《微波技术与天线》傅文斌-习题标准答案-第章
微波技术与天线习题答案
微波技术与天线习题答案(总24页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少 解:1)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性) Ω=100)5.0(λin Z (二分之一波长重复性)求内外导体直径分别为和的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗ab Z r ln 600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1min l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为: m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
微波技术与天线复习题答案
设特性阻抗为 Z °的无耗传输线的驻波比,第一个电压波节点离负载的距离为《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为50的均匀传输线终端接负载 R 100 ,求负载反射系数i,在离负载0.2 ,0.25及0.5处的输入阻抗及反射系数分别为多少?1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两 导体间填充介电常数r 2.25的介质,求其特性阻抗及f 300MHz 时的波长。
则空气同轴线 乙 60ln b65.9a 当 r 2.25时,z 。
-60ln b43.9V r a 当f 300MHz 时的波长:0.67m1.3题解:1 (Z 1 Z °).( Z 1 Z 0) 1 3 (0.2 )j2 z1 j0.8 1ee 3(0.5 )13(二分之一波长重复性) 1 (0.25 ) 3Z 1 jZ 0tan 丨Z in (0.2 ) z 。
一129.4323.79乙n (0.25 ) 502/100 25(四分之一波长阻抗变换性)乙 n (0.5 ) 100(二分之一波长重复性)解:同轴线的特性阻抗Z 0Z2Z in -2500R 11.5方。
证明:令传输线上任意一点看进去的输入阻抗为Z in ,与其相距处看进去的输入阻抗为4Z n ,则有:Z 1 jZ °tan zZ 0jZ 1 tan zl min1,试证明此时的终端负载应为乙 Z o证明:对于无耗传输线而言:Z1Zj tan丨 min 1 Z in( 1 min 1)Z 0ZZ1j tan丨 min 1Zin(l min1)Z/由两式相等推导出:乙Z 01 j tan lmin1jtan lmin 1传输线上的波长为:cf 2 g— 2mr因而,传输线的实际长度为:I -0.5m4终端反射系数为:R1 Z0 R1 Z49490.96151输入反射系数为:1ej2 1in 1490.96151根据传输线的4的阻抗变换性,输入端的阻抗为:试证明无耗传输线上任意相距入/4的两点处的阻抗的乘积等于传输线特性阻抗的平Z in1 j tan I minijtan 1min 11.4特性阻抗为Z 0 100长度为 /8的均匀无耗传输线,终端接有负载① ② ③ 解:传输线始端的电压。
《微波技术与天线》傅文斌-习题标准答案-第4章
《微波技术与天线》傅文斌-习题答案-第4章————————————————————————————————作者:————————————————————————————————日期:238第4章 无源微波器件4.1微波网络参量有哪几种?线性网络、对称网络、互易网络的概念在其中有何应用? 答 微波网络参量主要有转移参量、散射参量、阻抗参量和导纳参量。
线性网络的概念使网络参量可用线性关系定义;对二口网络,对称网络的概念使转移参量的d a =,散射参量的2211S S =,阻抗参量的2211Z Z =,导纳参量的2211Y Y =。
互易网络的概念使转移参量的1=-bc ad ,散射参量的2112S S =,阻抗参量的2112Z Z =,导纳参量的2112Y Y =。
4.2推导Z 参量与A 参量的关系式(4-1-13)。
解 定义A 参量的线性关系为()()⎩⎨⎧-+=-+=221221I d cU I I b aU U 定义Z 参量的线性关系为⎩⎨⎧+=+=22212122121111I Z I Z U I Z I Z U⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=c d c c bc ad ca Z Z Z Z 122211211Z 4.3从I S S =*T出发,写出对称互易无耗三口网络的4个独立方程。
解 由对称性,332211S S S ==;由互易性,2112S S =,3113S S =,3223S S =。
三口网络的散射矩阵简化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112313231112131211S S S S S S S S S S 由无耗性,I S S =*T,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001*11*23*13*23*11*12*13*12*11112313231112131211S S S S S S S S S S S S S S S S S S39得1213212211=++S S S0*2313*1112*1211=++S S S S S S 0*1113*2312*1311=++S S S S S S 0*1123*2311*1312=++S S S S S S4.4二口网络的级联如图所示。
微波技术与天线部分课后答案
微波技术与天线
* 1、1设一特性阻抗为得均匀传输线终端接负载,求负载反射系数,在离负载,及处得输入阻抗及反射系数分别为多少?
解:
1、3设特性阻抗为得无耗传输线得驻波比,第一个电压波节点离负载得距离为,试证明此时得终端负载应为
证明:
* 1、5试证明无耗传输线上任意相距λ/4得两点处得阻抗得乘积等于传输线特性阻抗得平方。
证明:令传输线上任意一点瞧进去得输入阻抗为,与其相距λ/4处瞧进去得输入阻抗为,则有:
=
所以有:
故可证得传输线上相距得二点处阻抗得乘积等于传输线得特性阻抗。
1、6 设某一均匀无耗传输线特性阻抗为Z0=50Ω,终端接有未知负载Z1。
现在传输线上测得电压最大值与最小值分别为100mV与20mV,第一个电压波节得位置离负载l min1=λ/3,试求该负载阻抗Z1。
解: 根据驻波比得定义: ρ=|U max|/|U min|=100/20=5
反射系数得模值 |Г1|=ρ-1/ρ+1=2/3
由 l min1=λФ1/4(pai)+λ/4=λ/3
求得反射系数得相位Ф1=(pai)/3,因而复反射系数Г1=2e j(pai)/3/3
负载阻抗为 Z1=Z0(1+Г1)/(1-Г1)=82、4 64、30
*
*例2-1 设某矩形波导得尺寸为a=8cm,b=4cm,试求工作频率在3GHz时该波导能传输得模式。
解: 由f=3GHz,得λ=c/f=0、1m
λcTE10=2a=0、16m>λλcTE01=2b=0、08m<λλcTM11=2ab/ a2+b2=0、0715m<λ
可见,该波导在工作频率为3GHz时只能传输TE10模。
*。
《微波技术与天线》傅文斌-习题答案-第3章
第3章 规则波导和空腔谐振器3.1什么是规则波导?它对实际的波导有哪些简化?答 规则波导是对实际波导的简化。
简化条件是:(1)波导壁为理想导体表面(∞=σ);从而可以利用理想导体边界条件;(2)波导被均匀填充(ε、μ为常量);从而可利用最简单的波动方程;(3)波导内无自由电荷(0=ρ)和传导电流(0=J );从而可利用最简单的齐次波动方程;(4)波导沿纵向无限长,且截面形状不变。
从而可利用纵向场法。
3.2纵向场法的主要步骤是什么?以矩形波导为例说明它对问题的分析过程有哪些简化?答 纵向场法的主要步骤是:(1)写出纵向场方程和边界条件(边值问题),(2)运用分离变量法求纵向场方程的通解,(3)利用边界条件求纵向场方程的特解,(4)导出横向场与纵向场的关系,从而写出波导的一般解,(5)讨论波导中场的特性。
运用纵向场法只需解1个标量波动方程,从而避免了解5个标量波动方程。
3.3什么是波导内的波型(模式)?它们是怎样分类和表示的?各符号代表什么物理意义? 答 运用纵向场法得到的解称为波导内的波型(模式)。
分为横电模和横磁模两大类,表示为TEmn 模和TMmn 模,其中TE 表示横电模,即0=z E ,TM 表示横磁模,即0=z H 。
m 表示场沿波导截面宽边分布的半波数;n 表示场沿波导截面窄边分布的半波数。
3.4矩形波导存在哪三种状态?其导行条件是什么?答 矩形波导存在三种状态,见表3-1-1。
导行条件是222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛<b n a m λ3.5从方程H E ωμj -=⨯∇和E H ωεj =⨯∇出发,推导矩形波导中TE 波的横向分量与纵向分量的关系式(3-1-25)。
解 对TE 波,有0=z E 。
由H E ωμj -=⨯∇和E H ωεj =⨯∇、 βj z-=∂∂得 ()x y z E H j yH ωεβj =--∂∂ ⑴ ()y zx E x H H j ωεβj =∂∂-- ⑵0=∂∂-∂∂yH x H x y⑶()x y H E j ωμβj -=-- ⑷()y x H E j ωμβj -=- ⑸z x y H yE x E ωμj -=∂∂-∂∂ ⑹ 由式⑴、⑸y H k E zcx ∂∂-=2j ωμ⑺ 由式⑵、⑷xH k E zc y ∂∂=2j ωμ⑻ 由式⑷得xH k H zc x ∂∂-=2j β⑼ 由式⑸得y H k H zc y ∂∂-=2j β⑽ 3.6用尺寸为2mm 04.3414.72⨯的JB-32矩形波导作馈线,问:(1)当cm 6=λ时波导中能传输哪些波型?(2)写出该波导的单模工作条件。
微波技术与天线 答案 第1章
一为衰减波,无法传播。一为传输波,可以沿导波装置传播。 1-27 答: 当电磁波在导波系统中的传播相速与频率有关时,不同频率的波同 时沿该导波装置传输时,等相位面移动的速度不同,有快有慢,故该 现象为“色散” 。 1-28 答: 对比自由空间均匀平面波的波阻抗定义,定义波导的波阻抗为
Z
横向电场 Et ,且 Et,Ht 与传播方向满足右手定则 横向磁场 H t
1-6 解: ∵ Z L =Z0 ∴ U z U i 2e
j z
U r 2 0
e j z2 z1 U z1
100e U z2
2 j 3
100e U z1
j
6
V
u z1 , t 100 cos t V 6
2m
m 1
3.21 0
可以传播
c TE21
c TE31
D d
4
1.61 0 1.07 0
可以传播
D d
L0 L1 1.665 109 50 C1 C0 0.666 1012
X 1 = ωL1=2π×50 ×16.65×10-9Ω/cm=5.23×10-6Ω/cm B 1 =ωC1=2π×50×0.666×10×10-12=2.09×10-9S/cm
U z U i 2e j z U r 2e j z
I
3 z 4
1 j 20 j 2 j 0.11 Nhomakorabea 200
jt u z, t z 3 Re U z e 18cos t 2 V 4
《微波技术与天线》习题集规范标准答案
《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少?解:1)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++=ο79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(Θ1.4传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
微波技术与天线,课后答案
T E11、T M11: λc = 2ab/ a2 + b2 = 61.57mm > λ, 故T E11、T M11波 型能传播
T E30: λc = 2a/3 = 48.09mm < λ,故T E30波型不能传播
T E21、T M21: λc = 2ab/ a2 + (2b)2 = 49.51mm < λ, 故T E21、T M21波 型能传播. 综上,能传输的波型为:T E10、T E20、T E01、T E11、T M11波型。
微波技术与天线课后部分习题解答1第三章34矩形波导存在哪3中状态
《微波技术与天线》课后部分习题解答
1 第三章
3-4 矩形波导存在哪3中状态?其导行条件是什么?
答:存在:(a)临界状态(k = kc或λ = λc或f = fc);(b)传输状 态(k < kc或λ < λc或f > fc);(c)截止状态(k > kc或λ > λc或f < fc)。
答:
(1)截止波长:λc = 2a = 4 (λ = 3 × 108/1 × 1010 = 3cm)
1−(
λ λc
)2
相移常数:β
=
2π λp
=
157.7
(2) λc = 9.12cm λp = 3.18cm β = 197.8
(3)各参数同(1)
(4)λc = 4.56cm λp = 2.25cm β = 282.3
(
m a
)2
+
(
n b
)2
+
(
p l
微波技术与天线复习题答案
微波技术与天线复习题答案《微波技术与天线》习题答案章节微波传输线理路1.1设⼀特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输⼊阻抗及反射系数分别为多少?解:31)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ(⼆分之⼀波长重复性)31)25.0(-=ΓλΩ-∠=++=ο79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之⼀波长阻抗变换性)Ω=100)5.0(λin Z (⼆分之⼀波长重复性)1.2求外导体直径分别为0.25cm 和0.75cm 的空⽓同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ rln600ε= 则空⽓同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600aε当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的⽆耗传输线的驻波⽐ρ,第⼀个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--?=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--?=∴=++?=由两式相等推导出:对于⽆耗传输线⽽⾔:)(Θ1.4传输线上的波长为:m fr2cg ==ελ因⽽,传输线的实际长度为: m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输⼊反射系数为: 961.051Γ=Γ-lj in eβ根据传输线的4λ的阻抗变换性,输⼊端的阻抗为:Ω==2500120R ZZ in1.5试证明⽆耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平⽅。
微波技术与天线习题答案
《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少解:1))(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)求内外导体直径分别为和的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
微波技术与天线部分课后答案
微波技术与天线* 1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少? 解:31)()(01011=+-=ΓZ Z Z Z πβλ8.02131)2.0(j z j e e --=Γ=Γ 31)5.0(=Γλ 31)25.0(-=Γλ Ω-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z l jZ Z Z Z in ββλ Ω==25100/50)25.0(2λin Z Ω=100)5.0(λin Z1.3设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯= 证明: 1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(* 1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
证明:令传输线上任意一点看进去的输入阻抗为in Z ,与其相距λ/4处看进去的输入阻抗为'in Z ,则有: zjZ Z z jZ Z Z ββtan tan Z 10010in ++= )()(4tan 4tan Z 10010in λβλβ++++='z jZ Z z jZ Z Z =z jZ Z z jZ Z Z ββcot cot 10010-- 所以有: 20Z Z Z in in ='⨯故可证得传输线上相距的二点处阻抗的乘积等于传输线的特性阻抗。
1.6 设某一均匀无耗传输线特性阻抗为Z 0=50Ω,终端接有未知负载Z 1。
微波技术与天线,课后答案
1 第二章
2-3 传 输 线 电 路 图 如 图1所 示 。 问 : 图a中ab间 的 阻 抗Zab = 0对 吗 ? 图b中ab间 的阻抗Zab = ∞对吗?为什么? 解:
图 1: 题2-3图
Zin(z)
=
Z0
ZL Z0
+ jZ0tan(βz) + jZLtan(βz)
所以传输线上的电流、电压分布如图10所示。 2-31 ( ) 传输线阻抗匹配的方法有哪几种?哪些是窄频带的?哪些是 宽频带的? 答:
传输线阻抗匹配的方法主要有:λ/4阻抗变换器;宽带λ/4阻抗变换器;支 节匹配器和渐变匹配器。 其中λ/4阻抗变换器、 支节匹配器是窄带匹配; 宽带λ/4阻抗变换器、渐 变匹配器是宽带匹配;
(24)
所以有
ρ
=
ZL + jZ0tan(βz) Z0 + jZLtan(βz)
=
2
(25)
将z = λ/12,ZL = √RL + jXL,Z0 = 70代入式(25)中得: RL = 80,XL = 30 3
2-21 (√ ) 传输线长λ,特性阻抗为Z0,当终端负载分别为ZL = Z0,ZL = 0,ZL = j 3Z0时。 (1)计算相应的终端反射系数和驻波比; (2)画出相对电压振幅|U/U +|、相对电流振幅|I/I+|的沿线分布并标出其最
(20)
Γ
=
RL RL
− Z0 + Z0
当RL > Z0时 ,Γ(z)为 正 实 数 , 终 端 为 电 压 的 波 腹 点 , 则 有RL = Z0ρ,所以ρ = RL/Z0 当RL < Z0时,Γ(z)为负实数,终端为电压的波节点,则有RL = Z0/ρ,所 以ρ = Z0/RL 证毕。
微波技术与天线复习题答案
《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少?解:31)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++=ο79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(Θ1.4传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为: m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
《微波技术与天线》傅文斌-习题标准答案-第章
《微波技术与天线》傅文斌-习题答案-第章————————————————————————————————作者:————————————————————————————————日期:217第2章 微波传输线2.1什么是长线?如何区分长线和短线?举例说明。
答 长线是指几何长度大于或接近于相波长的传输线。
工程上常将1.0>l 的传输线视为长线,将1.0<l 的传输线视为短线。
例如,以几何长度为1m 的平行双线为例,当传输50Hz 的交流电时是短线,当传输300MHz 的微波时是长线。
2.2传输线的分布参数有哪些?分布参数分别与哪些因素有关?当无耗传输线的长度或工作频率改变时分布参数是否变化?答 长线的分布参数一般有四个:分布电阻R 1、分布电感L 1、分布电容C 1、分布电导G 1。
分布电容C 1(F/m )决定于导线截面尺寸,线间距及介质的介电常数。
分布电感L 1(H/m )决定于导线截面尺寸,线间距及介质的磁导率。
分布电阻R 1(Ω/m )决定于导线材料及导线的截面尺寸。
分布电导G 1(S/m ) 决定于导线周围介质材料的损耗。
当无耗传输线(R 1= 0,G 1= 0)的长度或工作频率改变时,分布参数不变。
2.3传输线电路如图所示。
问:图(a )中ab 间的阻抗0=ab Z 对吗?图(b )中问ab 间的阻抗∞=ab Z 对吗?为什么?答 都不对。
因为由于分布参数效应,传输线上的电压、电流随空间位置变化,使图(a )中ab 间的电压不一定为零,故ab 间的阻抗ab Z 不一定为零;使图(b )中a 点、b 点处的电流不一定为零,故ab 间的阻抗ab Z 不一定为无穷大。
2.4平行双线的直径为2mm ,间距为10cm ,周围介质为空气,求它的分布电感和分布电容。
解 由表2-1-1,L 1=1.84×10-6(H/m ),C 1=6.03×10-12(F/m )2.5写出长线方程的的解的几种基本形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《微波技术与天线》傅文斌-习题答案-第章————————————————————————————————作者:————————————————————————————————日期:217第2章 微波传输线2.1什么是长线?如何区分长线和短线?举例说明。
答 长线是指几何长度大于或接近于相波长的传输线。
工程上常将1.0>l 的传输线视为长线,将1.0<l 的传输线视为短线。
例如,以几何长度为1m 的平行双线为例,当传输50Hz 的交流电时是短线,当传输300MHz 的微波时是长线。
2.2传输线的分布参数有哪些?分布参数分别与哪些因素有关?当无耗传输线的长度或工作频率改变时分布参数是否变化?答 长线的分布参数一般有四个:分布电阻R 1、分布电感L 1、分布电容C 1、分布电导G 1。
分布电容C 1(F/m )决定于导线截面尺寸,线间距及介质的介电常数。
分布电感L 1(H/m )决定于导线截面尺寸,线间距及介质的磁导率。
分布电阻R 1(Ω/m )决定于导线材料及导线的截面尺寸。
分布电导G 1(S/m ) 决定于导线周围介质材料的损耗。
当无耗传输线(R 1= 0,G 1= 0)的长度或工作频率改变时,分布参数不变。
2.3传输线电路如图所示。
问:图(a )中ab 间的阻抗0=ab Z 对吗?图(b )中问ab 间的阻抗∞=ab Z 对吗?为什么?答 都不对。
因为由于分布参数效应,传输线上的电压、电流随空间位置变化,使图(a )中ab 间的电压不一定为零,故ab 间的阻抗ab Z 不一定为零;使图(b )中a 点、b 点处的电流不一定为零,故ab 间的阻抗ab Z 不一定为无穷大。
2.4平行双线的直径为2mm ,间距为10cm ,周围介质为空气,求它的分布电感和分布电容。
解 由表2-1-1,L 1=1.84×10-6(H/m ),C 1=6.03×10-12(F/m )2.5写出长线方程的的解的几种基本形式。
长线方程的解的物理意义是什么? 答(1)复数形式λ/8 aba)λ/8 abb)题2.3图18 ()()()z L L z L L I Z U I Z U z U ββj 0j 0e 21e 21--++= ()()()z L L z L L I Z U Z I Z U Z z I ββj 00j 00e 21e 21---+=(2)三角函数形式()z Z I z U z U L L ββsin j cos 0+=()z I z Z U z I L Lββcos sin j+= (3)瞬时形式()()A z t A t z u ϕβω++=cos , ()B z t B ϕβω+-+cos ()()A z t Z A t z i ϕβω++=cos ,0()B z t Z B ϕβω+--cos 0其中,()L L I Z U A 021+=,()L L I Z U B 021-= 物理意义:传输线上的电压、电流以波动的形式存在,合成波等于入射波与反射波的叠加。
2.6无耗传输线的特性阻抗的物理意义是什么?特性阻抗能否用万用表测量?为什么? 答 特性阻抗定义为传输线上入射波电压与入射波电流之比,是对单向波呈现的阻抗。
不能用万用表测量,因为特性阻抗是网络参数(从等效电路的观点,传输线可看成复杂的网络)。
2.7建立另一种长线坐标系如图所示,图中,坐标的原点(0=s )取在信号源端,信号源至负载的方向为坐标s 增加的方向。
若已知信号源端的边界条件()S U U =0,()S I I =0,试重新推导长线方程并求出其特解。
解 由克希霍夫电压定律Z Lsi (s)i (s+Δs)u (s+Δs)u (s)Z g E gΔs题2.7图19()()()0,,,1=+-∂∂-t s s u t t s i sL t s u ∆∆ ()()tt s i L s t s u ∂∂-=∂∂,,1由克希霍夫电流定律()()tt s u C s t s i ∂∂-=∂∂,,1 由ωj t→∂∂()()()()⎪⎩⎪⎨⎧-=-=s U C j dss dI s I L j ds s dU 11ωω 得如下波动方程011222=+U C L dsUd ω 011222=+I C L dsI d ω 波动方程的解是s j s j Be Ae U ββ-+= ()s j s j Be Ae Z I ββ---=01式中11C L ωβ=,1110C L L Z ==βω 由边界条件:s=0时,U=U s ,I=I sU s =A+B ,I s =-Z 0-1(A-B )解出A 、B 后得⎪⎪⎩⎪⎪⎨⎧--+=-++=--s j s s s j s s s j s s s j s s e Z I Z U e Z I Z U I e I Z U e I Z U U ββββ0000002222 式中,第1项为入射波,第2项为反射波。
202.8平行双线的周围介质为空气,分布电容为60pF/m ,求它的特性阻抗和分布电感。
解:由111C L c =,110C L Z =,解得:L 1=1.85×10-7(H/m ),Z 0=55.5(Ω) 2.9同轴线工作于MHz 100=f ,线间填充介质的3.2=r ε,1=r μ。
求:(1) 该同轴线上单向波的相速度和相波长;(2) 线上相距3m 的两点间单向波的相位差ϕ∆。
解:(1)3.21038⨯==rr p cv με=1.98×108m/s;68101001098.1⨯⨯==f v pp λ= 1.98 m (2) 398.122⨯=∆=∆=∆πλπβϕl l p=3.03π rad 2.10输入阻抗与特性阻抗有何不同?说“输入阻抗的相角就是传输线上该点的电压与电流的相位差”对吗?为什么?答 特性阻抗是传输线对单向波呈现的阻抗,是传输参数。
输入阻抗是传输线对合成波呈现的阻抗,是对传输线上反射情况的一种量度,是工作参数。
由()()()z I z U z Z =in ,题中所说正确。
2.11反射系数()z Γ、终端反射系数L Γ、反射系数的模()z Γ有何异同?说“在一段均匀传输线上()z Γ不变但()z Γ变化”对吗?为什么?答 相同点:都是对传输线上反射情况的一种量度。
不同点:均匀传输线上各点的()z Γ不同;均匀传输线上各点的()z Γ相同;()0Γ=ΓL 只是传输线终端的反射系数。
题中所说正确。
2.12传输线电路如图所示,试求:(1)输入阻抗A A Z ';(2)B 点和C 点的反射系数;(3)AB 段和BC 段的驻波比。
AA ′Z 0Z 03λ/4λ/4a)Z 0BC AA ′Z 0λ/2λ/4b)Z 0BC D Z 0/2λ/4题2.12图21解 图(a)(1)0Z Z Z C L == ,0Z Z BC =∴;2//00Z Z Z Z BC B ==。
43λ=AB,0202Z Z Z Z B A A ==∴'(2)0=C Γ,3100-=+-=ΓZ Z Z Z B B B(3)1=BC ρ,20==BAB Z Z ρ 图(b)(1)4λ=BC ,0202Z Z Z Z C BC ==;4λ=BD ,020=∞=∴Z Z BD0//=+==BDBC BDBC BD BC B Z Z Z Z Z Z Z ,2λ=AB ,0==∴'B A A Z Z(2)3100-=+-=ΓZ Z Z Z C C C ,100-=+-=ΓZ Z Z Z B B B(3)20==C BC Z Z ρ,∞==BAB Z Z0ρ 2.13传输线电路如图所示,试求:(1)输入阻抗A A Z ';(2)B 、C 、D 、E 、F 点的反射系数;(3)AB 、BC 、BD 、CE 、CF 段的驻波比。
解 (1)4λ=CE ,2020Z Z Z Z E CE ==∴0Z Z F = ,0Z Z CF =∴()322//0000Z Z Z Z Z Z Z Z CF CE C =+== 2λ=BC ,30Z Z BC =4λ=BD ,∞==∴020Z Z BD ;3//0Z Z Z Z BD BC B ==。
4λ=AB ,0203Z Z Z Z B A A ==∴'AA ′λ/2λ/4Z 0BCD Z 0λ/40.3λλ/4Z 0 2Z 0E F Z 0 题2.13图22(2)0=F Γ;31=E Γ;21-=C Γ;1-=D Γ;21-=B Γ (3)1=CF ρ;2=CE ρ;3=BC ρ;∞=BD ρ;3=AB ρ 2.14 传输线的终端接纯阻性负载,即L L R Z =时,证明⎩⎨⎧<>=0000当当Z R R Z Z R Z R L LL L ρ证 由Γ-Γ+=11ρ,00Z Z Z Z L L L +-=Γ得,00000000Z R Z R Z R Z R Z Z Z Z Z Z Z Z L L L L L L L L --+-++=--+-++=ρ 当0Z R L >, ()00000Z RZ R Z R Z R Z R L L L L L =--+-++=ρ当0Z R L <, ()LL L L L R ZR Z Z R R Z Z R 00000=--+-++=ρ 【证毕】2.15有一特性阻抗为Ω75、长为89λ的无耗传输线,测得电压波节点的输入阻抗为25Ω,终端为电压腹点,求:(1)终端反射系数;(2)负载阻抗;(3)始端的输入阻抗;(4)距终端83λ处的反射系数。
解 已知Ω=750Z ,89λ=l ,()Ω=25min z Z in ,()max0UU =(1)()()ρ1310min min ===Z z Z z Z in in ∵终端为电压波腹点,终端反射系数为正实数,有2111=+-=Γ=ΓρρL (2)∵终端为电压波腹点,有Ω==2250ρZ Z (3)zjZ Z zjZ Z Z Z in ββtan tan 000++==(45-j60)Ω(4)z j e z βλ283-Γ=⎪⎭⎫ ⎝⎛=Γ ,2383222πλλπβ=⋅⋅=z ,j ez zj 21832=Γ=⎪⎭⎫ ⎝⎛=Γ-βλ 2.16一特性阻抗为Ω70的无耗传输线,终端接负载L L L X R Z j +=。
测得驻波比等于2,第一个电压腹点距负载12λ。
求L R 和L X 的值。
Z 0=7589=Z LA B23解 由()zZ Z zZ Z Z z Z L L ββtan j tan j 000in ++=,()ρ0max in Z z Z =,m ax z =12λ()⎪⎭⎫⎝⎛⋅++⎪⎭⎫⎝⎛⋅++=122tan j j 122tan j j 0000λλπλλπρL L L L X R Z Z X R Z Z 化简得03223Z X R L L =+032Z X R L L =-解得Ω=80L R ,Ω=330L X2.17行波的电压(电流)振幅分布和输入阻抗分布有何特点。