药物化学复习重点总结
药物化学重点知识点总结
药物化学重点知识点总结1绪论一、药物化学的定义及研究内容药物化学是一门发现与发明新药、合成化学药物、阐明药物化学性质、研究药物分子与机体细胞(生物大分子)之间相互作用规律的综合性学科,是连接化学与生命科学使其融合为一体的交叉学科。
研究内容包括化学药物的化学结构、理化性质、合成工艺、构效关系、体内代谢、作用机制以及寻找新药的途径与方法。
(二)药物化学的任务1.为有效利用现有化学药物提供理论基础;2.为生产化学药物提供先进、经济的方法和工艺;3.为创制新药探索新的途径和方法;(三)药物名称国际非专有药名(INN)INN是新药开发者在新药研究时向世界卫生组织申请,由世界卫生组织批准的药物的正式名称并推荐使用的名称。
该名称不能取得任何知识产权的保护,任何该产品的生产者都可使用,也是文献、教材及资料中以及在药品说明书中标明的有效成分的名称。
中国药品通用名称通用名是中国药品命名的依据,是中文的INN O简单有机化合物可用其化学名称。
化学名(1)英文化学名(2)中文化学名女口:阿司匹林,中文化学名为:2-(乙酰氧基)苯甲酸苯甲酸乙联買基商品名生产厂家为了保护自己利益,在通用名不能得到保护的情况下,禾U用商品名来保护自己并努力提高产品的声誉。
商品名可申请知识产权保护举例:对乙酰氨基酚扑热息痛、泰诺、百服宁ParaCetamolN -( 4-羟基苯基)乙酰胺通用名中文的INN商品名国际非专有药名化学名2细目要点要求局部麻醉药(1)局部麻醉药分类、构效关系掌握J(2)盐酸普鲁卡因、盐酸利多卡因结构特点、性质和用途熟练掌握(3)盐酸丁卡因的性质和用途了解麻醉药按作用部位分为全身麻醉药和局部麻醉药。
全身麻醉药作用于中枢神经系统,使其受到可逆性抑制;局部麻醉药作用于神经末梢或神经干,阻滞神经冲动的传导。
一、全身麻醉药(一)全身麻醉药的分类全身麻醉药根据给药途径可分为吸入性麻醉药和非吸入性麻醉药,即静脉麻醉药。
女口:氟烷、异氟烷、盐酸氯胺酮、丫-羟基丁酸钠氟烷F s C-CHBrCI别名:三氟氯溴乙烷本品为无色澄明易流动的液体,不易燃、易爆,遇光、热和湿空气能缓缓分解。
《药物化学》复习重点资料整理总结
《药物化学》复习重点资料整理总结名词解释:1.稳态血药浓度:以半衰期为给药间隔时间,连续恒量给药后,体内药量逐渐累积,给药4、5次后,血药浓度基本达到稳态水平。
2.药物:是指调节机体生理、生化和病理过程,用以预防、诊断、治疗疾病的物质。
3.药理学:是研究药物与机体之间相互作用及其规律的一门学科,包括药物效应动力学、药物代谢动力学两个方面。
4.首关消除:有些口服药物在经胃肠壁及肝脏时,会被此处的酶代谢失活。
5.肝肠循环:有的药经胆汁排泄再经肠黏膜上皮细胞吸收,由门静脉重新进入全身循环,这种在小肠、肝脏、胆汁间的循环称为肝肠循环。
6.治疗指数:药物的半数致死量LD5a与半数有效量ED50的比值。
7.处方药:必须凭执业医师或执业助理医师处方才可调配。
8.肾上腺素升压作用的翻转:预先给予α受体阻断药能阻断肾上腺素激动α受体的缩血管作用,保留激动β受体的血管舒张作用,使升压作用翻转为降压作用。
9.耐受性:机体对药物的敏感性降低,需增加剂量才能发挥原有药效。
10.反跳现象:长期大剂量使用某药物后突然停药,导致原有病情再现或加重。
11.二重感染:长期使用广谱抗菌药,使得敏感菌被抑制,不敏感菌大量繁殖,引发新的感染。
模块-1、在机体方面,影响药物作用的因素有哪些?(填空题)年龄性别个体差异病理状态心里精神因素遗传因素2、“三致”反应致畸致癌致突变3、药物的二重作用包括什么?P5~防治作用和不良反应4、药物作用的主要类型包括哪些?P4-5兴奋作用和抑制作用局部作用和吸收作用选择性作用和普遍作用直接作用与间接作用预防作用和治疗作用模块二1、药品贮存条件中阴凉处、凉暗处、冷处、常温的条件P28阴凉处:系指不超过20℃阴暗处:系指避光并不超过20℃冷处:系指2℃~10℃常温:系指10℃~30℃2、批准文号的代表字母和数字各自的含义,批号的含义P27字母:化学药品:H 中药:Z 保健:B 生物制品:S体外化学诊断试剂:T 药用辅:F 进口分包装药品:J数字第1、2位为原批准文号的来源代码,第3、4位为换发批准文号之后(公元年号)的后两位数字,第5~8位为顺序号批号的含义:在药品生产过程中,将同一次投料、同一生产工艺所生产的药品定为同一个批号。
药物化学重点药物化学结构及类型总结归纳
药物化学重点药物化学结构及类型总结归纳药物化学是药学学科的重要分支,研究药物的化学结构及其在体内的转化代谢过程。
药物化学的目标是寻找新的药物分子,改进已有药物的性质,提高药物的疗效和安全性。
下面对药物化学的重点以及药物化学结构及类型进行总结归纳。
重点药物化学结构:1.天然药物结构:天然药物是从动植物、微生物或矿物中提取的具有治疗作用的化合物。
常见的天然药物结构包括植物碱、生物碱、黄酮类化合物等。
例如:华法林(Warfarin)是一种抗凝药物,其结构中含有香豆素环并有杂原子(柳树苷结构)。
2.合成药物结构:合成药物是通过化学合成的方式制备出来的药物。
常见的合成药物结构包括芳香环、饱和环、杂环等。
例如:阿司匹林(Aspirin)是一种常用的非处方药,其结构中含有芳香环、酯基和醇基。
3.基础结构与活性团:药物分子的活性来自于其基础结构和活性团。
基础结构是药物分子的骨架,而活性团是具有特定活性的功能基团。
药物化学研究着重于发现和优化药物分子的基础结构和活性团,以提高药物的药效和选择性。
4.药物基团及键的导向作用:药物分子中的基团和键可以通过导向作用改变药物的性质和活性。
例如,引入取代基可以改变药物分子的溶解度、稳定性和活性。
导向作用是药物化学的重要概念之一,它指导了药物分子的设计、合成和改进。
药物化学的类型:1.pH敏感药物:pH敏感药物指的是药物的溶解度或释放行为受环境pH值的影响。
例如,肠溶片是一种常见的pH敏感药物,它只在肠道酸性环境下才能溶解释放药物。
2.离子对药物:离子对药物是指药物分子中含有正离子和负离子,它们之间通过离子键结合在一起。
离子对药物通常具有高溶解度和良好的生物利用度,因此被广泛应用于药物设计和合成。
3.靶向药物:靶向药物是指具有选择性作用于特定靶点的药物。
它们通常具有特定的结构特征,能够与靶点发生相互作用,并发挥治疗作用。
例如,酪氨酸激酶抑制剂普利都巴(Imatinib)是一种靶向白血病细胞的药物,其结构能够与癌细胞的激酶结合,从而抑制细胞生长。
药化知识点归纳
第一章绪论重点与难点重点:药物化学学科的研究内容和发展方向。
难点:中国药品通用名称及化学名的命名规则。
第二章重点与难点重点:镇静催眠药、抗精神病药、抗癫痫药物、抗抑郁药、镇痛药的结构类型和作用机制。
难点:地西泮、氯丙嗪、氟哌啶醇、丙咪嗪、吗啡的化学名、理化性质、体内代谢及用途。
苯妥英钠、异戊巴比妥、奥沙西泮的结构、化学名及用途。
第三章外周神经系统药物重点与难点重点:拟胆碱药物的类型。
胆碱酯类M受体激动剂的构效关系。
乙酰胆碱酯酶抑制剂的作用机制及应用特点。
抗胆碱药物的类型。
肾上腺受体拮抗剂的结素受体激动剂的基本结构类型及其构效关系。
组胺H1构类型。
局部麻醉药的结构类型。
难点:氯贝胆碱、溴新斯的明的化学名、结构、理化性质和用途。
掌握硫酸阿托品、溴丙胺太林的结构、理化性质和用途。
肾上腺素、盐酸麻黄碱、沙丁胺醇的化学名、结构及其特点、作用、理化性质和用途。
马来酸氯苯那敏、氯雷他定、盐酸西替利嗪、咪唑斯汀的化学名、结构、理化性质和用途。
盐酸普鲁卡因、盐酸利多卡因的化学名、结构、理化性质和用途。
第四章循环系统药物重点与难点重点:β受体拮抗剂的分类及各类药物的作用特点;钠通道阻滞剂的分类及各类药物的作用特点。
ACEI及AngⅡ受体拮抗剂的作用机制;NO供体药物的作用机制。
调血脂药的类型及作用机制;难点:盐酸普萘洛尔的结构、化学名、理化性质、体内代谢、临床应用及合成路线。
硝苯地平的结构、化学名、理化性质、体内代谢、临床应用及合成路线。
盐酸胺碘酮的结构、化学名、理化性质、体内代谢、临床应用及合成路线。
硫酸奎尼丁的结构、化学名及应用,卡托普利的结构、化学名、理化性质、体内代谢、临床应用及合成路线。
硝酸甘油的结构、化学名、理化性质、体内代谢及临床应用。
洛伐他汀的结构、化学名、理化性质、体内代谢及临床应用。
第五章消化系统药物重点与难点重点:抗溃疡药物的结构类型和作用机制。
熟悉镇吐药的结构类型和作用机制。
难点:西咪替丁、雷尼替丁的结构、化学名称、理化性质、体内代谢及用途。
药物化学考试重点总结
药物化学考试重点总结
一、药物化学基础知识
1. 药物的分类与作用机制:了解各类药物的基本作用机制和分类,如抗生素、抗肿瘤药、抗炎药等。
2. 药物的化学结构与性质:理解药物的化学结构与其理化性质、稳定性及生物活性的关系。
3. 药物代谢:掌握药物在体内的代谢过程,包括代谢酶及代谢产物的性质和作用。
二、药物合成与工艺
1. 药物合成方法:掌握常见的药物合成方法和技术,如还原反应、氧化反应、酯化反应等。
2. 药物合成工艺:理解工业化生产中药物的合成工艺流程及优化方法。
3. 药物合成路线的设计与选择:了解药物合成路线的评价标准,掌握设计药物合成路线的思路与方法。
三、药物分析
1. 药物分析方法:掌握药物分析中常用的检测方法和技术,如色谱法、光谱法等。
2. 药物质量控制:理解药物质量控制的标准和要求,掌握药品质量控制的常用方法。
3. 药物制剂分析:了解药物制剂的分析方法,掌握药物制剂的质量控制标准。
四、药物设计与新药开发
1. 药物设计的原理与方法:掌握基于结构的药物设计、基于片段的药物设计等原理与方法。
2. 新药发现的途径与方法:了解新药发现的途径和策略,如高通量筛选、虚拟筛选等。
3. 新药开发的流程与评估:理解新药开发的流程和评估标准,掌握新药开发的风险与机遇。
药物化学复习重点总结
第一章 绪论1、药物定义药物----人类用来预防、治疗、诊断疾病,或为了调节人体功能、提高生活质量、保持身体健康的特殊化学品。
2、药物的命名按照中国新药审批办法的规定,药物的命名包括:(1)通用名(汉语拼音、国际非专有名, INN )--国际非专利药品名称、指在全世界都可通用的名称、INN 的作用新药开发者在新药申请时向政府主管部门提出申请并被批准的药物的正式名称。
不能取得专利及行政保护,任何该产品的生产者都可以使用的名称。
文献、教材、资料中及药品的说明书中标明的有效成份的名称。
复方制剂只能用它作为复方组分的使用名称。
(2)化学名称(中文及英文)确定母核, 并编号(位次);其余为取代基或官能团;按规定的顺序注出取代基或官能团的位次:小的基团、原子在前, 大的在后。
逐次比较、双键为连两个相同原子、参看书p10次序规则表 英文化学名—国际通用的名称 化学名—药物最准确的命名(3)商品名----生产厂家利用商品名来保护自己的品牌 举例• 对乙酰氨基酚 (Paracetamol) • N-(4-羟基苯基)乙酰胺• 儿童百服咛® 、 日夜百服咛®•3熟悉:药物化学研究的内容、任务 药物化学的研究内容发现和设计新药 合成化学药物药物的化学结构特征、理化性质、稳定性 (化学) 药物的药理作用、毒副作用、体内代谢 (生命科学) 药物的构效关系、药物与靶点的作用 药物化学的任务有效利用现有药物提供理论基础。
—临床药物化学为生产化学药物提供经济合理的方法和工艺。
-化学制药工艺学不断探索开发新药的途径和方法,争取创制更多新药。
—新药设计第 二章 中枢神经系统药物一、镇静催眠药1 苯二氮艹卓类: 母核: 一个苯环和一个七元亚胺内酰胺环骈合NNOH 123456789地西泮(Diazepam)NNClO12357(3)合成P20-21(4)理化性质性状:白色或类白色的结晶性粉末,无臭,味微苦。
药物化学知识点总结自考
药物化学知识点总结自考1. 药物化学的基本概念药物化学是研究药物化学结构与活性之间的关系,揭示药物的成分、结构和性质的学科。
药物化学通过对药物的分子结构和物理、化学性质的研究,探索药物的合成方法,降低不良反应,提高疗效。
2. 药物分子结构与性质药物分子结构与性质是药物化学的核心内容。
药物的分子结构包括化学式、分子量、分子结构和立体构型等;而药物的性质包括物理性质、化学性质和生物学性质。
药物的分子结构决定了药物的性质,而药物的性质又反映了药物分子结构的特点。
3. 药物的合成方法药物的合成方法是药物化学的重要内容。
药物的合成方法主要包括有机合成、天然产物提取、生物技术合成和复合制备方法等。
有机合成是指利用化学反应合成新的有机化合物;天然产物提取是指从植物、动物和微生物中提取活性成分;生物技术合成是利用生物技术手段合成新药物;而复合制备是指通过多种方法合成新药物。
4. 药物的药代动力学药代动力学是研究药物在体内的吸收、分布、代谢、排泄等过程的学科。
药物的药代动力学参数包括生物利用度、分布容积、半衰期、清除率和排泄率等。
药代动力学研究不仅可以揭示药物在体内的代谢和排泄行为,还可以为临床应用提供科学依据。
5. 药物的药理学药理学是研究药物与机体相互作用的学科。
药物的药理学参数包括作用机制、作用部位、作用效果、作用强度等。
药理学研究可以揭示药物的作用机制和作用部位,为临床应用提供理论基础。
6. 药物化学的应用药物化学在药物合成、药代动力学、药理学等领域都有重要应用。
在药物合成领域,药物化学通过对药物分子结构的分析和设计,发现和合成新的药物分子;在药代动力学领域,药物化学通过对药物的代谢和排泄行为的研究,提高药物的生物利用度和减少不良反应;在药理学领域,药物化学通过对药物的作用机制和作用部位的研究,提高药物的疗效和降低毒性。
7. 药物化学的研究方法药物化学的研究方法包括实验研究和理论研究。
实验研究包括合成新药物、分析药物的性质和机理等;而理论研究包括计算化学、分子模拟等。
药学必背知识点
药学必背知识点一、药物化学部分。
1. 药物结构与命名。
- 常见药物的基本化学结构,例如阿司匹林(乙酰水杨酸)的结构为苯环连接一个羧基和一个乙酰氧基。
其命名遵循化学命名法,根据结构中的官能团和取代基来命名。
- 药物的通用名、商品名和化学名的区别。
通用名是全世界通用的名称,如布洛芬;商品名是制药企业为其产品所取的名称,不同厂家生产的同一种通用名药物可能有不同的商品名;化学名则准确描述药物的化学结构。
2. 药物的理化性质。
- 酸碱性:如巴比妥类药物具有弱酸性,可与碱成盐,其盐类易溶于水,这一性质在药物的制剂、鉴别和含量测定中有重要意义。
- 溶解性:像维生素A为脂溶性维生素,在油脂性环境中易溶解吸收;而维生素C为水溶性维生素,易溶于水。
溶解性影响药物的吸收、分布和排泄。
- 稳定性:某些药物容易受光、热、空气等因素影响而分解变质。
例如硝酸甘油在光照和高温下易分解,所以要遮光、低温保存。
3. 药物的代谢。
- 药物代谢的主要器官是肝脏。
代谢反应分为相Ⅰ反应(氧化、还原、水解等)和相Ⅱ反应(结合反应)。
- 例如,苯巴比妥经肝脏代谢,相Ⅰ反应中的氧化反应使其结构发生变化,然后进行相Ⅱ反应与葡萄糖醛酸结合,形成水溶性更高的代谢产物,从而易于排出体外。
二、药理学部分。
1. 药物作用的基本原理。
- 药物作用的靶点:包括受体(如β - 肾上腺素受体,激动后可引起心率加快、心肌收缩力增强等效应)、酶(如乙酰胆碱酯酶,抑制该酶可使乙酰胆碱在突触间隙的浓度升高,产生拟胆碱作用)、离子通道(如钙通道阻滞剂可阻断心肌细胞上的钙通道,降低心肌收缩力)等。
- 药物的量 - 效关系:包括最小有效量(刚能引起药理效应的最小剂量)、最大效应(药物所能产生的最大药理效应)、效价强度(能引起等效反应的相对浓度或剂量,其值越小则效价强度越大)等概念。
2. 药物的不良反应。
- 副作用:是药物在治疗剂量下出现的与治疗目的无关的反应。
例如,阿托品在解除胃肠道平滑肌痉挛时,可同时出现口干、视力模糊等副作用,这是由于其对唾液腺和瞳孔括约肌等也有作用。
药化知识点归纳总结
药化知识点归纳总结1. 药物的分类根据药物的化学结构和作用机制,药物可以分为不同的类别。
根据其作用机制,药物可以分为激动剂、抑制剂和拮抗剂。
激动剂是指能够增强生物体功能的药物,如肾上腺素;抑制剂是指能够抑制生物体功能的药物,如抗生素;拮抗剂是指能够与激动剂结合,阻止激动剂产生效应的药物,如拮抗剂。
2. 药物的合成药物的合成是药化学的重要内容之一。
药物的合成可以通过化学合成、天然物提取和生物合成等方式进行。
化学合成是指通过有机合成化学方法,将单体有机化合物合成为所需的药物分子。
天然物提取是指从天然植物、动物中提取有活性成分的物质,如从植物中提取阿司匹林。
生物合成是指利用生物学方法,通过酶或微生物等生物体合成所需的药物。
3. 药物的结构活性关系药物的结构活性关系是指药物分子的化学结构与其药理活性之间的关系。
通过对药物分子的结构进行分析,可以揭示药物分子的作用机制,从而指导药物的设计与开发。
药物分子结构活性关系的研究主要包括定量结构-活性关系(QSAR)和分子模拟。
4. 药物代谢药物在生物体内经过一系列的代谢过程,包括吸收、分布、代谢和排泄。
药物的代谢是指药物在体内发生的化学变化过程,通常主要发生在肝脏中。
代谢过程可以改变药物的药理活性、毒性和药代动力学等特性。
了解药物的代谢特性,对于合理用药和减少不良反应具有重要意义。
5. 药物动力学药物动力学是研究药物在体内的吸收、分布、代谢和排泄等过程的科学。
了解药物动力学,可以帮助人们合理用药,并优化药物的治疗效果。
药物动力学主要包括药物的吸收、分布、代谢和排泄等过程的量化描述和研究。
6. 药物毒理学药物毒理学是研究药物和毒物对生物体产生的毒性效应以及其机制的科学。
了解药物毒理学对于评价药物的安全性和毒性有重要意义。
药物毒理学主要包括毒性效应的研究、毒性作用的机制研究以及毒物的作用途径和毒性评价等内容。
总之,药化学是一门综合性的学科,它涉及到药物的合成、结构活性关系、药代动力学和药物毒理学等方面的知识。
药物化学重点(整理版)
引言概述:药物化学是一门研究药物的化学特性、结构和合成方法的学科,为药物的设计、合成和改进提供了理论基础和技术支持。
本文旨在整理药物化学的重点内容,包括药物的物理化学性质、药物合成方法、药物设计和改进等方面,以期为药物化学领域的学习者和从业者提供参考和帮助。
正文内容:一、药物的物理化学性质1. 药物的溶解性:讨论药物溶解度与体内吸收的关系、影响药物溶解度的因素以及溶解度的测定方法等。
2. 药物的离子化平衡:探讨药物的离子性质,如酸碱性、离子化度以及离子化平衡对药物活性和药效的影响。
3. 药物的晶体结构:介绍药物的晶体结构和多态性的基本概念,以及晶体结构对药物的稳定性、溶解度和生物利用度的影响。
二、药物合成方法1. 有机合成反应:详细解析有机合成反应的分类,如加成、消除和取代反应,并重点介绍在药物化学中广泛应用的常见有机合成反应。
2. 绿色合成技术:介绍绿色合成在药物化学领域的应用,包括微波辅助合成、超声辅助合成和催化合成等,以及其优点和发展前景。
3. 不对称合成:阐述不对称合成在药物化学中的重要性,包括手性药物的合成、不对称催化和药效的关系等内容。
三、药物设计与改进1. 药物活性与结构关系:探讨药物的分子作用机制、构效关系以及药物活性与分子结构的定量关系,为药物设计和优化提供理论指导。
2. 三维药物构象:讲解三维构象在药物设计中的重要性,包括构象选择、构象稳定性和构象活性的关系,并介绍分子模拟方法在三维构象分析中的应用。
3. 药物代谢与药效改进:介绍药物代谢的基本过程和机制,以及通过代谢途径优化药物性质和增强药效的方法和策略。
四、药物分析与质量控制1. 药物分析方法:介绍常用的药物分析方法,如色谱法、质谱法和核磁共振法等,以及它们在药物分析中的应用。
2. 药物质量控制:讨论药物质量控制的基本原则和方法,包括药物含量、纯度、稳定性和微生物检测等方面的质量控制。
五、药物化学的前沿研究和应用1. 抗癌药物研究:介绍抗癌药物研究的最新进展,如靶向治疗、免疫治疗和基因编辑等,以及它们在临床应用中的前景。
药物化学总结知识点
药物化学总结知识点一、药物分类药物可以按照不同的分类标准进行分类,常见的分类方法有按照化学结构、作用机制、用途等进行分类。
按照化学结构分类,药物可以分为多种类别,包括生物碱类、脂质类、激素类、抗生素类等。
不同类别的药物具有不同的化学结构,因此也具有不同的药效特点和药物代谢规律。
按照作用机制分类,药物可以分为多种类别,包括激动剂、拮抗剂、酶抑制剂、受体激动剂等。
不同类别的药物作用机制不同,因此在治疗疾病时具有不同的作用方式和药效特点。
按照用途分类,药物可以分为多种类别,包括抗生素、抗肿瘤药、抗病毒药、镇痛药等。
不同类别的药物用途不同,适用于不同类型的疾病治疗。
二、药物结构药物的化学结构是决定药物性质和药效特点的重要因素。
不同的化学结构决定了药物的生物利用度、药代动力学、药效学和药物安全性等方面的特点。
药物的化学结构通常由苯环、环硫醚、环醚、环氧、酮、醛、羟基等基团组成,这些基团的排列组合形成了不同的化学结构。
药物的化学结构决定了药物的药理活性、代谢规律、不良反应等特点。
三、药物合成药物合成是药物化学的一个重要分支,是研究药物合成方法和合成技术的学科。
药物合成方法包括有机合成、天然产物提取和改良、化学修饰等多种方法。
有机合成是一种重要的药物合成方法,通过合成化学反应制备目标化合物。
天然产物提取和改良是一种重要的药物发现方法,通过从天然产物中提取有药理活性的分子,并进行化学改良以达到更好的药效特点。
化学修饰是一种有效的药物合成方法,通过对已有化合物进行结构改良以得到具有更好药效特点的新药物。
四、药效机制药物的药效机制是药物化学的一个重要研究内容,是研究药物在生物体内的作用机制和相关生物化学过程的学科。
药效机制的研究包括药物与受体的相互作用、药物在生物体内的代谢、药物的分布和排泄等方面。
药物与受体的相互作用是药物发挥药理活性的重要机制,包括药物与受体的亲和力、激活作用、抑制作用等。
药物的代谢是药物在生物体内发生的化学反应,包括氧化、还原、水解、甲基化等反应。
药物化学复习重点总论
药物化学复习重点一、不需要看的内容与章节第五章的二、三、四节;第七章的三、四节;第九章的五、六节;第十章的第二节;第十一章的第一节。
二、问答题1、分析比较肾上腺素左旋体和右旋体的活性差异答:Adrenaline的基本骨架结构为β-笨乙胺,取代本基与脂肪族伯胺或仲胺以二碳相连,碳链增强或缩短均使作用降低;β-碳上通常带有醇羟基,此醇羟基在激动剂与受体相互结合时,通过形成氢键发挥作用,β-OH立体结构排列对活性有显著影响。
R构型肾上腺素为左旋体,其活性比右旋约强12倍。
其活性差异是光学异构体的差异,许多药物其左旋体和右旋体的生物活性并不相同。
药物中光学异构体的生理活性差异反映了药物与受体结合时的较高的立体要求。
如β-碳为R构型左旋体肾上腺素,它可通过下列三个基团与受体在三点上结合:①氨基:②苯环及其二个酚羟基;③侧链上的醇羟基。
而L-异构体只能有两个点结合,所以肾上腺素左旋体比右旋体活性强。
2、试说明为什么低浓度的对氨基苯甲酸即可显著降低磺胺药的疗效?答:磺胺类药物能与细菌生长所必需的对氨基苯甲酸(PABA)产生竞争性拮抗,干扰了细菌的酶系统对PABA的利用,PABA是叶酸的组成部分,叶酸是微生物生长的必要物质,也是构成体内叶酸辅酶(辅酶F)的基本原料。
所以只要有较低浓度的对氨基苯甲酸就可以与磺胺类药物产生竞争性拮抗,降低磺胺类药物的抗菌作用。
3、写出青霉素类抗生素的结构通式,讨论半合成青毒素的构效关系,并解释原因?答:青霉素类抗生素的结构通式为:构效关系:①均以6-APA为母核进行结构修饰,产生各式各样的作用。
因6-APA为活性必需基团, β-内酰胺环和四氢噻唑环上的取代基不同,其修饰所得的化合物性质不一样,因此其产生的作用不同。
②6-a位引入甲基或甲氧基,活性降低。
系空间位阻作用所致。
③改变药物构性可扩大抗菌谱。
系改变细菌细胞膜的通透性所致。
④适当引入位阻基团,可以克服耐药性。
因引入的位阻基团兼有吸电子和空间位阻的双重作用,阻止了青霉素与酶活性中心的结合,降低青霉素分子与酶活性中心的适应性,对β-内酰胺环具有保护作用,因此,对青霉素酶稳定,克服耐药性。
药物化学复习重点
第二章中枢神经系统药物1 、镇静催眠药分类巴比妥类:异戊巴比妥。
苯二氮卓类:地西泮。
新型:酒石酸唑吡坦。
2 、巴比妥类理化性质①酸性②水解性③与金属离子反应:与铜盐作用,紫色络合物,含硫的巴比妥反应后显绿色。
硝酸银试液作用一价银盐可溶,二价银盐白色沉淀3 、巴比妥药物的构效关系:巴比妥酸无镇静催眠作用,当5 位的两个氢被取代后才呈现活性。
5位基团取代成不同的巴比妥类药物:①、作用强弱和快慢---- 药物的理化性质②、作用时间长短----药物的体内代谢速度苯二氮卓类结构对比4 、地西泮理化性质①水解性:酰胺结构,1 --- 2 间水解,烯胺结构,4 -5 间水解可逆性水解。
②与生物碱试剂显色,③具有叔胺的结构5 、抗癫痫药化学结构环内酰脲类:苯妥英钠。
二苯并氮卓类:卡马西平。
其它类:卤加比、6 、苯妥英钠理化性质①碱性②水解③鉴别反应:吡啶硫酸铜溶液作用生成蓝色络盐7 、卡马西平理化性质:稳定性,片剂在潮湿环境中保存时,药效降至原来的1/3 可能是由于生成二水合物使片剂硬化,导致溶解和吸收差所致,长时间光照,固体表面由白变橙黄8 、抗精神失常药①、吩噻嗪类盐酸氯丙嗪②噻吨类(硫杂蒽类)氯普噻吨③丁酰苯类氟哌啶醇④二苯丁基哌啶类五氟利多、匹莫齐特⑤二苯并氮杂卓类和二苯并氧氮卓类氯氮平⑥其它类9 、盐酸氯丙嗪理化性质①酸性②还原性③鉴别反应10 、噻吨类抗精神病药几何异构体:侧链与母核②位取代基同边者为Z 型(c i s-isomer ),反之为E 型(trans-isomer ),活性一般cis > trans11 、氟哌啶醇氟哌啶醇理化性质:①105 ℃干燥时,降解,产物可能是脱水产物。
②片剂处方中如有乳糖,可与乳糖中的杂质5- 羟甲基- 2 - 糠醛加成。
③遇强氧化剂加热,生成氟化氢12 、氯氮平非经典的抗精神病药物抗抑郁药按作用机制:①去甲肾上腺素重摄取抑制剂(三环类抗抑郁药)②单胺氧化酶抑制剂③选择性5- 羟色胺重摄取抑制剂④其它类。
药物化学复习重点
第一章绪论
重点复习
1.掌握药物、药物化学概念
2.熟悉药品的通用名、化学名、商品名的定义以及区别
第二章中枢神经系统药物
重点复习
1.镇静催眠药异戊巴比妥、地西泮的化学名、结构、理化性质、体内代谢、
用途、合成路线
2.抗癫痫药苯妥英钠、卡马西平
3.抗精神病药氯丙嗪
4.抗抑郁药氟西汀
5.镇痛药吗啡、盐酸美沙酮
第三章外周神经系统药物
重点复习
1.乙酰胆碱酯酶抑制剂溴新斯的明
2.抗胆碱药硫酸阿托品、溴丙胺太林
3.肾上腺素受体激动剂
4.局部麻醉药盐酸普鲁卡因、盐酸利多卡因
第四章循环系统药物
重点复习
1.β受体拮抗剂盐酸普萘洛尔、酒石酸美托洛尔
2.钙通道阻滞剂硝苯地平
3.钠通道阻滞剂盐酸美西律、钾通道阻滞剂盐酸胺碘酮
4.血管紧张素转换酶抑制剂卡托普利、AngⅡ受体拮抗剂氯沙坦
5.NO供体药物硝酸甘油
6.强心苷类药物地高辛
第五章消化系统药物
重点复习
1. 抗溃疡药西咪替丁、雷尼替丁、奥美拉唑
2. 镇吐药昂丹司琼
3. 促动力药甲氧氯普胺
4、肝胆疾病辅助治疗药联苯双脂、双环醇。
药物化学复习重点(药学类)
第二章 中枢神经系统药物 第一节 镇静催眠药异戊巴比妥 ①②③镇静、催眠、抗惊厥③本品与中枢苯二氮卓受体结合而发挥安定、镇静、催眠、肌肉松弛及抗惊厥作用。
临床上主要用于治疗神经官能症 ④P19构效关系酒石酸唑吡坦 主要的镇静催眠药 第二节 抗癫痫药物苯妥英钠 ①②③治疗癫痫大发作和局限性发作的主要用药,对小发作无效卡马西平 ①②③治疗癫痫大发作和综合性局灶性发作 卤加比 治疗癫痫 化学名】N,N-二甲基-2-氯-10H-吩噻嗪-10-丙胺盐酸盐(冬眠灵)③治疗精神分裂症 、躁狂症,大剂量可应用于镇吐、强化麻醉及人工冬眠 氟哌啶醇 治疗精神分裂症 、躁狂症 氯氮平 治疗多种类型精神分裂症 第四节 抗抑郁药盐酸丙咪嗪 治疗内源性抑郁症、反应性抑郁症及更年期抑郁症、小儿遗尿 盐酸氟西汀 治抑郁症 第五节 镇痛药H吗啡①N②【结构特点】(1) 为含有部分氢化菲核的由五个环并合的刚性分子。
(2) 分子中有五个手性中心(5R,6S,9R,13S和14R),共16种光学异构体。
天然吗啡为左旋体。
(3) B/C环呈顺式,C/D环呈反式,C/E环呈顺式。
(4) C-5、C-6、C-14上的氢均与乙胺链呈顺势;C-4、C-5的氧桥与C-9、C-13的乙胺链呈反式。
(5) 整个分子呈T型。
③产生镇痛、镇咳、镇静作用,临床上主要用于抑制剧烈疼痛,亦可用于麻醉前给药③本品为阿片受体激动剂,镇痛效果强于吗啡、杜冷丁,其左旋体的作用=右旋体的20倍。
用作镇痛药,用于创伤、癌症剧痛及术后镇痛,并有显著镇咳作用。
主要用于海洛因成瘾的戒除治疗喷他佐辛镇痛为吗啡的三分之一第六节中枢兴奋药咖啡因用于中枢性呼吸衰竭、循环衰竭、神经衰弱和精神抑制吡拉西坦可改善轻度及中度老年痴呆者的认知能力,但对重度痴呆者无效。
还可用于脑外伤所致记忆障碍及弱智儿童第三章外周神经系统药物第一节拟胆碱药一胆碱受体激动剂氯贝胆碱用于手术后腹气胀、尿潴留以及其他原因所致的胃肠道或膀胱功能异常毛果芸香碱临床用其硝酸盐或盐酸盐制成滴眼液,用于治疗原发性青光眼③供口服。
药物化学复习重点总论
药物化学复习要点一、不需要看的内容与章节第五章的二、三、四节;第七章的三、四节;第九章的五、六节;第十章的第二节;第十一章的第一节。
二、问答题1、剖析比较肾上腺素左旋体和右旋体的活性差别答: Adrenaline的基本骨架构造为β- 笨乙胺,取代本基与脂肪族伯胺或仲胺以二碳相连,碳链加强或缩短均使作用降低;β -碳上往常带有醇羟基,此醇羟基在激动剂与受体互相联合时,经过形成氢键发挥作用,β -OH立体构造摆列对活性有明显影响。
R 构型肾上腺素为左旋体,其活性比右旋约强12 倍。
其活性差别是光学异构体的差别,很多药物其左旋体和右旋体的生物活性其实不同样。
药物中光学异构体的生理活性差别反应了药物与受体联合时的较高的立体要求。
如β - 碳为 R 构型左旋体肾上腺素,它可经过以下三个基团与受体在三点上联合:①氨基:②苯环及其二个酚羟基;③侧链上的醇羟基。
而 L- 异构体只好有两个点联合,所以肾上腺素左旋体比右旋体活性强。
2、试说明为何低浓度的对氨基苯甲酸即可明显降低磺胺药的疗效?答:磺胺类药物能与细菌生长所必需的对氨基苯甲酸(PABA)产生竞争性拮抗,扰乱了细菌的酶系统对PABA的利用, PABA是叶酸的构成部分,叶酸是微生物生长的必需物质,也是构成体内叶酸辅酶(辅酶F)的基来源料。
所以只需有较低浓度的对氨基苯甲酸就能够与磺胺类药物产生竞争性拮抗,降低磺胺类药物的抗菌作用。
3、写出青霉素类抗生素的构造通式,议论半合成青毒素的构效关系,并解说原由?答:青霉素类抗生素的构造通式为:构效关系:①均以 6-APA 为母核进行构造修饰,产生各式各种的作用。
因 6-APA 为活性必需基团 , β - 内酰胺环和四氢噻唑环上的取代基不同 , 其修饰所得的化合物性质不同样 , 所以其产生的作用不同。
②6-a 位引入甲基或甲氧基,活性降低。
系空间位阻作用所致。
③改变药物构性可扩大抗菌谱。
系改变细菌细胞膜的通透性所致。
④适合引入位阻基团,能够战胜耐药性。
药物化学重点(整理版)
药物化学重点重点第一章绪论1药物的概念药物是用来预防、治疗、诊断疾病,或为了调节人体功能、提高生活质量、保持身体健康的特殊化学品。
2药物化学是一门发现与发明新药、合成化学药物、阐明药物化学性质、研究药物分子与机体细胞之间相互作用规律的综合性学科。
3药物化学的研究内容及任务既要研究化学药物的化学结构特征,与此相联系的理化性质,稳定性状况,同时又要了解药物进入体内后的生物效应、毒副作用及药物进入体内的生物转化等化学内容。
为了设计、发现和发明新药,必须研究和了解药物的构效关系,药物分子在生物体中作用的靶点以及药物与靶点结合的方式。
(3) 药物合成也是药物化学的重要内容。
第二章中枢神经系统药物一、巴比妥类1 异戊巴比妥HNN H OOO中等实效巴比妥类镇静催眠药,【体内代谢】巴比妥类药物多在肝脏代谢,代谢反应主要是5位取代基上氧化和丙二酰脲环的水解,然后形成葡萄糖醛酸或硫酸酯结合物排出体外。
异戊巴比妥的5位侧链上有支链,具有叔碳原子,叔碳上的氢更易被氧化成羟基,然后与葡萄糖醛酸结合后易溶于水,从肾脏消除,故为中等时效的药物。
【临床应用】本品作用于网状兴奋系统的突触传递过程,阻断脑干的网状结构上行激活系统,使大脑皮质细胞的兴奋性下降,产生镇静、催眠和抗惊厥作用。
久用可致依赖性,对严重肝、肾功能不全者禁用。
二、苯二氮卓类1. 地西泮(Diazepam, 安定,苯甲二氮卓)【结构】NNOCl结构特征为具有苯环和七元亚胺内酰胺环并合的苯二氮卓类母核【体内代谢】本品主要在肝脏代谢,代谢途径为N -1去甲基、C -3的羟基化,代谢产物仍有活性(如奥沙西泮和替马西泮被开发成药物)。
形成的3-羟基化代谢产物再与葡萄糖醛酸结合排出体外。
第三节 抗精神病药1. 盐酸氯丙嗪(Chlorpromazine Hydrochloride) 【结构】. HClNSClN【体内代谢】主要在肝脏经微粒体药物代谢酶氧化代谢,体内代谢复杂,尿中存在20多种代谢物,代谢过程主要有N -氧化、硫原子氧化、苯环羟基化、侧链去N -甲基和侧链的氧化等,氧化产物和葡萄糖醛酸结合通过肾脏排出。
药物化学要点笔记(打印版)
药物化学要点笔记(打印版)一、药物化学基础- 药物化学的定义:药物化学是研究药物的化学结构、性质、合成方法以及药物与生物体之间相互作用的科学。
- 药物分子的构成:药物分子由多个原子通过化学键连接而成,原子之间的连接方式和空间结构决定了药物的特性和药效。
- 药物化学的重要性:药物化学是药物研发的核心领域,通过药物化学的研究可以设计出更安全、更有效的药物。
二、药物分子的特性1. 化学键类型:- 共价键:药物分子中最常见的键,通过共享电子而形成。
- 离子键:通过正负离子间的电荷吸引而形成。
- 氢键:通过氢原子与氧、氮、氟等电负性较强的原子间的相互作用而形成。
2. 手性性质:- 手性分子:具有非对称碳原子的分子,分为左旋和右旋两种结构,分别表示为“L-”和“D-”。
- 光学异构体:由于手性性质不同而具有不同药理活性的同分异构体。
三、药物化学合成方法1. 有机合成:- 化学反应:药物分子的合成通常通过有机化学反应进行,如酰化、醇化、酯化等。
- 催化剂:合成过程中常使用催化剂来提高反应速率和收率。
- 保护基团:在合成中,常用保护基团来保护某些化学官能团,以避免其被其他反应影响。
2. 组合合成:- 组合法:通过将已有的药物分子组合起来形成新的药物分子。
- 序贯反应:通过按照特定的顺序进行多步反应合成药物。
四、药物与生物体的相互作用1. 药物靶标:- 药物作用靶标:在生物体内具有特定功能的蛋白质、酶或受体。
- 亲和力:药物与靶标之间的结合能力与稳定性。
2. 药效评价:- 作用方式:药物通过影响靶标的结构或功能来发挥药理作用。
- 半数抑制浓度(IC50):药物能抑制靶标活性的浓度。
以上是药物化学的一些要点笔记,希望对您有所帮助。
如有任何问题,请随时咨询。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 绪论1、药物定义药物----人类用来预防、治疗、诊断疾病,或为了调节人体功能、提高生活质量、保持身体健康的特殊化学品。
2、药物的命名按照中国新药审批办法的规定,药物的命名包括:(1)通用名(汉语拼音、国际非专有名, INN )--国际非专利药品名称、指在全世界都可通用的名称、INN 的作用新药开发者在新药申请时向政府主管部门提出申请并被批准的药物的正式名称。
不能取得专利及行政保护,任何该产品的生产者都可以使用的名称。
文献、教材、资料中及药品的说明书中标明的有效成份的名称。
复方制剂只能用它作为复方组分的使用名称。
(2)化学名称(中文及英文)确定母核, 并编号(位次);其余为取代基或官能团;按规定的顺序注出取代基或官能团的位次:小的基团、原子在前, 大的在后。
逐次比较、双键为连两个相同原子、参看书p10次序规则表 英文化学名—国际通用的名称 化学名—药物最准确的命名(3)商品名----生产厂家利用商品名来保护自己的品牌 举例• 对乙酰氨基酚 (Paracetamol) • N-(4-羟基苯基)乙酰胺• 儿童百服咛® 、 日夜百服咛®•3熟悉:药物化学研究的内容、任务 药物化学的研究内容发现和设计新药 合成化学药物药物的化学结构特征、理化性质、稳定性 (化学) 药物的药理作用、毒副作用、体内代谢 (生命科学) 药物的构效关系、药物与靶点的作用 药物化学的任务有效利用现有药物提供理论基础。
—临床药物化学为生产化学药物提供经济合理的方法和工艺。
-化学制药工艺学不断探索开发新药的途径和方法,争取创制更多新药。
—新药设计第 二章 中枢神经系统药物一、镇静催眠药1 苯二氮艹卓类: 母核: 一个苯环和一个七元亚胺内酰胺环骈合NNOH 123456789地西泮(Diazepam)NNClO12357(3)合成P20-21(4)理化性质性状:白色或类白色的结晶性粉末,无臭,味微苦。
易溶于丙酮、氯仿,溶于乙醇,几乎不溶于 水解开环NHNClO OH+H 2NOH(Na)O NH ONOO ClNH 2NNOCl+4,5位体内代谢临床用途• 与中枢的苯二氮艹卓受体结合• 产生安定、镇静、催眠、肌肉松弛和抗惊厥等作用 • 用于神经官能症(5)结构改造及构效关系 NNCl O12357• (P16)苯二氮艹卓分子中的七元亚胺内酰胺环为活性的必需。
• 在7位上引入吸电子基(NO2),能显著增加活性。
• 在2’位上引入吸电子基(F),能显著增加活性。
• 1位N 以长链烃基取代(如环丙甲基),可延长作用时间。
• 1,2位或4,5位骈入杂环可增加活性。
(原因:水解开环) 2、巴比妥类.异戊巴比妥(Amobarbital) 5321N N OOOH H1234(2)命名:5-乙基-5-(3-甲基丁基)-2,4,6(1H ,3H ,5H ) 嘧啶三酮 (3)理化性质 性状:• 白色结晶性粉末,无臭、味苦• 在乙醚、乙醇中易溶,在氯仿中溶解,在水中极微溶解 弱酸性(互变异构) :• 内酰胺-内酰亚胺醇(烯醇): 溶于强碱Amobarbital SodiumNNONa N NO OOH H N NOOOH H• 在氢氧化钠或碳酸钠溶液中溶解,得钠盐。
• 巴比妥酸 (环丙二酰脲) • 5-位双取代: 显活性 (7)巴比妥类药物的构效关系 1、5-位双取代才具活性2、5-位双取代基的总碳数为4-8最好, lgP 合适,具良好的镇静催眠作用。
碳数超过8,则易导致惊厥。
3、酰亚胺的氮上可引入甲基,降低酸性和增加脂溶性,起效快。
若引入两个甲基→惊厥。
4、C2上的氧以硫置换,脂溶性增加,起效快。
异戊巴比妥钠理化性质• 白色颗粒或粉末,无臭、味苦。
有引湿性。
• 水溶液显碱性。
为注射用药。
水解性:其钠盐的水溶液易水解→失活 (水解速度受温度及pH 值的影响) → 注射剂须制成粉针,临用时配制. 丙二酰脲的特征反应(鉴别反应):Na2CO3 + AgNO3 白色沉淀本品 + 吡啶/硫酸铜 蓝紫色 硫喷妥钠 + 吡啶/硫酸铜 (4)体内代谢 • 在肝脏代谢• 5位取代基上氧化、环的水解• Amobarbital 侧链易氧化→羟基化合物 → 与葡萄糖醛酸结合→肾脏排泄• 中等时效药物 (5)临床用途• 巴比妥类药物作用于网状兴奋系统的突触传递过程,阻断脑干的网状结构上行激活系统,使大脑皮层兴奋性下降。
• Amobarbital 用于镇静、催眠、抗惊厥。
• Amobarbital 久用成瘾。
(6) 巴比妥类药物为结构非特异性药物 作用与其理化性质有关1、作用强弱和起效时间→与药物的解离常数(pKa )及脂水分配系数(lgP )密切相关 --药物通常以分子形式透过生物膜--以离子的形式(和靶点作用)发生作用PKa :药物的解离度不同,通过细胞膜和透过血脑屏障的药物量有差异。
弱酸类:pK a = pH + lg RCOOH RCOO -[][] Lgp :药物必须具有适当的脂水分配系数。
药物具有亲水性才能在体液中转运,具有亲酯性才能透过血脑屏障,达到作用部位。
• 脂水分配系数:• 脂溶性和水溶性的相对大小• 化合物在互不相溶的非水相和水相中分配平衡后 P =Co/Cw2、作用时间 →与药物的体内代谢难易相关 5-位取代基的氧化是代谢的主要途径 当5-位取代基:支链烷烃,易氧化代谢→中效3、非苯二氮艹卓类 酒石酸唑吡坦COOH COOHHOHO21.NN N O•吡啶并咪唑结构与苯二氮艹卓受体ω1亚型结合,但较小抗焦虑、肌肉松弛、抗惊厥作用。
• 催眠作用强,剂量小,作用时间短,在正常治疗周期内,极少产生耐受性和成瘾性。
• 欧美国家的主要镇静催眠药。
二、抗癫痫药 1、苯妥英钠 54321N NONa O H 乙内酰胺类 (1)化学名: 5,5-二苯基-2,4-咪唑烷二酮钠盐 (3)体内代谢• 苯妥英钠的口服吸收较慢, 片剂的生物利用度为79%, 治疗指数较低,易产生毒性反应,个体差异大,须监测血药浓度来决定病人每日的给药次数和用量。
• 在肝脏被肝微粒体酶代谢, 氧化代谢物是:N HNOONa N H NHOOHO• 苯妥英钠为肝酶的强诱导剂, 可使合并应用的药物(如 氯霉素、青霉素、异烟肼)代谢加快,血药浓度降低。
而本身氧化代谢却受到抑制,血药浓度增加。
• 具“饱和代谢动力学”特点,在短期内反复使用或用量过大,可使代谢酶饱和,代谢速度将显著减慢,易产生毒性反应。
• 须监测血药浓度来决定病人每日的给药次数和用量 (4)临床作用• 癫痫大发作和局限性发作的首选药。
• 对小发作无效。
葡萄糖醛酸结合物2、卡马西平N ONH 2511011(3)理化性质 性状:白色或类白色的结晶性粉末,具多晶型。
易溶于二氯甲烷,略溶于乙醇,几乎不溶于水。
稳定性:干燥和室温下稳定.片剂在潮湿中,药效降低 (生成二水合物,表面硬化,溶解和吸收困难).长时间光照,固体表面变橙色,部分生成二聚体和10,11-环氧化物。
需避光保存. 鉴别:结构呈一个大共轭体系,乙醇溶液在235nm 和285nm 处有最大吸收. (4)体内代谢• 水溶性差,口服吸收慢,不规则。
• 在肝脏代谢, 代谢物10,11-环氧卡马西平仍具活性。
(5)临床用途• 主要治疗癫痫大发作和综合性局灶性发作。
• 作用机制类似苯妥英钠。
三、.抗精神病药1、吩噻嗪类 盐酸氯丙嗪HCl.NSN12510• 三环不在同一个平面 (1)化学名:N,N-二甲基-2-氯-10H -吩噻嗪-10-丙胺盐酸盐 • 蒽环在同一个平面 又名:冬眠灵 (2)结构特点• 吩噻嗪母核 • 叔胺侧链 (3)理化性质 性状:白色或乳白色结晶性粉末,微臭,味极苦;有引湿性;溶于水、乙醇或氯仿,在乙醚或苯(1)结构特点:• 酰胺结构、 脲结构 • 共轭体系• 二苯并氮杂艹卓类 (2)化学名:5H -二苯并[ b, f ]氮杂艹卓-5-甲酰胺 又名酰胺咪嗪、卡巴咪嗪中不溶。
酸性:水溶液显酸性反应 稳定性• 在空气中或日光中放置渐变红色。
• 制剂时需采用防氧化措施,如加连二亚硫酸钠、亚硫酸氢钠或维生素C等抗氧剂。
• 具还原性,易被氧化。
与氧化剂反应(鉴别反应): 本品+硝酸 红色本品+三氯化铁 稳定的红色 光化毒反应盐酸氯丙嗪注射剂在日光下,易变质,pH 下降;而且部分病人用药后在日光下会发生严重的光化毒反应(过敏反应)。
(4)体内代谢 主要代谢途径:N-氧化、硫原子氧化、苯环羟基化、侧链去N-甲基和侧链的氧化。
氧化产物和葡萄糖醛酸结合经肾脏排泄。
(5) 临床用途与多巴胺受体结合,阻断多巴胺与受体的结合。
临床常用于治疗精神分裂症和躁狂症,大剂量应用于镇吐、强化麻醉及人工冬眠 (6)副作用• 口干、上腹部不适、乏力、嗜睡、便秘。
• 避免阳光照射。
吩噻嗪类药物的结构改造1、1、2-位氯原子是活性的必需结构(苯环上2-位氯原子引起分子的不对称性)2、在2,10位上进行的改造NSClNNOHNS F 3CNNOH奋乃静 氟奋乃静NSF 3CNNOCOC 6H 13氟奋乃静庚酸酯3、10位N 被C 取代(噻吨类或硫杂蒽类), 并通过双键与侧链相连。
SNCl4、吩噻嗪环的5位 S →C -C, C = C(二苯并七元环) →三环类抗抑郁药HCl.NN丙咪嗪2、噻吨类(硫杂蒽):3、 二苯并二氮杂艹卓类 SNCl氯普噻吨 氯氮平4、丁酰苯类及苯酰胺类NOF1234412512H ON NOCH 3S O OH 2N氟哌啶醇 舒必利N-[(1-乙基-2-吡咯烷基)甲基]-2-甲氧基-5-(氨基磺酰基)-苯甲酰胺1-(4-氟苯基)-4-[4-(4-氯苯基)-4-羟基-1-哌啶基]-1-丁酮 四、抗抑郁药HCl .NNHCl .N盐酸丙咪嗪 盐酸阿米替林(吩噻嗪环的10位 N → C = 侧链相连)吩噻嗪5位 S → -C-C- (乙撑基)N,N-二甲基-10,11-二氢-5H-二苯并[b,f]氮杂 –5-丙胺盐酸盐HCl.H F 3C注:与卡马西平结构进行比较 五、镇痛药• 吗啡类(麻醉性)镇痛药----联合国国际麻醉药品管理局列为管制药物 ; • 药品可刺激大脑皮层产生欣快感 及视、听、触等幻觉(易被滥用); • 用药后极短时间,可产生“毒瘾”(成瘾性);• 大剂量使用则可刺激脊髓,造成惊厥乃至整个神经系统抑制,引起呼吸衰竭而死亡(呼吸抑制)。
1、盐酸吗啡3H 2OHCl. .1717吗啡喃(1)化学名:17-甲基-3-羟基-4,5α-环氧-7,8-二脱氢吗啡喃- 6α-醇 盐酸盐三水合物 (2)结构特点:• 五环并合, 含部分氢化的菲环(A 、B 、C 环), 哌啶环(D),呋喃环(E),有固定的编号; • 有5个手性碳: 5R 、6S 、9R 、13S 、14R ,有旋光性; • 天然Morphine 为左旋体,右旋体无镇痛作用;• 5, 6, 14位的H 与9, 13 位的乙胺链呈顺式,4, 5位的氧桥与乙胺链呈反式. (3)理化性质性状:Morphine Hydrocloride 为白色、有丝光的针状结晶或结晶性粉末。