八年级数学下册 第十九章 一次函数 19.2 一次函数 19.2.2 一次函数 第1课时 一次函数课

合集下载

新人教版八年级数学下册《十九章 一次函数 19.2 一次函数 待定系数法求一次函数的解析式》教案_0

新人教版八年级数学下册《十九章 一次函数  19.2 一次函数 待定系数法求一次函数的解析式》教案_0

八年级数学·下 新课标[人]19.2.2 一次函数(3)一、复习提问:1、什么叫做一次函数?一般地,形如y=kx+b (其中k 、b 是常数,k 不等于0)的函数,叫做一次函数,其中k 叫做比例系数.当b=0时,y=kx+b 即y=kx ,所以说正比例函数是一种特殊的一次函数.2、一次函数图象是怎样的?一般地,一次函数y=kx+b (其中k 、b 是常数,k 不等于0)的图象是一条直线,我们称它为直线y=kx+b.当k>0时.直线y=kx+b 的图象,从左向右上升,即y 随着x 的增大而增大;当k<0时,直线y=kx+b 的图象,从左向右下降,即y 随着x 的增大而减小.提 问: 已知某个一次函数y=kx+b ,当自变量x =-2时,函数值y =-1,当x =3时,y =-3. 能否求出这个一次函数的解析式吗?解:由已知条件x =-2时,y =-1,得-1=-2k +b ;由已知条件x =3时,y =-3,得-3=3k +b .两个条件都要满足,即解关于k,b 的二元一次方程组: 解得 所以一次函数的解析式为 像上述过程,先设出解析式,再根据条件确定解析式中未知的系数,从而得到解析式的方法,叫做待定系数法.归 纳: 如何求一次函数y=kx+b 的解析式,需要具备几个条件才可以求出k 和b 的值?(1)设出一次函数解析式的一般形式为y=kx+b.(2)把自变量x 与函数y 的对应值(可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数k 、b 的方程组.(3)解方程组,求出待定系数中k 、b 的值.(4)写出一次函数的解析式.二、学习新知:1=23=3k b k b.--+⎧⎨-+⎩,2=59=.5k -b -⎧⎪⎪⎨⎪⎪⎩,29=.55y x --例1:已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.解析:求一次函数y=kx+b 的解析式,关键是求出k,b 的值.因为图象过点(3,5)与(-4,-9),所以这两个点的坐标适合解析式,从而得到关于k,b 的二元一次方程组,解方程组求出k,b 即可确定一次函数解析式.解:设这个一次函数的解析式为y =kx+b (k ≠0).因为y=kx+b 的图象过点(3,5)与(-4,-9), 所以 解方程组得所以这个一次函数的解析式为y=2x -1.例2:已知一次函数的图象如图所示,求出函数的解析式.讨论:(1)根据图象你能得到哪些信息? (2)你能找到确定一次函数解析式的条件吗?解:设所求的一次函数的解析式为y=kx+b (k≠0).因为直线经过点(2,0),(0,4),所以把这两点坐标代入解析式,得 解得所以所求的一次函数的解析式是y=-2x+4.三、检测反馈:1.已知一次函数y=kx+b ,当x = - 4时y =9,当x =6时y =-1,则此函数的解析式为 .2.如图所示,求直线AB 对应的函数解析式.5=39=4k b k b.+⎧⎨--+⎩,=2=-1k b .⎧⎨⎩,0=24=k b b.+⎧⎨⎩,=-2=4k b .⎧⎨⎩,3.一条平行于直线y=-3x的直线交x轴于点(2,0),则该直线的解析式是.四、课堂小结:1.求一次函数解析式的一般步骤有:①设出一次函数解析式y=kx+b(k≠0),②将两个点的坐标代入解析式,得到二元一次方程组,③解方程组求出k和b的值,④写出答案.2.一次函数解析式的确定通常有下列几种情况:(1)利用待定系数法,根据两对x和y的值,列出方程组确定k,b的值,进而求出一次函数的解析式.(2)根据图象上两点坐标求出一次函数的解析式.五、课后作业:第99页第3、7题、第109页第13题。

八年级数学下册第十九章一次函数19-2一次函数19-2-2一次函数第1课时一次函数新人教版

八年级数学下册第十九章一次函数19-2一次函数19-2-2一次函数第1课时一次函数新人教版
(1)放入一个小球后水桶中水面升高________ cm; (2)求放入小球后水桶中水面的高度 y(cm)与小球的个数 x(个) 之间的一次函数关系式;(不要求写出自变量的取值范围) (3)水桶中至少放入几个小球时有水溢出?
解:(1)2; (2)因为每放入一个小球后,水面升高 2 cm,所以 y=30+2x; (3)由 2x+30>49,得 x>9.5,即至少放入 10 个小球时有水溢 出.
3.若一次函数 y=kx+b,当 x=-2 时,y=7;当 x=1 时,y
=-11.则 k,b 的值为( C )
A.k=6,b=5
B.k=-1,b=-5
C.k=-6,b=-5
D.k=1,b=5
4.据调查,某地铁自行车存放处某星期天的存车量为 4000 辆 次,其中变速车存车费是每辆一次 0.30 元,普通自行车存车费 是每辆一次 0.20 元,若普通自行车存车数为 x 辆,存车费总收 入为 y 元,则 y 关于 x 的函数关系式为( D ) A.y=0.10x+800(0≤x≤4000) B.y=0.10x+1200(0≤x≤4000) C.y=-0.10x+800(0≤x≤4000) D.y=-0.10x+1200(0≤x≤4000)
(3)某车站规定旅客可以免费携带不超过 20 千克的行李,超过 部分每千克收取 1.5 元的行李费,则旅客需交的行李费 y(元) 与携带行李质量 x(千克)(x>20)的关系.
解:(1)y=0.53x,是; (2)y=10+5x,是; (3)y=1.5x-30,是.
10.某油箱容量为 60 L 的汽车,加满汽油后行驶了 100 km 时,油箱中的汽油大约消耗了15 ,如果加满汽油后汽车行驶 的路程为 x(km),油箱中剩油量为 y(L),则 y 与 x 之间的函数 解析式和自变量取值范围分别是( D ) A.y=0.12x,x>0 B.y=60-0.12x,x>0 C.y=0.12x,0≤x≤500 D.y=60-0.12x,0≤x≤500

八下数学第十九章一次函数19.2.2一次函数(共四课时全)

八下数学第十九章一次函数19.2.2一次函数(共四课时全)

法是,以厘米为单位量出身高值 h ,再减常数105,所得
差是 m的值;
m=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包 括月租费22元和拨打电话 x min 的计时费(按0.1元/min
收取);
y=0.1x+22
(4)把一个长10 cm,宽5 cm的矩形的长减少 x cm, 宽不变,矩形面积 y(单位:cm2)随x的值而变化.
y=-5x+50(0≤x<10)
探究新知
观察以上出现的四个函数解析式,它们是不是正比例函 数,那么它们共同的特征如何表示呢?
(1) c = 7 t - 35 (2) m = h -105 (3) y = 0.1 x + 22 (4) y = -5 x + 50
y = k(常数)x + b(常数)
探究新知
(4)由v=16,得2t=16
t=8. 当t=8s时,小球的速度为16m/s
探究新知 利用一次函数的概念求字母的值
例1 已知函数y=(m-2)x+4-m2 (1)当m为何值时,这个函数是一次函数?
(2)当m为何值时,这个函数是正比例函数?
解:(1)由题意可得m-2≠0,解得m≠2. 即m≠2时,这个函数是一次函数.
-2 -1 O 1 2 3 x
描点
连线
观察与比较:
比较上面两个函数图象的相同点与不同点.填出你的观 察结果并与同伴交流.
这两个函数的图象形状都是 一条直线 ,并且倾斜
程度 相同 .函数y = -6x的图象经过原点,函数ห้องสมุดไป่ตู้ = -6x+5 的图象与y 轴交于点 (0,5) ,即它可以看作由直线y = -6x

人教版数学八年级下册19.2.2一次函数说课稿

人教版数学八年级下册19.2.2一次函数说课稿
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:通过展示一个与一次函数相关的实际情境,如“小明骑自行车去图书馆,速度和时间的关系”,让学生思考如何用数学模型来描述这种关系。
2.提出问题:在此基础上,提出问题:“如何表示速度和时间的关系?”引导学生回顾已学的线性方程知识,为新课的学习做好铺垫。
1.创设生活情境:通过引入实际生活中的问题,让学生感受到一次函数的实用性和趣味性,提高他们的学习兴趣。
2.互动教学:设计小组讨论、同桌交流等环节,鼓励学生主动参与,培养合作精神和沟通能力。
3.游戏化学习:设计一些与一次函数相关的数学游戏,让学生在轻松愉快的氛围中掌握知识。
4.成就激励:对学生在课堂上的表现给予积极的评价和鼓励,提高他们的自信心,激发学习动力。
在这个阶段,学生的学习习惯各异,一些学生习惯于被动接受知识,依赖教师的讲解,而较少主动思考和探索。同时,他们的合作学习能力有待提高,需要教师在教学中引导和培养。
(二)学习障碍
学生在学习本节课之前,应当具备以下前置知识或技能:
1.掌握线性方程的基本概念和解法。
2.能够绘制简单图形,如直线、点等。
3.理解函数的基本概念,知道函数是一种特殊的关系。
本节课的主要知识点包括:一次函数的定义、表达式、图像及性质。具体地,学生会学习到以下内容:
1.一次函数的定义:形如y=kx+b(k≠0)的函数,其中k和b是常数,称为一次函数。
2.一次函数的表达式:y=kx+b,其中k表示斜率,b表示截距。
3.一次函数的图像:一条直线。
4.一次函数的性质:斜率k的正负决定直线的斜率方向;截距b表示直线与y轴的交点。

八年级数学下册 第十九章 一次函数19.2 一次函数19.2.2 一次函数第2课时 一次函数的图象

八年级数学下册 第十九章 一次函数19.2 一次函数19.2.2 一次函数第2课时 一次函数的图象

复习课件
八年级数学下册 第十九章 一次函数19.2 一次函数19.2.2 一次函数第2课时 一次函数的图象与性质作业课件 (新版)新人教版-八年级数学下册第十九 章一次函数19.2一次函数19.2.2一次函数第2课时一次函数的图象与性质作
业课件新版新人教版
八年级数学下册 第十九章 一次函数
动一动,久坐对身体不好哦~
结束
语 八年级数学下册 第十九章 一次函数19.2 一次函
数19.2.2 一次函数第2课时 一次函数的图象与性 质作业课件 (新版)新人教版-八年级数学下册第 十九章一次函数19.2一次函数19.2.2一次函数第2 课时一次函数的图象与性质作业课件新版新人教 版
19.2 一次函数19.2.2 一次函数第2课时 一次函数的图象与性质作业课件 (新版)
新同人学教们版,-八下年课级休数息学十下分册钟第。十现九在章是一休次 函数息19时.2一间次,函你数们1休9.息2.2一一下次眼函睛数,第2课
时一次函数的Βιβλιοθήκη 象与性质作业课件新版新看人看教远版处,要保护好眼睛哦~站起来

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数(第1课时)一课一练基础闯关(含解析)(新版)

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数(第1课时)一课一练基础闯关(含解析)(新版)

一次函数一课一练·基础闯关题组一次函数的概念1.(2017·浦东新区月考)下列函数的解析式中是一次函数的是( )A.y=-B.y=-x+6C.y=2x2+1D.y=2+1【解析】选B.A.y=-自变量x在分母上,不是一次函数,故本选项错误;B.y=-x+6是一次函数,故本选项正确;C.y=2x2+1自变量x的次数是2,不是一次函数,故本选项错误;D.y=2+1自变量x是被开方数,不是一次函数,故本选项错误.2.下列函数关系式:①y=-x;②y=2x+11;③y=x2;④y=.其中一次函数的个数是( )A.1B.2C.3D.4【解析】选B.①y=-x是正比例函数,是特殊的一次函数;②y=2x+11符合一次函数的定义;③y=x2中自变量的指数是2,不是一次函数;④y=分母中有自变量,不是一次函数.综上,一次函数的个数是2.3.下列函数中,是一次函数但不是正比例函数的是( )A.y=2xB.y=+2C.y=-xD.y=2x2-1【解析】选C.B的自变量的次数不是1,D的自变量次数是2,故它们都不是一次函数,A是正比例函数,C是一次函数.4.若函数y=(m+3)x|m|-2+1是一次函数,则m的值是( )A.±3B.±1C.3D.-3【解析】选C.由一次函数的定义可得解得m=3.【变式训练】若函数y=(m-1)x|m|+2是一次函数,则( )A.m=±1B.m=-1C.m=1D.m≠-1【解析】选B.根据题意得:m-1≠0,|m|=1,解得m=-1.5.已知+(b-2)2=0,则函数y=(b+3)x-a+1-2ab+b2是什么函数?当x=-时,函数值y是多少?【解题指南】先根据非负数的性质求出a,b的值,再把a,b的值代入函数解析式即可判断出函数的种类,再把x的值代入求解即可.【解析】因为+(b-2)2=0,所以a=-1,b=2.所以y=(2+3)x-(-1)+1-2×(-1)×2+22,即y=5x+9,所以函数y=(b+3)x-a+1-2ab+b2是一次函数,当x=-时,y=5×+9=.当m,n为何值时,y=(m-1)+n.(1)是一次函数?(2)是正比例函数?【解析】(1)当m2=1且m-1≠0时,y=(m-1)+n是一次函数,即m=-1.∴当m=-1时,y=(m-1)+n是一次函数.(2)当m2=1且m-1≠0,且n=0时,y=(m-1)+n是正比例函数,即m=-1且n=0时,y=(m-1)+n是正比例函数.题组一次函数的实际应用1.下列函数关系不是一次函数的是( )A.汽车以120km/h的速度匀速行驶,行驶路程y(km)与时间t(h)之间的关系B.等腰三角形顶角y与底角x间的关系C.高为4cm的圆锥体积y(cm3)与底面半径x(cm)的关系D.一棵树现在高50cm,每月长高3cm,x个月后这棵树的高度y(cm)与生长月数x(月)之间的关系【解析】选C.高为4cm的圆锥体积y(cm3)与底面半径x(cm)的关系是y=πx2,不是一次函数,故C错误.2.写出下列各题中y与x之间的解析式,并判断y是否是x的一次函数.(1)在时速为70千米的匀速运动中,路程y(千米)与时间x(小时)的关系.(2)居民用电标准是每千瓦时0.53元,则电费y(元)与用电量x(千瓦时)之间的关系.(3)汽车离开A站4千米,再以40千米/时的平均速度行驶了x小时,那么汽车离开A站的距离y(千米)与时间x(小时)之间的关系.(4)某车站规定旅客可以免费携带不超过20千克的行李,超过部分每千克收取1.5元的行李费用,则旅客需交的行李费y(元)与携带行李质量x(x>20)(千克)之间的关系.【解析】(1)根据题意可得:y=70x,是一次函数.(2)根据题意可得:y=0.53x,是一次函数.(3)根据题意可得:y=4+40x,是一次函数.(4)根据题意可得:y=1.5(x-20),是一次函数.为了增强居民的节约用水意识,某市制定了新的水费收费标准:每户用水量不超过5吨的部分,自来水公司按每吨2元收费;超过5吨的部分,按每吨2.6元收费.设某户用水量为x吨,自来水公司应收水费为y元.(1)试写出y(元)与x(吨)之间的函数解析式.(2)该户今年5月份的用水量为8吨,自来水公司应收水费多少元?【解题指南】解答本题的两个关键点(1)两个收费标准:当0≤x≤5时,y=2x;当x>5时,y=2×5+2.6(x-5)=2.6x-3.(2)当用户的用水量为8吨时,超过了5吨,所以要代入后一个函数解析式求解.【解析】(1)y=(2)当x=8时,y=2.6×8-3=17.8,即自来水公司应收水费17.8元.已知函数y=(m2-2m+3)x2|m|-1-5是一次函数,求其解析式.【解析】∵函数y=(m2-2m+3)x2|m|-1-5是一次函数,∴2|m|-1=1且m2-2m+3≠0,解得m=±1,则m2-2m+3=2或m2-2m+3=6.该函数解析式为y=2x-5或y=6x-5.【母题变式】[变式一]已知函数y=(k+1)x2+(k-3)x+k,当k取何值时,y是x的一次函数? 【解析】∵函数y=(k+1)x2+(k-3)x+k是一次函数,∴k+1=0,解得k=-1,∴k取-1时,y是x的一次函数.[变式二]你能找到一个数m,使函数y=(m+1)x|m|+m-1是一次函数(不是正比例函数)吗? 【解析】∵函数y=(m+1)x|m|+m-1是一次函数(不是正比例函数),∴|m|=1,m+1≠0,m-1≠0, ∴不能找到一个数m,使函数y=(m+1)x|m|+m-1是一次函数(不是正比例函数).。

当涂县一中八年级数学下册第十九章一次函数19.2一次函数19.2.2一次函数第2课时一次函数的图象与

当涂县一中八年级数学下册第十九章一次函数19.2一次函数19.2.2一次函数第2课时一次函数的图象与

∠COF=∠COD,CO=CO,∠FCO=∠DCO,∴△FOC≌△DOC(ASA),
∴DC=FC.∵AC=AF+FC,
∴AC=AE+CD
5.如下图 , 在四边形ABCD中 , ∠A=∠C=90° , ∠D=60° , AB=BC , E , F分别在AD , CD上 , 且∠EBF=60°.求证 : EF=AE+CF.
知识点一 一次函数 y=kx+b(k≠0)的图象 例2.画出函数y1=-6x与y2=-6x+5的图象.
解 : 列表 :
x … -2 -1 0 1 2 …
y1 … y2 …
12 6 0 -6…-12 17 11 5 -1…-7
描点并连线 :
1、比较上面两个函数的图象回答以下问题 : (1)这两个函数的图象形状都是 一条直线 ,并且倾斜程 度 相同 。
∴∠ECA+∠DAC=12 ∠ACB+12 ∠BAC=12 (∠ACB+∠BAC)=
1 2
(180°-∠B)=60°,则∠AOC=180°-∠ECA-∠DAC=120°,
∴∠AOC=∠DOE=120°,∴∠AOE=∠COD=∠AOF=60°,
则∠COF=60°,∴∠COD=∠COF.在△FOC 与△DOC 中,


3.假设直线y=kx+2与y=3x-1平行 , 那么3k= .
4.点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点 , 那么y1-y2> 0(填 〞>”或〞<”).
5、 已知一次函数 y=(1-2m)x+m-1 , 求满足以下条件的m的值 :
〔1〕函数值y 随x的增大而增大 ;
解: 由题意得
3m 1

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件

5.(2017湖南邵阳一模)一次函数y=kx+2(k为常数,且k≠0)的图象如图19-
2-2-1-2所示,则k的可能值为
.(写出一个即可)
答案 -2(答案不唯一)
图19-2-2-1-2
解析 观察图象可知,OB<OA,k<0.
当x=0时,y=kx+2=2,∴OA=2,
令OB=1,则点B(1,0),将(1,0)代入y=kx+2,得0=k+2,解得k=-2.
4
4
故当k=-1时,直线与x轴交于点
3 4
,
0
.
(4)当
1 2k
3k 1
0, 即
0,
1 3
<k<
1 2
时,直线经过第二、三、四象限.
(5)当1-3k=-3,2k-1≠-5,
即k= 4 时,已知直线与直线y=-3x-5平行.
3
方法归纳 对于一次函数y=kx+b,(1)判断k值符号的方法:①增减性法, 当y随x增大而增大时,k>0;反之,k<0.②直线升降法,当直线从左到右上升 时,k>0;反之,k<0.③经过象限法,直线过第一、三象限时,k>0;直线过第 二、四象限时,k<0.(2)判断b值符号的方法:与y轴交点法,即直线y=kx+b 若与y轴交于正半轴,则b>0;若与y轴交于负半轴,则b<0;若与y轴交于原 点,则b=0.
例3 下列函数图象中,不可能是关于x的一次函数y=mx-(m-3)的图象的 是( )
解析 一次函数y=mx-(m-3)中,x的系数m决定着直线从左至右呈上升或 下降的趋势,-(m-3)即3-m决定着直线与y轴的交点是在正半轴、负半轴 还是原点,这两个方面不得有矛盾之处,应该结合一次函数的图象进行 分析.

霸州市四中八年级数学下册第十九章一次函数19.2一次函数19.2.2一次函数第1课时一次函数教案新版

霸州市四中八年级数学下册第十九章一次函数19.2一次函数19.2.2一次函数第1课时一次函数教案新版

第1课时 一次函数(1)了解一次函数的一般形式.重点一次函数的一般形式. 难点探索实际问题中的一次函数关系.一、创设情境,引入新课问题:某登山队大本营所在地的气温是5℃,海拔每升高1 km 气温下降6℃,登山队员由大本营向上登高x km 时,他们所在位置的气温是y ℃,试用解析式表示y 与x 的关系.师:每升高1 km 气温下降6℃,那么升高x km ,气温下降6x ℃,因此所在位置的气温为5-6x ,即y =-6x +5.自变量是x ,右边是自变量的一次式,像这样的函数就是我们今天所要学的一次函数.二、讲授新课思考:下列问题中变量间的关系可用怎样的函数表示?这些函数有哪些共同点?师:在20℃~25℃时蟋蟀每分钟鸣叫的次数C 与t(℃)有关,即C 的值约是t 的7倍与35的差.这个函数的关系式怎么写?生:C = 7t -35.师:一种计算成年人标准体重G(kg )的方法是:以厘米为单位量出身高h ,再减去常数105,所得差是G 的值,即:G =h -105.某市的市内电话的月收费额y(元)包括月租费22元和拨打电话按0.1元/分收取,写出y 与每月电话x(分钟)的函数关系式.生:y =0.1x +22.师:把一个长10 cm 、宽5 cm 的长方形的长减少x cm ,宽不变,长方形的面积y(cm 2)随x 的变化的关系式是什么?生:y = 5(10-x)=-5x +50.师:上述这些函数有什么共同特点?比如说右边. 生:右边都是自变量的倍数与一个常数的和.师:对,上述这些函数的右边都是关于自变量的一次式,像这样的函数是一次函数. 一般地,形如y =kx +b(k ,b 是常数,k ≠0)的函数叫做一次函数,当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.师:下面的函数是一次函数吗?如果是一次函数,说说其中k 和b 的值分别是多少.①y =x -6;②y=2x ;③y=x8;④y=7-x.生1:y =x -6是一次函数,其中k =1,b =-6.生2:y =2x 不是一次函数.生3:y =x 8是一次函数,其中k =18,b =0.生4:y =7-x 是一次函数,其中k =-1,b =7.师:值得注意的是y =x8也是一次函数,它是当b =0时的特殊情况.例题:(1)已知函数y =(k -2)x +2k +1,当k 为何值时它是正比例函数?当k 为何值时它是一次函数?解决:当2k +1=0,即k =-12时,它为正比例函数.当k -2≠0,即k≠2时,它为一次函数.(2)已知y 与x -3成正比例,当x =4时,y =3,写出y 与x 的函数关系式并指出是什么函数.解:因为y 与x -3成正比例,所以设y =k(x -3).由题意知当x =4时,y =3,代入得k =3.所以y =3(x -3),即y =3x -9,y 是x 的一次函数. 三、巩固练习写出下列函数关系式,并指出哪些是一次函数,其中哪些又属于正比例函数.1.面积为10 cm 2的三角形的底a(cm )与这边上的高h(cm ).【答案】h =20a,不是一次函数.2.一边长为8 cm 的平行四边形的周长L(cm )与另一边长b(cm ). 【答案】L =16+2b ,是一次函数.3.食堂原有煤120吨,每天要用去5吨,x 天后还剩下煤y 吨. 【答案】y =120-5x ,是一次函数.4.汽车每小时行40千米,行驶的路程s(千米)和时间t(小时). 【答案】s =40t ,是一次函数,且是正比例函数.5.圆的面积y(平方厘米)与它的半径x(厘米)之间的关系.【答案】y =πx 2,不是一次函数.6.一棵树现在高50厘米,每个月长高2厘米,x 个月后这棵树的高度为y(厘米). 【答案】y =50+2x ,是一次函数. 四、课堂小结本节课从实际出发得出一次函数的概念,并在实际问题中根据简单信息写出一次函数的表达式,进而解决问题.本节课主要学习了一次函数的概念和一次函数的一般形式.教学过程中充分调动了学生的学习积极性,让学生参与到学习活动中,在活动的过程中,理解并掌握知识,同时也培养了学生的学习能力及参与意识,取得了良好的教学效果.13.1 命题、定理与证明(第一课时)一、说教材1、教材的地位和作用命题是数学教学的基本依据,经过推理证实的命题如定理可以作为继续推理的依据,所以认识命题的定义、结构、真假是数学学习的主要任务之一。

人教版数学八下19.2.2《一次函数(3)待定系数法求一次函数解析式专题》教案

人教版数学八下19.2.2《一次函数(3)待定系数法求一次函数解析式专题》教案
-能够根据实际问题列出方程组,并通过待定系数法求解。
-熟练运用一次函数模型解决实际问题。
举例解释:在教学过程中,教师应重点关注学生对待定系数法的基本理解和运用。例如,通过讲解和练习,确保学生明白如何将实际问题转化为数学模型,特别是如何选取未知数,列出方程组,并正确使用待定系数法求解。
2.教学难点
-理解待定系数法背后的数学思想,即通过设定未知系数来构建方程组。
4.培养学生的团队协作和交流能力:通过小组讨论、合作解决问题,促进学生之间的交流与合作,提高团队协作能力。
本节课将紧紧围绕这些核心素养目标,结合课本内容,设计教学活动,确保学生在掌握知识的同时,提高学科素养。
三、教学难点与重点
1.教学重点
-理解并掌握待定系数法的概念及原理。
-学会运用待定系数法求解一次函数的解析式。
1.培养学生的逻辑推理能力:通过待定系数法求解一次函数解析式的过程,让学生体会从特殊到一般、从具体到抽象的推理方法,提高逻辑思维水平。
2.提升学生的数据分析能力:使学生能够根据实际问题提炼出一次函数模型,通过数据处理和方程组构建,求解出函数解析式,从而解决实际问题。
3.增强学生的数学建模素养:培养学生运用数学知识构建一次函数模型解决实际问题的能力,提高数学应用意识。
五、教学反思
在今天的教学中,我带领学生们学习了待定系数法求解一次函数解析式的内容。回顾整个教学过程,我觉得有几个方面值得反思。
首先,我发现学生们在理解待定系数法的概念和原理上存在一定难度。虽然我在课堂上通过生动的案例进行了讲解,但可能还需要在今后的教学中进一步加强引导,让学生更加直观地感受到这一方法的应用价值。或许可以尝试引入更多生活中的实例,让学生认识到待定系数法在解决实际问题中的重要性。

人教版初中数学八年级下册19.2.2《一次函数的概念》教案

人教版初中数学八年级下册19.2.2《一次函数的概念》教案
三、教学难点与重点
1.教学重点
-一次函数的定义:y=kx+b(k≠0,k、b是常数),这是本节课的核心内容,教师需通过讲解和示例,使学生深刻理解一次函数的基本形式。
-一次函数图像的特点:一次函数的图像是一条直线,教学中应通过绘制图像和观察,让学生掌握这一特点。
-一次函数的增减性:根据k的值判断函数图像的增减趋势,教师需引导学生通过实例分析,掌握增减性的判断方法。
五、教学反思
在今天的教学中,我尝试通过生活实例导入一次函数的概念,希望以此激发学生的兴趣。从课堂反应来看,大部分同学能够积极参与,但我也注意到有些学生在理解一次函数的定义上还存在困难。这让我意识到,对于基础概念的教学,需要更加细致和耐心。
在理论介绍环节,我尽力用简洁明了的语言解释一次函数的定义和图像特点,同时配合图示,希望让学生能够直观地理解。然而,从学生的提问和作业来看,对于k、b取值范围的理解仍然是他们的一个难点。未来,我考虑引入更多的实际例子,让学生在具体情境中感受这些参数的变化,以便更好地理解。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的定义和图像特点这两个重点。对于难点部分,如k、b的取值范围和一次函数图像的绘制,我会通过举例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示一次函数图像的绘制方法。
人教版初中数学八年级下册19.2.2《一次函数的概念》教案
一、教学内容
人教版初中数学八年级下册19.2.2《一次函数的概念》教案:
1.理解一次函数的定义:形如y=kx+b(k≠0,k、b是常数)的函数,称为一次函数。

人教版八年级下册第十九章:19.2.2一次函数(教案)

人教版八年级下册第十九章:19.2.2一次函数(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一次函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体运动速度与时间的关系?”(如骑自行车速度与时间的关系)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的定义、图像性质和增减性这两个重点。对于难点部分,如一次函数解析式的求解,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如物品售价与购买数量的关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过观察物体运动过程中速度与时间的变化,演示一次函数的基本原理。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数的基本概念。一次函数是形如y=kx+b的表达式,其中k和b是常数,且k≠0。它是描述两个变量之间线性关系的重要数学工具,广泛应用于物理、经济等领域。
2.案例分析:接下来,我们来看一个具体的案例。以物体匀速直线运动为例,分析速度与时间的关系,展示一次函数在实际中的应用,以及它如何帮助我们解决问题。
-一次函数的增减性:明确斜率k的正负与函数增减的关系;
-实际问题中的应用:学会将一次函数应用于解决实际问题,如距离、速度等问题。
举例:讲解斜率k和截距b的概念时,可以通过实际例图(如交通图、温度变化图等)来解释其在图像上的具体表现,加深学生的理解。
2.教学难点
-一次函数解析式的求解:如何从给定的图像或条件中找出斜率k和截距b,列出一次函数的解析式;

大连市十中八年级数学下册第十九章一次函数19.2一次函数19.2.2一次函数第1课时一次函数的概念教

大连市十中八年级数学下册第十九章一次函数19.2一次函数19.2.2一次函数第1课时一次函数的概念教

一次函数第1课时一次函数的概念【知识与技能】1。

理解一次函数的概念以及它与正比例函数的关系。

2。

能根据问题的信息写出一次函数的表达式,能利用一次函数解决简单的问题。

【过程与方法】在探究过程中,开展抽象思维及概括能力,体验特殊和一般的辩证关系。

【情感态度】经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力.【教学重点】1。

一次函数的概念。

2。

根据已知信息写出一次函数的表达式。

【教学难点】理解一次函数的定义及与正比例函数的关系.一、情境导入,初步认识引导学生一起回忆函数、正比例函数的概念和两者间的关系。

问题某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃,登山队员由大本营向上登高xkm,他们所在位置的气温是y℃,试用解析式表示y与x的关系。

【分析】 y随x的变化规律是,从大本营向上海拔增加xkm时,气温从5℃减少6x℃,因此y 与x的函数关系为y=5—6x,变形可写成y=-6x+5。

【教学说明】找出y与x的关系式后,引导学生观察这个函数式是不是正比例函数,它的形式与正比例函数解析式有什么异同?由学生共同讨论.二、思考探究,获取新知学生思考以下问题,写出对应的函数解析式:〔1〕有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(单位:℃〕有关,即C的值约是t的7倍与35的差。

(2〕一种计算成年人标准体重G〔单位:千克)的方法是,以厘米为单位量出身高值h,h再减常数105,所得的差是G的值。

〔3〕把一个长10cm,宽5cm的长方形的长减小xcm,宽不变,长方形的面积y〔单位:cm2〕随x的值而变化。

【答案】(1〕C=7t—35;〔2)G=h—105;〔3〕y=-5x+50.【教学说明】让学生观察所写解析式的特点,并让学生认识到:各小题表示变量的字母虽然不同,但结构相同。

变量间对应关系反映出了一种函数形式,与所取符号无关,找出这些式子的共同点,才能概括出一般规律.【归纳总结】〔1〕一般地,形如y=kx+b(k,b为常数,k≠0〕的函数,叫一次函数.〔2〕当b=0时,得y=kx,故正比例函数是一次函数的特例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档