八年级初二数学 平行四边形知识点-+典型题及答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级初二数学 平行四边形知识点-+典型题及答案

一、选择题

1.如图,正方形ABCD 的边长为4,点E 在边AB 上,AE =1,若点P 为对角线BD 上的一个动点,则△PAE 周长的最小值是( )

A .3

B .4

C .5

D .6

2.如图所示,E 为正方形ABCD 的边BC 延长线上一点,且CE =AC ,AE 交CD 于点F ,那么∠AFC 的度数为( )

A .112.5°

B .125°

C .135°

D .150°

3.如图,边长为1的正方形EFGH 在边长为4的正方形ABCD 所在平面上移动,始终保持EF//AB ,CK=1.线段KG 的中点为M ,DH 的中点为N ,则线段MN 的长为 ( ).

A .26

B .17

C .172

D .262 4.如图,将一个矩形纸片ABCD 折叠,使点B 与点D 重合,若3,9,AB BC ==则折痕EF 的长度为( )

A 3

B .3

C 10

D .3102

5.如图,依次连结第一个菱形各边的中点得到一个矩形,再依次连结矩形各边的中点得到第二个菱形,按此方法继续下去.已知第一个菱形的面积为1,则第4个菱形的面积是

( )

A .14

B .116

C .132

D .

164 6.已知点M 是平行四边形ABCD 内一点(不含边界),设

12MAD MBA θθ∠=∠=,,3 MCB θ∠=,4MDC θ∠=.若

110,AMB ∠=︒ 90CMD ∠=︒,60BCD ∠=︒,则( )

A .142310θθθθ+--=︒

B .241330θθθθ+--=︒

C .142330θθθθ+--=︒

D .241340θθθθ+--=︒

7.线段AB 上有一动点C (不与A ,B 重合),分别以AC ,BC 为边向上作等边△ACM 和等边△BCN ,点D 是MN 的中点,连结AD ,BD ,在点C 的运动过程中,有下列结论:

①△ABD 可能为直角三角形;②△ABD 可能为等腰三角形;③△CMN 可能为等边三角形;④若AB=6,则AD+BD 的最小值为37. 其中正确的是( )

A .②③

B .①②③④

C .①③④

D .②③④

8.如图的△ABC 中,AB>AC>BC,且D 为BC 上一点.现打算在AB 上找一点P ,在AC 上找一点Q,使得△APQ 与以P 、D 、Q 为顶点的三角形全等,以下是甲、乙两人的作法: 甲:连接AD,作AD 的中垂线分别交AB 、AC 于P 点、Q 点,则P 、Q 两点即为所求; 乙:过D 作与AC 平行的直线交AB 于P 点,过D 作与AB 平行的直线交AC 于Q 点,则P 、Q 两点即为所求;对于甲、乙两人的作法,下列判断何者正确( )

A .两人皆正确

B .两人皆错误

C .甲正确,乙错误

D .甲错误乙正确

9.如图,直角梯形ABCD 中AD ∥BC ,∠D =90°.∠A 的平分线交DC 于E ,EF ⊥AB 于F .已知AD =3.5cm ,DC =4cm ,BC =6.5cm .那么四边形BCEF 的周长是( )

A .10cm

B .11cm

C .11.5cm

D .12cm

10.如图,在□ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上(E 不与A 、B 重合),连接EF 、CF ,则下列结论中一定成立的是 ( )

①∠DCF=12

∠BCD ;②EF=CF ;③2BEC CEF S S ∆∆<;④∠DFE=4∠AEF A .①②③④

B .①②③

C .①②

D .①②④ 二、填空题

11.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.

12.如图所示,菱形ABCD ,在边AB 上有一动点E ,过菱形对角线交点O 作射线EO 与CD 边交于点F ,线段EF 的垂直平分线分别交BC 、AD 边于点G 、H ,得到四边形EGFH ,点E 在运动过程中,有如下结论:

①可以得到无数个平行四边形EGFH ;

②可以得到无数个矩形EGFH ;

③可以得到无数个菱形EGFH ;

④至少得到一个正方形EGFH .

所有正确结论的序号是__.

13.已知在矩形ABCD 中,3,3,2

AB BC ==点P 在直线BC 上,点Q 在直线CD 上,且,AP PQ ⊥当AP PQ =时,AP =________________.

14.如图正方形 ABCD 中,E 是 BC 边的中点,将△ABE 沿 AE 对折至△AFE ,延长 EF 交 CD 于 G ,接 CF ,AG .下列结论:① AE ∥FC ; ②∠EAG = 45°,且BE + DG = EG ;③

ABCD 19

CEF S S ∆=正方形;④ AD = 3DG ,正确是_______ (填序号).

15.如图,在矩形ABCD 中,∠ACB =30°,BC =23,点E 是边BC 上一动点(点E 不与B ,C 重合),连接AE ,AE 的中垂线FG 分别交AE 于点F ,交AC 于点G ,连接DG ,GE .设AG =a ,则点G 到BC 边的距离为_____(用含a 的代数式表示),ADG 的面积的最小值为_____.

16.如图,已知在△ABC 中,AB=AC=13,BC=10,点M 是AC 边上任意一点,连接MB ,以MB 、MC 为邻边作平行四边形MCNB ,连接MN ,则MN 的最小值是______

相关文档
最新文档