向量讨论平行垂直及夹角

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量讨论平行垂直及夹角

1、如图所示:在三棱锥P-ABQ 中,ABQ PB 平面⊥,BA=BP=BQ,D 、C 、E 、F 分别是AQ,BQ,AP,BP 的中点,AQ=2BD,PD 与EQ 交于点G,PC 与FQ 交于点H,连接GH.求证:AB//GH;

2、如图所示:在四棱柱1111D C B A ABCD -中,侧棱⊥A A 1底面,5,2,1,,1=====⊥CD AD AA AC AB AC AB ABCD 且点M 和N 分别为C B 1和D D 1的中点,求证://MN 平面ABCD .

3、如图所示:在四棱柱1111D C B A ABCD -中,侧棱⊥1AA 底面ABCD ,.6,5,4,3,1,//1k DC k BC k AD k AB AA CD AB =====求证:⊥CD 平面11A ADD

4、如图所示:正方体1111D C B A ABCD -中,求

B A 1与平面CD B A 11所成角的大小。

5、如图所示:直三棱柱111C B A ABC -中底面ABC ∆满足090,=∠==BCA a CB CA ,棱N M a AA ,,21=分别是11B A 、1AA 的中点。

(1)求BN 的长;

(2)求异面直线1BA 与1CB ,所成角的余弦值;

6、在底面是直角梯形的四棱锥ABCD S -中,090=∠ABC ,⊥SA 平面21,1,====AD BC AB SA ABCD ,求平面SCD 与平面SBA 所成的二面角余弦值;

7、如图所示:在长方体1111D C B A ABCD -中,已知5,4,31===AA BC AB ,分别求点1A 到直线BD AC 、的距离;

8、正方体1111D C B A ABCD -的棱长为2,G F E ,,分别是AB A D C C ,,111的中点,求点A 到平面EFG 的距离;

相关文档
最新文档