我所认识的应力应变关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我所认识的应力应变关系
应力应变都是物体受到外界载荷产生的响应。物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。则一定材料的物体其产生的应力和应变也必然存在一定的关系。
在力学上由于平衡方程仅建立了力学参数(应力分量与外力分量)之间的关系,而几何方程也仅建立了运动学参数(位移分量与应变分量)之间的连系。所以平衡方程与几何方程是两类完全相互独立的方程,它们之间还缺乏必要的联系,这种联系即应力和应变之间的关系。有了可变形材料应力和应变之间关系和力学参数及运动学参数即可分析具体的力学问题。由平衡方程和几何方程加上一组反映材料应力和应变之间关系的方程就可求解具体的力学问题。这样的一组方程即所谓的本构方程。讨论应力和应变之间的关系即可变为一定的材料建立合适的本构方程。
一.典型应力-应变关系
图1-1 典型应力-应变曲线
1) 弹性阶段(OC 段)
该弹性阶段为初始弹性阶段OC (严格讲应该为CA ’),包括:线性弹性分阶段OA 段,非线性弹性阶段AB 段和初始屈服阶段BC 段。该阶段应力和应变满足线性关系,比例常数即弹性模量或杨氏模量,记作:εσE =,即在应力-应变曲线的初始部分(小应变阶段),许多材料都服从全量型胡克定律。
2)塑性阶段(CDEF 段)
CDE 段为强化阶段,在此阶段如图1中所示,应力超过屈服极限,应变超过比例极限后,要使应变再增加,所需的应力必须在超出比例极限后继续增加,这一现象称为应变硬化。CDE 段的强化阶段在E 点达到应力的最高点,荷载达到最大值,相应的应力值称为材料的强度极限 (ultimate strength ),并用σb 表示。超过强度极限后应变变大应力却下降,直到最后试件断裂。这一阶段试件截面积的减小不是在整个试件长度范围发生,而是试件的一个局部区域截面积急剧减小。这一现象称为“颈缩”(necking )。此时,由于颈缩现象的出现,在E 点以后荷载开始下降,直至在颈缩部位试件断裂破坏。这种应力降低而应变增加的现象称为应变软化(简称为软化)。
该阶段应力和应变的关系:)(εϕσ=。
3)卸载规律
如果应力没有超过屈服应力,即在弹性阶段OC 上卸载,应力和应变遵循原来的加载规律,沿CBO 卸载。在应力超过屈服应力后,如果在曲线上任一点D 处卸载,应力与应变之间将不再遵循原有的加载曲线规律,而是沿一条接近平行于OA 的直线DO ′变化,直到应力下降为零,这时应变并不为零,即有塑性应变产生。如果用
OD ′表示总应变ε,O ′D ′表示可以恢复的弹性应变εe ,OO ′表示不能恢复的塑性应变εp ,则有
p e εεε+= (1-1)
即总应变等于弹性应变加上塑性应变。
该阶段应力和应变的关系满足εσ∆=∆E 。
4)卸载后重新加载
DO ′段若在卸载后重新加载,则σ—ε曲线基本上仍沿直线O ′D 变化,直至应力超过D 点的应力之后,才会产生新的塑性变形。由此看来,在经过前次塑性变形后,屈服应力提高了,这种现象称为应变强化(简称为硬化)现象。为了与初始屈服相区别,我们把继续发生新的塑性变形时材料的再度屈服称为后继屈服,相应的屈服点D 称为后继屈服点,相应的应力称为后继屈服应力,并σS ′用表示。显然,由于硬化作用,σS ′>σS ,而且与σS 不同,σS ′不是材料常数,它的大小与塑性变形的大小和历史有关。
5)卸载全部载荷后反向加载
如果在完全卸载后施加相反方向的荷载,譬如由拉伸改为压缩,则σ—ε曲线上弹性阶段OC 段沿曲线OA ′变化,有()()-+=s s σσ。DO ′D ′段沿DO '的延长线下降,开始是呈直线关系,但到达D ″点后又开始进入屈服,此时()()-
+≥'
's s σσ,即出现反方向的屈服应力降低的现象,这种现象称为Bauschinger 效应。这个效应说明材料在某一个方向的硬化将引起反方向的软化。这样,即使是初始各向同性的材料,在出现塑性变形之后,就变为各向异性。虽然在多数情况下为了简化而忽略Bauschinger 效应,但对有反复加载和卸载的情形,必须予以考虑。
二.屈服条件
研究材料的塑性特性时,首先要弄清楚材料什么时候进入塑性变形阶段,即什么时候达到屈服。固体在载荷作用下,最初处于弹性状态,随着载荷逐步增加至一定程度使固体内应力较大的部位出现塑性变形,固体由初始弹性状态进入塑性状态的过程就是初始屈服。需要找到确定材料初始弹性状态的界限的准则,这个准则就称为初始屈服条件,简称屈服条件。
1.屈服函数与屈服曲面
在简单应力状态下,如前面所述的应力应变关系曲线可知,当固体内部应力达到初始屈服极限时将产生初始屈服。在复杂应力状态下,一般屈服条件可以表示为应力分量、应变分量、时间t 和温度T 的函数,它可写成:
(,,,)0ij ij f t T σε= (3-1)
不考虑时间效应和接近常温的情况下,时间t 和温度T 对塑性状态没什么影响,在初始屈服之前,应力和应变之间具有一一对应关系,所以应变分量ij ε可以用应力分量ij σ表示,因此屈服条件就仅仅是应力分量的函数了,它可表示为:
()0ij f σ= (3-2)
以应力张量的六个分量为坐标轴,就建立起一个六维应力空间,屈服函数
()0ij f σ=表示应力空间中的一个曲面,即屈服曲面(简称屈服面)
。当应力点ij σ位于该曲面之内时(即()0ij f σ<),材料处于弹性状态;当应力点位于此曲面上时(即()0ij f σ=),材料由初始弹性开始屈服;如果应力进一步增加,材料进入塑性状态。
假设:
1)材料是初始各向同性的。
屈服函数与坐标的选取无关,它可写成应力张量不变量的函数
123(,,)0f I I I = (3-3)
或写成主应力的函数
123(,,)0f σσσ= (3-4)
2)平均应力(静水应力)不影响塑性状态。
屈服函数只应与应力偏量的不变量有关,即
''23(,)0f J J = (3-5)
或者写成只是应力偏量主值的函数