作用下形成良好的焊缝。

同时,氩气在焊接区域形成保护性的气氛,防止氧气和其他气体的进入,避免了氧化和污染,从而提高了焊接质量。

钨极氩弧焊具有焊接速度快、焊缝质量高等优点。

同时,由于在焊接过程中没有焊芯,避免了焊接材料的污染。

这种方法广泛应用于对焊缝质量要求高的领域,如航空、航天、核工程等行业。

总结起来,钨极氩弧焊利用钨电极和氩气的配合,形成稳定的电弧和保护气氛,将焊接材料熔化并连接在一起。

其工作原理简单而有效,是一种常用的焊接方法。

钨极氩弧焊的焊接

钨极氩弧焊的焊接
⑵钨极电弧稳定,即使在很小的焊接电流(<10A)下仍可稳定 地燃烧,特别适合于薄板、超薄板材料的焊接。
⑶热源和填充焊丝可分别控制,因而热输入容易调节,可进 行各种位置的焊接,也是实现单面焊双面成形的理想方法。
⑷由于填充焊丝熔滴不通过电弧,故不会产生飞溅,焊缝成 形美观。
钨极氩弧焊的特点
2、缺点
⑴焊缝熔深浅,熔敷速度小,产生率较低。
钨极氩弧焊
杨利国
目录
钨极氩弧焊的认识 钨极氩弧焊的特点 钨极氩弧焊设备的认识 焊接时的注意事项 钨极氩弧焊的安全技术
一、钨极氩弧焊
1、钨极氩弧焊的原理
钨极惰性气体保护焊是指在惰性气体的保护下,利 用钨电极和工件间产生的电弧热熔化母材和填充焊丝 (可以不用焊丝)的一种焊接方法。惰性气体有二氧 化碳、氩气等。而氩气作为保护气体最好。铈钨极最 常用。
问题2:为什么用氩气作为惰性气体?
与其他气体相比,氩气有以下优点: (1)氩气易引弧,电弧稳定; (2)氩气的密度大,已形成良好的保护罩,获得较
好的保护效果; (3)氩气的原子质量大,具有很好的阴极清理效果; (4)氩气相对便宜,广泛应用于工业生产中。
1-焊件 2-焊枪 3-遥控 盒 4-冷却水 5-电源与 控制系统 6-电源开关 7-流量调节器 8-氩气瓶
注:铝、镁及其合金和易氧化的铜合金(铝青铜)焊
接时,应该选择交流钨极氩弧焊。
钨极氩弧焊的主要设备
2、控制箱
(1)引弧和稳弧装置 ➢ 短路引弧
采用钨极和焊件近似垂直的方法,去接触焊件表 面,引弧后要迅速提起,进行焊接即可。由于短路接 触,产生电流较大,钨极损耗较大,所以,应尽量少 用。 ➢ 高频引弧
问题1:为什么选用铈钨极?
目前,常用的钨极有钍钨极、纯钨极、铈钨极 三种。纯钨极的熔点和沸点都很高,要求空载电 压较高,承载电流能力较小;钍钨极加入了氧化 钍,可降低空载电压,改善引弧稳弧性能,增大 许用电流范围,但有微量放射性;铈钨极比钍钨 极更容易引弧,更小的钨极损耗,放射剂量也低 的多。因此,采用铈钨极。

电弧焊基础(第三章)钨极氩弧焊 TIG

电弧焊基础(第三章)钨极氩弧焊 TIG

(五)TIG焊的保护气体
He 空气中的含量为0.0005%,比空气轻,保护差 导热系数大,电弧温度高 价格昂贵 He+Ar 厚板、高热导、高熔点金属焊接(双层 保护气体) Ar+He Ar中加入He
提高电弧功率和温度。
(五)TIG焊的保护气体

Ar+O2:金属流动性好,电弧稳定,低氧焊接 不锈钢,高氧焊接碳钢

四、 TIG焊接设备 (四)钨极
1、对电极的要求:
电弧引燃容易、可靠; 工作中产生的熔化变形及耗损对电弧特性不构成
大的影响; 电弧的稳定性好,电弧产生在电极前端,焊接过 程中不出现阴极斑点的上爬。
主要材料:W及W合金 其他材料:特殊环境下有锆电极和钽电极,昂贵
2、钨电极材料
W在很广泛的电流范围内充分具备发射电子的能力
Ar+H2: 2-5%,焊缝光滑,防止表面氧化,电 弧温度高,效率高,焊接不锈钢、镍基合金、 镍铜合金 Ar+N2: 可以用来焊接铜合金,2.5%N2可以用 来焊接双相不锈钢,维持相平衡


第二节 TIG焊接过程
焊接过程包括: 焊前准备:惰性气体没有脱氧去氢作用,清理
非常重要。机械的、化学的,去除油、水、锈 提前通气【焊枪(电源联动)、拖罩、背 板】——引弧——电流上升——正常焊接(填 丝)——电流衰减——熄弧——滞后停气 如没有提前通气? 1. 电弧不能引燃; 2.电弧暴乱,烧坏钨极、喷嘴、点击夹、母材, 还可能导致漏水
三、 TIG焊实例
手Байду номын сангаас焊
第三节 TIG焊焊接方法
一、直流TIG焊接 1、直流反接(DCRP/DCEP/DC+) :母材接负极

1-3 钨极氩弧焊(TIG非熔化极气体保护焊)

1-3  钨极氩弧焊(TIG非熔化极气体保护焊)

III 接头设计、提高生产率和 自动化途径
接头形式 0.5mm以下薄板:卷 边板 大于6mm:Y形坡口 或V形坡口 大于12mm:X形坡 口

提高钨极氢弧焊焊接生产率的 几种途径


热丝钨极氢弧焊 窄间隙热丝TIG焊 多电极钨极氩弧焊
GTAW的自适应控制

焊炬高度AVC控制 GTAW熔深自适应控制
II GTAW过程控制参数和焊机 组成特征
直流GTAW (1)直流正接GTAW a.工件为阳极,熔池深,生产率高; b.钨棒不易过热; C.钨棒电子发射能力强,小直径钨棒,电流密度 大,电弧稳. (2)直流反接GTAW a.工件为阴极,钨棒易过热烧损; b.焊缝熔深浅,电弧不稳,很少用; c.“阴极清理作用”,对焊接Al、Mg及其合金十 分重要.
I 钨极氩弧焊的特征

定义:以氩气(或氦气等惰性气体)作 为保护介质,以钨棒为电极与工件之间 产生电弧的气保护电弧焊方法,简称 TIG or GTAW
GTAW (TIG)
GTAW
Tungsten electrode Torch Ceramic shroud Filler
Weld metal Weld pool

(1)
钨棒的材质和形状及GTAW的 保护气体
材质:铈钨棒,引弧稳弧性能好 尺寸和形状:

a不同直径钨棒许用电流范围不同 b钨棒直径应根据板厚、电流大小、种类 和电源极性确定,尽可能选用小直径钨 棒进行焊接 c钨棒端部形状
钨棒的材质和形状及GTAW的 保护气体

保护气体
纯Ar,纯He或Ar+He混合气体作保护气。 合金钢、Al、Ti及其合金的焊接,要求氩 气纯度在99. 99%以上

钨极氩弧焊(GTAW)焊接方法简介

钨极氩弧焊(GTAW)焊接方法简介

图1-7 钨极惰性气体保护焊示意图1—喷嘴 2—钨极 3—电弧 4—焊缝 5—工件 6—熔池 7—填充焊丝 8—惰性气体钨极氩弧焊(GTAW )焊接方法简介1.原理钨极氩弧焊是用钨棒作为电极加上氩气进行保护的焊接方法,其方法构成如图1-7所示。

焊接时氩气从焊枪的喷嘴中连续喷出,在电弧周围形成气体保护层隔绝空气,以防止其对钨极、熔池及邻近热影响区的有害影响,从而获得优质的焊缝,焊接过程根据工件的具体要求可以加或不加填充焊丝。

2.分类这种焊接方法根据不同的分类方式大致有如下几种:1)按电流波形 直流氩弧焊 交流氩弧焊 脉冲氩弧焊 正弦波矩形波变脉宽 变极性 低频0.1~10Hz 中频10~1kHz 高频>15kHz2)按操作方式手工自动 焊枪移动是手工操作,填充焊丝送进可以是手工,也可以是机械送丝 焊枪安装在焊接小车上,小车的行走和焊丝送进均由机械完成3)按保护气体成分 氩弧焊氦弧焊混合气体保护焊上述几种钨极氩弧焊方法中手工操作应用最为广泛。

3.特点这种焊接方法由于电弧是在氩气中进行燃烧,因此具有如下优缺点:1)氩气具有极好的保护作用,能有效地隔绝周围空气;它本身不与金属起化学反应,也不溶于金属,使得焊接过程中熔池的冶金反应简单易控制,因此为获得高质量的焊缝提供良好条件。

2)钨极电弧非常稳定,即使在很小的电流情况下(<10A )仍可稳定燃烧,特别适合于薄板材料焊接。

3)热源和填充焊丝可分别控制,因而热输入容易调整,所以这种焊接方法可进行全位置焊接,也是实现单面焊双面成形的理想方法。

4)由于填充焊丝不通过电流,故不会产生飞溅,焊缝成形美观。

5)交流氩弧在焊接过程中有自动清除工件表面的氧化膜作用,因此,可成功的焊接一些化学活泼性强的有色金属,如铝、镁及其合金。

6)钨极承载电流能力较差,过大的电流会引起钨极的熔化和蒸发,其微粒有可能进入熔池而引起夹钨。

因此,熔敷速度小、熔深浅、生产率低。

7)采用的氩气较贵,熔敷率低,且氩弧焊机又复杂,和其他焊接方法(如焊条电弧焊、埋弧焊、CO 2气体保护焊)比较,生产成本较高。

钨极氩弧焊焊接工艺

钨极氩弧焊焊接工艺

1.直流分量 在交流电弧的情况下,由于电极和母材的电热物理性能以及 几何尺寸等方面存在差异,造成了交流电两半周中的弧柱导电率、 电场强度和电弧电压不对称,如图6—3所示。
正半周内,钨极为阴极,弧柱电导率高,电场强度小,电弧电 压低而电流大,而母材的情况刚好相反,电场强度大而电流小,造 成正负半周内电流、弧压不对称。
影响,经过镇静室的气流,能否在喷嘴内形成近壁层流,取决于喷 嘴形状和尺寸。 实验证明:圆柱形喷嘴保护效果好,圆锥形的喷嘴由于出口处 截面减小,气流速度变快,这是气流的挺度虽好一些,但容易造成 紊流,故保护效果较差,但这种喷嘴操作方便,熔池可见性好,生 产中常用。喷嘴的长度越长保护效果越好,但由于使用不方便,很 少采用。 3.供水系统 主要用来冷却焊接电缆、焊炬、钨棒等。 (三)焊接程序控制
3.粗丝大电流MIG焊方法 在平焊厚板时,具有熔深大,生产效率高,缺陷少,变形小 等优点。但由于熔池尺寸大,为加强对熔池的保护通常采用双层 保护焊枪,这样即扩大了保护区域又改善了熔深形状。电流比较 大时,为保护熔池后面的焊道,还需要在双层喷嘴后面再安装附 加喷嘴。 三 保护气体的选择 通常熔化极氩弧焊时,应用各种混合气体的目的是:可以控 制焊接电弧的形态和能量密度、提高电弧燃烧及熔滴过渡的稳定 性、稳定阴极斑点、改善焊缝成形、减少焊接缺陷、提高焊缝接 头的综合性能、增大电弧的热功率等。 下面是较为典型和常用的混合气体: 1 Ar+O2 纯 Ar焊接不锈钢等材料时,存在以下一些问题: l)液体金属的粘度及表面张力较大,易产生气孔。焊缝金属 润湿性差,焊缝两侧易形成咬肉等缺陷。 2)电弧阴极斑点不稳定,产生所谓阴极飘移现象。电弧根部这 种不稳定,会引起焊缝熔深及焊缝成形的不规则。
高频振荡器电路如图6—5所示。实际上它是一个L—C振荡器, 它由升压变压器T1,火花气隙放电器P、振荡电容Ck、高频输出变 压器T2等组成。T1的二次电压为2500—3000V,当它对CK充电时, 将导致间隙为0.1一1.0mm的P击穿而产生火花放电,这时Ck和 T2电感线圈Lk构成的振荡电路被P短路。 P被击穿时,T1二次绕组即被短接。为保护T1不致损坏,T1设 计成高漏抗变压器。此外,C为保护电容, S为门开关,都是为了 防护操作者触及2500-~3000V工频高压造成人身伤害。 ③ 用脉冲引弧、稳弧 它可以与高频振荡器联合使用,振荡器在保证第一次引弧后 即行切断,以后用脉冲放电保证重复引燃,也可以第一次引与以 后的稳弧都用脉冲放电。

手工TIG焊(钨极氩弧焊)的操作要点

手工TIG焊(钨极氩弧焊)的操作要点

手工TIG焊(钨极氩弧焊)的操作要点1、焊枪的握法用右手握焊枪,食指和拇指夹住焊枪前身部位,其余三指触及工件支点,也可用食指或中指作支点。

呼吸要均匀,要稍微用力握住焊枪,保持焊枪的稳定,使焊接电弧稳定。

关键在于焊接过程中钨极与工件或焊丝不能形成短路。

2、引弧(1)高压脉冲发生器或高频振荡器进行非接触引弧,将焊枪倾斜,使喷嘴端部边缘与工件接触,使钨极稍微离开工件,并指向焊缝起焊部位,接通焊枪上的开关,气路开始输送氩气,相隔一定的时间(2~7s)后即可自动引弧,电弧引燃后提起焊枪,调整焊枪与工件间的夹角开始进行焊接。

(2)直接接触引弧,但需要引弧板(纯铜板或石墨板),在引弧板上稍微刮擦引燃电弧后再移到焊缝开始部位进行焊接,避免在始焊端头出现烧穿现象,此法适用于薄板焊接。

引弧前应提前5~10s送气。

3、填丝填丝方式和操作要点见下表。

填丝方式和操作要点填丝时,还必须注意以下几点:(1)必须等坡口两侧熔化后填丝填丝时,焊丝和焊件表面夹角15°左右,敏捷地从熔池前沿点进,随后撤回,如此反复。

(2)填丝要均匀,快慢适当送丝速度应与焊接速度相适应。

坡口间隙大于焊丝直径时,焊丝应随电弧做同步横向摆动。

4、左焊法或右焊法左焊法适用于薄件的焊接,焊枪从右向左移动,电弧指向未焊部分,有预热作用,焊速快、焊缝窄、熔池在高温停留时间短,有利于细化金属结晶。

焊丝位于电弧前方,操作容易掌握。

右焊法适用于厚件的焊接,焊枪从左向右移动,电弧指向已焊部分,有利于氩气保护焊缝表面不受高温氧化。

5、焊接(1)弧长(加填充丝)3~6mm。

钨极伸出喷嘴端部的长度一般为5~8mm。

钨极应尽量垂直焊件或焊件表面保持较大的夹角(70°~85°)。

喷嘴与焊件表面的距离不超过10mm。

(2)厚度大于4mm的薄板立焊时采用向下焊或向上焊均可,板厚4mm以上的焊件一般采用向上立焊。

(3)为使焊缝得到必要的宽度,焊枪除了做直线运动外,还可以做适当的横向摆动,但不宜跳动。

13-钨极氩弧焊工艺及平焊焊接技术.

13-钨极氩弧焊工艺及平焊焊接技术.

件表面为15°~20°
二、 TIG平焊的基本操作技术
(2)焊丝送进方法:通常有手动法、指续法和紧贴法等,在操作练 习时讲解及练习
(3)右焊法与左焊法
右焊法:适用于厚件的焊接,焊枪从左向右移动,电弧指向已焊部分, 有利于氩气保护焊缝表面不受高温氧化。 左焊法:适用于薄件的焊接,焊枪从右向左移动,电弧指向未焊部分 有预热作用,容易观察和控制熔池温度,焊缝形成好,操作 容易掌握。一般均采用左焊法。
① 外界气流和焊接速度的影响。焊接速度越大,保护气流遇到空气阻
力越大,它使保护气体偏向运动的反方向;若焊接速度太大,将失去保护 。 因此,在增加焊接速度的同时,应适当增加气体流量,在有风的地方焊接 时,应适当增加氩气的流量。应避免在有风的地方焊接。
一、钨极氩弧焊工艺
选择氩气流量还有考虑以下因素:
②焊接接头形式的影响。对接接头和丁字接头焊接时,具有良好的保护
三、钨极氩弧焊的工艺缺陷及产生原因
最常见的是夹钨和气孔 1、夹钨 (a)从钨极上偶然脱落的颗粒
ⅰ.钨极同工件接触:粒子嵌入到工
件表面。 ⅱ.钨极尖部进入到熔池:内嵌在焊
缝中。
ⅲ.钨极同填充焊丝接触:焊缝夹钨。 (b)电流过大,钨极端部过热,也会
导致钨极端部的颗粒随着电弧过渡
到熔池中。
三、钨极氩弧焊的工艺缺陷及产生原因
按生产经验:2倍的钨极直径再加上4mm即为选择的喷嘴直径。 喷嘴直径确定以后,决定保护效果的是氩气流量。流量合适时,熔池平
稳,表面明亮无渣,无氧化痕迹,焊缝成形美观;流量不合适,熔池表面
有渣,焊缝表面发黑或有氧化皮。氩气的合适流量为0.8~1.2倍的喷嘴直 径。
一、钨极氩弧焊工艺
选择氩气流量还有考虑以下因素:

钨极氩弧焊焊接方法

钨极氩弧焊焊接方法

钨极氩弧焊焊接方法
钨极氩弧焊焊接方法简介
钨极氩弧焊是一种高温、高能量的电弧焊接方法,它使用钨极作为电极,氩气作为保护气体,将两个物体通过高温电弧进行熔合,达到焊接的目的。

相比于其他焊接方法,钨极氩弧焊具有焊缝质量高、氧化少、性能稳定等优点,被广泛应用于航空、航天、电子、化工、冶金等众多领域。

钨极氩弧焊焊接步骤
1. 准备工作:选用适合的钨极和钨极磨头,清洁焊接面,调节焊接设备,准备氩气。

2. 焊接面组装:将要焊接的两个物体放置于工作台上,并确定它们的位置,保证焊接面接触紧密。

3. 开始预热:预热是为了保证焊接时的温度稳定,预热时间与厚度有关,一般来说厚度越大,预热时间越长。

4. 焊接:将钨极置于焊接面上方,启动氩气,使钨极产生电弧,将电
弧移动到焊接点,熔化两个物体的金属,使其相互熔合。

5. 收尾工作:焊接完成后,关闭氩气和电源,进行一系列的清洁和修整工作。

钨极氩弧焊焊接注意事项
1. 焊接时要注意保护眼睛和皮肤,因为高能量的钨极氩弧焊对人体有危害。

2. 要注意电弧稳定,电流不要过大或过小,一般来说,当钨极直径小于焊接金属厚度的1.5倍时,电流应不超过150A。

3. 关注氩气流量,流量不足会导致较多氧气进入焊接区域,影响焊缝质量。

流量过大则会浪费氩气。

4. 焊接时要注意焊接面的清洁和调整,尤其是“T”型和“L”型接头处,以保证焊接质量。

总之,钨极氩弧焊是一种高质量、高性能的焊接方式,它具有广泛的应用领域,但同样也需要严密的操作规范和注意事项,方可达到预期的焊接效果。

钨极氩弧焊不超过5mm为宜

钨极氩弧焊不超过5mm为宜

钨极氩弧焊不超过5mm为宜钨极氩弧焊是一种高质量的焊接方法,常用于焊接不锈钢、钛合金、铝合金等高强度材料。

在进行钨极氩弧焊时,焊接的厚度是一个非常重要的参数。

一般来说,钨极氩弧焊的焊接厚度不应超过5mm。

为什么钨极氩弧焊的焊接厚度不应超过5mm呢?这是因为钨极氩弧焊的焊接过程中,焊接区域会受到高温的影响,如果焊接厚度过大,会导致焊接区域的温度过高,从而引起焊接变形、裂纹等问题。

此外,焊接厚度过大还会导致焊接速度变慢,从而影响生产效率。

因此,在进行钨极氩弧焊时,需要根据焊接材料的厚度和要求,选择合适的焊接厚度。

一般来说,焊接厚度不应超过5mm,这样可以保证焊接质量和生产效率。

除了焊接厚度外,钨极氩弧焊还需要注意以下几点:1. 选择合适的钨极。

钨极是钨极氩弧焊中非常重要的组成部分,需要根据焊接材料的种类和要求选择合适的钨极。

一般来说,钨极的直径应根据焊接材料的厚度选择,直径越小适用于焊接越薄的材料。

2. 控制电流。

钨极氩弧焊的电流需要根据焊接材料的种类和要求进行调整。

一般来说,焊接材料越厚,需要的电流就越大。

在进行钨极氩弧焊时,需要根据实际情况进行调整,以保证焊接质量。

3. 控制焊接速度。

焊接速度是影响焊接质量和生产效率的重要因素之一。

在进行钨极氩弧焊时,需要根据焊接材料的种类和要求,选择合适的焊接速度。

一般来说,焊接速度越快,生产效率越高,但焊接质量可能会受到影响。

总之,钨极氩弧焊是一种高质量的焊接方法,可以用于焊接不锈钢、钛合金、铝合金等高强度材料。

在进行钨极氩弧焊时,需要注意选择合适的焊接厚度、钨极、电流和焊接速度,以保证焊接质量和生产效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档