哈工大计算机图形学实验报告

合集下载

计算机图形学--全部实验的实验报告

计算机图形学--全部实验的实验报告

一、实验目的根据曲线和曲面的基础知识和常用曲线的数学基础,对其算法进行程序设计,验证算法的正确性,并通过程序结果加深对常用曲线数学模型的理解。

二、实验任务1.抛物线程序设计;2.Hermite 曲线程序设计;3.Bezier曲线的算法实现;4.B样条曲线的程序设计三、实验内容和实验步骤任务一:抛物线程序设计实现抛物线算法的C语言程序段如下:(工程名:parabola)Par(int xs,int ys,int xm,int ym,int xe,int ye) //已知起点、中点和终点三个控制点的坐标{double t,dt,ax,ay,bx,by,cx,cy;int n,i;ax=xe-2*xm+xs;ay=ye-2*ym+ys;bx=2.0*(xm-xs);by=2.0*(ym-ys);cx=xs; cy=ys;n=sqrt(ax*ax+ay*ay);n=sqrt(n*100.0);moveto(xs,ys);dt=1.0/n; t=0;for (i=0;i<=n; i++){lineto((int)(ax*t*t+bx*t+cx),(int)( ay*t*t+by*t+cy));t=t+dt;}lineto(xe,ye);}读者可以根据上述抛物线程序设计,写出抛物线参数样条曲线的程序。

任务二:Hermite 曲线程序设计P(t)=FB=TMB=[ t3 t2 t 1 ]程序设计时只考虑二维图形的显示,其代数形式为:x(t)=TMBx , Bx =[ P0x P1x R0x R1x]Ty(t)= TMBy , By =[ P0y P1y R0y R1y]T所以,只要给出Hermite曲线的起点坐标(P0x,P0y),终点坐标(P1x,P1y),以及起点处的切矢量(R0x,R0y)和终点处的切矢量(R1x,R1y),参数变量t在[0,1]的范围内分别取0.01,0.02,…,1,步长为0.01,取100个点,分别求出P(t)=[ x(t),y(t)],在计算机屏幕上显示出每个坐标点,即可绘出Hermite曲线。

计算机图形学实验报告4

计算机图形学实验报告4

计算机图形学实验报告4一、实验目的本次计算机图形学实验旨在深入了解和掌握计算机图形学中的一些关键概念和技术,通过实际操作和编程实现,提高对图形生成、变换、渲染等方面的理解和应用能力。

二、实验环境本次实验使用的软件环境为_____,编程语言为_____,硬件环境为_____。

三、实验内容1、二维图形的绘制使用基本的绘图函数,如直线、矩形、圆形等,绘制简单的二维图形。

通过设置线条颜色、填充颜色等属性,增强图形的表现力。

2、图形的几何变换实现图形的平移、旋转和缩放操作。

观察不同变换参数对图形的影响。

3、三维图形的生成构建简单的三维模型,如立方体、球体等。

应用光照和材质效果,使三维图形更加逼真。

四、实验步骤1、二维图形的绘制首先,在编程环境中导入所需的图形库和相关模块。

然后,定义绘图窗口的大小和坐标范围。

接下来,使用绘图函数按照指定的坐标和参数绘制直线、矩形和圆形。

最后,设置图形的颜色和填充属性,使图形更加美观。

2、图形的几何变换对于平移操作,通过修改图形顶点的坐标值来实现水平和垂直方向的移动。

对于旋转操作,根据旋转角度计算新的顶点坐标,实现图形的绕中心点旋转。

对于缩放操作,将图形的顶点坐标乘以缩放因子,达到放大或缩小图形的效果。

3、三维图形的生成首先,定义三维模型的顶点坐标和三角形面的连接关系。

然后,设置光照的位置、颜色和强度等参数。

接着,为模型添加材质属性,如颜色、反射率等。

最后,使用渲染函数将三维模型显示在屏幕上。

五、实验结果与分析1、二维图形的绘制成功绘制出了各种简单的二维图形,并且通过颜色和填充的设置,使图形具有了更好的视觉效果。

例如,绘制的矩形和圆形边缘清晰,颜色鲜艳,填充均匀。

2、图形的几何变换平移、旋转和缩放操作都能够准确地实现,并且变换效果符合预期。

在旋转操作中,发现旋转角度的正负会影响旋转的方向,而缩放因子的大小直接决定了图形的缩放程度。

3、三维图形的生成生成的三维模型具有一定的立体感和真实感。

《计算机图形学》实验报告

《计算机图形学》实验报告

《计算机图形学》实验报告目录1实验2:直线的生成 (1)1.1实验要求和目的 (1)1.2实验课时 (1)1.3实验环境 (1)1.4实验内容 (1)1.5核心代码 (3)1.6实验结果 (7)1.6.1DDA算法 (10)1.6.2Mid-Bresenham算法 (11)1.7心得与体会 (12)2实验4:BSpline曲线绘制 (13)2.1实验要求和目的 (13)2.2实验课时 (13)2.3实验环境 (13)2.4实验内容 (13)2.5核心代码 (16)2.6实验结果 (18)2.6.1B-样条算法 (19)2.6.2Bezeir算法 (22)2.7心得与体会 (24)附录 (25)BSpline曲线控制点的测试数据 (25)数据1 (25)数据2 (27)数据3 (29)数据4 (30)数据5 (31)数据6 (33)数据7 (36)数据8 (38)1实验2:直线的生成1.1实验要求和目的理解直线生成的原理;掌握典型直线生成算法;掌握步处理、分析实验数据的能力;编程实现DDA算法、Bresenham中点算法;对于给定起点和终点的直线,分别调用DDA算法和Bresenham中点算法进行批量绘制,并记录两种算法的绘制时间;利用excel 等数据分析软件,将试验结果编制成表格,并绘制折线图比较两种算法的性能。

1.2实验课时3学时1.3实验环境本试验提供自带实验平台·开发环境:Visual C++ 6.0·实验平台:Free_Curve(自制平台)1.4实验内容本实验提供名为 Experiment_Frame_One的平台,该平台提供基本绘制、设置、输入功能,学生在此基础上实现·平台界面:如图1.4.1所示·设置:通过view->setting菜单进入,如图1.4.2所示·输入:通过view->input…菜单进入,如图1.4.3所示·实现算法:▪DDA算法:void CExperiment_Frame_OneView::DDA(int X0, int Y0, int X1, int Y1)▪Mid_Bresenham算法:voidCExperiment_Frame_OneView::Mid_Bresenham(int X0, int Y0, int X1, int Y1)图 1.4.1 总界面图 1.4.2 设置界面图 1.4.3 输入界面1.5核心代码本次实验的核心代码如下所示。

计算机图形学实验报告4

计算机图形学实验报告4

《计算机图形学》实验报告实验九 二维图形变换一、实验教学目标与基本要求1.掌握图形变换的基本算法原理;2.实现若干典型二维图形变换算法。

二.理论基础1.生成前几次实验中的基本图形;2.对生成的基本图形进行平移、旋转、放缩、对称等变换。

3. 对计算机绘图的原理有一定的认识。

三.算法设计与分析 1.二维变换1. 平移变换2.比例变换• Sx = Sy =1等比例变换• Sx = Sy >1 放大 • Sx = Sy <1 缩小[][][]100**1101011x yxyx y xyx T y T T T ⎡⎤⎢⎥=∙=++⎢⎥⎢⎥⎣⎦[][]100**1101011x y xyx y xyT T x T y T ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤=++⎣⎦[][][]00**11000011xy x y S x y xyS S xS y∙∙⎡⎤⎢⎥=∙⎢⎥⎢⎥⎣⎦=• Sx ≠ Sy ≠13.对称变换当b=d =0, a =-1, e =1时关于Y 轴对称当b=d =0, a =1, e =-1时关于X 轴对称当b=d =0, a =-1, e =-1时关于原点对称当b=d =1, a =e =0时关于直线y=x 对称当b=d =-1, a =e =0时[][][]0**1100011a d x y xyb e a x b yd x ey⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦=++[][]''100110100011x yx yxy-⎡⎤⎢⎥⎡⎤=⎣⎦⎢⎥⎢⎥⎣⎦=-[][]''10011010011x y x y x y ⎡⎤⎢⎥⎡⎤=-⎣⎦⎢⎥⎢⎥⎣⎦=-[][]''100110100011x y xyx y-⎡⎤⎢⎥⎡⎤=-⎣⎦⎢⎥⎢⎥⎣⎦=--[][]''10111000011x yx yyx⎡⎤⎢⎥⎡⎤=⎣⎦⎢⎥⎢⎥⎣⎦=[][]''010*******11xyx yyx-⎡⎤⎢⎥⎡⎤=-⎣⎦⎢⎥⎢⎥⎣⎦=--关于直线y=-x 对称4.旋转变换绕原点逆时针旋转θ5.错切变换• 当d=0时,x*=x+by,y*=y ,沿x 方向错切位移• 当b=0时,x*=x,y*=dx+y, 沿y 方向错切位移 • 当b ≠0时,当d ≠0时,x*=x+by,y=dx+y6.复合变换----复合平移对同一图形做两次平移相当于将两次的平移两加起来:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⋅=1010001101000110100012121221121y y x x y x y x t t t T T T T T T T T T T T复合变换----复合缩放⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⋅⋅=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⋅=1000000100000010000002121221121y y x x y x y x s s s s s s s s s s s T T T[][]''co s sin 011sin co s 001co s sin sin co s 1x yxyx y x y θθθθθθθθ⎡⎤⎢⎥⎡⎤=-⎣⎦⎢⎥⎢⎥⎣⎦=-+[][][]10**1110101d x y xybx b y d x y⎡⎤⎢⎥=∙=++⎢⎥⎢⎥⎣⎦复合变换----复合旋转⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⋅=1000)cos()sin(0)sin()cos(1000cos sin 0sin cos 1000cos sin 0sin cos 212121212222111121θθθθθθθθθθθθθθθθr r r T T T复合变换----关于F (xf,yf)点的缩放变换先把坐标系平移到(xf,yf),在新的坐标系下做比例变换,然后再将坐标原点平移回去。

计算机图形学第五次实验报告

计算机图形学第五次实验报告

《计算机图形学》实验报告实验十一真实感图形一、实验教学目标与基本要求初步实现真实感图形, 并实践图形的造型与变换等。

二、理论基础运用几何造型, 几何、投影及透视变换、真实感图形效果(消隐、纹理、光照等)有关知识实现。

1.用给定地形高程数据绘制出地形图;2.绘制一(套)房间,参数自定。

三. 算法设计与分析真实感图形绘制过程中, 由于投影变换失去了深度信息, 往往导致图形的二义性。

要消除这类二义性, 就必须在绘制时消除被遮挡的不可见的线或面, 习惯上称之为消除隐藏线和隐藏面, 或简称为消隐, 经过消隐得到的投影图称为物体的真实图形。

消隐处理是计算机绘图中一个引人注目的问题, 目前已提出多种算法, 基本上可以分为两大类:即物体空间方法和图象空间方法。

物体空间方法是通过比较物体和物体的相对关系来决定可见与不可见的;而图象空间方法则是根据在图象象素点上各投影点之间的关系来确定可见与否的。

用这两类方法就可以消除凸型模型、凹形模型和多个模型同时存在时的隐藏面。

1).消隐算法的实现1.物体空间的消隐算法物体空间法是在三维坐标系中, 通过分析物体模型间的几何关系, 如物体的几何位置、与观察点的相对位置等, 来进行隐藏面判断的消隐算法。

世界坐标系是描述物体的原始坐标系, 物体的世界坐标描述了物体的基本形状。

为了更好地观察和描述物体, 经常需要对其世界坐标进行平移和旋转, 而得到物体的观察坐标。

物体的观察坐标能得到描述物体的更好视角, 所以物体空间法通常都是在观察坐标系中进行的。

观察坐标系的原点一般即是观察点。

物体空间法消隐包括两个基本步骤, 即三维坐标变换和选取适当的隐藏面判断算法。

选择合适的观察坐标系不但可以更好地描述物体, 而且可以大大简化和降低消隐算法的运算。

因此, 利用物体空间法进行消隐的第一步往往是将物体所处的坐标系转换为适当的观察坐标系。

这需要对物体进行三维旋转和平移变换。

常用的物体空间消隐算法包括平面公式法、径向预排序法、径向排序法、隔离平面法、深度排序法、光线投射法和区域子分法。

计算机图形学实验报告一

计算机图形学实验报告一

计算机图形学实验报告⼀实验⼀直线、圆、椭圆的⽣成算法⼀、实验⽬的与内容⽬的:利⽤实验使我对所学的图形⽣成算法加深印象,并且练习书写规范的实验报告格式。

1、了解VC编程环境中常⽤控件命令和绘图函数,掌握处理图形的基本⽅法;2、实现直线⽣成算法:数值微分法、中点画线法、Bresenham画线法;3、实现圆的⽣成算法:简单画圆法、中点画圆法、Bresenham画圆法;4、实现椭圆⽣成算法:中点画椭圆法。

⼆、实验前准备:算法分析使⽤开发环境VC++6.0,建⽴⼯程MFC AppWizard exe,选择单⽂档。

进⼊IDR_MAINFRAME,编辑菜单栏,对需要处理的菜单项标题“建⽴类向导”,添加消息映射函数,在映射的函数处添加相应算法的程序代码,就可以完成整个程序。

算法的学习和理解是图形学学习的重要部分,以下对各种算法进⾏分析和总结:1、DDA算法⽣成直线斜率是DDA算法的关键,⽤两点坐标很容易可以得到斜率k,但这⾥要注意k是float。

如果k的绝对值在0和1之间,每次画点x++,y+k再进⾏四舍五⼊(因为x此时⽐y的变化快)。

否则,y++。

也就是为了保持每次+k(或1/k)要⼩于1。

不⽤对k的正负有太多考虑,例如point1(100,100),point2(200,200),可能得到k=-1,这时我们就从point1开始画点,所得的结果是相同的。

2、中点画线法判别式是中点画线法的关键,(0<=k<=1)判别式是为了判断下⼀个点是在当前点正右边还是右上⽅,是和中点⽐较的结果。

d的含义下⼀个点到中点的垂直距离,它的正负可以做下⼀个位置的判断。

初值:d = 2*a + b,增量:上⼀个点d>=0,则d+2*a,上⼀个点d<=0,则d+2*(a+b)。

3、Bresenham算法⽣成直线由误差d的符号来决定下⼀个像素是在正右⽅合适右上⽅。

d的实际意义是实际点到模拟点的垂直距离,我们让它保持在1以内(>=1时,做-1)。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告
实验目的:通过本次实验,深入了解并掌握计算机图形学的基本原理和相关技术,培养对图形处理的理解和能力。

实验内容:
1. 图像的基本属性
- 图像的本质及表示方法
- 像素和分辨率的概念
- 灰度图像和彩色图像的区别
2. 图像的处理技术
- 图像的采集和处理
- 图像的变换和增强
- 图像的压缩和存储
3. 计算机图形学的应用
- 图像处理在生活中的应用
- 计算机辅助设计中的图形学应用
- 三维建模和渲染技术
实验步骤和结果:
1. 在计算机图形学实验平台上加载一张测试图像,分析其像素构成
和基本属性。

2. 运用图像处理技术,对测试图像进行模糊、锐化、色彩调整等操作,观察处理后的效果并记录。

3. 学习并掌握计算机图形学中常用的处理算法,如卷积、滤波等,
尝试应用到测试图像上并进行实验验证。

4. 探讨计算机图形学在数字媒体制作、虚拟现实、计算机辅助设计
等领域的应用案例,并总结其在实践中的重要性和价值。

结论:
通过本次实验,我对计算机图形学有了更深入的了解,掌握了图像
处理技术的基本原理和应用方法。

计算机图形学作为一门重要的学科,对多个领域有着广泛的应用前景,有助于提高数字媒体技术、虚拟现
实技术等领域的发展水平。

希望在未来的学习和工作中能进一步深化
对计算机图形学理论和实践的研究,不断提升自己在这一领域的专业
能力和创新意识。

《计算机图形学》实验报告

《计算机图形学》实验报告

实验报告模板《计算机图形学》实验报告一、实验目的及要求1.实习三维图形的坐标系之间的变换;2.三维图形几何变换;3.掌握三维图形的坐标系之间的变换算法及三维图形几何变换的原理和实现;4.实现二维图形的基本变换(平移、旋转、缩放、错切、对称、复合等);5.实现三维图形的基本变换(平移、旋转、缩放、复合等);二、理论基础在齐次坐标理论下,二维图形几何变换矩阵可用下式表示:⎪⎪⎪⎭⎫⎝⎛===ifchebgdaTnkxx kk2,1,0,)(ϕ平移变换:[x* y* 1] =[x y 1] *0000001ts⎛⎫⎪⎪⎪⎝⎭=[t*x s*y 1]比例变换:[x* y* 1]=[x y 1] *1000101m n⎛⎫⎪⎪⎪⎝⎭=[m+x n+y 1]旋转变换:在平面上的二维图形饶原点逆时针旋转Ө角,变换矩阵为[x* y* 1]=[x y 1] *cos sin0sin cos0001θθθθ⎛⎫⎪- ⎪⎪⎝⎭= [x*cosө-y*sinө]复合变换:以上各种变换矩阵都是以原点为参照点,当以任意参照点进行变换的时候,我们就要用到复合变换矩阵。

三维变换类似于二维,在画图时,把三维坐标转换为二维即可。

三、算法设计与分析二维变换:#define dx 50#define dy 100void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+dx;a[1]=m[i][1]+dy;b[0]=m[i+1][0]+dx;b[1]=m[i+1][1]+dy;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define h 0.1745#include<math.h>void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*cos(h)-m[i][1]*sin(h);a[1]=m[i][1]*cos(h)+m[i][0]*sin(h);b[0]=m[i+1][0]*cos(h)-m[i+1][1]*sin(h);b[1]=m[i+1][1]*cos(h)+m[i+1][0]*sin(h);DDALine(a,b, RGB(0, 200, 255), pDC);}}#define k 2;#define f 2.5void CCGWithVCView::OnTransMove() //缩放{// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Scale Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*k;a[1]=m[i][1]*f;b[0]=m[i+1][0]*k;b[1]=m[i+1][1]*f;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define n 2#define d 0void CCGWithVCView::OnTransOther(){// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Other Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+n*m[i][1];a[1]=m[i][1]+d*m[i][0];b[0]=m[i+1][0]+n*m[i+1][1];b[1]=m[i+1][1]+d*m[i+1][0];DDALine(a,b, RGB(0, 200, 255), pDC);}}三维变换:#include<math.h>#define dx 100#define dy 100#define dz 0void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]+dy-p3d[i][0]+dx/sqrt(2);p2d[i][1]=p3d[i][2]+dz+p3d[i][0]+dx/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}#define k 0.1745void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]*cos(k)-p3d[i][2]*sin(k)-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]*cos(k)+p3d[i][1]*sin(k)+p3d[i][0]/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}四、程序调试及结果的分析二维:三维:五、实验心得及建议在实验过程中,尽管过程中任由许多不会的地方,而且有待于今后的提高和改进,但我加深了对书本上知识的理解与掌握,同时也学到了很多书本上没有东西,并积累了一些宝贵的经验,这对我以后的学习与工作是不无裨益的。

《计算机图形学》实验4实验报告

《计算机图形学》实验4实验报告

实验4实验报告格式实验报告格式《计算机图形学》实验4实验报告实验报告实验题目:参数曲线绘制实验内容:1 圆的参数曲线绘制。

2显式数学曲线描绘程序。

显式数学曲线描绘程序。

3贝赛尔曲线绘制。

贝赛尔曲线绘制。

编写程序调用验证之。

编写程序调用验证之。

参考资料:1 circleParam.java2 explicitCurve.java3 BezierLine.java4 数学曲线绘制.ppt 和实验3的参考ppt基本概念:(详细叙述自己对实验内容的理解)(详细叙述自己对实验内容的理解)(1)圆的参数曲线绘制: 圆的参数曲线绘制就是按照圆的定义,利用步长,圆的参数曲线绘制就是按照圆的定义,利用步长,得在显示得在显示域上每一点的位置,然后绘制,圆是图形中经常使用的元素,圆是图形中经常使用的元素,圆被定义为所有离一中心位置圆被定义为所有离一中心位置),(yc xc 距离为给定值距离为给定值R 的点集,其函数方程为:222)()(R yc y xc x =-+-参数方程为:{)20(cos sin p £<+=+=t tR Xc X t R Yc Y根据已知的Xc 和Yc ,以及t 可以确定一个圆。

可以确定一个圆。

(2)显示数学曲线描绘程序:显示曲线的绘制就是在已知的坐标系上,按照方程要求在固定的点画点,然后连接成一条线,例如如果曲线的方程式:c bx ax y ++=2,利用这个公式的递推演算,我们依次从-x 到+x 来绘制。

来绘制。

(3)贝塞尔曲线的绘制:贝赛尔曲线的每一个顶点都有两个控制点,用于控制在顶点两侧的曲线的弧度。

它是应用于二维图形应用程序的数学曲线。

它是应用于二维图形应用程序的数学曲线。

曲线的定义有四个点:曲线的定义有四个点:曲线的定义有四个点:起始起始点、终止点(也称锚点)以及两个相互分离的中间点。

滑动两个中间点,贝塞尔曲线的形状会发生变化。

例如下面的公式:)10)(()(0,££=å=t t B p t p ni n i i算法设计:(详细叙述自己设计的的算法)(详细叙述自己设计的的算法)(1)圆的算法设计:本例体现的主要是圆的快速算法,这里的主要算法是:本例体现的主要是圆的快速算法,这里的主要算法是:{)20(cos sin p £<+=+=t t R Xc X t R Yc Y t 是圆的某一点与X 轴之间的夹角。

《计算机图形学》实验报告

《计算机图形学》实验报告

《计算机图形学》实验报告一、实验目的计算机图形学是一门研究如何利用计算机生成、处理和显示图形的学科。

通过本次实验,旨在深入理解计算机图形学的基本原理和算法,掌握图形的生成、变换、渲染等技术,并能够运用所学知识解决实际问题,提高对图形学的应用能力和编程实践能力。

二、实验环境本次实验使用的编程语言为 Python,使用的图形库为 Pygame。

开发环境为 PyCharm。

三、实验内容1、直线的生成算法DDA 算法(Digital Differential Analyzer)Bresenham 算法DDA 算法是通过计算直线的斜率来确定每个像素点的位置。

它的基本思想是根据直线的斜率和起始点的坐标,逐步计算出直线上的每个像素点的坐标。

Bresenham 算法则是一种基于误差的直线生成算法。

它通过比较误差值来决定下一个像素点的位置,从而减少了计算量,提高了效率。

在实验中,我们分别实现了这两种算法,并比较了它们的性能和效果。

2、圆的生成算法中点画圆算法中点画圆算法的核心思想是通过判断中点的位置来确定圆上的像素点。

通过不断迭代计算中点的位置,逐步生成整个圆。

在实现过程中,需要注意边界条件的处理和误差的计算。

3、图形的变换平移变换旋转变换缩放变换平移变换是将图形在平面上沿着指定的方向移动一定的距离。

旋转变换是围绕一个中心点将图形旋转一定的角度。

缩放变换则是改变图形的大小。

通过矩阵运算来实现这些变换,可以方便地对图形进行各种操作。

4、图形的填充种子填充算法扫描线填充算法种子填充算法是从指定的种子点开始,将相邻的具有相同颜色或属性的像素点填充为指定的颜色。

扫描线填充算法则是通过扫描图形的每一行,确定需要填充的区间,然后进行填充。

在实验中,我们对不同形状的图形进行了填充,并比较了两种算法的适用情况。

四、实验步骤1、直线生成算法的实现定义直线的起点和终点坐标。

根据所选的算法(DDA 或Bresenham)计算直线上的像素点坐标。

《计算机图形学》课内实验报告(实验一)

《计算机图形学》课内实验报告(实验一)
PFNGLGETINFOLOGARBPROC glGetInfoLogARB;
PFNGLUNIFORM1FARBPROC glUniform1fARB;
PFNGLGETUNIFORMLOCATIONARBPROC glGetUniformLocationARB;
#ifndef __APPLE__
PFNGLSECONDARYCOLOR3FPROC glSecondaryColor3f;
{
GLbyte infoLog[MAX_INFO_LOG_SIZE];
glGetInfoLogARB(progObj, MAX_INFO_LOG_SIZE, NULL, infoLog);
fprintf(stderr, "Error in program linkage!\n");
fprintf(stderr, "Info log: %s\n", infoLog);
// Demonstrates high-level shaders
// Program by Benjamin Lipchak
#include "../../Common/OpenGLSB.h" // System and OpenGL Stuff
#include "../../Common/GLTools.h" // System and OpenGL Stuff
// Initially set the blink parameter to 1 (no flicker)
if (flickerLocation != -1)
glUniform1fARB(flickerLocation,1.0f);
// Program object has changed, so we should revalidate

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告引言计算机图形学是计算机科学中一个重要的研究领域,它涉及了计算机图像的生成、处理和显示等方面的技术。

本次实验旨在通过实际操作学习计算机图形学的相关知识,并利用图形学算法实现一些有趣的效果。

实验目的1. 了解计算机图形学的基本概念和发展历程;2. 掌握图形学中的基本几何变换,如平移、旋转和缩放等;3. 实现一些常见的图形学算法,如光照模型、三角形剪裁和绘制等。

实验准备在开始实验之前,我们需要准备一些实验所需的工具和环境。

首先,确保计算机上安装了图形学相关的软件,如OpenGL或DirectX等。

其次,为了编写和运行图形学程序,我们需要掌握基本的编程技巧,如C++或Python语言,并了解相关的图形库和API。

实验过程1. 实现平移、旋转和缩放首先,我们需要掌握图形学中的基本几何变换,如平移、旋转和缩放。

通过矩阵运算,我们可以很方便地实现这些变换。

例如,对于一个二维点P(x, y),我们可以通过以下公式实现平移:P' = T * P其中,P'是平移后的点,T是平移矩阵。

类似地,我们可以用旋转矩阵和缩放矩阵来实现旋转和缩放效果。

2. 实现光照模型光照模型是指在计算机图形学中模拟现实光照效果的一种方法。

它可以提供更真实的视觉效果,让计算机生成的图像更加逼真。

其中,常用的光照模型有环境光照、漫反射光照和镜面光照等。

通过计算每个像素的光照强度,我们可以实现阴影效果和光源反射等功能。

3. 实现三角形剪裁三角形剪裁是计算机图形学中一种常用的几何算法,用于确定哪些像素需要绘制,哪些像素需要剔除。

通过对三角形的边界和视口进行比较,我们可以快速计算出剪裁后的三角形顶点,以提高图形渲染的效率。

4. 实现图形绘制图形绘制是计算机图形学中的核心内容,它包括了点、线和面的绘制等。

通过设定顶点坐标和属性(如颜色、纹理等),我们可以使用算法绘制出各种形状的图像。

其中,常用的绘制算法有Bresenham算法和扫描线算法等。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告计算机图形学实验报告引言计算机图形学是研究计算机生成和处理图像的学科,它在现代科技和娱乐产业中扮演着重要的角色。

本实验报告旨在总结和分享我在计算机图形学实验中的经验和收获。

一、实验背景计算机图形学实验是计算机科学与技术专业的一门重要课程,通过实践操作和编程,学生可以深入了解图形学的基本原理和算法。

本次实验主要涉及三维图形的建模、渲染和动画。

二、实验内容1. 三维图形建模在实验中,我们学习了三维图形的表示和建模方法。

通过使用OpenGL或其他图形库,我们可以创建基本的几何体,如立方体、球体和圆柱体,并进行变换操作,如平移、旋转和缩放。

这些基本操作为后续的图形处理和渲染打下了基础。

2. 光照和着色光照和着色是图形学中重要的概念。

我们学习了不同的光照模型,如环境光、漫反射和镜面反射,并了解了如何在三维场景中模拟光照效果。

通过设置材质属性和光源参数,我们可以实现逼真的光照效果,使物体看起来更加真实。

3. 纹理映射纹理映射是一种将二维图像映射到三维物体表面的技术。

通过将纹理图像与物体的顶点坐标相对应,我们可以实现更加细致的渲染效果。

在实验中,我们学习了纹理坐标的计算和纹理映射的应用,使物体表面呈现出具有纹理和细节的效果。

4. 动画和交互动画和交互是计算机图形学的重要应用领域。

在实验中,我们学习了基本的动画原理和算法,如关键帧动画和插值技术。

通过设置动画参数和交互控制,我们可以实现物体的平滑移动和变形效果,提升用户体验。

三、实验过程在实验过程中,我们首先熟悉了图形库的使用和基本的编程技巧。

然后,我们按照实验指导书的要求,逐步完成了三维图形建模、光照和着色、纹理映射以及动画和交互等任务。

在实验过程中,我们遇到了许多挑战和问题,但通过不断的尝试和调试,最终成功实现了预期的效果。

四、实验结果通过实验,我们成功实现了三维图形的建模、渲染和动画效果。

我们可以通过键盘和鼠标控制物体的移动和变形,同时观察到真实的光照效果和纹理映射效果。

哈工大计算机图形学Flash实验报告

哈工大计算机图形学Flash实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y课程研究报告课程名称:计算机图形学报告类型: Flash动画设计报告设计题目:基于Flash的动画设计所在院系:软件学院所在学科:软件工程学生类别:研究生指导教师:苏小红学生姓名:学生学号:选课时间: 2016年秋季学期教师批阅成绩:哈尔滨工业大学一、软硬件环境本程序运行在Windows7下,主要设计工具为Adobe Flash CS6,辅助设计工具为Adobe Photoshop CS6。

查看计算机属性得到软硬件环境:处理器为Intel Core i5-3210M CPU 2.50GHz,内存4GB,64位操作系统。

其中Flash版本为12.0.0.0,官方下载地址为/support/flash/downloads.html#flashCS6。

二、设计内容和设计思路动画的背景音乐来自于英国歌手詹姆斯·布朗特《不安于室》专辑中的You Are Beautiful。

詹姆斯·布朗特这首歌曲是写给其前女友迪希·崔西的,迪希·崔西和新任男友在一起的消息令詹姆斯·布朗特十分伤心。

一次,詹姆斯·布朗特与女友相见,两人只是眼神对视了一下,之后两人再也没有见过面。

那一次的对视让的邂逅:男生在地铁站偶遇了一位纯真动人的女生,然而女生已经名花有主,虽然仅仅是匆匆一瞥,但女生的形象已在男生心中留下了难以磨灭的痕迹,只可惜有缘无分,只能“虽不能至,心向往之”,这是对“一见倾心”的浪漫书写。

詹姆斯·布朗特通过这首歌曲简单的结构有效地向人们传达了现实的痛苦、不能与心爱的人在一起的痛苦。

这首歌曲令人心碎却动人耐听。

像是记录着难以忘情、怦然心动的情感小品。

You Are Beautiful把爱情世界里的偶然、巧合与失落表达得十分动人。

在整个Flash制作过程中,我根据每句歌词的含义设计出场景,参考时间轴,让场景与歌词对应起来。

哈工大威海 计算机图形学实验报告

哈工大威海 计算机图形学实验报告

计算机图形学实验报告实验一、二技术之三维变换计算机图形学基础知识-三维变换变换是计算机图形学中重要概念,包括最基本的三维变换,即几何变换、投影变换、裁剪变换、视口变换。

1.从三维空间到二维平面1.1相机模拟在真实世界里,所有的物体都是三维的。

但是,这些三维物体在计算机世界中却必须以二维平面物体的形式表现出来。

那么,这些物体是怎样从三维变换到二维的呢?下面我们采用相机(Camera)模拟的方式来讲述这个概念。

实际上,从三维空间到二维平面,就如同用相机拍照一样,通常都要经历以下几个步骤(括号内表示的是相应的图形学概念):第一步,将相机置于三角架上,让它对准三维景物(视点变换,Viewing Transformation)。

第二步,将三维物体放在适当的位置(模型变换,Modeling Transformation)。

第三步,选择相机镜头并调焦,使三维物体投影在二维胶片上(投影变换,Projection Transformation)。

第四步,决定二维像片的大小(视口变换,Viewport Transformation)。

这样,一个三维空间里的物体就可以用相应的二维平面物体表示了,也就能在二维的电脑屏幕上正确显示了。

1.2三维图形显示流程运用相机模拟的方式比较通俗地讲解了三维图形显示的基本过程,但在具体编程时,还必须了解三维图形世界中的几个特殊坐标系的概念,以及用这些概念表达的三维图形显示流程。

计算机本身只能处理数字,图形在计算机内也是以数字的形式进行加工和处理的。

大家都知道,坐标建立了图形和数字之间的联系。

为了使被显示的物体数字化,要在被显示的物体所在的空间中定义一个坐标系。

这个坐标系的长度单位和坐标轴的方向要适合对被显示物体的描述,这个坐标系称为世界坐标系。

计算机对数字化的显示物体作了加工处理后,要在图形显示器上显示,这就要在图形显示器屏幕上定义一个二维直角坐标系,这个坐标系称为屏幕坐标系。

这个坐标系坐标轴的方向通常取成平行于屏幕的边缘,坐标原点取在左下角,长度单位常取成一个象素的长度,大小可以是整型数。

计算机图形学实验报告三

计算机图形学实验报告三

《计算机图形学》实验报告glClear(GL_COLOR_BUFFER_BIT);//glEnable(GL_SCISSOR_TEST);//glScissor(0.0f,0.0f,500,300);glutWireTeapot(0.4);glFlush();}//窗口调整子程序void myReshape(int w, int h){glViewport(500, -300, (GLsizei)w, (GLsizei)h);glMatrixMode(GL_PROJECTION);glLoadIdentity();if (w <= h)glOrtho(-1, 1, -(float)h / w, (float)h / w, -1, 1);elseglOrtho(-(float)w / h, (float)w / h, -1, 1, -1, 0.5);}2,使用opengl函数写一个图形程序,要求分别使用三个光源从一个茶壶的前右上方(偏红色),正左侧(偏绿色)和前左下方(偏蓝色)对于其进行照射,完成程序并观察效果。

}//绘图子程序void display(void){glColor3f(1.0, 1.0, 0.0);glClear(GL_COLOR_BUFFER_BIT);//glMatrixMode(GL_MODELVIEW);//glLoadIdentity();//设置光源的属性1GLfloat LightAmbient1[] = { 1.0f, 0.0f, 0.0f, 1.0f }; //环境光参数 ( 新增 )GLfloat LightDiffuse1[] = { 1.0f, 0.0f, 0.0f, 1.0f }; // 漫射光参数 ( 新增 )GLfloat Lightspecular1[] = { 1.0f, 0.0f, 0.0f, 1.0f }; // 镜面反射GLfloat LightPosition1[] = { 500.0f, 500.0f, 500.0f, 1.0f }; // 光源位置 ( 新增 ) glLightfv(GL_LIGHT0, GL_POSITION, LightPosition1);glViewport(0, 0, (GLsizei)w, (GLsizei)h);glMatrixMode(GL_PROJECTION);glLoadIdentity();3,使用opengl函数完成一个图形动画程序,显示一个球沿正弦曲线运动的过程,同时显示一个立方体沿抛物线运动过程。

《计算机图形学》实验2实验报告

《计算机图形学》实验2实验报告

《计算机图形学》实验2实验报告《计算机图形学》实验2实验报告实验题目:多视图绘图程序实验内容:掌握多视图绘图的概念,掌握二维统计图的绘制方法。

调用实验1中自己编写的基本包,绘制自己所设计的统计图形(饼图、直方图以及折线)。

编写程序调用验证之。

基本概念:(详细叙述自己对实验内容的理解)多视图:就是将多个绘制好的图形按照一定的规则组成一个具有特定意义的图形,在同一个视图中显示出来,如下面绘制的几种统计图形(饼图、直方图以及折线)。

饼图:可以清楚的表示出各个部分所占的比例;直方图:可以清楚地的显示各部分的数量的多少;折线:可以清楚地反应各个部分的变化趋势。

算法设计:(详细叙述自己设计的多视图统计图以及程序的功能、算法及实现)public abstract void drawLine(int x1, int y1, int x2, int y2)使用当前颜色,在点(x1, y1) 和(x2, y2) 之间画线。

public abstract void drawOval(int x, int y, int width, int height) 画椭圆。

public abstract void fillOval(int x, int y, int width, int height)画实心椭圆。

public abstract void drawPolygon(int[] xPoints, int[] yPoints, int nPoints)画x和y坐标定义的多边形。

public void drawRect(int x, int y, int width, int height)画矩形。

public void drawRect(int x, int y, int width, int height)画实心矩形。

public abstract void drawRoundRect(int x, int y, int width, intheight, int arcWidth, int arcHeight) 使用当前颜色画圆角矩形。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告一、实验目的本次计算机图形学实验旨在深入了解和掌握计算机图形学的基本原理、算法和技术,通过实际操作和编程实现,提高对图形生成、处理和显示的能力,培养解决实际图形问题的思维和实践能力。

二、实验环境本次实验使用的编程语言为 Python,借助了相关的图形库如Pygame 或 matplotlib 等。

开发环境为 PyCharm 或 Jupyter Notebook。

三、实验内容(一)二维图形的绘制1、直线的绘制使用 DDA(Digital Differential Analyzer)算法或 Bresenham 算法实现直线的绘制。

通过给定直线的起点和终点坐标,在屏幕或图像上绘制出直线。

比较两种算法的效率和准确性,分析其优缺点。

2、圆的绘制采用中点画圆算法或 Bresenham 画圆算法绘制圆。

给定圆心坐标和半径,生成圆的图形。

研究不同半径大小对绘制效果和计算复杂度的影响。

(二)图形的填充1、多边形填充实现扫描线填充算法,对任意多边形进行填充。

处理多边形的顶点排序、交点计算和填充颜色的设置。

测试不同形状和复杂度的多边形填充效果。

2、图案填充设计自定义的填充图案,如纹理、条纹等,并将其应用于图形填充。

探索如何通过改变填充图案的参数来实现不同的视觉效果。

(三)图形的变换1、平移、旋转和缩放对已绘制的图形(如矩形、三角形等)进行平移、旋转和缩放操作。

通过矩阵运算实现这些变换。

观察变换前后图形的位置、形状和方向的变化。

2、组合变换将多个变换组合应用于图形,如先旋转再平移,或先缩放再旋转等。

分析组合变换的顺序对最终图形效果的影响。

(四)三维图形的表示与绘制1、三维坐标变换学习三维空间中的平移、旋转和缩放变换矩阵,并将其应用于三维点的坐标变换。

理解如何将三维坐标映射到二维屏幕上显示。

2、简单三维图形绘制尝试绘制简单的三维图形,如立方体、球体等,使用线框模型或表面模型。

探讨不同的绘制方法和视角对三维图形显示的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哈尔滨工业大学
<<计算机图形学>>
实验报告
第一次实验
一、实验基本信息
二、实验过程及结果
1.斜率0~1的直线绘制使用教材中提供的算法过程实现,即可
2.对于斜率大于1的直线,将x,y变换对调即可
3.多边形的封闭实现:保存所有点信息,连接相邻点及首尾两点即可
第二次实验
一、实验基本信息
二、实验过程及结果
记录种子像素的坐标,利用循环完成遍历填充的过程,直至栈为空
第三次实验一、实验基本信息
二、实验过程及结果
对称变换:对图形的每个坐标值进行单独的x 值取反;单独的y 值取反;x,y 同时取反
平移变换:对图形的每个坐标进行x 值增;y 值增;
缩放旋转变换:坐标值乘以变换系数即可获得变换后的图形
第四次实验
一、实验基本信息
二、实验过程及结果
1.利用之前的绘制封闭多边形算法绘制裁剪矩形窗口
2.对坐标点进行编码,进行直线可见性判断,裁剪画线完全可见:
部分可见:
第五次实验。

相关文档
最新文档