《大学物理》静电场习题
大学物理静电场练习题带标准答案
大学物理静电场练习题带答案————————————————————————————————作者:————————————————————————————————日期:大物练习题(一)1、如图,在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O '的矢量用a 表示。
试证明球形空腔中任一点电场强度为 . A 、03ρεa B 、0ρεa C 、02ρεa D 、3ρεa2、如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强A 、02πR λε-B 、0πRλε- C 、00ln 22π4λλεε+ D 、00ln 2π2λλεε+3、 如图所示,一导体球半径为1R ,外罩一半径为2R 的同心薄导体球壳, 外球壳所带总电荷为Q ,而内球的电势为0V ,求导体球和球壳之间的电势差 (填写A 、B 、C 或D ,从下面的选项中选取)。
A 、1020214R Q V R R πε⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ B 、102024R Q V R R πε⎛⎫- ⎪⎝⎭C 、0024Q V R πε- D 、1020214R Q V R R πε⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭4.如图所示,电荷面密度为1σ的带电无限大板A 旁边有一带电导体B ,今测得导体表面靠近P 点处的电荷面密度为2σ。
求:(1)P 点处的场强 ;(2)导体表面靠近P 点处的电荷元S ∆2σ所受的电场力 。
A 、20σεB 、202σεC 、2202S σε∆D 、220S σε∆5.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ]Q Opr)(A )2200,44r Q QE D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q QE D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。
3大学物理习题-静电场
3大学物理习题-静电场静电场一、选择题1.一带电体可作为点电荷处理的条件是(A)电荷必须呈球形分布;(B)带电体的线度很小;(C)带电体的线度与其它有关长度相比可忽略不计;(D)电量很小。
2.真空中有两个点电荷M、N,相互间作用力为F,当另一点电荷Q移近这两个点电荷时,M、N两点电荷之间的作用力F(A)大小不变,方向改变;(B)大小改变,方向不变;(C)大小和方向都不变;(D)大小和方向都改变。
3.下列几种说法中哪一个是正确的(A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向;(B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同;F(C)场强方向可由E定义给出,其中q为试验电荷的电量,q可正、可负,F为试验q电荷所受的电场力;(D)以上说法都不正确。
4.一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F和合力矩M为:(A)F0,M0;(B)F0,M0;(C)F0,M0;(D)F0,M0。
5.一电场强度为E的均匀电场,E的方向与某轴正向平行,如图所示,则通过图中一半径为R的半球面的电场强度通量为(A)R2E;(B)O第题图1R2E;(C)2R2E;(D)0。
2E某6.如图所示,一个带电量为q的点电荷位于立方体的度通量等于:(A)A角上,则通过侧面abcd的电场强12060A·qb图2404807.下列说法正确的是c(A)闭合曲面上各点的电场强度都为零,曲面内一定没有电荷;(B)闭合曲面上各点的电场强度都为零,曲面内电荷代数和必定为零;(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零;(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零。
8.电场中高斯面上各点的电场强度是由:(A)分布在高斯面上的电荷决定的;(B)分布在高斯面外的电荷决定的;(C)空间所有的电荷决定的;(D)高斯面内电荷代数和决定的。
9.根据高斯定理的数学表达式EdSSq/0可知下述各种说法中,正确的是:(A)闭合面内的电荷代数和为零时,闭合面上各点场强一定为零;(B)闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零;(C)闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零;(D)闭合面上各点场强均为零时,闭合面内一定处处无电荷;10.已知一高斯面所包围的体积内电量代数和qi0,则可肯定:(A)高斯面上各点场强均为零;(B)穿过高斯面上每一面元的电通量均为零;(C)穿过整个高斯面的电通量为零;(D)以上说法都不对。
大学物理:静电场练习题
由对称性可知 U p 0
l
l
l
0
12
的均匀电场!
练: 真空中一半径为R的均匀带电球面,总电量为 Q(Q > 0)。今在球面上挖去非常小块的面积
ΔS (连同电荷), 且假设
不影响原来的电荷分布, 则挖去ΔS后球心处电场
R
O
S
强度的大小E= QS /(16 2 0 R 4 )
其方向为 由圆心O点指向S
解:由场强叠加原理,挖去S 后的电场可以看作
和Φ2 ,通过整个球面的电场强度通量为 ΦS ,则
(C) (A) Φ1 Φ2 , ΦS q / 0
S2
q S1 q
O a 2a X
(B)Φ1 Φ2 , ΦS 2q / 0
(C) Φ1 Φ2 , ΦS q / 0
(D) Φ1 Φ2 , ΦS q / 0
解:由高斯定理 ΦS q / 0
(D) 0
解:过P点作如图同轴圆柱形高斯面S,由高斯定理
SE dS 2rlE 0
R1
所以E=0。
l
2
1 R2O r P
4. 有两个点电荷电量都是 +q, 相距为2a。今以左边的
点电荷所在处为球心,以a为半径作一球形高斯面,
在球面上取两块相等的小面积 S1 和 S2 , 其位置如图 所示。设通过 S1 和 S 2 的电场强度通量分别为 Φ1
2. 上半部带正电,下半部带负电,线密度为
3. 非均匀带电,线密度为 0sin
y
dq
d o
x
R
dE
思路:叠加法
dq dE E
解:1)
dq Rd
dE
dq
4 0 R 2
;沿径向
大学物理第05章_静电场习题
第5章 静电场习题解答5.1一带电体可作为点电荷处理的条件是( ) (A )电荷必须呈球形分布。
(B )带电体的线度很小。
(C )带电体的线度与其它有关长度相比可忽略不计。
(D )电量很小。
5.2图中所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ(x >0)和 -λ(x < 0),则 oxy 坐标平面上点(0,a )处的场强 E 为:( ) ( A ) 0 ( B )02aλπεi ( C )04a λπεi ( D ) ()02aλπε+i j 5.3 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( )(A) (B) (C) (D)5.4 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 ( )(A) 穿过S 面的电通量改变,O 点的场强大小不变; (B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变;(D) 穿过S 面的电通量不变,O 点的场强大小不变。
5.5如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。
5.6关于高斯定理的理解有下面几种说法,其中正确的是 ( ) (A) 如果高斯面内无电荷,则高斯面上E处处为零; (B) 如果高斯面上E处处不为零,则该面内必无电荷;(C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。
5.7 下面说法正确的是 [ ](A)等势面上各点场强的大小一定相等; (B)在电势高处,电势能也一定高; (C)场强大处,电势一定高;(D)场强的方向总是从电势高处指向低处.5.8 已知一高斯面所包围的体积内电量代数和0i q =∑ ,则可肯定:[ ] (A )高斯面上各点场强均为零。
大学物理静电场练习题及答案
练习题7-1 两个点电荷所带电荷之和为Q ,它们各带电荷为多少时,相互间的作用力最大?解: 这是一个条件极值问题。
设其中一个点电荷带电q ,则另一个点电荷带电q Q -, 两点电荷之间的库仑力为()241r qq Q F -=πε由极值条件0d d =q F,得Q q 21=又因为202221d d r q F πε-=<0这表明两电荷平分电荷Q 时,它们之间的相互作用力最大。
7-2 两个相同的小球,质量都是m ,带等值同号的电荷q ,各用长为l 的细线挂在同一点,如图7-43所示。
设平衡时两线间夹角2θ很小。
(1)试证平衡时有下列的近似等式成立:31022⎪⎪⎭⎫⎝⎛=mg l q x πε式中x 为两球平衡时的距离。
(2)如果l = 1.20 m ,m =10 g ,x =5.0 cm ,则每个小球上的电荷量q 是多少?(3)如果每个球以-19s C 1001⋅⨯-.的变化率失去电 图7-43 练习题7-2图 荷,求两球彼此趋近的瞬时相对速率d x /d t 是多少? 解:(1)带电小球受力分析如图解所示。
小球平衡时,有FT =θsinmg T =θcos由此二式可得mgF =θtan因为θ很小,可有()l x 2tan ≈θ,再考虑到2024x q F πε=可解得31022⎪⎪⎭⎫ ⎝⎛=mg l q x πε(2)由上式解出C 10382282130-⨯±=⎪⎪⎭⎫⎝⎛±=.l mgx q πε (3) 由于tq q x t q q mg l t x d d 32d d 322d d 31310=⎪⎪⎭⎫ ⎝⎛==-πευ 带入数据解得-13s m 10401⋅⨯=-.υ合力的大小为2222201222412cos 2⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛+⋅⋅===d x x d x e F F F x πεθ()23222043241dx xe +=πε令0d d =x F ,即有()()0482341825222232202=⎥⎥⎦⎤⎢⎢⎣⎡+⋅-+d x x d x e πε 由此解得α粒子受力最大的位置为22d x ±=7-4 由相距较近的等量异号电荷组成的体系称电偶极子,生物细胞膜及土壤颗粒表面的双电层可视为许多电偶极子的集合。
大学物理 静电场习题
第7、8章 习题
28
其他习题
1、如图所示,真空中一长为L的均匀带电细直杆,总电荷为q, 试求在直杆延长线上距杆的一端 距离为d的P点的电场强度.
解:设杆的左端为坐标原点O,x轴沿直方向.带 电直杆的电荷线密度为λ =q / L,在x处取一电 荷元dq = ldx = qdx / L,它在P点的场强:
dq
Q
r a qO b
第7、8章 习题
27
(3) 球心O点处的总电势为分布在球壳内外表面上的电荷和 点电荷q在O点产生的电势的代数和
U O U q U q U Qq
q q Qq 4 0 r 4 0 a 4 0 b
Q
r a qO b
Q q 1 1 1 ( ) 4 0 r a b 4 0 b
-3 σ / (2ε0) 的电场强度分别为: EA=__________________ , - σ / (2ε0) EB=__________________ ,
3 σ / (2ε0) EC=_______________( 设方向向右为正).
+ +2 A B C
第7、8章 习题
31
4、在点电荷+q和-q的静电场中,作出 如图所示的三个闭合面S1、S2、S3,则 通过这些闭合面的电场强度通量分别是:
第7、8章 习题
35
8、静电学中有下面几个常见的场强公式:
E F /q
E = q / (40r2) E = (UA-UB) / l
(1) (2) (3)
问:1.式(1)、(2)中的q意义是否相同? 2.各式的适用范围如何?
第7、8章 习题
36
答:1. (1)、(2) 两式中的q意义不同.(1) 式中的q是置于静 电场中受到电场力作用的试验电荷;(2)中的q是产生电场
大学物理-静电场例题
两端连线的夹角分别为 1 和2 。求P 点的场强。
y
dE
dEy
dEx
1
A
P
ar
O x dx
2
B
x
解:dE
dq
40r 2
dx 40r 2
dEx
dE cos(
)
dx cos 40r 2
dEy
dE sin(
)
dx sin 40r 2
r a a csc
S
D
dS
4
r2D
0 q
(0 r R) (r R)
0
D
D(r)
q
4r 2
(r R) (r R)
0
E
D
q
4
0
r
r
2
q
4
0
r
2
(r R) (R r R d) (r R d)
(2)P
D
0
E
(1
1
r
)
q
4r
2
(R r R d)
int=Pint
eint
P
rR
(1
1
r
B
A
R1 d
R2
解:
(1) D Q
2Lr
(R1 r R2 )
E
D
Q
2 0 r Lr
Q
2 0 Lr
(R1 (R1
1 1 l 2 4r2
2
2ql
4 0 r 3
p
2 0 r 3
r
-q
O
q
E- P
E+
l
(2)中垂线上的场强:
3大学物理习题_静电场
。
12.两个同心球面的半径分别为 R1 和 R2 ,各自带有电荷 Q1 和 Q2 ,则两球面的电势差
为
。
13.如图,在带电量为+2q 的点电荷电场中,取图中 P 点处为电势零点,则 M 点的电势为_
__________。
14.如图所示电量为 q 的试验电荷, 在电量为 Q
R
·Q d
·a q
3 大学物理习题_静电场
(A)大小不变,方向改变;
(B)大小改变,方向不变;
(C)大小和方向都不变;
(D)大小和方向都改变。
3.下列几种说法中哪一个是正确的?
(A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向;
(B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同;
(C)场强方向可由
E
F
定义给出,其中
量等于:
q
(A) ;
6 0
(B) q ; 12 0
a
d
A·q
q
(C) ;
24 0
q
(D) 。
48 0
b
c
图
7.下列说法正确的是
(A)闭合曲面上各点的电场强度都为零,曲面内一定没有电荷;
(B)闭合曲面上各点的电场强度都为零,曲面内电荷代数和必定为零;
(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零;
意路径移动到b 点,外力所作的功__________;电场力所作的功____________。
16.平行板电容器的电容随两极板距离的增大而___________(填增大或减小)。
17.平行板电容器两极板间的距离为 d ,两极板的面积均为 S ,极板间为真空,则该平行板
大学物理第7章静电场练习题
第7章 习题精选(一)选择题7-1、下列几种说法中哪一个是正确的(A )电场中某点场强的方向,就是点电荷在该点所受电场力的方向. (B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同.(C )场强可由q F E /计算,其中q 为试验电荷,q 可正、可负,F 为试验电荷所受电场力.(D )以上说法都不正确.[ ]7-2、图中实线为某电场的电场线,虚线表示等势面,由图可看出: (A )C B A E E E ,C B A V V V .(B )C B A E E E ,C B A V V V . (C )C B A E E E ,C B A V V V .(D )C B A E E E ,C B A V V V .[ ]7-3、关于电场强度定义式0/q F E,下列说法中哪个是正确的(A )场强E的大小与试验电荷0q 的大小成反比.(B )对场中某点,试验电荷受力F与0q 的比值不因0q 而变. (C )试验电荷受力F 的方向就是场强E的方向.(D )若场中某点不放试验电荷0q ,则0 F ,从而0 E.[ ]7-4、有一边长为a 的正方形平面,在其中垂线上距中心O 点垂直距离为a /2处,有一电量为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A )03 q . (B )04 q (C )03 q . (D )06 q[ ]7-5、已知一高斯面所包围的体积内电荷代数和0 q ,则可肯定:(A )高斯面上各点场强均为零. (B )穿过高斯面上每一面元的电场强度通量均为零. (C )穿过整个高斯面的电场强度通量为零. (D )以上说法都不对.[ ]q7-6、点电荷Q 被曲面S 所包围,从无穷远处引入另一点电荷q 至曲面外一点,如图,则引入前后: (A )曲面S 的电场强度通量不变,曲面上各点场强不变. (B )曲面S 的电场强度通量变化,曲面上各点场强不变. (C )曲面S 的电场强度通量变化,曲面上各点场强变化. (D )曲面S 的电场强度通量不变,曲面上各点场强变化.[ ]7-7、高斯定理0/d q S E S(A )适用于任何静电场. (B )只适用于真空中的静电场. (C )只适用于具有球对称性、轴对称性和平面对称性的静电场.(D )只适用于虽然不具有(C )中所述的对称性、但可以找到合适的高斯面的静电场.[ ]7-8、关于高斯定理的理解有下面几种说法,其中正确的是:(A )如果高斯面上E处处为零,则该面内必无电荷.(B )如果高斯面内无电荷,则高斯面上E处处为零.(C )如果高斯面上E处处不为零,则高斯面内必有电荷.(D )如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.[ ]7-9、静电场中某点电势的数值等于(A )试验电荷q 0置于该点时具有的电势能. (B )单位试验电荷置于该点时具有的电势能. (C )单位正电荷置于该点时具有的电势能.(D )把单位正电荷从该点移到电势零点外力所做的功.[ ]7-10、图中所示为轴对称性静电场的E ~r 曲线,请指出该电场是由下列哪一种带电体产生的(E 表示电场强度的大小,r 表示离对称轴的距离).(A )“无限长”均匀带电圆柱面. (B )“无限长”均匀带电圆柱体. (C )“无限长”均匀带电直线. (D )“有限长”均匀带电直线.[ ]7-11、如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A )顶点a 、b 、c 、d 处都是正电荷.(B )顶点a 、b 处是正电荷,c 、d 处是负电荷. (C )顶点a 、c 处是正电荷,b 、d 处是负电荷. (D )顶点a 、b 、c 、d 处都是负电荷.[ ]7-12、图中所示为一球对称性静电场的电势分布曲线,r 表示离对称中心的距离.请指出该电场是由下列哪一种带电体产生的. (A )半径为R 的均匀带负电球面.(B )半径为R 的均匀带负电球体. (C )正点电荷. (D )负点电荷.[ ]7-13、已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪个是正确的(A )电场强度N M E E . (B )电势N M V V . (C )电势能pN pM E E . (D )电场力的功0 W .[ ]7-14、有三个直径相同的金属小球.小球1和小球2带等量异号电荷,两者的距离远大于小球直径,相互作用力为F .小球3不带电并装有绝缘手柄.用小球3先和小球1碰一下,接着又和小球2碰一下,然后移去.则此时小球1和2之间的相互作用力为:(A )0. (B )F /4. (C )F /8. (D )F /2.[ ]7-15、一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为 ,则在导体板B 的两个表面1和2上的感应电荷面密度为:(A ) 1, 2. (B ) 211 , 212 .(C ) 211 , 212 . (D ) 1,02 .[ ]baA+7-16、A 、B 为两导体大平板,面积均为S ,平行放置,如图所示.A 板带电荷1Q ,B 板带电荷2Q ,如果使B 板接地,则AB 间电场强度的大小E 为(A )S Q 012 . (B )S Q Q 0212 . (C )S Q01 . (D )SQ Q 0212 .[ ]7-17、两个同心薄金属球壳,半径分别为1R 和2R (12R R ),若分别带上电荷1q 和2q ,则两者的电势分别为1V 和2V (选无穷远处为电势零点).现用导线将两球壳相连接,则它们的电势为(A )1V . (B )2V . (C )21V V . (D ))(2121V V .[ ]7-18、如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为:(A )00 V E ,. (B )00 V E ,. (C )00 V E ,. (D )00 V E ,.[ ]7-19、在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现:(A )球壳内、外场强分布均无变化. (B )球壳内场强分布改变,球壳外不变. (C )球壳外场强分布改变,球壳内不变. (D )球壳内、外场强分布均改变.[ ]7-20、电场强度0/q F E这一定义的适用范围是:(A )点电荷产生的电场. (B )静电场. (C )匀强电场. (D )任何电场.[ ]7-21、在边长为b 的正方形中心放置一点电荷Q ,则正方形顶角处的场强为: (A )20π4b Q . (B )20π2b Q . (C )20π3b Q . (D )20πb Q. [ ]7-22、一“无限大”均匀带电平面A 的右侧放一与它平行的“无限大”均匀带电平面B .已知A 面电荷面密度为 ,B 面电荷面密度为 2,如果设向右为正方向,则两平面之间和平面B 右侧的电场强度分别为:+Q 2A B(A )002 ,. (B )00 ,. (C )00232 ,. (D )002 , . [ ]7-23、一带有电量Q 的肥皂泡(可视为球面)在静电力的作用下半径逐渐变大,设在变大的过程中其球心位置不变,其形状保持为球面,电荷沿球面均匀分布,则在肥皂泡逐渐变大的过程中:(A )始终在泡内的点的场强变小. (B )始终在泡外的点的场强不变. (C )被泡面掠过的点的场强变大. (D )以上说法都不对.[ ]7-24、两个同心均匀带电球面,半径分别为a R 和b R (a R <b R ),所带电荷分别为a Q 和b Q .设某点与球心相距r ,当b R r 时,该点的电场强度的大小为:(A )2b b 2a 0π41R Q r Q . (B ) 2b a 0π41r Q Q . (C ) 2b a 0π41r Q Q . (D )2a 0π41r Q . [ ]7-25、关于高斯定理的理解有下面几种说法,其中正确的是: (A )如果高斯面内有净电荷,则通过高斯面的电通量必不为零.(B )如果高斯面内无电荷,则高斯面上E处处为零.(C )如果高斯面上E处处不为零,则该面内必有电荷. (D )高斯定理仅适用于具有高度对称性的电场.[ ]7-26、一点电荷放在球形高斯面的中心处,下列哪一种情况,通过该高斯面的电通量会发生变化. (A )将另一点电荷放在高斯面外. (B )将另一点电荷放在高斯面内. (C )将球心处的点电荷移开,但仍在高斯面内. (D )将高斯面缩小.[ ]7-27、在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于: (A )1P 和2P 两点的位置. (B )1P 和2P 两点处的电场强度的大小和方向. (C )试验电荷所带电荷的正负. (D )试验电荷所带的电量.[ ]7-28、带电导体达到静电平衡时,其正确结论是:(A )导体表面上曲率半径小处电荷密度较小.(B )表面曲率半径较小处电势较高.(C )导体内部任一点电势都为零. (D )导体内任一点与其表面上任一点的电势差等于零.[ ]7-29、一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U ,电场强度的大小E ,将发生如下变化.(A )U 减小,E 减小. (B )U 增大,E 增大.(C )U 增大,E 不变. (D )U 减小,E 不变.[ ](二)填空题7-1、根据定义,静电场中某点的电场强度等于置于该点的___________________所受到的电场力.7-2、电场线稀疏的地方电场强度________;密集的地方电场强度________.(填“较大”或“较小”)7-3、均匀带电细圆环圆心处的场强为______________.7-4、一电偶极子,带电量为C 1025 q ,间距cm 5.0 L ,则系统电矩为_____________Cm .7-5、在静电场中作一任意闭合曲面,通过该曲面的电场强度通量的值取决于________________.7-6、两个平行的“无限大”均匀带电平面,其电荷面密度分别为 和 ,则两平面之间的电场强度大小为___________________,方向为_____________________.7-7、一个均匀带电球面半径为R ,带电量为Q .在距球心r 处(r <R )某点的电势为________________.7-8、在电荷为q 的点电荷的静电场中,将一电荷为0q 的试验电荷从a 点(距离q 为a r )沿任意路径移动到b 点(距离q 为b r ),外力克服静电场力所做的功 W ____________________.7-9、电荷为C 1059 的试验电荷放在电场中某点时,受到N 10209 的向下的力,则该点的电场强度大小为____________,方向____________.+ +2 AB C7-10、两个平行的“无限大”均匀带电平面,其电荷面密度分别为 和 2 ,如图所示,则A 、B 、C 三个区域的电场强度分别为:E A =______________,E B =________________,E C =_____________(设方向向右为正).7-11、一半径为R 的带有一缺口的细圆环,缺口长度为d (d <<R )环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小 E ______________,场强方向为____________.7-12、半径为R 的半球面置于场强为E的均匀电场中,其对称轴与场强方向一致,如图所示.则通过该半球面的电场强度通量为___________.7-13、一均匀带正电的导线,电荷线密度为 ,其单位长度上总共发出的电场线条数(即电场强度通量)是____________.7-14、如图,点电荷q 和-q 被包围在高斯面S 内,则通过该高斯面的电场强度通量 SS E d =_________,式中E为__________________处的场强.7-15、在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合面S 1、S 2、S 3,则通过这些闭合面的电场强度通量分别是:1Φ=___________,2Φ=___________,3Φ=________________.7-16、描述静电场的两个基本物理量是__________________;它们的定义公式是_______________和_________________.7-17、图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷为-q 的点电荷.线段R BA .现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所做的功为_____________.7-18、半径为R 的均匀带电圆环,电荷线密度为 .设无穷远处为电势零点,则圆环中心O 点的电势V =_____________________.7-19、静电场的场强环路定理的数学表示式为:____________.该式的物理意义____________________1 2 3该定理表明,静电场是____________场.7-20、电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时系统的电势能E p =___________________.7-21、一空气平行板电容器,两极板间距为d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /3的金属板,则板间电压变成U =________________.7-22、如图所示,两同心导体球壳,内球壳带电荷+q ,外球壳带电荷-2q .静电平衡时,外球壳的电荷分布为:内表面_____________;外表面_______________.7-23、如图所示,把一块原来不带电的金属板B ,移近一块已带有正电荷Q 的金属板A ,平行放置.设两板面积都是S ,板间距离是d ,忽略边缘效应.当B 板不接地时,两板间电势差U AB =_____________;B 板接地时两板间电势差 ABU _____________.7-24、一个不带电的金属球壳的内、外半径分别为R 1和R 2,今在中心处放置一电荷为q 的点电荷,则球壳的电势U =_____________.7-25、一平行板电容器充电后切断电源,若使两电极板距离增加.则电容将____________,两极板间电势差将__________.(填“增大”、“减小”或“不变”)(三)计算题7-1、电荷为q 1=×10-6C 和q 2=×10-6C 的两个点电荷相距20cm ,求离它们都是20cm 处的电场强度.(真空介电常量-2-12120m N C 108.85 )S7-2、如图所示,一长为10cm 的均匀带正电细杆,其电荷为×10-8C ,试求在杆的延长线上距杆的端点5cm 处的P 点的电场强度.(2-290C m N 10941)7-3、绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心O 点的电场强度.7-4、“无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为 ,试求轴线上一点的电场强度.7-5、真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为 和 .试求:在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).7-6、真空中一立方体形的高斯面,边长a =,位于图中所示位置.已知空间的场强分布为:bx E x ,0z y E E .常量b =1000N/(C m ).试求通过该高斯面的电通量.7-7、如图所示,两个点电荷+q 和-3q ,相距为d ,试求:(1)在它们的连线上电场强度0 E的点与电荷为+q 的点电荷相距多远(2)若选无穷远处电势为零,两点电荷之间电势0 V 的点与电荷为+q 的点电荷相距多远7-8、一“无限大”平面中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为 .如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).7-9、一个带等量异号电荷的均匀带电同心球面,半径分别为m 03.01 R 和m 10.02 R .已知两者的电势差为450V ,求内球面上所带的电荷.7-10、厚度为d 的“无限大”均匀带电导体板两表面单位面积上电荷之和为 .试求图示离左板面距离为a 的一点与离右板面距离为b 的一点之间的电势差.12。
(完整版)大学物理静电场试题库
真空中的静电场一、选择题1、下列关于高斯定理的说法正确的是(A )A 如果高斯面上E 处处为零,则面内未必无电荷。
B 如果高斯面上 E 处处不为零,则面内必有静电荷。
C 如果高斯面内无电荷,则高斯面上 E 处处为零。
D 如果高斯面内有净电荷,则高斯面上 E 处处不为零。
2、以下说法哪一种是正确的(B )A 电场中某点电场强度的方向,就是试验电荷在该点所受的电场力方向B 电场中某点电场强度的方向可由E F q确定,其中q0 为试验电荷的电荷量,可负,Fq0 可正为试验电荷所受的电场力C 在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同D 以上说法都不正确3、如图所示,有两个电2、下列说法正确的是(D)A 电场强度为零处,电势一定为零。
电势为零处,电场强度一定为零。
B 电势较高处电场强度一定较大,电场强度较小处电势一定较低。
C 带正电的物体电势一定为正,带负电的物体电势一定为负。
D 静电场中任一导体上电势一定处处相等。
3、点电荷q 位于金属球壳中心,球壳内外半径分别为R1, R2 ,所带静电荷为零A, B为球壳内外两点,试判断下说法的正误(C)A 移去球壳,B 点电场强度变大B 移去球壳,A 点电场强度变大C 移去球壳,A 点电势升高D 移去球壳,B 点电势升高4、下列说法正确的是(D )A 场强相等的区域,电势也处处相等B 场强为零处,电势也一定为零C 电势为零处,场强也一定为零D 场强大处,电势不一定高10、如图所示,在半径为 R 的“无限长”均匀带电圆筒的静电场中,各点的电场强度 大小与距轴线的距离 r 关系曲线为( A )5、如图所示,一个点电荷60B12 0 24 06、如图所示,在电场强度 E 的均匀电场中,有一半径为 R 的半球面, 场强 E 的方向与半球面的对称抽平行,穿过此半球面的电通量为( C )A 2 R 2 EB 2 R 2EC R 2ED 1 R 2E27、如图所示两块无限大的铅直平行平面A 和B ,均匀带电,其电荷密2度均为 ( 0C ?m 2),在如图所示的 a 、b 、c 三处的电场强度分别 为(D ) A 0, ,0,0B 0,2 ,0,0D ,0,008、如图所示为一具有球对称性分布的静电场的 E ~ r 关系曲线. 请指出该静电场是由下列哪种带电体产生的. (B ) A 半径为 R 的均匀带电球面. B 半径为 R 的均匀带电球体. C 半径为 R 的、电荷体密度为Ar ( A 为常数)的非均匀带电球体 A/r ( A 为常数)的非均匀带电球体9、设无穷远处电势为零, 则半径为 R 的均匀带电球体产生的电场的电势分布规律为 (图中的U 0和b 皆为常量 ):(C )E 的q 位于立方体一顶点xA 沿逆时针方向旋转直到电偶极距 P 水平指向棒尖端而停止。
大学物理静电场自测题及其解析
点电荷 u p
-q 4 0 r
Wab q0uab q0 0 0
D
13. 真空中两块相互平行的“无限大”均匀带电平面 A、B.A 平面的电荷面密度为 2 , B 平面的电荷面密度为 ,两平面间的距离为 d.当点电荷 q 从 A 面移到 B 面时,电场力 做的功为( ) (A)
uab ua ub E dl
a
b
uab E dl =0 而ab 0
a
b
D
E 0
11. 如图,在点电荷q的电场中,选取以q为中心、 R为半径的球面上一点P处作电势零点,则与点电 荷q距离为r的P' 点的电势为 P q q 1 1 (A) 4 r R (B)
q d
0
(B)-
q d
0
(C)
q d 2 0
A
(D)-
q d 2 0
对无限大均匀带电平面
2 = A、B平面间的场强为: E 2 0 2 0 2 0
E 2 0
d B
q d Wab quab qEd 2 0
C
14.如图所示,边长为 a 的等边三角形的三个顶点上,分别放置着三个正的点电荷 q、2q、 3q. 若将另一正点电荷 Q 从无穷远处移到三角形的中心 O 处,外力所作的功为: ( ) (A)
Ex (sin sin ) (sin sin 0) 4 0a 2 4 0a 2
2 0a
dE dE x O
dE y
y
x
2
[B]
a
1
r
l
q
dl
4.如图所示,两个“无限长”的共轴圆柱面,半 径分别为 R1 和 R2 ,其上均匀带电,沿轴线方向 单位长度上的带电量分别为 1 和 2 ,则在两 圆柱面之间、距离轴线为 r 的 P 点处的场强大 小 E 为: 1 (A) 20 r (B)
《大学物理》静电场练习题及答案
《大学物理》静电场练习题及答案一、简答题1、为什么在无电荷的空间里电场线不能相交?答案:由实验和理论知道,静电场中任一给定点上,场强是唯一确定的,即其大小和方向都是确定的.用电场线形象描述静电场的空间分布时,电场线上任一点的切线方向表示该点的场强方向.如果在无电荷的空间里某一点上有几条电场线相交的话,则过此交点对应于每一条电场线都可作出一条切线,这意味着交点处的场强有好几个方向,这与静电场中任一给定点场强具有唯一确定方向相矛盾,故无电荷的空间里电场线不能相交.2、简述静电场中高斯定理的文字内容和数学表达式。
答案:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的所有电荷电量的代数和的01ε倍。
0ε∑⎰=⋅内S SqS d E3、写出静电场的环路定理,并分别说明其物理意义。
答案:静电场中,电场强度的环流总是等于零(或0l=⋅⎰l d E),静电场是保守场。
4、感生电场与静电场有哪些区别和联系?5、在电场中某一点的电场强度定义为0q F E=.若该点没有试验电荷,那么该点的电场强度又如何? 为什么?答案: 电场中某一点的电场强度是由该电场自身性质所决定,与这一点有无试验电荷没有任何关系。
6、在点电荷的电场强度公式中,如果0→r ,则电场强度E 将趋于无限大。
对此,你有什么看法? 答案: 这表明,点电荷只是我们抽象出来的一个物理模型,当带电体较小而作用距离较大时使用点电荷模型较为方便、精确。
但当作用距离r 很小时,点电荷模型的误差会变大,这时我们不能再用点电荷的电场强度公式而要采用更精确的模型。
二、选择题1、如图所示,两个同心均匀带电球面,内球面半径为1R 、带有电荷1Q ,外球面半径为2R 、带有电荷2Q ,则在外球面外面、距离球心为r 处的P 点的场强大小E 为 ( A ) A 、20214r Q Q επ+B 、()()2202210144R r Q R r Q -π+-πεε C 、()2120214R R Q Q -+επ D 、2024r Q επ2、A 和B 为两个均匀带电球体,A 带电荷q +,B 带电荷q -,作一与A 同心的球面S 为高斯面,如图所示。
大学物理第7章静电场练习题
第7章 习题精选(一)选择题7-1、下列几种说法中哪一个是正确的?(A )电场中某点场强的方向,就是点电荷在该点所受电场力的方向.(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同.(C )场强可由q F E /=计算,其中q 为试验电荷,q 可正、可负,F 为试验电荷所受电场力. (D )以上说法都不正确.[ ]7-2、图中实线为某电场的电场线,虚线表示等势面,由图可看出: (A )C B A E E E >>,C B A V V V >>.(B )C B A E E E <<,C B A V V V <<. (C )C B A E E E >>,C B A V V V <<.(D )C B A E E E <<,C B A V V V >>. [ ]7-3、关于电场强度定义式0/q F E=,下列说法中哪个是正确的?(A )场强E的大小与试验电荷0q 的大小成反比.(B )对场中某点,试验电荷受力F与0q 的比值不因0q 而变.(C )试验电荷受力F 的方向就是场强E的方向.(D )若场中某点不放试验电荷0q ,则0=F ,从而0=E.[ ]7-4、有一边长为a 的正方形平面,在其中垂线上距中心O 点垂直距离为a /2处,有一电量为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A )03εq . (B )04επq (C )03επq . (D )06εq[ ]7-5、已知一高斯面所包围的体积内电荷代数和0=∑q ,则可肯定:(A )高斯面上各点场强均为零. (B )穿过高斯面上每一面元的电场强度通量均为零. (C )穿过整个高斯面的电场强度通量为零. (D )以上说法都不对.[ ]7-6、点电荷Q 被曲面S 所包围,从无穷远处引入另一点电荷q 至曲面外一点,如图,则引入前后: (A )曲面S 的电场强度通量不变,曲面上各点场强不变. (B )曲面S 的电场强度通量变化,曲面上各点场强不变. (C )曲面S 的电场强度通量变化,曲面上各点场强变化. (D )曲面S 的电场强度通量不变,曲面上各点场强变化.[ ]7-7、高斯定理0/d ε∑⎰⋅=q S E S(A )适用于任何静电场. (B )只适用于真空中的静电场. (C )只适用于具有球对称性、轴对称性和平面对称性的静电场.(D )只适用于虽然不具有(C )中所述的对称性、但可以找到合适的高斯面的静电场.[ ]q7-8、关于高斯定理的理解有下面几种说法,其中正确的是:(A )如果高斯面上E处处为零,则该面内必无电荷.(B )如果高斯面内无电荷,则高斯面上E处处为零.(C )如果高斯面上E处处不为零,则高斯面内必有电荷.(D )如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.[ ]7-9、静电场中某点电势的数值等于(A )试验电荷q 0置于该点时具有的电势能. (B )单位试验电荷置于该点时具有的电势能. (C )单位正电荷置于该点时具有的电势能.(D )把单位正电荷从该点移到电势零点外力所做的功.[ ]7-10、图中所示为轴对称性静电场的E ~r 曲线,请指出该电场是由下列哪一种带电体产生的(E 表示电场强度的大小,r 表示离对称轴的距离).(A )“无限长”均匀带电圆柱面. (B )“无限长”均匀带电圆柱体. (C )“无限长”均匀带电直线. (D )“有限长”均匀带电直线.[ ]7-11、如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A )顶点a 、b 、c 、d 处都是正电荷.(B )顶点a 、b 处是正电荷,c 、d 处是负电荷. (C )顶点a 、c 处是正电荷,b 、d 处是负电荷. (D )顶点a 、b 、c 、d 处都是负电荷.[ ]7-12、图中所示为一球对称性静电场的电势分布曲线,r 表示离对称中心的距离.请指出该电场是由下列哪一种带电体产生的.(A )半径为R 的均匀带负电球面.(B )半径为R 的均匀带负电球体. (C )正点电荷. (D )负点电荷.[ ]7-13、已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪个是正确的?(A )电场强度N M E E <. (B )电势N M V V <. (C )电势能pN pM E E <. (D )电场力的功0>W .[ ]7-14、有三个直径相同的金属小球.小球1和小球2带等量异号电荷,两者的距离远大于小球直径,相互作用力为F .小球3不带电并装有绝缘手柄.用小球3先和小球1碰一下,接着又和小球2碰一下,然后移去.则此时小球1和2之间的相互作用力为:(A )0. (B )F /4. (C )F /8. (D )F /2.[ ]ba7-15、一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为σ+,则在导体板B 的两个表面1和2上的感应电荷面密度为:(A )σσ-=1,σσ+=2. (B )σσ211-=,σσ212+=.(C )σσ211-=,σσ212-=. (D )σσ-=1,02=σ.[ ]7-16、A 、B 为两导体大平板,面积均为S ,平行放置,如图所示.A 板带电荷1Q +,B 板带电荷2Q +,如果使B 板接地,则AB 间电场强度的大小E 为(A )S Q 012ε. (B )S Q Q 0212ε-. (C )S Q01ε. (D )SQ Q 0212ε+.[ ]7-17、两个同心薄金属球壳,半径分别为1R 和2R (12R R >),若分别带上电荷1q 和2q ,则两者的电势分别为1V 和2V (选无穷远处为电势零点).现用导线将两球壳相连接,则它们的电势为(A )1V . (B )2V . (C )21V V +. (D ))(2121V V +.[ ]7-18、如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为:(A )00>=V E ,. (B )00<=V E ,. (C )00==V E ,. (D )00<>V E ,.[ ]7-19、在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现:(A )球壳内、外场强分布均无变化. (B )球壳内场强分布改变,球壳外不变. (C )球壳外场强分布改变,球壳内不变. (D )球壳内、外场强分布均改变.[ ]7-20、电场强度0/q F E=这一定义的适用范围是:(A )点电荷产生的电场. (B )静电场. (C )匀强电场. (D )任何电场.[ ]7-21、在边长为b 的正方形中心放置一点电荷Q ,则正方形顶角处的场强为: (A )20π4b Q ε. (B )20π2b Q ε. (C )20π3b Q ε. (D )20πbQε. [ ]7-22、一“无限大”均匀带电平面A 的右侧放一与它平行的“无限大”均匀带电平面B .已知A 面电荷面密度为σ,B 面电荷面密度为σ2,如果设向右为正方向,则两平面之间和平面B 右侧的电场强度分别为:(A )002εσεσ,. (B )00εσεσ,. (C )00232εσεσ,-. (D )002εσεσ,-. [ ]A +σ2+Q 2A B7-23、一带有电量Q 的肥皂泡(可视为球面)在静电力的作用下半径逐渐变大,设在变大的过程中其球心位置不变,其形状保持为球面,电荷沿球面均匀分布,则在肥皂泡逐渐变大的过程中:(A )始终在泡内的点的场强变小. (B )始终在泡外的点的场强不变. (C )被泡面掠过的点的场强变大. (D )以上说法都不对.[ ]7-24、两个同心均匀带电球面,半径分别为a R 和b R (a R <b R ),所带电荷分别为a Q 和b Q .设某点与球心相距r ,当b R r >时,该点的电场强度的大小为:(A )⎪⎪⎭⎫ ⎝⎛+2b b 2a 0π41R Q r Q ε. (B )⎪⎭⎫ ⎝⎛+2b a 0π41r Q Q ε. (C )⎪⎭⎫ ⎝⎛-2b a 0π41r Q Q ε. (D )2a 0π41r Q ε. [ ]7-25、关于高斯定理的理解有下面几种说法,其中正确的是: (A )如果高斯面内有净电荷,则通过高斯面的电通量必不为零.(B )如果高斯面内无电荷,则高斯面上E处处为零.(C )如果高斯面上E处处不为零,则该面内必有电荷. (D )高斯定理仅适用于具有高度对称性的电场.[ ]7-26、一点电荷放在球形高斯面的中心处,下列哪一种情况,通过该高斯面的电通量会发生变化. (A )将另一点电荷放在高斯面外. (B )将另一点电荷放在高斯面内. (C )将球心处的点电荷移开,但仍在高斯面内. (D )将高斯面缩小.[ ]7-27、在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于: (A )1P 和2P 两点的位置. (B )1P 和2P 两点处的电场强度的大小和方向. (C )试验电荷所带电荷的正负. (D )试验电荷所带的电量.[ ]7-28、带电导体达到静电平衡时,其正确结论是:(A )导体表面上曲率半径小处电荷密度较小.(B )表面曲率半径较小处电势较高.(C )导体内部任一点电势都为零. (D )导体内任一点与其表面上任一点的电势差等于零.[ ]7-29、一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U ,电场强度的大小E ,将发生如下变化.(A )U 减小,E 减小. (B )U 增大,E 增大.(C )U 增大,E 不变. (D )U 减小,E 不变.[ ](二)填空题7-1、根据定义,静电场中某点的电场强度等于置于该点的___________________所受到的电场力.7-2、电场线稀疏的地方电场强度________;密集的地方电场强度________.(填“较大”或“较小”)7-3、均匀带电细圆环圆心处的场强为______________.7-4、一电偶极子,带电量为C 1025-⨯=q ,间距cm 5.0=L ,则系统电矩为_____________Cm .7-5、在静电场中作一任意闭合曲面,通过该曲面的电场强度通量的值取决于________________.7-6、两个平行的“无限大”均匀带电平面,其电荷面密度分别为σ+和σ-,则两平面之间的电场强度大小为___________________,方向为_____________________.7-7、一个均匀带电球面半径为R ,带电量为Q .在距球心r 处(r <R )某点的电势为________________.7-8、在电荷为q 的点电荷的静电场中,将一电荷为0q 的试验电荷从a 点(距离q 为a r )沿任意路径移动到b 点(距离q 为b r ),外力克服静电场力所做的功=W ____________________.7-9、电荷为C 1059-⨯-的试验电荷放在电场中某点时,受到N 10209-⨯的向下的力,则该点的电场强度大小为____________,方向____________.7-10、两个平行的“无限大”均匀带电平面,其电荷面密度分别为σ+和σ2+,如图所示,则A 、B 、C 三个区域的电场强度分别为:E A =______________,E B =________________,E C =_____________(设方向向右为正).7-11、一半径为R 的带有一缺口的细圆环,缺口长度为d (d <<R )环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小=E ______________,场强方向为____________.7-12、半径为R 的半球面置于场强为E 的均匀电场中,其对称轴与场强方向一致,如图所示.则通过该半球面的电场强度通量为___________.7-13、一均匀带正电的导线,电荷线密度为λ,其单位长度上总共发出的电场线条数(即电场强度通量)是____________.7-14、如图,点电荷q 和-q 被包围在高斯面S 内,则通过该高斯面的电场强度通量⎰⋅SS E d =_________,式中E为__________________处的场强.+σ +2σ AB C7-15、在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合面S 1、S 2、S 3,则通过这些闭合面的电场强度通量分别是:1Φ=___________,2Φ=___________,3Φ=________________.7-16、描述静电场的两个基本物理量是__________________;它们的定义公式是_______________和_________________.7-17、图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷为-q 的点电荷.线段R BA =.现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所做的功为_____________.7-18、半径为R 的均匀带电圆环,电荷线密度为λ.设无穷远处为电势零点,则圆环中心O 点的电势V =_____________________.7-19、静电场的场强环路定理的数学表示式为:____________.该式的物理意义____________________该定理表明,静电场是____________场.7-20、电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时系统的电势能E p =___________________.7-21、一空气平行板电容器,两极板间距为d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /3的金属板,则板间电压变成U '=________________.7-22、如图所示,两同心导体球壳,内球壳带电荷+q ,外球壳带电荷-2q .静电平衡时,外球壳的电荷分布为:内表面_____________;外表面_______________.7-23、如图所示,把一块原来不带电的金属板B ,移近一块已带有正电荷Q 的金属板A ,平行放置.设两板面积都是S ,板间距离是d ,忽略边缘效应.当B 板不接地时,两板间电势差U AB =_____________;B 板接地时两板间电势差='ABU _____________.7-24、一个不带电的金属球壳的内、外半径分别为R 1和R 2,今在中心处放置一电荷为q 的点电荷,则球壳的电势U =_____________.7-25、一平行板电容器充电后切断电源,若使两电极板距离增加.则电容将____________,两极板间电势差将__________.(填“增大”、“减小”或“不变”)1 2 3S(三)计算题7-1、电荷为q 1=8.0×10-6C 和q 2=-8.0×10-6C 的两个点电荷相距20cm ,求离它们都是20cm 处的电场强度.(真空介电常量-2-12120m N C 108.85⋅⋅⨯=ε)7-2、如图所示,一长为10cm 的均匀带正电细杆,其电荷为1.5×10-8C ,试求在杆的延长线上距杆的端点5cm 处的P 点的电场强度.(2-290C m N 10941⋅⋅⨯=πε)7-3、绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心O 点的电场强度.7-4、“无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为λ,试求轴线上一点的电场强度.7-5、真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为λ-和λ+.试求:在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).7-6、真空中一立方体形的高斯面,边长a =0.1m ,位于图中所示位置.已知空间的场强分布为:bx E =x ,0z y ==E E .常量b =1000N/(C ⋅m ).试求通过该高斯面的电通量.7-7、如图所示,两个点电荷+q 和-3q ,相距为d ,试求:(1)在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2)若选无穷远处电势为零,两点电荷之间电势0=V 的点与电荷为+q 的点电荷相距多远?7-8、一“无限大”平面中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).7-9、一个带等量异号电荷的均匀带电同心球面,半径分别为m 03.01=R 和m 10.02=R .已知两者的电势差为450V ,求内球面上所带的电荷.7-10、厚度为d 的“无限大”均匀带电导体板两表面单位面积上电荷之和为σ.试求图示离左板面距离为a 的一点与离右板面距离为b 的一点之间的电势差.x12。
大学物理电磁学第二章静电场
第二章 有导体时的静电场 练习一、选择题1、[ ]当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高.(D) 导体内任一点与其表面上任一点的电势差等于零.2、[ ]在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面将出现感应电荷,其分布将是:(A) 内表面均匀,外表面也均匀. (B) 内表面不均匀,外表面均匀. (C) 内表面均匀,外表面不均匀. (D) 内表面不均匀,外表面也不均匀. 3、[ ]在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: (A) 球壳内、外场强分布均无变化. (B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变. (D) 球壳内、外场强分布均改变.4、[ ]半径为R 的金属球与地连接。
在与球心O 相距d =2R 处有一电荷为q 的点电荷。
如图所示,设地的电势为零,则球上的感生电荷q '为(A) 0. (B)2q . (C) 2q-. (D)q.5、[ ]选无穷远处为电势零点,半径为R 的导体球带电后,其电势为0U ,则球外离球心距离为r 处的电场强度的大小为(A) 203R U r . (B) 0U R . (C) 02RU r. (D) 0U r . 6、[ ]如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0.(B)2σε.(C)hσε.(D)2hσε.7、[]两个同心薄金属球壳,半径分别为1R和2R(21()R R>,若分别带上电荷1q和2q,则两者的电势分别为1V和2V(选无穷远处为电势零点).现用导线将两球壳相连接,则它们的电势为:(A)1V. (B)2V. (C)12V V+. (D)121()2V V+.8、[]如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P处的场强大小与电势(设无穷远处为电势零点)分别为:(A) 0,0E V=>. (B) 0,0E V=<. (C) 0,0E V==;(D) 0,0E V><.9、[]一空气平行板电容器,两极板间距为d,充电后板间电压为U。
大学物理学第三章静电场自学练习题
第三章 静电场 自学练习题一、选择题:5-1.电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E(设向右为正)随位置坐标x 变化的关系为:( )(A )(B )(C ) (D )【提示:带σ的 “无限大”均匀带电平板在其空间产生的场强为0/2σε,则两块平板之间的场强为零,外面为0/σε】5-2.下列说法正确的是:( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷; (B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零;(C )闭合曲面的电通量为零时,曲面上各点电场强度必定为零; (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零。
【提示:用01SEdS qε=∑⎰⎰判断】5-3.下列说法正确的是:( )(A )电场强度为零的点,电势也一定为零;(B )电场强度不为零的点,电势也一定不为零;(C )电势为零的点,电场强度也一定为零;(D )电势在某一区域内为常量,则电场强度在该区域内必定为零。
【提示:电场等于电势梯度的负值为场强】5--1.两块金属板的面积均为S ,相距为d (d 很小),分别带电荷q +与q -,两板为真空,则两板之间的作用力为:( )(A )202q F S ε=; (B )20q F Sε=; (C )2204q F dπε=; (D )2208q F dπε=。
【提示:带σ的 “无限大”均匀带电平板在其空间产生的场强为0/2σε,则另一板受到的力为0/2q σε⋅,即22q F Sε=】5--2.有一电场强度为E 的均匀电场,的方向与行,则穿过如图所示的半球面的电通量为:( )(A )2R E π; (B )212R E π; (C )22R E π; (D )0。
【提示:穿入半球面的电通量与穿出的电通量相等,所以穿过半球面的电通量为零】5--3. 关于高斯定理的理解有下面几种说法,其中正确的是 ( )(A )如果高斯面上E处处为零,则该高斯面内必无电荷;(B )如果穿过高斯面上电通量为零,则该高斯面上的电场强度一定处处为零;(C )如果高斯面内有净电荷,则通过该高斯面的电通量必不为零;(D )高斯面上各点的电场强度仅由高斯面内的电荷提供。
大学物理静电场习题答案
[ B ]
a
b
4.(1076) 点电荷-q位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示.现将一 试验电荷从A点分别移动到B、C、D各点,则 (A) 从A到B,电场力作功最大. (B) 从A到C,电场力作功最大. (C) 从A到D,电场力作功最大. -q (D) 从A到各点,电场力作功相等. [D ] A B O
R dEx
dq
d
x
dE
O dEy
dEx dE cos, dEy dE sin
对各分量分别求和
0 Ex sin cos d 0 4 0 R
0 0 2 Ey sin d 0 4 0 R 8 0 R
所以
0 E Ex i E y j j 8 0 R
O
a aBiblioteka xa 4.(1025) 电荷面密度分别为+δ和-δ的两块“无限大”均匀带电平行平面,分别与x x 轴垂直相交于x1=a,x2=-a 两点.设坐标原点O处电势为零,试求空间 - 的电势分布表示式并画出其曲线.
z
a
+
解:由高斯定理可得场强分布为: E =-δ/ ε0 (-a<x<a) E=0 (-∞<x<-a ,a<x<+∞) 由此可求电势分布:在-∞<x≤-a区间
Rb Rc Ra A BC
E1=λ1 / 2πε0r,方向由B指向A
B、C间场强分布为 B、A 间电势差
E2=λ2 / 2πε0r,方向由B指向C
1 U BA E1 d r Rb 2 0
Ra
Rb dr 1 Rb r 2 0 ln Ra
Ra
C
B A
E2 E1
《大学物理》真空中的静电场练习题及答案解析
《大学物理》真空中的静电场练习题及答案解析一 选择题1. 下列几个说法中哪一个是正确的 (B )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B )电场中某点的场强大小与试验电荷无关。
(C )场强大小由 E =F /q 可知,某点的场强大小与试验电荷受力成正比,与电量成反比。
(D )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同2. 如图所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ、-λ,则 oxy坐标平面上点(0,a )处的场强E 的方向为( A )( A )x 正方向 (B ) x 负方向 (C )y 正方向(D )y 负方向3.如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于:( B )(A)04εq (B)06εq (C) 024εq (D) 027εq第2题图 第3题图 4.关于高斯定理0ε∑⎰⎰=⋅=Φi s e q s d E ,下列说法中正确的是( C )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零(B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零(D )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零5.如图所示,闭合曲面S 内有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点电荷,q ,将其移到B 点,则( B )(A )通过S 面的电通量不变,P 点的电场强度不变。
(B )通过S 面的电通量不变,P 点的电场强度变化。
(C )通过S 面的电通量改变,P 点的电场强度不变。
(D )通过S 面的电通量改变,P 点的电场强度变化。
6.下列说法中正确的是( D )(A )场强为0的点电势也为0 (B )场强不为0的点电势也不为0(C )电势为0的点,则电场强度也一定为0(D )电势在某一区域为常数,则电场强度在该区域必定为01.B2.A3.B4.C5.D 、6D二 填空题1、在点电荷的q +,q -电场中,作如图所示的三个高斯面,求通过321S S 、、S ,球面的电通量分别为________________、_______________、______________。
大学物理静电场练习题带答案
大物练习题(一)1、如图,在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O指向球形空腔球心O'的矢量用a表示。
试证明球形空腔中任一点电场强度为 .A、3ρεa B、ρεaC、2ρεa D、3ρεa2、如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R.试求环中心O点处的场强A、2πRλε- B、πRλε-C、00ln22π4λλεε+ D、00ln2π2λλεε+3、 如图所示,一导体球半径为1R ,外罩一半径为2R 的同心薄导体球壳, 外球壳所带总电荷为Q ,而内球的电势为0V ,求导体球和球壳之间的电势差 (填写A 、B 、C 或D ,从下面的选项中选取)。
A 、1020214R Q V R R πε⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ B 、102024R Q V R R πε⎛⎫- ⎪⎝⎭C 、0024Q V R πε- D 、1020214R Q V R R πε⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭4.如图所示,电荷面密度为1σ的带电无限大板A 旁边有一带电导体B ,今测得导体表面靠近P 点处的电荷面密度为2σ。
求:(1)P 点处的场强 ;(2)导体表面靠近P 点处的电荷元S ∆2σ所受的电场力 。
A 、20σεB 、202σεC 、2202S σε∆D 、220S σε∆5.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ]Q Opr(A )2200,44r Q QE D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q QE D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。
6、在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面,则对此球形闭合面: (A )高斯定理成立,且可用它求出闭合面上各点的场强;(B )高斯定理成立,但不能用它求出闭合面上各点的场强; (C )由于电介质不对称分布,高斯定理不成立; (D )即使电介质对称分布,高斯定理也不成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
a r
2
例2 有一瓦楞状直长均匀带电薄板,面电荷 密度为σ,瓦楞的圆半径为 a 试求:轴线中部一 点P 处的电场强度。
a
P. L
解:
y
q dq o
x dqσ L
a
q dE
dl
dq L s dS s Ldl
s dl
E dE
=ρd 1S
0
E2
ε E2
=
ρd 1
20
1.0×10-4×0.3×10-2 = 2×8.85×10-12
=1.69×104 V/m
E3 S
d
d
ρ
(3)
E3
ρd S
ε E3S + E3S = 0
ε E3
=
ρd
20
1.0×10-4×0.5×10-2 = 2×8.85×10-12
=2.83×104 V/m
dx d
7-19 一层厚度为d =0.5cm的无限大平板,均 匀带电,电荷体密度为ρ =1.0×10-4 C/m3 。求: (1)这薄层中央的电场强度; (2)薄层内与其表面相距0.1cm处的电场强
度; (3)薄层外的电场强度。
ρd
解:(1) E1=0
E2
S d1ρ d
ε (2)
E2S
+ E2S
cosq
π
0
=πσε0
=-2.4V/m
例1 设气体放电形成的等离子体在圆柱内的 电荷分布可用下式表示
r
1
0
r a
2
2
式中r是到圆柱轴线的距离, ρ0是轴线处的电 荷体密度,a 是常量。试计算其场强分布。
解:先计算高斯面内的电量
dq l2 rdr
1
x
q
o
r
x r cosq, y r sinq
s 2 r3 sinq cosq dq
dE
40r3
E s
/2
sinq cosq dq
s
20 0
4 0
7-15 图中电场强度的分量为Ex=bx1/2,Ey=Ez=0, 式中b = 800N/(C.m1/2),设d =10cm,试计算 (1)通过立方体表面的总E 通量; (2)立方体内的总电荷量。
7-30 设电势沿 x 轴的变化 曲 线如图所示。试 对所示各区间(忽略区间端点的情况)确定 电场强度的x分量,并作出 Ex 对 x 的关系图线。
b
a
-5
V/V c 12
d6 e
o -6 f
-12
5h x/m
g
解:
-7<x < -5
Ex =
ΔU Δx
=-1-52+-70
=
-6V/m
-5<x < -2 Ex =0
-2 <x < 2
Ex =
b
a
-5
0-12 2+2
=3V/m
U/V
c
12
d6 e
5h
o
-6 f
g
x/m
-12
b a -5
U/V
c 12
6
d e
-6o
-12 f
5
h
g x/m
2 <x < 2.5 Ex=--26.-50-2 =12V/m
2.5 <x <4.5 Ex =0
4.5 <x < 7
Ex =
0+6.0 7-4.5
2 0 r
2 0 a
dE s dl 2 0 a
dl a
P. L
由电荷分布的对称性:Ey=0
y
E = dEx= dE sinq
= 2σπεdl0a sinq
dq q
o a
q
= 2σπεad0aq sinq dl = adq
x dE
=
σ
2πε0
π
sinqdq 0
σ
= 2πε0
已知:Ex=bx ,1/2 b = 800N/(C.m1/2), Ey=Ez=0,d =10cm,
求: (1) Φ, (2) q
y
d
dx
o z
dd
解:(1)Φ =E .S = b 2d d 2 b d d 2
= ( 2 1)b d d 2
=1.04 N.m2/C y d
(2)Φ
q
ε = 0
o
z
d
ε q =Φ 0 = 9.2×10-12 C
7-12 一半径为 r 的半球面均匀带电,电荷面密度
为s 。求球心处的电场强度。
y
已知:r , σ
求:E0
x o
r
解:均匀带电圆环的场强为
E
4 0
qx x2 y2
3/2
dE 1
40
xdq x2 y2 3/2
dq s 2 r sinq rdq
y
dq
0
r a
2
2
l2 rdr
q
r 0
1
0
r a
2
2
l 2
rdr
l
1
0a2
a
2
r
dr r
由高斯定律:
r
Òs E
•
r dS
q
0
E
2 rl
1
0
l0a2
1
a r
2