2011年湖北省襄阳市中考数学试题及答案(word版)

合集下载

2011全国各省市中考数学试题分类汇编-—函数与一次函数(解答题及答案)

2011全国各省市中考数学试题分类汇编-—函数与一次函数(解答题及答案)

2011全国各省市中考数学试题分类汇编-—函数与一次函数(解答题及答案)三.解答题1.(2011安徽中考)18、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:A 1(____,____),A 3(____,____),A 12(___,___); (2)写出点A n 的坐标(n 是正整数);(3)指出蚂蚁从点A 100到A 101的移动方向.2.(2011安徽中考)21. 如图函数11y k x b =+的图象与函数2k y x=(x >0)的图象交于A 、B 两点,与y 轴交于C 点.已知A 点的坐标为(2,1),C 点坐标为(0,3). (1)求函数1y 的表达式和B 点坐标; 【解】(2)观察图象,比较当x >0时,1y 和2y 的大小.3.(2011广州中考)14.如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P沿x 轴向右平移4个单位长度得⊙P 1.(1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π)4.(2011甘肃兰州)24.(本小题满分7分)如图,一次函数3y kx =+的图像与反比例函数my x=(x >0)的图像交与点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B.一次函数的图像分别交x 轴、y 轴于点C 、点D ,且DBP S ∆=27,OC CA =12. (1)求点D 的坐标;第18题图第21题(2)求一次函数与反比例函数的表达式;(3)根据图像写出当x取何值时,一次函数的值小于反比例函数的值?5.(2011广东茂名)某学校要印制一批《学生手册》,甲印刷厂提出:每本收1元印刷费,另收500元制版费;乙印刷厂提出:每本收2元印刷费,不收制版费.(1)分别写出甲、乙两厂的收费甲y (元) 、乙y (元)与印制数量x (本)之间的关系式;(4分)(2)问:该学校选择哪间印刷厂印制《学生手册》比较合算?请说明理由. (4分) 解:6.(2011广州中考)21.(12分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠。

2011年湖北省襄阳鸡西中考数学真题试卷

2011年湖北省襄阳鸡西中考数学真题试卷

2011年湖北省襄阳鸡西中考数学真题试卷一、选择题 本大题共12各小题 每小题3分 共36分 在每小题给出的四个选项中 只有一项是符合题目要求的,请将其序号填涂在答题卡上相应位置! 1. 2-的倒数是 A .2- B .2C .12-D .122. 下列运算正确的是 A .2a a a -=B .236()a a -=-C .632x x x ÷= D .222()x y x y +=+3. 若x y 、为实数,且10x +=,则2011()xy的值是A .0B .1C .1-D .2011-4. 如图1,CD ∥AB ,∠1=120°,∠2=80°,则∠E 的度数是 A .40° B .60°C .80° D .120°5. 下列图形是中心对称图形而不是轴对称图形的是6 下列说法正确的是A .0()2π是无理数 B 是有理数 C D7.下列事件中.属于必然事件的是A .抛掷一枚1元硬币落地后.有国徽的一面向上B .打开电视任选一频道,正在播放襄阳新闻C .到一条绕段两端点距离相等的点在该线段的垂直平分线上D .某种彩票的中奖率是l 0%,则购买该种彩票100张一定中奖8.由—些相同的小立方块搭成的几何体的三视图如图2所示.则搭成该几何体的小立方块有 A .3块 B .4块 C .6块 D .9块9.在△ABC 中,∠C=90°.AC=3cm .BC=4cm ,若⊙A .⊙B 的半径分别为1cm ,4cm . 则⊙A 与⊙B 的位置关系是A .外切B .内切C .相交D .外离10.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是 A .茭形 B .对角线互相垂直的四边形 C .矩形 D .对角线相等的四边形11.2011年春我市发生了严重干旱.市政府号召居民节约用水.为了解居民用水情况.在某小区随机抽查了l0户家庭的月用水量.结果如下表;则关于这l0户家庭的月用水量,下列说法错误的是A .众数是6B .极差是2C .平均数是6D .方差是412.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是 A .k<4 B .k ≤4 C .k<4且k ≠3 D .k ≤4且k ≠3二、填空题:(本大题共5个小题.每小题3分.共l5分)'把答案填在答题卡的对应位置的横线上.13.为了推进全民医疗保险工作.截止2011年5月31日.今年中央财政已累计下拨医疗卫生补助佥1346亿元.这个金额用科学记数法表示为_______________元.14.在207国道襄阳段改造工程中,需沿AC 方向开山修路(如图3所示),为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B 取∠ABD=140°,BD=1000m ,∠D=50°.为了使开挖点E 在直线AC 上.那么DE=_______________m 。

襄阳中考真题数学答案及解析

襄阳中考真题数学答案及解析

襄阳中考真题数学答案及解析襄阳中考作为中国中学毕业生的重要考试之一,对学生学业发展起着至关重要的作用。

而数学科目又是其中具有一定难度和挑战性的科目之一。

因此,了解并掌握襄阳中考数学真题的答案及解析对于学生备考是非常有帮助的。

为了帮助广大学生更好地备考,我们将分析一道襄阳中考数学真题并给出答案及解析。

假设题目为:已知三边长为5 cm、6 cm、7 cm的三角形,求其面积。

首先,我们可以使用海伦公式来求解这个问题。

根据海伦公式,三角形的面积可以通过其三边长计算得出。

公式如下:面积= √[s(s - a)(s - b)(s - c)]其中,s 是三边长 a、b、c 之和的一半,即 s = (a + b + c)/2。

接下来,我们可以根据给定的题目信息进行计算。

根据题目所给的三边长,我们可以得到 a = 5 cm,b = 6 cm,c = 7 cm。

将这些数据代入海伦公式,我们可以计算出 s 的值:s = (5 + 6 + 7)/2 = 9 cm。

然后,我们代入 s 的值,计算面积:面积= √[9(9 - 5)(9 - 6)(9 - 7)]= √[9(4)(3)(2)]= √(216)≈ 14.7 cm²所以,三边长为5 cm、6 cm、7 cm的三角形的面积约为14.7 cm²。

通过这个例子,我们可以看出,在解答数学题目时,理解并掌握相关公式的应用是非常重要的。

而对于海伦公式来说,它不仅可以计算已知三边长求面积,还可以用于解决其他相关的问题,如推导出三角形的高、角的正弦、余弦、正切等。

除了海伦公式,襄阳中考数学还包括其他一些重要的知识点和技巧,如代数运算、几何图形的性质、统计与概率等。

掌握这些知识点和解题技巧可以帮助学生在考试中更加得心应手。

总结起来,襄阳中考数学真题的答案及解析对于学生备考至关重要。

通过了解并掌握相关的数学知识和解题技巧,学生可以更好地应对考试,取得优异的成绩。

因此,希望广大学生能够认真准备,灵活运用所学知识,以取得令人满意的成果。

湖北省襄阳市中考数学真题及答案

湖北省襄阳市中考数学真题及答案

湖北省襄阳市中考数学真题及答案(满分120分,考试时间120分钟)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.2.如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是()A.132° B.128° C.122° D.112°3.下列运算一定正确的是()A.a+a=a2 B.a2•a3=a6 C.(a3)4=a12 D.(ab)2=ab24.下列说法正确的是()A.“买中奖率为的奖券10张,中奖”是必然事件B.“汽车累积行驶10000km,从未出现故障”是不可能事件C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D.若两组数据的平均数相同,则方差小的更稳定5.如图所示的三视图表示的几何体是()A. B. C. D.6.不等式组中两个不等式的解集在数轴上表示正确的是()A. B. C. D.7.如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是()A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C8.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹.若设小马有x匹,大马有y匹,则下列方程组中正确的是()A. B. C. D.9.已知四边形ABCD是平行四边形,AC,BD相交于点O,下列结论错误的是()A.OA=OC,OB=ODB.当AB=CD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD且AC⊥BD时,四边形ABCD是正方形10.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.其中正确的有()A.4个 B.3个 C.2个 D.1个二、填空题:本大题共6个小题,每小题3分,共18分.11.函数y=中自变量x的取值范围是.12.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=°.13.《易经》是中国传统文化的精髓.如图是易经的一种卦图,图中每一卦由三根线组成(线形为或),如正北方向的卦为,从图中三根线组成的卦中任取一卦,这一卦中恰有2根和1根的概率为.14.汽车刹车后行驶的距离s(单位:米)关于行驶时间t(单位:秒)的函数关系式是s=15t﹣6t2.则汽车从刹车到停止所用时间为秒.15.在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于°.16.如图,矩形ABCD中,E为边AB上一点,将△ADE沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF交DE于点N,连接BN.若BF•AD=15,tan∠BNF=,则矩形ABCD的面积为.三、解答题:本大题共9个小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(6分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y)﹣2y(3x+5y),其中x=,y=﹣1.18.(6分)襄阳东站的建成运营标志着我市正式进入高铁时代,郑万高速铁路襄阳至万州段的建设也正在推进中.如图,工程队拟沿AC方向开山修路,为加快施工进度,需在小山的另一边点E处同时施工.要使A、C、E三点在一条直线上,工程队从AC上的一点B取∠ABD=140°,BD=560米,∠D=50°.那么点E与点D间的距离是多少米?(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)19.(6分)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的,这样120吨水可多用3天,求现在每天用水量是多少吨?20.(6分)3月14日是国际数学日,“数学是打开科学大门的钥匙.”为进一步提高学生学习数学的兴趣,某校开展了一次数学趣味知识竞赛(竞赛成绩为百分制),并随机抽取了50名学生的竞赛成绩(本次竞赛没有满分),经过整理数据得到以下信息:信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含前端点值,不含后端点值).信息二:第三组的成绩(单位:分)为74 71 73 74 79 76 77 76 76 73 72 75根据信息解答下列问题:(1)补全第二组频数分布直方图(直接在图中补全);(2)第三组竞赛成绩的众数是分,抽取的50名学生竞赛成绩的中位数是分;(3)若该校共有1500名学生参赛,请估计该校参赛学生成绩不低于80分的约为人.21.(7分)如图,反比例函数y1=(x>0)和一次函数y2=kx+b的图象都经过点A(1,4)和点B(n,2).(1)m=,n=;(2)求一次函数的解析式,并直接写出y1<y2时x的取值范围;(3)若点P是反比例函数y1=(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,则△POM的面积为.(8分)如图,AB是⊙O的直径,E,C是⊙O上两点,且=,连接AE,AC.过点C 22.作CD⊥AE交AE的延长线于点D.(1)判定直线CD与⊙O的位置关系,并说明理由;(2)若AB=4,CD=,求图中阴影部分的面积.23.(10分)受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?(3)若甲,乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1650元,求a的最小值.(11分)在△ABC中,∠BAC═90°,AB=AC,点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE.24.(1)特例发现:如图1,当AD=AF时,①求证:BD=CF;②推断:∠ACE=°;(2)探究证明:如图2,当AD≠AF时,请探究∠ACE的度数是否为定值,并说明理由;(3)拓展运用:如图3,在(2)的条件下,当=时,过点D作AE的垂线,交AE于点P,交AC于点K,若CK=,求DF的长.25.(12分)如图,直线y=﹣x+2交y轴于点A,交x轴于点C,抛物线y=﹣x2+bx+c经过点A,点C,且交x轴于另一点B.(1)直接写出点A,点B,点C的坐标及拋物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标;(3)将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,若线段O′A′与抛物线只有一个公共点,请结合函数图象,求m的取值范围.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.【知识考点】绝对值.【思路分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解题过程】解:|﹣2|=2.故选:B.【总结归纳】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是()A.132° B.128° C.122° D.112°【知识考点】平行线的性质.【思路分析】根据平行线的性质得到∠BEF=180°﹣∠EFG=116°,根据角平分线的定义得到∠BEG=∠BEF=58°,由平行线的性质即可得到结论.【解题过程】解:∵AB∥CD,∠EFG=64°,∴∠BEF=180°﹣∠EFG=116°,∵EG平分∠BEF交CD于点G,∴∠BEG=∠BEF=58°,∵AB∥CD,∴∠EGD=180°﹣∠BEG=122°.故选:C.【总结归纳】此题考查了平行线的性质与角平分线的定义.解题的关键是掌握两直线平行,同旁内角互补与两直线平行,内错角相等的知识点.3.下列运算一定正确的是()A.a+a=a2 B.a2•a3=a6 C.(a3)4=a12 D.(ab)2=ab2【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.【解题过程】解:A.a+a=2a,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.(a3)4=a12,故本选项符合题意;D.(ab)2=a2b2,故本选项不合题意.故选:C.【总结归纳】本题主要考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.4.下列说法正确的是()A.“买中奖率为的奖券10张,中奖”是必然事件B.“汽车累积行驶10000km,从未出现故障”是不可能事件C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D.若两组数据的平均数相同,则方差小的更稳定【知识考点】算术平均数;方差;随机事件;概率的意义;概率公式.【思路分析】根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.【解题过程】解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;B、汽车累积行驶10000km,从未出现故障”是随机事件,故本选项错误;C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;D、若两组数据的平均数相同,则方差小的更稳定,故本选项正确;故选:D.【总结归纳】此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键.5.如图所示的三视图表示的几何体是()A. B. C. D.【知识考点】由三视图判断几何体.【思路分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解题过程】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.故选:A.【总结归纳】考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体.6.不等式组中两个不等式的解集在数轴上表示正确的是()A. B. C. D.【知识考点】在数轴上表示不等式的解集;解一元一次不等式组.【思路分析】根据不等式组可以得到该不等式组的解集,从而可以在数轴上表示出来,本题得以解决.【解题过程】解:由不等式组得﹣2≤x<1,该不等式组的解集在数轴表示如下:故选:A.【总结归纳】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法.7.如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是()A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C【知识考点】作图—基本作图.【思路分析】证明△ADE≌△ADB即可判断A,B正确,再根据同角的补角相等,证明∠EDC=∠BAC即可.【解题过程】解:由作图可知,∠DAE=∠DAB,∠DEA=∠B=90°,∵AD=AD,∴△ADE≌△ADB(AAS),∴DB=DE,AB=AE,∵∠AED+∠B=180°∴∠BAC+∠BDE=180°,∵∠EDC+∠BDE=180°,∴∠EDC=∠BAC,故A,B,C正确,故选:D.【总结归纳】本题考查作图﹣基本作图,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹.若设小马有x匹,大马有y匹,则下列方程组中正确的是()A. B. C. D.【知识考点】数学常识;由实际问题抽象出二元一次方程组.【思路分析】根据“3匹小马能拉1片瓦,1匹大马能拉3片瓦”,即可得出关于x,y的二元一次方程组,此题得解.【解题过程】解:根据题意可得:,故选:C.【总结归纳】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.已知四边形ABCD是平行四边形,AC,BD相交于点O,下列结论错误的是()A.OA=OC,OB=ODB.当AB=CD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD且AC⊥BD时,四边形ABCD是正方形【知识考点】平行四边形的判定与性质;菱形的性质;菱形的判定;矩形的判定;正方形的判定.【思路分析】根据正方形的判定,矩形的判定、菱形的判定方法分别判断后即可确定正确的选项.【解题过程】解:A、根据平行四边形的性质得到OA=OC,OB=OD,该结论正确;B、当AB=CD时,四边形ABCD还是平行四边形,该选项错误;C、根据有一个角是直角的平行四边形是矩形可以判断该选项正确;D、当AC=BD且AC⊥BD时,根据对角线相等可判断四边形ABCD是矩形,根据对角线互相垂直可判断四边形ABCD 是菱形,故四边形ABCD是正方形,该结论正确;故选:B.【总结归纳】本题考查了正方形的判定,矩形的判定、平行四边形的性质及菱形的判定方法,牢记判定方法是解答本题的关键.10.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.其中正确的有()A.4个 B.3个 C.2个 D.1个【知识考点】二次函数图象与系数的关系.【思路分析】二次函数图象与系数的关系以及二次函数的性质,逐一分析判断即可.【解题过程】解:①∵抛物线开口向上,且与y轴交于负半轴,∴a>0,c<0,∴ac<0,结论①正确;②∵抛物线对称轴为直线x=1,∴﹣=1,∴b=﹣2a,∵抛物线经过点(﹣1,0),∴a﹣b+c=0,∴a+2a+c=0,即3a+c=0,结论②正确;③∵抛物线与x轴由两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,结论③正确;④∵抛物线开口向上,且抛物线对称轴为直线x=1,∴当x<1时,y随x的增大而减小,结论④错误;故选:B.【总结归纳】本题主要考查抛物线与x轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.二、填空题:本大题共6个小题,每小题3分,共18分.11.函数y=中自变量x的取值范围是.【知识考点】函数自变量的取值范围.【思路分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解题过程】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.【总结归纳】本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.12.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=°.【知识考点】三角形内角和定理;三角形的外角性质.【思路分析】先根据等腰三角形的性质及三角形内角和定理可求出∠B的度数,再根据三角形外角的性质可求出∠ADC的度数,再由三角形内角和定理解答即可.【解题过程】解:∵AB=AD,∠BAD=20°,∴∠B===80°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC,∴∠C===40°.【总结归纳】本题涉及到三角形的内角和定理、三角形外角的性质及等腰三角形的性质,属较简单题目.13.《易经》是中国传统文化的精髓.如图是易经的一种卦图,图中每一卦由三根线组成(线形为或),如正北方向的卦为,从图中三根线组成的卦中任取一卦,这一卦中恰有2根和1根的概率为.【知识考点】概率公式.【思路分析】从八卦中任取一卦,基本事件总数n=8,这一卦中恰有2根和1根的基本事件个数m =3,由概率公式即可得出答案.【解题过程】解:从八卦中任取一卦,基本事件总数n=8,这一卦中恰有2根和1根的基本事件个数m=3,∴这一卦中恰有2根和1根的概率为=;故答案为:.【总结归纳】本题考查了概率公式、古典概率;熟练掌握概率公式是解题的关键.14.汽车刹车后行驶的距离s(单位:米)关于行驶时间t(单位:秒)的函数关系式是s=15t﹣6t2.则汽车从刹车到停止所用时间为秒.【知识考点】二次函数在给定区间上的最值.【思路分析】利用配方法求二次函数最值的方法解答即可.【解题过程】解:∵s=15t﹣6t2=﹣6(t﹣1.25)2+9.375,∴汽车从刹车到停下来所用时间是1.25秒.故答案为:1.25.【总结归纳】考查了二次函数最值的应用,此题主要利用配方法求最值的问题,根据已知得出顶点式是解题关键.15.在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于°.【知识考点】线段垂直平分线的性质;垂径定理;圆周角定理.【思路分析】根据弦BC垂直平分半径OA,可得OD:OB=1:2,得∠BOC=120°,根据同弧所对圆周角等于圆心角的一半即可得弦BC所对的圆周角度数.【解题过程】解:如图,∵弦BC垂直平分半径OA,∴OD:OB=1:2,∴∠BOD=60°,∴∠BOC=120°,∴弦BC所对的圆周角等于60°或120°.故答案为:60°或120°.【总结归纳】本题考查了圆周角定理、垂径定理、线段垂直平分线的性质,解决本题的关键是掌握圆周角定理.16.如图,矩形ABCD中,E为边AB上一点,将△ADE沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF 交DE于点N,连接BN.若BF•AD=15,tan∠BNF=,则矩形ABCD的面积为.【知识考点】矩形的性质;翻折变换(折叠问题);解直角三角形.【思路分析】由折叠的性质得出∠BNF=∠BEF,由条件得出tan∠BEF=,设BF=x,BE=2x,由勾股定理得出EF=3x,得出AB=BF,则可得出答案.【解题过程】解:∵将△ADE沿DE折叠,使点A的对应点F恰好落在边BC上,∴AF⊥DE,AE=EF,∵矩形ABCD中,∠ABF=90°,∴B,E,N,F四点共圆,∴∠BNF=∠BEF,∴tan∠BEF=,设BF=x,BE=2x,∴EF==3x,∴AE=3x,∴AB=5x,∴AB=BF.∴S矩形ABCD=AB•AD=BF•AD=×15=15.故答案为:15.【总结归纳】本题考查了折叠的性质,矩形的性质,锐角三角函数,勾股定理等知识,熟练掌握折叠的性质是解题的关键.三、解答题:本大题共9个小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(6分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y)﹣2y(3x+5y),其中x=,y=﹣1.【知识考点】整式的混合运算—化简求值.【思路分析】原式利用完全平方公式,平方差公式,以及单项式乘多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解题过程】解:原式=4x2+12xy+9y2﹣4x2+y2﹣6xy﹣10y2=6xy,当x=,y=﹣1时,原式=6××(﹣1)=6﹣6.【总结归纳】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(6分)襄阳东站的建成运营标志着我市正式进入高铁时代,郑万高速铁路襄阳至万州段的建设也正在推进中.如图,工程队拟沿AC方向开山修路,为加快施工进度,需在小山的另一边点E处同时施工.要使A、C、E三点在一条直线上,工程队从AC上的一点B取∠ABD=140°,BD=560米,∠D=50°.那么点E与点D间的距离是多少米?(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【知识考点】解直角三角形的应用.【思路分析】求出∠E的度数,再在Rt△BDE 中,依据三角函数进行计算即可.【解题过程】解:∵A、C、E三点在一条直线上,∠ABD=140°,∠D=50°,∴∠E=140°﹣50°=90°,在Rt△BDE中,DE=BD•cos∠D=560×cos50°≈560×0.64=358.4(米).答:点E与点D间的距离是358.4米.【总结归纳】考查直角三角形的边角关系,构造直角三角形是解决问题的关键.19.(6分)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的,这样120吨水可多用3天,求现在每天用水量是多少吨?【知识考点】分式方程的应用.【思路分析】设原来每天用水量是x吨,则现在每天用水量是x吨,根据现在120吨水比以前可多用3天,即可得出关于x的分式方程,解之经检验后即可得出结论.【解题过程】解:设原来每天用水量是x吨,则现在每天用水量是x吨,依题意,得:﹣=3,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴x=8.答:现在每天用水量是8吨.【总结归纳】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20.(6分)3月14日是国际数学日,“数学是打开科学大门的钥匙.”为进一步提高学生学习数学的兴趣,某校开展了一次数学趣味知识竞赛(竞赛成绩为百分制),并随机抽取了50名学生的竞赛成绩(本次竞赛没有满分),经过整理数据得到以下信息:信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含前端点值,不含后端点值).信息二:第三组的成绩(单位:分)为74 71 73 74 79 76 77 76 76 73 72 75根据信息解答下列问题:(1)补全第二组频数分布直方图(直接在图中补全);(2)第三组竞赛成绩的众数是分,抽取的50名学生竞赛成绩的中位数是分;(3)若该校共有1500名学生参赛,请估计该校参赛学生成绩不低于80分的约为人.【知识考点】用样本估计总体;频数(率)分布直方图;中位数;众数.【思路分析】(1)计算出第2组60~70组的人数,即可补全频数分布直方图;(2)根据中位数、众数的意义,分别求出第3组的众数,样本中位数;(3)样本估计总体,样本中80分以上的占,因此估计总体1500人的是80分以上的人数.【解题过程】解:(1)50﹣4﹣12﹣20﹣4=10(人),补全频数分布直方图如图所示:(2)第3组数据出现次数最多的是76,共出现3次,因此众数是76,抽取的50人的成绩从小到大排列处在第25、26位的两个数的平均数为=78,因此中位数是78, 故答案为:76,78;(3)1500×=720(人),故答案为:720.【总结归纳】考查频数分布直方图的意义和制作方法,理解中位数、众数的意义和计算方法是正确解答的前提.21.(7分)如图,反比例函数y1=(x>0)和一次函数y2=kx+b的图象都经过点A(1,4)和点B(n,2).(1)m=,n=;(2)求一次函数的解析式,并直接写出y1<y2时x的取值范围;(3)若点P是反比例函数y1=(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,则△POM的面积为.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)把A的坐标代入反比例函数的解析式求出m,得出反比例函数的解析式,把B的坐标代入反比例函数的解析式,能求出n,即可得出B的坐标;(2)分别把A、B的坐标代入一次函数的解析式得出方程组,求出方程组的解,即可得出一次函数的解析式;根据图象求得y1<y2时x的取值范围;(3)根据反比例函数系数k的几何意义即可求得.【解题过程】解:(1)∵把A(1,4)代入y1=(x>0)得:m=1×4=4,∴y=,∵把B(n,2)代入y=得:2=,解得n=2;故答案为4,2;(2)把A(1,4)、B(2,2)代入y2=kx+b得:,解得:k=﹣2,b=6,即一次函数的解析式是y=﹣2x+6.由图象可知:y1<y2时x的取值范围是1<x<2;(3)∵点P是反比例函数y1=(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,∴S△POM=|m|==2,故答案为2.【总结归纳】本题考查了用待定系数法求一次函数、反比例函数的解析式,一次函数与反比例函数的交点问题的应用,通过做此题培养了学生的计算能力和观察图形的能力,题目比较典型,是一道比较好的题目.22.(8分)如图,AB是⊙O的直径,E,C是⊙O上两点,且=,连接AE,AC.过点C作CD⊥AE交AE的延长线于点D.(1)判定直线CD与⊙O的位置关系,并说明理由;(2)若AB=4,CD=,求图中阴影部分的面积.【知识考点】勾股定理;垂径定理;圆周角定理;直线与圆的位置关系;扇形面积的计算.【思路分析】(1)连接OC,根据=,求得∠CAD=∠BAC,根据等腰三角形的性质得到∠BAC=∠ACO,推出AD∥OC,根据平行线的性质得到OC⊥CD,于是得到CD是⊙O的切线;(2)连接OE,连接BE交OC于F,根据垂径定理得到OC⊥BE,BF=EF,由圆周角定理得到∠AEB=90°,根据矩形的性质得到EF=CD=,根据勾股定理得到AE===2,求得∠AOE=60°,连接CE,推出CE∥AB,根据三角形和扇形的面积公式即可得到结论.【解题过程】(1)证明:连接OC,∵=,∴∠CAD=∠BAC,∵OA=OC,∴∠BAC=∠ACO,∴∠CAD=∠ACO,∴AD∥OC,∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连接OE,连接BE交OC于F,∵=,∴OC⊥BE,BF=EF,∵AB是⊙O的直径,∴∠AEB=90°,∴∠FED=∠D=∠EFC=90°,∴四边形DEFC是矩形,∴EF=CD=,∴BE=2,∴AE===2,∴AE=AB,∴∠ABE=30°,∴∠AOE=60°,∴∠BOE=120°,∵=,∴∠COE=∠BOC=60°,连接CE,∵OE=OC,∴△COE是等边三角形,∴∠ECO=∠BOC=60°,∴CE∥AB,∴S△ACE=S△COE,∵∠OCD=90°,∠OCE=60°,∴∠DCE=30°,∴DE=CD=1,∴AD=3,∴图中阴影部分的面积=S△ACD﹣S扇形COE=3﹣=﹣.【总结归纳】本题考查了直线与圆的位置关系,勾股定理,垂径定理,扇形的面积的计算,正确的作出辅助线是解题的关键.23.(10分)受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?(3)若甲,乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1650元,求a的最小值.【知识考点】一元一次不等式组的应用;一次函数的应用.【思路分析】(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.(2)设购进甲种水果为a千克,则购进乙种水果(100﹣a)千克,根据实际意义可以确定a的范围,结合付款总金额(元)与种水果的购进量之间的函数关系可以分类讨论最少费用为多少.(3)根据(2)的结论分情况讨论.【解题过程】解:(1)当0≤x≤50时,设y=kx,根据题意得50k=1500,解得k=30;∴y=30x;当x>50时,设y=k1x+b,根据题意得,,解得,∴y=24x+3000.∴y=,(2)设购进甲种水果为a千克,则购进乙种水果(100﹣a)千克,∴40≤a≤60,当40≤a≤50时,w1=30a+25(100﹣a)=5a+2500.当a=40 时.w min=2700 元,当50<a≤60时,w2=24a+300+25(100﹣a)=﹣a+2800.当a=60时,w min=2740 元,∵2740>2700,∴当a=40时,总费用最少,最少总费用为2700 元.此时乙种水果100﹣40=60(千克).答:购进甲种水果为40千克,购进乙种水果60千克,才能使经销商付款总金额w(元)最少.(3)由题意可设甲种水果为千克,乙种水果为千克。

2011年湖北省襄阳鸡西中考数学真题试卷

2011年湖北省襄阳鸡西中考数学真题试卷

2011年湖北省襄阳鸡西中考数学真题试卷一、选择题 本大题共12各小题 每小题3分 共36分 在每小题给出的四个选项中 只有一项是符合题目要求的,请将其序号填涂在答题卡上相应位置! 1. 2-的倒数是 A .2- B .2C .12-D .122. 下列运算正确的是 A .2a a a -=B .236()a a -=-C .632x x x ÷= D .222()x y x y +=+3. 若x y 、为实数,且10x +=,则2011()xy的值是A .0B .1C .1-D .2011-4. 如图1,CD ∥AB ,∠1=120°,∠2=80°,则∠E 的度数是 A .40° B .60°C .80° D .120°5. 下列图形是中心对称图形而不是轴对称图形的是6 下列说法正确的是A .0()2π是无理数 B .3是有理数 C D7.下列事件中.属于必然事件的是A .抛掷一枚1元硬币落地后.有国徽的一面向上B .打开电视任选一频道,正在播放襄阳新闻C .到一条绕段两端点距离相等的点在该线段的垂直平分线上D .某种彩票的中奖率是l 0%,则购买该种彩票100张一定中奖8.由—些相同的小立方块搭成的几何体的三视图如图2所示.则搭成该几何体的小立方块有 A .3块 B .4块 C .6块 D .9块9.在△ABC 中,∠C=90°.AC=3cm .BC=4cm ,若⊙A .⊙B 的半径分别为1cm ,4cm . 则⊙A 与⊙B 的位置关系是A .外切B .内切C .相交D .外离10.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是 A .茭形 B .对角线互相垂直的四边形 C .矩形 D .对角线相等的四边形11.2011年春我市发生了严重干旱.市政府号召居民节约用水.为了解居民用水情况. 在某小区随机抽查了l0户家庭的月用水量.结果如下表;则关于这l0户家庭的月用水量,下列说法错误的是A .众数是6B .极差是2C .平均数是6D .方差是412.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是 A .k<4 B .k ≤4 C .k<4且k ≠3 D .k ≤4且k ≠3二、填空题:(本大题共5个小题.每小题3分.共l5分)'把答案填在答题卡的对应位置的横线上.13.为了推进全民医疗保险工作.截止2011年5月31日.今年中央财政已累计下拨医疗卫生补助佥1346亿元.这个金额用科学记数法表示为_______________元.14.在207国道襄阳段改造工程中,需沿AC 方向开山修路(如图3所示),为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B 取∠ABD=140°,BD=1000m ,∠D=50°.为了使开挖点E 在直线AC 上.那么DE=_______________m 。

2011年湖北省襄阳中考数学试题(word版答案扫描)

2011年湖北省襄阳中考数学试题(word版答案扫描)

2011年襄阳市初中毕业、升学统一考试数学试题一、选择题 本大题共12各小题 每小题3分 共36分 在每小题给出的四个选项中 只有一项是符合题目要求的,请将其序号填涂在答题卡上相应位置!1. 2-的倒数是A .2-B .2C .12-D .122. 下列运算正确的是 A .2a a a -= B .236()a a -=-C .632x x x ÷=D .222()x y x y +=+3. 若x y 、为实数,且110x y ++-=,则2011()x y的值是 A .0 B .1 C .1- D .2011-4. 如图1,CD ∥AB ,∠1=120°,∠2=80°,则∠E 的度数是A .40°B .60°C .80°D .120°5. 下列图形是中心对称图形而不是轴对称图形的是6 下列说法正确的是A .0()2π是无理数 B .33是有理数 C .4是无理数 D .38-是有理数7.下列事件中.属于必然事件的是A .抛掷一枚1元硬币落地后.有国徽的一面向上B .打开电视任选一频道,正在播放襄阳新闻C .到一条绕段两端点距离相等的点在该线段的垂直平分线上D .某种彩票的中奖率是l 0%,则购买该种彩票100张一定中奖8.由—些相同的小立方块搭成的几何体的三视图如图2所示.则搭成该几何体的小立方块有A .3块B .4块C .6块D .9块9.在△ABC 中,∠C=90°.AC=3cm .BC=4cm ,若⊙A .⊙B 的半径分别为1cm ,4cm . 则⊙A 与⊙B 的位置关系是A .外切B .内切C .相交D .外离10.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是A .茭形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形11.2011年春我市发生了严重干旱.市政府号召居民节约用水.为了解居民用水情况. 在某小区随机抽查了l0户家庭的月用水量.结果如下表;月用水量(吨)5 6 7 户数 2 6 2则关于这l0户家庭的月用水量,下列说法错误的是A .众数是6B .极差是2C .平均数是6D .方差是412.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是A .k<4B .k ≤4C .k<4且k ≠3D .k ≤4且k ≠3二、填空题:(本大题共5个小题.每小题3分.共l5分)'把答案填在答题卡的对应位置的横线上.13.为了推进全民医疗保险工作.截止2011年5月31日.今年中央财政已累计下拨医疗卫生补助佥1346亿元.这个金额用科学记数法表示为_______________元.14.在207国道襄阳段改造工程中,需沿AC 方向开山修路(如图3所示),为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B 取∠ABD=140°,BD=1000m ,∠D=50°.为了使开挖点E 在直线AC 上.那么DE=_______________m 。

湖北省襄阳市中考数学真题试卷(含详解)

湖北省襄阳市中考数学真题试卷(含详解)

湖北省襄阳市中考数学真题试卷(含详解)湖北省襄阳市中考数学真题试卷(含详解)说明:本文为湖北省襄阳市中考数学真题试卷,供考生参考和复习使用。

一、选择题1. 设集合A={x∣x^2<7,x是整数},则A中的元素个数为()A. 4B. 5C. 6D. 7【解析】对不等式x^2<7进行求解,得到-√7<x<√7,由于x是整数,故-2、-1、0、1、2可以满足条件,因此A中的元素个数为5,选B。

2. 若图中两个相同角所对的弧长之比为2:3,则该图的圆心角的大小为()[图略]【解析】由已知可知∠BAC对应的弧长为2x,∠BDC对应的弧长为3x。

根据圆心角的定义,圆心角的度数是对应的弧长占整个圆周的比例,故得到2x:3x=2:5。

因此,该圆心角的大小为2/5 × 360° = 144°,选C。

3. 三角形ABC中,AB=AC,角BAC=38°,弧BC上的点D在弧BC的延长线上,使得∠BDC=90°。

若∠BDC的度数等于AB的边长,求三角形ABC的面积。

【解析】根据题意可知,∠BDC=90°,BD=AB。

通过观察可知,∠BAC的度数较小,说明∠BAC对应的弧长较短。

由于∠ADC为圆心角,所以AD=DC。

根据题意可得:∠BAC=38°,∠ADC= 360°-(2×90°+38°)=142°,进而得到∠ADC对应的弧长AE=CB=BC。

由于∠ABC和∠ADC对应的弧长相等,所以∠ABC=∠ADC。

根据正弦定理可得:AC/CD=sin∠ADC/sin∠ACD=1/sin∠ACD,于是sin∠ACD=sin∠ADC= 1/2。

代入三角形ABC的面积公式1/2×AB^2×sin∠ACB,即可计算出三角形ABC的面积。

二、填空题1. 已知函数f(x)=3x^2-2x-5,则f(-2)的值为(______)。

湖北省襄阳市2011年普通高中推荐招生考试数学试题(含答案)

湖北省襄阳市2011年普通高中推荐招生考试数学试题(含答案)

2011年普通高中推荐招生考试数 学 试 题——————————————————————————————————————— 说明:1.本卷由卷Ⅰ、卷Ⅱ组成.卷Ⅰ为选择题,卷Ⅱ为非选择题.卷Ⅰ在答题卡上涂黑作答,不在卡上作答无效;卷Ⅱ在试卷上作答.2.答题前考生应在试卷及答题卡的指定位置填写姓名及报名号、考试号. 3.考试结束后,由监考教师将答题卡、卷Ⅰ、卷Ⅱ按要求回收.———————————————————————————————————————卷 Ⅰ(选择题)一、选择题(本大题共10个小题,每小题3分,共30分.在给出的四个选项中,只有一个是符合题目要求的,请将其序号在卡上涂黑作答.)1.︳-5︳的相反数是:A .-5B .5C .51 D .-51 2.在实数0、4、38-、2、2π中,无理数有:A .1个B .2个C .3个D .4个3.关于x 的一元二次方程(m -2)x 2+4x -1=0有两个不相等的实数根,则m 的取值范围是:A .m >-2B .m≥-2C .m >-2且m≠2D .m≥-2且m≠24.如图,若AB ∥CD ,EF 与AB 、CD 分别相交于点E 、F , 且EP ⊥EF ,∠EFD 的平分线与EP 相交于点P ,∠BEP =40°,则∠EPF 等于:A .40°B .50°C .60°D .65°5.在直角坐标系中,点A (-2,1)与点B 关于y 轴对称,点B 与点C 关于坐标原点对称,则点C 的坐标为:A .(-2,1)B .(2,1)C .(2,-1)D .(-2,-1)6.如图所示的半圆中,AD 是直径,且AD =3,AC =2,则cos ∠B 的值是:C A BD FEPA .32 B .23C .35D .257.甲、乙两人5次射击命中的环数如下: 甲 7 9 8 6 10 乙 7 8 9 8 8则关于两人5次射击命中环数的平均数x 甲,x 乙和方差S 2甲,S 2乙的结论正确的是: A .x 甲=x 乙,S 2甲=S 2乙 B .x 甲<x 乙,S 2甲<S 2乙 C .x 甲=x 乙,S 2甲<S 2乙 D .x 甲=x 乙, S 2甲>S 2乙8.炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工恰好同时完成任务,甲队比乙队每天多安装2台,则甲、乙两队每天安装的台数分别为:A .32台,30台B .22台,20台C .12台,10台D .16台,14台 9.如图,在△ABC 中,∠CAB =70°,在同一平面内, 将△ABC 绕点A 逆时针旋转到△AB′C′的位置, 使CC′∥AB ,则∠BAB′等于:A .30°B .35°C .40°D .50°10.二次函数y =ax 2+bx +c 的图象如图所示,下列结论错误的是:A .b 2-4ac >0B .a -b +c <0C .abc <0D .2a +b >0ABB′C′C2(x-1)-5x <1331(3-2x )>3 卷 Ⅱ(非选择题)二、填空题(本大题共有5个小题,每小题4分,共20分)11.计算:(π-2011)0+(sin30°)-1+︱tan30°-3︱=______________. 12.已知ab=-1,a+b=2,则式子a b+ba=__________. 13.如图,是由大小相同的小正方体组成的简单几何体的左视图和俯视图,那么组成这个几何体的小正方体的个数最多为______个.14.如图,半圆直径AB =2,P 为AB 上一点,点C 、D 为半圆的三等分点.则阴影部分的面积为_________.15.如图,□ABCD中,E 是CD 延长线上一点,BE 与AD 交于点F ,DE =21CD .若△DEF 的面积为1cm 2,则□ABCD 的面积为__________ cm 2.三、解答题(本大题共有5个小题,共50分.每题要写出计算、解答及推理过程)16.(本小题满分8分)先化简,再求值:(2252++-x x x +1)÷44422++-x x x ;其中x 满足不等式组 且为整数.左视图 俯视图 第13题 E第15题17.(本小题满分8分)现有甲乙两个不透明的盒子,甲盒里装有四张大小、形状都相同的卡片,卡片上分别标有数字1、2、3、4,乙盒里也装有四张大小、形状都相同的卡片,卡片上分别标有数字 -1、-2、-3、-4,先从甲盒里面摸出一张卡片,这张卡片上的数字作为点的横坐标x ,再y ,试求出点(x ,y )刚好在反比例函数y=-x4图象上的概率.18.(本小题满分10分)我国是世界上能源紧缺的国家之一.为了增强居民节能意识,某市燃气公司对居民用气采用以户为单位收费改革. 2010年12月底以前按原收费标准收费:即每月用气每立方米收费a 元;从2011年元月1日起采用以户为单位分段计费办法收费:即每月用气10立方米以内(包括10立方米)的用户,每立方米收费b 元;每月用气超过10立方米的用户,其中10立方米燃气仍按每立方米b 元收费,超过10立方米的部分,按每立方米c 元(c >b )收费.设一户居民月用气x 立方米,2010年12月应收燃气费为y 1元,2011年1月应收燃气费为y 2元,y 1、y 2与x 之间的函数关系如下图所示. (1)观察图象填空:a=_____,b=_____,c=______.(2)写出y 1、y 2与x 之间的函数关系式,并写出自变量x 的取值范围;(3)已知居民甲2011年1月比2010年12月多用气6立方米,两个月共交燃气费63元,求居民甲这两月分别用气各多少立方米?B GCE图1B CE图219. (本小题满分11分)如图1,四边形ABCD是正方形,G在BC的延长线上,点E是边BC上的任意一点(不与B、C重合),∠AEF=90°,且AE=EF,连接CF.(1)求证:∠FCG=45°;(2)如图2,当四边形ABCD是矩形,且AB=2AD时,点E是边BC上的任意一点(不与B、C重合),∠AEF=90°,且AE=2EF,连接CF,求tan∠FCG的值.和x轴交于A、B两点,和y轴交于C、D两点且CD=4,抛物线y=ax2+bx+c经过A、B、C三点,顶点为N﹒(1)求经过A、B、C三点的抛物线解析式;(2)直线NC与x轴交于点E,试判断直线CN与⊙M的位置关系并说明理由;(3)设点Q是(1)中所求抛物线对称轴上的一点,试问在(1)中所求抛物线上是否存在点P使以点A、B、P、Q为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由﹒参考答案及评分说明一、选择题1.A2.B3.C4.D5.D6.C7.D8.B9.C 10.D二、填空题11.332+3 12.-6 13.7 14.6π15. 12三、解答题16.解:原式=22252++++-x x x x ·44422-++x x x ……(1分)=2)2(2+-x x ·)2)(2()2(2-++x x x ……(2分) =x -2 ……(3分) 解不等式2(x -1)-5x <13得解集为x >-5 ……(4分)解不等式31(3-2x )>3 得解集为x <-3 ……(5分)所以原不等式的解集为 -5<x <-3 ……(6分) 又因为x 是整数 所以x =-4 ……(7分)此时 原式=-4-2=-6 ……(8分)17.5分)以上共有16种情况,并且每种可能性相同, ……(6分) 其中点的坐标刚好在y=-x4图象上(记为事件A )有(1,-4),(2,-2),(4,-1)三种,所以 P (A )=163答:点的坐标刚好在y=-x 4图象上的概率为 P (A )=163……(8分)18. 解:(1)观察图象填空:a= 2 ,b=_1.5_____,c=__3_____.……(3分) (2)解:y 1=2x (x≥0) ……(4分)2y =1.5x (0≤x ≤10) …(5分) 3x -15 (x >10) …(6分)(3)设居民甲2011年1月用气x 立方米,则2010年12月用气(16-x )立方米. 当0≤x≤10时有 2(x -6)+1.5x =63 .解得 x =2173>10 不合题意应该舍去. ……(7分) 当x >10时,,63)6(2153=-+-x x解得 x =18>10 符合题意 此时126=-x ……(9分)答:居民甲2010年12月用气12立方米,2011年1月用气18立方米. ……(10分) 说明:第(3)问解答也可先确定用气范围,然后求解,也可用二元一次方程组求解.可参考上面评分标准给分。

襄阳市2011年中考模拟考试数学试题(含答案)

襄阳市2011年中考模拟考试数学试题(含答案)

枣阳市2011中考模拟考试数学试题枣阳市2011中考模拟考试数学答案一.选择题:(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C C A C B B B B A B B A二.填空题:(每小题3分,共15分)13.1 14.8 15.34040+ 16.4 17.25或512 三、解答题:(共69分) 18.解:原式=)2(23--x x ÷292--x x =621+x (5分) 当33-=x ,原式=63(6分). 19.(1)50;(1分)(2)补图略;(3分)(3)80-100;(4分);(4)2520人(5分). 答:大约有2520名学生每天完成课外作业时间在80分钟以上.(6分)20.解:(1)∵A (1,2)在反比例函数的图象上,∴m=2,∵x y 2=.(2分) ∴B (-2,-1).将A (1,2)、B (-2,-1)代入b kx y +=中,得⎩⎨⎧-=+-=+.12,2b k b k 解得⎩⎨⎧==.1,1b k ∴1+=x y .(4分)(2)从图象可知一次函数的值大于反比例函数的值的x 的取值范围是-2<x <0或x >1.21.解:设该社区共有x 个街道,据题意,得4≤4x+78-8(x-1) <8(3 分),解得239<x ≤241.(5分) 因为x 是整数,所以x 等于20,4x+78=158(人).(6分)答:这个学校共选派发放传单的学生有158人,共有20个街道.22.(1)证明:∵AC=CD ,∴弧AC 与弧CD 相等,∴∠ABC=∠CBD.又∵OC=OB ,∴∠OCB =∠OBC ,∴∠OCB =∠CBD ,∴OC ∥BD.(3分)(2)∵OC ∥BD ,不妨设平行线OC 与BD 间的距离为h,又S △OBC =21OC ×h, S △DBC =21BD ×h. 因为BC 将四边形OBDC 分成面积相等的两个三角形,即S △OBC = S △DBC ,∴OC=BD ,(5分) ∴四边形OBDC 为平行四边形.又∵OC=OB ,∴四边形OBDC 为菱形.(7分)23. (1)∵△ABG 是由是△ADE 旋转而得,∴△ADE ≌△ABG ,∴∠DAE=∠BAG.(2分)又∵∠DAB=90°,∠EAF=45°,∴∠DAE+∠BAF=45°,∴∠BAG+∠BAF=45°,即∠GAF=45°.(3分)(2)∵△ADE ≌△ABG ,∴∠ABG=∠D=90°.又∵∠ABF=90°,∴G 、B 、F 三点共线,且AG=AE ,AF=EF.(4分)由(1)知∠GAF=∠EAF=45°,∴△AGF ≌△AEF ,∴GF=EF.(5分)(3)△AEF 与△AGF 关于直线AF 对称.(6分)24. (1)由题图可知,星期天当日注入了10000-2 000=8000立方米的天然气. (2分)(2)当x ≥0.5时,设储气罐中的储气量为y(立方米)与时间x(小时)的函数解析式为:b kx y +=(k ,b 为常数,且k ≠0).∵它的图象过点(0.5,10 000),(10.5,8 000),(3分)∴⎩⎨⎧=+=+,80005.10,100005.0b k b k 解得⎩⎨⎧=-=.10100,200b k .故所求函数解析式为y=-200x+10100.(5分) (3)可以.∵给18辆车加气需18×20=360(立方米),储气量为10 000-360=9 640(立方米).(7分) 于是有9 640=-200x+10 100,解得x=2.3.而从8:00到10:30相差2.5小时,显然有2.3<2.5.故第18辆车在当天10:30之前可以加完气.25.(1)由题意,有△BEF ≌△DEF. ∴BF=DF.(1分)如图,过点A 作AG ⊥BC 于点G ,则四边形AGFD 是矩形.∴AG=DF ,GF=AD=4.在Rt △ABG 和Rt △DCF 中,∵AB=DC ,AG=DC ,∴Rt △ABG ≌Rt △DCF (HL ),∴BG=CF.(3分)∴BG=2. ∴DF=BF=BG+GF=6.(5分)∴S 梯形ABCD =36.(6分)(2)猜想:CG=k ·BE (或BE=k1·CG ). 证明:如图,过点E 作EH ∥CG ,交BC 于点H.则∠FEH=∠FGC. 又∠EFH=∠GFC ,∴△EFH ∽△GFC. ∴GF EF =GC EH . 而FG=k ·EF ,即k EF GF =, ∴kGC EH 1=,即CG=k ·EH.(9分) ∵EH ∥CG ,∴∠EHB=∠DCB.而ABCD 是等腰梯形,∴∠B=∠DCB.∴∠B=∠EHB ,∴BE=EH ,∴CG=k ·BE.(10分)26.(1)解:A (6,0),B (0,6).连接OC ,由于∠AOB=90°,C 为AB 的中点,则OC=21AB ,所以点O 在⊙C 上.(1分) 过C 作CE ⊥OA ,垂足为E ,则E 为OA 中点,故点C 的横坐标为3.又点C 在直线6+-=x y 上,故C (3,3).(2分)抛物线过点O ,所以c=0,又抛物线过点A 、C ,所以⎩⎨⎧+=+=,6360,393b a b a 解得⎪⎩⎪⎨⎧=-=.2,31b a (4分) 所以抛物线解析式为x x y 2212+-=.(5分) (2)证明:把OA=OB=6代入OB 2=OA ·OD ,得OD=6(6分),所以OD=OB=OA ,所以∠DBA=90°.(7分)又点B 在圆上,故DB 为⊙O 的切线.(8分)(通过证相似三角形得出亦可)(3)解:假设存在点P 满足题意,因为C 为AB 中点,O 在圆上,故∠OCA=90°, 要使以P 、O 、C 、A 为顶点的四边形为直角梯形,则∠CAP=90°或∠COP=90°.(9分)若∠CAP=90°,则OC ∥AP.因为OC 的方程为x y =,设AP 方程为b x y +=.又AP 过点A (6,0),则b=-6. 由题意,得x x x 23162+-=-,解之,得 x 1=6,x 2=-3 当x=6时,y=0,x=-3时,y=-9.故点P 1坐标为(-3,-9).(9分)若∠COP=90°,则OP ∥AC ,同理可求得点P 2(9,-9).(11分)(用抛物线的对称性求出亦可)故存在点P 1(-3,-9)和P 2(9,-9)满足题意.(12分)。

2011年湖北省襄阳市中考数学试题(WORD解析版)

2011年湖北省襄阳市中考数学试题(WORD解析版)

2011年湖北省襄阳市中考数学试卷—解析版一、选择题:(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1、(2011•襄阳)﹣2的倒数是()A、﹣2B、2C、﹣D、考点:倒数。

专题:计算题。

分析:根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.解答:解:﹣2的倒数是﹣,故选C.点评:此题主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2、(2011•襄阳)下列运算正确的是()A、a﹣2a=aB、(﹣a2)3=﹣a6C、x6÷x3=x2D、(x+y)2=x2+y2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式。

专题:计算题。

分析:A选项中应该是﹣a,不对;B,幂指数的幂指数的乘法,正确;C中同底数幂的除法,底数不变指数相减;D中应为完全平方,错误.解答:解:A,应该得﹣a,故本选项错误;B,幂指数的幂,指数相乘,故本答案正确;C,同底数幂的除法底数不变指数相减,故本选项错误;D,应该是完全平方式,故本选项错误.故选B.点评:本题考查了同底数幂的除法,A选项中应该是﹣a,B,幂指数的幂指数的乘法,C中同底数幂的除法,底数不变指数相减,故错误,D中应为完全平方,错误.本题比较简单.3、(2011•襄阳)若x,y为实数,且|x+1|+=0,则()2011的值是()A、0B、1C、﹣1D、﹣2011考点:非负数的性质:算术平方根;非负数的性质:绝对值;有理数的乘方。

专题:计算题;存在型。

分析:先根据非负数的性质求出x、y的值,再代入()2011进行计算即可.解答:解:∵|x+1|+=0,∴x+1=0,解得x=﹣1;y﹣1=0,解得y=1.∴()2011=(﹣1)2011=﹣1.故选C.点评:本题考查的是非负数的性质,即几个非负数的和为0时,这几个非负数都为0.4、(2011•襄阳)如图,CD∥AB,∠1=120°,∠2=80°,则∠E的度数是()A、40°B、60°C、80°D、120°考点:平行线的性质;三角形的外角性质。

2011年襄阳各地中考适应考试数学试题汇总(9套39页)

2011年襄阳各地中考适应考试数学试题汇总(9套39页)

2011年保康县中考适应性考试数学试题一、 选择题(3分×12=36分)1、 下列个数中,负数是( )A -(-2) B ∣-2∣ C (-2)2D -(-2)22、下列运算正确的是( )A a+a 32a = B (3a)226a = C a 326a a =÷ D a a⋅43a =3、一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“毒”字相对的字是( ) A 卫 B 防C 讲D 生 4、把不等式组⎩⎨⎧≤-+0101x x 的解集表示在数轴上,正确的是( )5、某地2011年4月的一周中每天最低气温如下:13,11,7,12,13,13,12,则在这一周中,最低气温的众数和中位数分别是( )A 13和11B 12和13C 11和12D 13和12 6、下面是几种汽车的标志,其中是轴对称图形的有( )7、如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别 落在D ′、C ′的位置∠EFB=65°,则∠AED ′等于( )A 70°B 65°C 50°D 25°8、一根水平放置的圆柱形输水管道横截面如图, 其中有水部分水面宽0.8米,最深处水深0.2米, 则此输水管道的直径是( )9、sin45°+cos45°的值等于( ) A 2 B213+ C 3 D 1 10、如图,有三条绳子穿过一片木板,姊妹两人分别站 在木板的左、右两边,各选该边的一段绳子,若每边每 段绳子被选中的机会相等,则两人选到同一条绳子的概率为( ) A21 B 31 C 61 D 9111、如图,两条抛物线y 221y 1x 21-、+==-1-212x 与分别经过点(-2,0)、(2,0)且平行于y 轴的两条平行线围成的阴影部分的面积为( ) A 8 B 6 C 10 D 412、如图,在直角梯形ABCD 中,AD ∥BC ,∠C=90°, CD=6cm ,AD=2cm ,动点P 、Q 同时从B 出发,点P 沿BA 、AD 、DC 运动到点C 停止,点Q 沿BC 运动到C 点停止, 两点运动的速度都是1cm /s ,而当点P 到达点A 时, 点Q 正好到达点C ,设P 点运动的时间为t(s),△BPQ 的 面积为y (cm 2)。

湖北省襄阳市中考数学试卷及答案(Word解析版)

湖北省襄阳市中考数学试卷及答案(Word解析版)

湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题(3*12=36分)1.(3分)(•襄阳)2的相反数是()A.﹣2 B.2C.D.考点:相反数.分析:根据相反数的表示方法:一个数的相反数就是在这个数前面添上“﹣”号.解答:解:2的相反数是﹣2.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(•襄阳)四川芦山发生7.0级地震后,一周内,通过铁路部门已运送救灾物资15810吨,将15810吨,将15180用科学记数法表示为()A.1.581×103B.1.581×104C.15.81×103D.15.81×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:15180=1.581×104,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(•襄阳)下列运算正确的是()A.4a﹣a=3 B.a•a2=a3C.(﹣a3)2=a5D.a6÷a2=a3考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、4a﹣a=3a,选项错误;B、正确;C、(﹣a3)2=a6,选项错误;D、a6÷a2=a4,选项错误.故选B.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.4.(3分)(•襄阳)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B,从而求出∠A的度数.解答:解:∵∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=120°﹣40°=80°.故选C.点评:本题主要考查三角形外角的性质,解答的关键是沟通外角和内角的关系.5.(3分)(•襄阳)不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:根据不等式组的解法求出不等式组的解集,再根据>,≥向右画;<,≤向左画,在数轴上表示出来,从而得出正确答案.解答:解:,由①得:x≤1,由②得:x>﹣3,则不等式组的解集是﹣3<x≤1;故选D.点评:此题考查了一元一次不等式组的解法和在数轴上表示不等式的解集,掌握不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线是解题的关键.6.(3分)(•襄阳)如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()A.55°B.50°C.45°D.40°考点:平行线的性质.分析:首先根据平行线的性质可得∠ABC+∠DCB=180°,进而得到∠BCD的度数,再根据角平分线的性质可得答案.解答:解:∵CD∥AB,∴∠ABC+∠DCB=180°,∵∠BCD=70°,∴∠ABC=180°﹣70°=110°,∵BD平分∠ABC,∴∠ABD=55°,故选:A.点评:此题主要考查了平行线的性质以及角平分线定义,关键是掌握两直线平行,同旁内角互补.7.(3分)(•襄阳)分式方程的解为()A.x=3 B.x=2 C.x=1 D.x=﹣1考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x+1=2x,解得:x=1,经检验x=1是分式方程的解.故选C点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.(3分)(•襄阳)如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A.B.C.D.考点:简单组合体的三视图.分析:判断出组合体的左视图、主视图及俯视图,即可作出判断.解答:解:几何体的左视图和主视图是相同的,则不同的视图是俯视图,俯视图是D选项所给的图形.故选D.点评:本题考查了简单组合体的三视图,属于基础题,注意理解三视图观察的方向.9.(3分)(•襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.46考点:平行四边形的性质.分析:由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线可作一个整体.解答:解:∵四边形ABCD是平行四边形,∴AB=CD=5,∵△OCD的周长为23,∴OD+OC=23﹣5=18,∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36,故选C.点评:本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.10.(3分)(•襄阳)二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是()A.y1≤y2B.y1<y2C.y1≥y2D.y1>y2考点:二次函数图象上点的坐标特征.分析:对于二次函数y=﹣x2+bx+c,根据a<0,抛物线开口向下,在x<0的分支上y随x的增大而增大,故y1<y2.解答:解:∵a<0,x1<x2<1,∴y随x的增大而增大∴y1<y2.故选:B.点评:此题主要考查了二次函数图象上点的坐标特征,本题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数y=ax2+bx+c(a≠0)的图象性质.11.(3分)(•襄阳)七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:节水量(m3)0.2 0.25 0.3 0.4 0.5家庭数(个) 1 2 2 4 1那么这组数据的众数和平均数分别是()A.0.4和0.34 B.0.4和0.3 C.0.25和0.34 D.0.25和0.3考点:众数;加权平均数.分析:根据众数及平均数的定义,结合表格信息即可得出答案.解答:解:将数据从新排列为:0.2,0.25,0.25,0.3,0.3,0.4,0.4,0.4,0.4,0.5,则中位数为:0.4;平均数为:(0.2+0.25+0.25+0.3+0.3+0.4+0.4+0.4+0.4+0.5)=0.34.故选A.点评:本题考查了众数及平均数的知识,解答本题的关键是熟练掌握中位数及平均数的定义.12.(3分)(•襄阳)如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E、B,E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()A.B.C.D.考点:扇形面积的计算;弧长的计算.分析:首先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BC,AC的长,利用S△ABC﹣S扇形BOE=图中阴影部分的面积求出即可.解答:解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=30°,∵弧BE的长为π,∴=π,解得:R=2,∴AB=ADcos30°=2,∴BC=AB=,∴AC==3,∴S△ABC=×BC×AC=××3=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=﹣=﹣.故选:D.点评:此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出∴△BOE和△ABE面积相等是解题关键.二、填空题(3*5=15分)13.(3分)(•襄阳)计算:|﹣3|+=4.考点:实数的运算;零指数幂.分析:分别进行绝对值及零指数幂的运算,然后合并即可得出答案.解答:解:原式=3+1=4.故答案为:4.点评:本题考查了实数的运算,涉及了零指数幂绝对值,掌握各部分的运算法则是关键.14.(3分)(•襄阳)使代数式有意义的x的取值范围是x≥且x≠3.考点:二次根式有意义的条件;分式有意义的条件.分析:根据被开方数大于等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,2x﹣1≥0且3﹣x≠0,解得x≥且x≠3.故答案为:x≥且x≠3.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.15.(3分)(•襄阳)如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为0.2 m.考点:垂径定理的应用;勾股定理.分析:过O作OC垂直于AB,利用垂径定理得到C为AB的中点,在直角三角形AOC中,由水面高度与半径求出OC的长,即可得出排水管内水的深度.解答:解:过O作OC⊥AB,交AB于点C,可得出AC=BC=AB=0.4m,由直径是1m,半径为0.5m,在Rt△AOC中,根据勾股定理得:OC===0.3(m),则排水管内水的深度为:0.5﹣0.3=0.2(m).故答案为:0.2.点评:此题考查了垂径定理的应用,以及勾股定理,熟练掌握定理是解本题的关键.16.(3分)(•襄阳)襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是.考点:列表法与树状图法.专题:图表型.分析:可以看做是李老师先选择第一站,然后儿子再进行选择,画出树状图,再根据概率公式解答.解答:解:李老师先选择,然后儿子选择,画出树状图如下:一共有9种情况,都选择古隆中为第一站的有1种情况,所以,P(都选择古隆中为第一站)=.故答案为:.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(•襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是6或2.考点:图形的剪拼;勾股定理.分析:先根据题意画出图形,此题要分两种情况,再根据勾股定理求出斜边上的中线,最后根据直角三角形中,斜边上的中线等于斜边的一半即可求出斜边的长.解答:解:①如图所示:,连接CD,CD==,∵D为AB中点,∴AB=2CD=2;②如图所示:,连接EF,EF==3,∵E为AB中点,∴AB=2EF=6,故答案为:6或2.点评:此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.三、解答题(69分)18.(6分)(•襄阳)先化简,再求值:,其中,a=1+,b=1﹣.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把a、b的值代入进行计算即可解答:解:原式=÷=÷=×=﹣,当a=1+,b=1﹣时,原式=﹣=﹣=﹣.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)(•襄阳)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:根据在Rt△ACD中,tan∠ACD=,求出AD的值,再根据在Rt△BCD中,tan∠BCD=,求出BD的值,最后根据AB=AD+BD,即可求出答案.解答:解:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴=,∴AD=3m,在Rt△BCD中,∵tan∠BCD=,∴tan45°=,∴BD=9m,∴AB=AD+BD=3+9(m).答:旗杆的高度是(3+9)m.点评:此题考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.20.(6分)(•襄阳)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?考点:一元二次方程的应用.分析:(1)设每轮传染中平均每人传染了x人,根据经过两轮传染后共有64人患了流感,可求出x,(2)进而求出第三轮过后,又被感染的人数.解答:解:(1)设每轮传染中平均每人传染了x人,1+x+x(x+1)=64x=7或x=﹣9(舍去).答:每轮传染中平均一个人传染了7个人;(2)64×7=448(人).答:第三轮将又有448人被传染.点评:本题考查了一元二次方程的应用,先求出每轮传染中平均每人传染了多少人数是解题关键.21.(6分)(•襄阳)某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第三小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数;概率公式.分析:(1)首先求得总人数,然后求得第四组的人数,即可作出统计图;(2)利用总人数260乘以所占的比例即可求解;(3)利用概率公式即可求解.解答:解:(1)总人数是:10÷20%=50(人),第四组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,,中位数位于第三组;(2)该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×260=104(人);(3)成绩是优秀的人数是:10+6+4=20(人),成绩为满分的人数是4,则从成绩为优秀的女生中任选一人,她的成绩为满分的概率是=0.2.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题22.(6分)(•襄阳)平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(﹣4,0),B(2,0),C(3,3)反比例函数y=的图象经过点C.(1)求此反比例函数的解析式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;(3)请你画出△AD′C,并求出它的面积.考点:反比例函数综合题.分析:(1)把点C(3,3)代入反比例函数y=,求出m,即可求出解析式;(2)过C作CE⊥x轴于点E,过D作DF⊥x轴于点F,则△CBE≌△DAF,根据线段之间的数量关系进一步求出点D的坐标,再点D′与点D关于x轴对称,求出D′坐标,进而判断点D′是不是在双曲线;(3)根据C(3,3),D′(﹣3,﹣3)得到点C和点D′关于原点O中心对称,进一步得出D′O=CO=D′C,由S△AD′C=2S△AOC=2×AO•CE求出面积的值.解答:解:(1)∵点C(3,3)在反比例函数y=的图象上,∴3=,∴m=9,∴反比例函数的解析式为y=;(2)过C作CE⊥x轴于点E,过D作DF⊥x轴于点F,则△CBE≌△DAF,∴AF=BE,DF=CE,∵A(﹣4,0),B(2,0),C(3,3),∴DF=CE=3,OA=4,OE=3,OB=2,∴OF=OA﹣AF=OA﹣BE=OA﹣(OE﹣OB)=4﹣(3﹣2)=3,∴D(﹣3,3),∵点D′与点D关于x轴对称,∴D′(﹣3,﹣3),把x=﹣3代入y=得,y=﹣3,∴点D′在双曲线上;(3)∵C(3,3),D′(﹣3,﹣3),∴点C和点D′关于原点O中心对称,∴D′O=CO=D′C,∴S△AD′C=2S△AOC=2×AO•CE=2××4×3=12,即S△AD′C=12.点评:本题主要考查反比例函数综合题的知识点,解答本题的关键是熟练掌握反比例函数的性质以及点的对称性等知识点,此题难度不大,是一道不错的中考试题.23.(7分)(•襄阳)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.①当旋转角为60度时,边AD′落在AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.考点:全等三角形的判定与性质;等边三角形的性质;旋转的性质.专题:几何综合题.分析:(1)根据等边三角形的性质可得AB=AD,AE=AC,∠BAD=∠CAE=60°,然后求出∠BAE=∠DAC,再利用“边角边”证明△BAE和△DAC全等,根据全等三角形对应边相等即可得证;(2)①求出∠DAE,即可得到旋转角度数;②当AC=2AB时,△BDD′与△CPD′全等.根据旋转的性质可得AB=BD=DD′=AD′,然后得到四边形ABDD′是菱形,根据菱形的对角线平分一组对角可得∠ABD′=∠DBD′=30°,菱形的对边平行可得DP∥BC,根据等边三角形的性质求出AC=AE,∠ACE=60°,然后根据等腰三角形三线合一的性质求出∠PCD′=∠ACD′=30°,从而得到∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PD′C=30°,然后利用“角边角”证明△BDD′与△CPD′全等.解答:(1)证明:∵△ABD和△ACE都是等边三角形.∴AB=AD,AE=AC,∠BAD=∠CAE=60°,∴∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC,在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴BE=CD;(2)解:①∵∠BAD=∠CAE=60°,∴∠DAE=180°﹣60°×2=60°,∵边AD′落在AE上,∴旋转角=∠DAE=60°;②当AC=2AB时,△BDD′与△CPD′全等.理由如下:由旋转可知,AB′与AD重合,∴AB=BD=DD′=AD′,∴四边形ABDD′是菱形,∴∠ABD′=∠DBD′=∠ABD=×60°=30°,DP∥BC,∵△ACE是等边三角形,∴AC=AE,∠ACE=60°,∵AC=2AB,∴AE=2AD′,∴∠PCD′=∠ACD′=∠ACE=×60°=30°,又∵DP∥BC,∴∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PCD′=∠PD′C=30°,在△BDD′与△CPD′中,,∴△BDD′≌△CPD′(ASA).故答案为:60.点评:本题考查了全等三角形的判定与性质,等边三角形的性质,以及旋转的性质,综合性较强,但难度不大,熟练掌握等边三角形的性质与全等三角形的判定是姐提到过.24.(9分)(•襄阳)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.考点:一次函数的应用.分析:(1)根据购买费用=单价×数量建立关系就可以表示出y A、y B的解析式;(2)分三种情况进行讨论,当y A=y B时,当y A>y B时,当y A<y B时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.解答:解:(1)由题意,得y A=(10×30+3x)×0.9=2.7x+270,y B=10×30+3(x﹣20)=3x+240,(2)当y A=y B时,2.7x+270=3x+240,得x=100;当y A>y B时,2.7x+270>3x+240,得x<100;当y A<y B时,2.7x+270=3x+240,得x>100∴当2≤x<100时,到B超市购买划算,当x=100时,两家超市一样划算,当x>100时在A 超市购买划算.(3)由题意知x=15×10=150>100,∴选择A超市,y A=2.7×150+270=675元,先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球(10×15﹣20)×30.9=351元,共需要费用10×30+351=651(元).∵651<675,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.点评:本题考查了一次函数的解析式的运用,分类讨论的数学思想的运用,方案设计的运用,解答时求出函数的解析式是关键.25.(10分)(•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O 于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.考点:切线的性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.专题:证明题.分析:(1)连结OD,由AB为⊙O的直径,根据圆周角定理得AB为⊙O的直径得∠ACB=90°,再由ACD=∠BCD=45°,则∠DAB=∠ABD=45°,所以△DAB为等腰直角三角形,所以DO⊥AB,根据切线的性质得OD⊥PD,于是可得到DP∥AB;(2)先根据勾股定理计算出AB=10,由于△DAB为等腰直角三角形,可得到AD==5;由△ACE为等腰直角三角形,得到AE=CE==3,在Rt△AED中利用勾股定理计算出DE=4,则CD=7,易证得∴△PDA∽△PCD,得到===,所以PA=PD,PC=PD,然后利用PC=PA+AC可计算出PD.解答:(1)证明:连结OD,如图,∵AB为⊙O的直径,∴∠ACB=90°,∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD=45°,∴∠DAB=∠ABD=45°,∴△DAB为等腰直角三角形,∴DO⊥AB,∵PD为⊙O的切线,∴OD⊥PD,∴DP∥AB;(2)解:在Rt△ACB中,AB==10,∵△DAB为等腰直角三角形,∴AD==5,∵AE⊥CD,∴△ACE为等腰直角三角形,∴AE=CE===3,在Rt△AED中,DE===4,∴CD=CE+DE=3+4=7,∵AB∥PD,∴∠PDA=∠DAB=45°,∴∠PAD=∠PCD,而∠DPA=∠CPD,∴△PDA∽△PCD,∴===,∴PA=PD,PC=PD,而PC=PA+AC,∴PD+6=PD,∴PD=.点评:本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理定理、等腰直角三角形的性质和三角形相似的判定与性质.26.(13分)(•襄阳)如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD 的面积为9.求此抛物线的解析式,并指出顶点E的坐标;(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.①当t为2秒时,△PAD的周长最小?当t为4或4﹣或4+秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)根据抛物线的轴对称性可得抛物线与x轴的另一个交点B的坐标;(2)先根据梯形ABCD的面积为9,可求c的值,再运用待定系数法可求抛物线的解析式,转化为顶点式可求顶点E的坐标;(3)①根据轴对称﹣最短路线问题的求法可得△PAD的周长最小时t的值;根据等腰三角形的性质可分三种情况求得△PAD是以AD为腰的等腰三角形时t的值;②先证明△APN∽△PDM,根据相似三角形的性质求得PN的值,从而得到点P的坐标.解答:解:(1)由抛物线的轴对称性及A(﹣1,0),可得B(﹣3,0).(2)设抛物线的对称轴交CD于点M,交AB于点N,由题意可知AB∥CD,由抛物线的轴对称性可得CD=2DM.∵MN∥y轴,AB∥CD,∴四边形ODMN是矩形.∴DM=ON=2,∴CD=2×2=4.∵A(﹣1,0),B(﹣3,0),∴AB=2,∵梯形ABCD的面积=(AB+CD)•OD=9,∴OD=3,即c=3.∴把A(﹣1,0),B(﹣3,0)代入y=ax2+bx+3得,解得.∴y=x2+4x+3.将y=x2+4x+3化为顶点式为y=(x+2)2﹣1,得E(﹣2,﹣1).(3)①当t为2秒时,△PAD的周长最小;当t为4或4﹣或4+秒时,△PAD是以AD为腰的等腰三角形.②存在.∵∠APD=90°,∠PMD=∠PNA=90°,∴∠PDM+∠APN=90°,∠DPM+∠PDM=90°,∴∠PDM=∠APN,∵∠PMD=∠ANP,∴△APN∽△PDM,∴=,∴=,∴PN2﹣3PN+2=0,∴PN=1或PN=2.∴P(﹣2,1)或(﹣2,2).故答案为:2;4或4﹣或4+.点评:考查了二次函数综合题,涉及的知识点为:抛物线的轴对称性,梯形的面积计算,待定系数法求抛物线的解析式,抛物线的顶点式,轴对称﹣最短路线问题,等腰三角形的性质,相似三角形的判定和性质,综合性较强,有一定的难度.。

2011襄阳中考数学试题及答案

2011襄阳中考数学试题及答案

2011襄阳中考数学试题及答案2011年襄阳市初中毕业生学业考试数学试题一、选择题(每小题3分,共30分)1.下列说法正确的是()A. 两直线平行,同位角相等;B. 两直线平行,内错角相等;C. 两直线平行,同旁内角互补;D. 两直线平行,同位角互补.2.下列运算正确的是()A. 2a-3a=-a;B. 3a+2b=5ab;C. 3a-2a=a;D. 3a+2a=5a.3.下列命题中,是真命题的是()A. 相等的两个角是对顶角;B. 同旁内角互补,两直线平行;C. 两直线平行,同位角相等;D. 同位角相等,两直线平行.4.下列说法正确的是()A. 一个角的补角一定大于这个角;B. 一个角的补角一定小于这个角;C. 一个角的补角一定等于这个角;D. 一个角的补角可能大于、等于或小于这个角.5.下列说法正确的是()A. 两条平行线被第三条直线所截,同位角相等;B. 两条平行线被第三条直线所截,内错角相等;C. 两条平行线被第三条直线所截,同旁内角互补;D. 两条平行线被第三条直线所截,同位角互补.6.下列命题中,是假命题的是()A. 两直线平行,同位角相等;B. 两直线平行,内错角相等;C. 两直线平行,同旁内角互补;7.下列命题中,是真命题的是()A. 相等的两个角是对顶角;B. 同旁内角互补,两直线平行;C. 两直线平行,同位角相等;D. 同位角相等,两直线平行.8.下列说法正确的是()A. 一个角的补角一定大于这个角;B. 一个角的补角一定小于这个角;C. 一个角的补角一定等于这个角;D. 一个角的补角可能大于、等于或小于这个角.9.下列说法正确的是()A. 两条平行线被第三条直线所截,同位角相等;B. 两条平行线被第三条直线所截,内错角相等;C. 两条平行线被第三条直线所截,同旁内角互补;D. 两条平行线被第三条直线所截,同位角互补.10.下列命题中,是假命题的是()B. 两直线平行,内错角相等;C. 两直线平行,同旁内角互补;D. 两直线平行,同位角互补.二、填空题(每小题3分,共30分)11.若a=2b,则a:b=______.12.若a=2b,则a:b=______.13.若a=2b,则a:b=______.14.若a=2b,则a:b=______.15.若a=2b,则a:b=______.16.若a=2b,则a:b=______.17.若a=2b,则a:b=______.18.若a=2b,则a:b=______.19.若a=2b,则a:b=______.20.若a=2b,则a:b=______.三、解答题(共90分)21.(10分)解方程:2x-3=7x+4.22.(10分)解方程:3x-5=2x+8.23.(10分)解方程:4x-6=2x+10.24.(10分)解方程:5x-7=3x+12.25.(10分)解方程:6x-8=4x+14.26.(10分)解方程:7x-9=5x+16.27.(10分)解方程:8x-10=6x+18.28.(10分)解方程:9x-11=7x+20.29.(10分)解方程:10x-12=8x+22.2011年襄阳市初中毕业生学业考试数学试题答案一、选择题1. C2. C3. C4. D5. C6. D7. C8. D9. A 10. D二、填空题11. 2:1 12. 2:1 13. 2:1 14. 2:1 15. 2:1 16. 2:1 17. 2:1 18. 2:1 19. 2:1 20. 2:1三、解答题-5x=7x=-1.422. 解:3x-5=2x+8 x=1323. 解:4x-6=2x+10 2x=16x=824. 解:5x-7=3x+12 2x=19x=9.525. 解:6x-8=4x+14 2x=22x=1126. 解:7x-9=5x+16 2x=25x=12.52x=28x=1428. 解:9x-11=7x+20 2x=31x=15.529. 解:10x-12=8x+22 2x=34x=17。

2011襄阳中考数学试题及答案

2011襄阳中考数学试题及答案

2011襄阳中考数学试题及答案一. 选择题1. 若a, b是实数, 且满足a + b = 10, ab = 24, 则(a - b)²的值是多少?A. 2B. 22C. 26D. 642. √32 + √288 = ?A. 12B. 16C. 18D. 203. 若正方体的棱长是3cm, 则其对角线的长为多少cm?A. 3B. 9C. 3√2D. 9√24. 若a, b是互为倒数的实数, 且满足a - b = 9, 则a² - b²的值是多少?A. 4B. 9C. 18D. 815. 已知正方形ABCD的边长为10cm, M为AD中点, 则AM与BM 的长度之比为多少?A. 1:2B. 1:3C. 1:4D. 2:1二. 填空题6. 甲、乙两人同时从相距30km的A、B两地相对出发,乙的速度是甲的速度的1.5倍,两人相向而行,若1小时后相遇,则甲的速度是________km/h。

填空:_____7. 已知等差数列{an}的公差d = 3,a₁ + a₂ + ... + a₁₀ = 180,其中a₁₀是该等差数列的第10项,则a₃的值是________。

填空:_____8. 若a + b = 3, ab = 2, 则a² + b²的值为________。

填空:_____三. 解答题9. 某商店购进一批手机,进价总和为250,000元。

商店按进价的130%定价出售,销售后总利润为70,000元。

请计算商店销售这批手机所得的总收入是多少元。

解:设售价为x元,则x = 250,000 + 70,000 = _______元。

10. 解方程-3(x - 1) + 4(2x + 3) = -7,写出方程的解。

解:将方程展开得到 -3x + 3 + 8x + 12 = -7,整理得到 5x = -22,解得x = ________。

四. 综合题11. 某商场举办了一次打折活动。

湖北13市州(加直辖县级行政区)2011年中考数学试题汇编(word版含

湖北13市州(加直辖县级行政区)2011年中考数学试题汇编(word版含

2011年十堰市初中毕业生学业考试数学试题注意事项:1.本卷共有4页,共有25小题,满分120分,考试时限120分钟。

2.答题前,考生先将自己的姓名、准考证号填写在试卷和答题卡指定的位置,并认真核对条形码上准考证号和姓各,在答题卡规定的位置贴好条形码。

3.考生必须保持答题卡的整洁,考试结束后,请将本试卷和条题卡一并上交。

一、选择题:(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选面中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内。

1.(湖北十堰3分)下列实数中是无理数的是A.2B.4C.13D.3.14【答案】A。

2. (湖北十堰3分)函数4y x=-中自变量x的取值范围是A.x≥0 B.x≥4 C.x≤4 D.x>4【答案】B。

3. (湖北十堰3分)下面几何体的主视图是【答案】C。

4.(湖北十堰3分)据统计,十堰市2011年报名参加九年级学业考试总人数为26537人,则26537用科学记数法表示为(保留两个有效数字)A.2.6×104 B.2.7×104 C. 2.6×105 D. 2.7×105【答案】B。

5.(湖北十堰3分)如图,Rt△ABC中,∠ACB=90°,DE过点C,且DE//AB,若∠ACD=500,则∠B的度数是A.50°B.40°C.30°D.25°【答案】B。

6.(湖北十堰3分)工人师傅常用角尺平分一个任意角。

做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合。

过角尺顶点C作射线OC。

由做法得△MOC≌△NOC的依据是A.AAS B.SAS C.ASA D.SSS【答案】D。

7. (湖北十堰3分)已知x-2y=-2,则3-x+2y的值是A.0 B.1 C.3 D.5【答案】D。

8.(湖北十堰3分)现有边长相同的正三角、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是A.正方形和正六边形B.正三角形和正方形C.正三角形和正六边形D.正三角形、正方形和正六边形【答案】A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当运动时间t=秒时,以点P,Q,E,D为顶点的四边形是平行四边形.
三、解答题:(本大题共9个小题,共69分)解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.
18.(本小题满分5分)
已知直线y=-3x与双曲线交于点P(-1,n).
(1)求m的值;
(2)若点A(,),B(,)在双曲线上,且<<0,试比较,的大小.
6.下列说法正确的是
A.是无理数B.是有理数C.是无理数D.是有理数
7.下列事件中,属于必然事件的是
A.抛掷一枚1元硬币落地后,有国徽的一面向上
B.打开电视任选一频道,正在播放襄阳新闻
C.到一条线段两端点距离相等的点在该线段的垂直平分线上
D.某种彩票的中奖率是10%,则购买该种彩票100张一定中奖
8.由一些相同的小立方块搭成的几何体的三视图如图2所示,则搭
3.非选择题(主观题)用0.5毫米的黑色墨水签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。作图一律用2B铅笔或0.5毫米黑色签字笔。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.
成该几何体的小立方块有
A.3块B.4块C.6块D.9块
9.在△ABC中,∠C=90°,AC=3cm,BC=4cm.若⊙A,⊙B的半径分别为1cm,4cm,则⊙A与⊙B的位置关系是
A.外切B.内切C.相交D.外离
10.若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是
A.菱形B.对角线互相垂直的四边形
(1)参加本校预赛选手共人;
(2)参加预赛选手成绩的中位数所在组的范围是;
(3)成绩在94.5分以上的预赛选手中,男生和女生各
占一半.学校从中随机确定2名参加市“红歌大赛”,
则恰好是一名男生和一名女生的概率为.
21.(本小题满分6分)
如图6,点D,E在△ABC的边BC上,连接AD,AE.①AB=AC;②AD=AE;
③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为
命题的结论,构成三个命题:①② ③;①③ ②;②③ ①.
(1)以上三个命题是真命题的为(直接作答);
(2)请选择一个真命题进行证明(先写出所选命题,然后证明).
22.(本小题满分6分)
汽车产业是我市支柱产业之一,产量和效益逐年增加.据统计,2008年我市某种品牌汽车的年产量为6.4万辆,到2010年,该品牌汽车的年产量达到10万辆.若该品牌汽车年产量的年平均增长率从2008年开始五年内保持不变,则该品牌汽车2011年的年产量为多少万辆?
19.(本小题满分6分)
先化简再求值:
,其中x=tan60°-1.
20.(本小题满分6分)
为了庆祝中国共产党建党九十周年,襄阳市各单位都举行了“红歌大赛”.某中学将参加本校预赛选手的成绩(满分为100分,得分为整数,最低分为80分,且无满分)分成四组,并绘制了如下的统计图(图5),请根据统计图的信息解答下列问题.
A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠3
二、填空题:(本大题共5个小题,每小题3分,共15分)把答案填在答题卡的对应位置的横线上.
13.为了推进全民医疗保险工作,截止2011年5月31日,今年中央财政已累计下拨医疗卫生补助金1346亿元.这个金额用科学记数法表示为元.
14.在207国道襄阳段改造工程中,需沿AC方向开山修路(如
C.矩形D.对角线相等的四边形
11.2011年春我市发生了严重干旱,市政府号召居民节约用水.为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果如下表:
月用水量(吨)
5
6
7
பைடு நூலகம்户数
2
6
2
则关于这10户家庭的月用水量,下列说法错误的是
A.众数是6B.极差是2C.平均数是6D.方差是4
12.已知函数的图象与x轴有交点,则k的取值范围是
机密★启用前
2011年襄阳市初中毕业、升学统一考试
数 学 试 题
(本试题卷共4页,满分120分,考试时间120分钟)
★祝考试顺利★
注意事项:
1.答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上的指定位置。
2.选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。
23.(本小题满分7分)
如图7,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧
上一点,连接BD,AD,OC,∠ADB=30°.
(1)求∠AOC的度数;
(2)若弦BC=6cm,求图中阴影部分的面积.
24.(本小题满分10分)
为发展旅游经济,我市某景区对门票采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为(元),节假日购票款为(元).,与x之间的函数图象如图8所示.
图3所示),为了加快施工进度,要在小山的另一边同时施工.
从AC上的一点B取∠ABD=140°,BD=1000m,∠D=50°.
为了使开挖点E在直线AC上,那么DE=m.(供选
用的三角函数值:sin50°=0.7660,cos50°=0.6428,tan50°=1.192)
15.我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)
一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对道题.
16.关于x的分式方程的解为正数,则m的取值范围是.
17.如图4,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是
BC的中点.点P以每秒1个单位长度的速度从点A出发,沿
AD向点D运动;点Q同时以每秒2个单位长度的速度从点C
出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.
1.-2的倒数是
A.-2B.2C.-D.
2.下列运算正确的是
A.a-2a=aB.=-C.D.
3.若x,y为实数,且+=0,则的值是
A.0B.1C.-1D.-2011
4.如图1,CD∥AB,∠1=120°,∠2=80°,则∠E的度数是
A.40°B.60°C.80°D.120°
5.下列图形是中心对称图形而不是轴对称图形的是
相关文档
最新文档