铸件表面和近表面缺陷的目视检验
铸件检验标准
铸件检验标准铸件作为机械制造中的重要零部件,其质量直接关系到整个机械设备的使用性能和安全性。
因此,对铸件的检验标准显得尤为重要。
本文将从铸件检验的目的、方法和标准等方面进行详细介绍。
首先,铸件检验的目的是为了保证铸件的质量符合设计要求,满足使用的需要。
在铸件生产过程中,通过检验可以及时发现和排除不合格品,保证产品质量。
其次,铸件检验的方法主要包括外观检查、尺寸测量、材质分析、力学性能测试等。
外观检查是通过肉眼或辅助工具对铸件表面进行检查,以发现铸件表面的缺陷或异物。
尺寸测量是通过测量工具对铸件的尺寸进行检测,以确保尺寸符合设计要求。
材质分析是通过化学成分分析、金相分析等手段对铸件材质进行检测,以确定材质是否符合标准。
力学性能测试是通过拉伸试验、冲击试验等手段对铸件的力学性能进行检测,以确保其强度和韧性符合要求。
在铸件检验标准方面,国家和行业都有相应的标准规定。
国家标准主要包括GB/T、GB、JB等标准,而行业标准则是根据不同行业的特点和要求而制定的标准。
在铸件检验标准中,通常包括了铸件的外观质量、尺寸偏差、材质成分、力学性能等方面的要求。
对于不同类型的铸件,其检验标准也会有所不同,需要根据具体情况进行选择和执行。
在实际操作中,铸件检验需要严格按照标准要求进行,以确保检验结果的准确性和可靠性。
同时,检验人员需要具备扎实的专业知识和丰富的实践经验,以确保检验工作的顺利进行。
在检验过程中,还需要使用合适的检测设备和工具,以提高检验的精度和效率。
总的来说,铸件检验标准对于保证铸件质量和产品安全具有重要意义。
只有严格执行标准要求,才能有效地提高铸件的质量,并确保其在使用过程中的稳定性和可靠性。
希望本文能够对铸件检验标准有所帮助,同时也希望各个相关行业能够重视铸件检验工作,共同提高产品质量和安全水平。
铸件质量检测方法有哪些
铸件质量检测方法有哪些铸造网讯:铸件的检测主要包括尺寸检查、外观和表面的目视检查、化学成分分析和力学性能试验,对于要求比较重要或铸造工艺上容易产生问题的铸件,还需要进行无损检测工作,可用于球墨铸铁件质量检测的无损检测技术包括液体渗透检测、磁粉检测、涡流检测、射线检测、超声检测及振动检测等。
1 铸件表面及近表面缺陷的检测1.1 液体渗透检测液体渗透检测用来检查铸件表面上的各种开口缺陷,如表面裂纹、表面针孔等肉眼难以发现的缺陷。
常用的渗透检测是着色检测,它是将具有高渗透能力的有色(一般为红色)液体(渗透剂)浸湿或喷洒在铸件表面上,渗透剂渗入到开口缺陷里面,快速擦去表面渗透液层,再将易干的显示剂(也叫显像剂)喷洒到铸件表面上,待将残留在开口缺陷中的渗透剂吸出来后,显示剂就被染色,从而可以反映出缺陷的形状、大小和分布情况。
需要指出的是,渗透检测的精确度随被检材料表面粗糙度增加而降低,即表面越光检测效果越好,磨床磨光的表面检测精确度最高,甚至可以检测出晶间裂纹。
除着色检测外,荧光渗透检测也是常用的液体渗透检测方法,它需要配置紫外光灯进行照射观察,检测灵敏度比着色检测高。
1.2 涡流检测涡流检测适用于检查表面以下一般不大于6~7MM深的缺陷。
涡流检测分放置式线圈法和穿过式线圈法2种。
当试件被放在通有交变电流的线圈附近时,进入试件的交变磁场可在试件中感生出方向与激励磁场相垂直的、呈涡流状流动的电流(涡流),涡流会产生一与激励磁场方向相反的磁场,使线圈中的原磁场有部分减少,从而引起线圈阻抗的变化。
如果铸件表面存在缺陷,则涡流的电特征会发生畸变,从而检测出缺陷的存在,涡流检测的主要缺点是不能直观显示探测出的缺陷大小和形状,一般只能确定出缺陷所在表面位置和深度,另外它对工件表面上小的开口缺陷的检出灵敏度不如渗透检测。
1.3 磁粉检测磁粉检测适合于检测表面缺陷及表面以下数毫米深的缺陷,它需要直流(或交流)磁化设备和磁粉(或磁悬浮液)才能进行检测操作。
铸件外观检验规范标准
铸件外观检验规一、围
本规适用于本厂产品的精铸件、砂型铸件的外观检验。
本规规定了精铸件、砂型铸件的外观检验要求和具体验收准则铸件外观缺陷名称及分类
三、检验要求
铸件不得有明显孔眼(气孔、缩孔、缩松、渣眼、砂眼、铁豆),裂纹(热裂、冷裂、温裂),表面缺陷(粘砂、结疤、夹砂、冷隔),形状缺陷(多肉、浇不足、变形、料口毛刺)等严重影响产品的外观和强度缺陷。
四、具体验收准则
(一)手轮
(二)定位轮
(三)调整块
(四)尾环架
1 气孔
2 多肉
浇不
料口
毛刺
注:如出现其它严重影响产品的外观缺陷,一律不可接收。
铸件中常见缺陷
铸件中常见的主要缺陷有:1.气孔这是金属凝固过程中未能逸出的气体留在金属内部形成的小空洞,其内壁光滑,内含气体,对超声波具有较高的反射率,但是又因为其基本上呈球状或椭球状,亦即为点状缺陷,影响其反射波幅。
钢锭中的气孔经过锻造或轧制后被压扁成面积型缺陷而有利于被超声检测所发现,如图2.2所示。
2.缩孔与疏松铸件或钢锭冷却凝固时,体积要收缩,在最后凝固的部分因为得不到液态金属的补充而会形成空洞状的缺陷。
大而集中的空洞称为缩孔,细小而分散的空隙则称为疏松,它们一般位于钢锭或铸件中心最后凝固的部分,其内壁粗糙,周围多伴有许多杂质和细小的气孔。
由于热胀冷缩的规律,缩孔是必然存在的,只是随加工工艺处理方法不同而有不同的形态、尺寸和位置,当其延伸到铸件或钢锭本体时就成为缺陷。
钢锭在开坯锻造时如果没有把缩孔切除干净而带入锻件中就成为残余缩孔(缩孔残余、残余缩管),如图2.3、2.4、2.5所示。
如果铸件的型模设计不当、浇注工艺不当等,也会在铸件与型模接触的部位产生疏松,如图2.28所示。
断口照片中的黑色部分即为疏松部位,其呈现黑色是因为该工件已经过退火处理,使得疏松部位被氧化和渗入机油所致。
图2.28 W18钢铸件-用作铣刀齿,采用超声纵波垂直入射多次底波衰减法发现的疏松断口照片3.夹渣熔炼过程中的熔渣或熔炉炉体上的耐火材料剥落进入液态金属中,在浇注时被卷入铸件或钢锭本体内,就形成了夹渣缺陷。
夹渣通常不会单一存在,往往呈密集状态或在不同深度上分散存在,它类似体积型缺陷然而又往往有一定线度。
4.夹杂熔炼过程中的反应生成物(如氧化物、硫化物等)-非金属夹杂,如图2.1和2.6,或金属成分中某些成分的添加料未完全熔化而残留下来形成金属夹杂,如高密度、高熔点成分-钨、钼等,如图2.29,也有如图2.24所示钛合金棒材中的纯钛偏析。
(a)(b)(c)(d)(e)图2.29 BT9钛合金锻制饼坯中的钼夹杂:(a)剖面低倍照片;(b)X射线照相底片;(c)C扫描显示(图中四个白色点状显示为同一个缺陷,是使用水浸点聚焦探头以不同灵敏度检测的结果,其他分散细小的白色点状为与该缺陷无关的杂波显示);(d)B扫描显示;(e)3D显示5.偏析铸件或钢锭中的偏析主要指冶炼过程中或金属的熔化过程中因为成分分布不均而形成的成分偏析,有偏析存在的区域其力学性能有别于整个金属基体的力学性能,差异超出允许标准范围就成为缺陷,如图2.23和2.24、2.27所示。
铸造件通用检验标准
铸造件通用检验标准前言铸造件的检验,以图纸为依据,如本标准与图纸不符,以图纸为检验标准。
为了使检验工作走向标准化,加强中间过程质量控制,特制定本检验标准。
1.范围本标准适用于本公司产品压铸件及机加工的检验、验收。
2.引用标准本标准引用了下列标准的条款.本标准发布时,这些引用标准均为有效版本.所有标准将进行修定,因此,鼓励依据本标准达成协议的各方尽可能采用下列标准的最新版本.GB4054—83 金属涂覆层外观分级GB/T 9286—88 色漆和清漆划痕试验GB/T 6739—96 涂膜硬度铅笔测定法GB/T 1733—93 漆膜耐水性测定法GB/T6742—93 漆膜弯曲试验(园柱轴)GB/T1732-93 漆膜耐冲击测定法GB/T1771—91 色漆和清漆耐中性盐污性能的测定GB 5267—85 螺纹紧固件电镀层GB 2792—81 压敏胶带180°剥离强度测定方法GB5935—86 轻工产品金属镀层的孔隙率测试方法GB6463—86 金属和其它无机覆盖层厚度测量方法评述GB10125-97 《人造气氛腐蚀试验盐雾试验》GB5270-86 金属覆盖层结合力及脆性测试GB/T1182-96 形状和位置公差GB4208-2008 外壳防护等级(IP代码)3.目的3.1确保压铸件判定的统一标准;3.2指引QC检验,将所有检验动作标准化。
4.定义磨花/磨痕:产品表面由于摩擦而造成的擦花痕刮伤/划伤:产品表面由于与尖硬物摩擦而造成的刮痕/划痕。
刀痕:因用锉刀或机加工时刀具所留下的痕迹砂带痕:因用砂带打磨所留下的痕迹拉模伤:顺着出模方向遗留在铸件表面上的拉伤痕迹。
凹陷:平滑表面上凹瘪的部分或者成型过程中填充不完整的部位压伤:切边模冲压或机加工时挤压所留下的痕迹碰伤:产品表面,边角受碰撞引起的变形痕迹顶针印:铸件表面由于模具顶针而形成凸出或凹下的痕迹行位印:铸件表面由于模具抽芯/镶块而形成凸出或凹下的痕迹冷隔:金属流对接未完全熔合形成的不规则下陷线性纹路,在外力作用下有发展趋势可能冷纹:肉眼可见与金属基体颜色不一样的纹络,无发展趋势印痕:铸件表面由于模具型腔磕碰挤压而形成凸出或凹下的痕迹流痕:表面上用手感觉得出的局部下陷的纹路,无发展趋势孔穴:气孔,缩孔和夹杂物等缺陷所形成的孔洞针孔:喷涂时表面产生的像针尖一样的小孔缺料/崩缺:外力敲击水口或切边模产生的缺损裂纹/裂痕:模具表面有呈直线状或波浪形的纹路,狭小而长,在外力的左右下有发展趋势龟裂纹:模具型腔表面龟裂形成的产品表面凸起或凹陷痕迹披锋:压铸件在分型面边缘出现的薄片毛边:边缘轮廓上因涂料堆积出现的边缘涂层不整齐现象斑点/麻点:产品表面形成的凸起颗粒或突出性杂物污点/脏点:颜色与正常表面不一致的色斑印迹气泡:涂层覆盖部分气体在烘烤时产生的泡状凸起缺陷桔皮/橘皮:涂层表面呈现出许多半圆状高低不平的桔子皮形状突起,易造成脱落起皮色差/异色:产品与色板的颜色差异露底/掉漆:局部无涂层或涂层缺失/覆盖不平露出底材积漆/溢漆:表面有较多漆团或漆点烧焦/发黄:喷涂烘烤不良造成表面留下的烧痕迹少漆/薄漆:喷涂不到位或涂层流动而造成的厚度不均匀补漆:因涂层损伤而用涂料所作的局部遮盖补救A 级面:指该表面位于工件或组装后经常看到的外表面,或客户日常操作能近距离视角接触,并直接正视关注的产品表面和商标文字和图案丝印表面B 级面:指该表面位于工件或组装背面,或不经常看到但在一定条件下能看到的面,或客户不明显关注的外观表面,或不易被客户直接视角接触正视的外部表面C 级面:指该表面位于工件或组装不可视面,或客户一般不易观察并关注到的内外部表面,或只有在装配过程中才能看到的面,或经其他工件覆盖需拆卸才能被客户直接视角接触正视的内外部表面5.内容5.1外观检验5.2性能检验5.3包装防护标识5.4机加工尺寸选用下表中等级-M级。
铸造缺陷鉴别
二、孔洞类铸造缺陷的鉴别
①、缩孔常见部位示意 图
17
二、孔洞类铸造缺陷的鉴别
②、缩松:铸件断面上 出现的分散而细小的 缩孔。有时借放大镜 才能发现。缩松部位 在水压试验时会渗漏 疏松:形状和缩松 相似,但孔洞更细小, 组织粗大,石墨粗大 等缺陷也可能导致铸 件组织疏松。
18
二、孔洞类铸造缺陷的鉴别
网状或脉状分布的毛 刺称脉纹。
24
三、多肉类缺陷的鉴别
2、抬 箱(抬 型): 铸件在 分型面 部位高 度和宽 度增大
25
三、多肉类缺陷的鉴别
3、涨砂: 铸件内、 外表面局 部胀大, 形成不规 则的瘤状 金属凸起 物。
26
三、多肉类缺陷的鉴别
4、冲砂: 铸件表面 上有粗糙 不规则的 金属瘤状 物,常位 于浇口附 近。在铸 件其它部 位则往往 出现砂眼。
36
六、残缺类缺陷
浇不到: 由于金 属液未 完全充 满型腔 而产生 的铸件 缺肉。
37
六、残缺类缺陷
2、缺 损:在 铸件清 理或搬 运时, 损坏了 铸件的 完整性。
38
七、尺寸、形状和重量差错类缺陷
1、变型: 由于收 缩应力 或型壁 变形、 开裂引 起的铸 件外形 和尺寸 与图纸 不符。
12
二、孔洞类铸造缺陷的鉴别
③、反应气孔:液态金 属的某些成分之间或 液态金属与铸型在界 面上发生化学反应产 生的气孔。 气孔位于铸件表皮 下,有的呈分散的针 状,有的隐藏在铸件 上部并伴有夹渣。
13
铸件气孔实例(1)
14
铸件气孔实例(2)
15
二、孔洞类铸造缺陷的鉴别
2、缩孔:形状为不规 则的封闭或敞露的孔 洞,孔壁粗糙并带有 枝状晶,且晶粒粗大。 常出现在铸件最后凝 固的部位(热节处)
压铸件及表面处理零件外观检验标准
外观检验标准WI/DQ JS -07 A01.目的:规范统一压铸件及表面处理零件外观标准。
2.范围:适用于公司所生产的所有压铸件、表面处理零件产品,客户特别规定的除外。
3.权责:本标准由技术部编制,运用于判定产品外观缺陷及接收标准。
4.定义4.1压铸件、表面处理等级一级:产品外露表面即装饰表面,表面处理为抛光+电镀零件。
如执手、面板产品等。
二级:安装前可见的表面,壳体内表面等。
三级:结构件,非外露表面或零件。
4.2压铸件表面缺陷描述流痕:在表面出现波浪或条纹,原因为流入模具内的熔汤熔融状态不充分。
充填不良:由于模具充填不充分而导致零件部分缺省。
裂缝:由于外力产生微小的裂纹。
原因为铸件凝固收缩,或脱模时包紧力过大。
缩限:材料有像火山口一样的凹陷。
原因为铸件在肉厚处的收缩。
起泡:铸件表面的气孔,有像水泡或肿块凸起,为铸件开模或热处理时表面气体膨胀。
积炭:熔汤熔着模具表面,使得铸件表面产生缺肉或粗糙的现象。
模裂纹:模具表面有热裂纹的伤痕时使得铸件表面产生同样形状的伤痕。
冲蚀:熔汤高温高速冲蚀模具,使得铸件产生与模具相同的伤痕。
脱皮:铸件表面部分剥离的现象,最易发生在表面光滑的铸件上。
针孔:氢气导致针状细小的砂孔,因除气不彻底产生的内部缺陷。
擦伤:由于磨损使表面不理想,有比较长的痕迹。
缩孔:因熔汤凝固收缩而产生的内部砂孔。
气孔:因卷入气体或空气导致铸件内部存在的砂孔。
玷污:其它材料或其它材料的加入使表面变色,如机器润滑油,离型剂等。
隔层:铸件层剥皮。
变形:产品收缩应力或顶出变形。
凹陷:由于不同的材料的结合度和收缩率不同,引起表面凹陷。
拉伤:铸件表面的磨损或磨擦使得表面不理想。
腐蚀:在材质表面有不连续的痕迹,由氧化引起。
凹痕:由于挤压或撞击而产生的凹坑。
毛刺:在孔或边有粗糙和锋利的棱角(相对于材料的厚度和凸起的高度)。
冷隔:在两处或更多的材料融合点有线条(并且终止了结合或流动)分模线:在模具的两块或镶块之间有一条明显的线,例如:如果模具安装不当,在模具的主要部分能明显的看到明显的看到微小的凸起的线条。
铸件外观检验规范标准
铸件外观检验规
一、围
本规适用于本厂产品的精铸件、砂型铸件的外观检验。
本规规定了精铸件、砂型铸件的外观检验要求和具体验收准则。
二、铸件外观缺陷名称及分类
铸件不得有明显孔眼(气孔、缩孔、缩松、渣眼、砂眼、铁豆),裂纹(热裂、冷裂、温裂),表面缺陷(粘砂、结疤、夹砂、冷隔),形状缺陷(多肉、浇不足、变形、料口毛刺)等严重影响产品的外观和强度缺陷。
四、具体验收准则
(一)手轮
(二)定位轮
(三)调整块
(四)尾环架
1 气孔
2 多肉
3 浇不足
4 料口毛刺
注:如出现其它严重影响产品的外观缺陷,一律不可接收。
目视检测工艺规程
标题目视检测工艺规程1 适用范围本工艺规程适用于焊接焊缝外观检测作业。
2 引用标准NB/T47013-20123 目视检测指导3.1 综述外观检验主要检查以下四个方面:焊件尺寸的精确度;焊缝尺寸和外形要求的一致性;焊件外观在表面粗糙度、焊缝飞溅和清洁度方面的可接受性;存在的表面缺陷,如收弧口未填满、麻点、咬边、焊瘤和裂纹。
3.2 人员资格焊缝外观检验和最终结果评定应由具备资格和能力的人员进行。
3.3 检查条件和设备3.3.1 检查条件3.3.1.1 表面光照度至少应达到500LX,最好在1000LX以上。
可以用手电筒作为辅助光源,可以从垂直和水平的多个方向照射。
3.3.1.2 直接目视检验时,眼睛和检测表面之间的距离不得大于600毫米,相对于检测表面的检测视角必须大于30度。
见图1。
图13.3.1.3 间接目视检验时,可借助其他工具。
主要是2-5倍的低倍放大镜。
3.4 检查设备3.4.1 焊接检验尺1。
产品图示及使用说明如图2所示。
标题目视检测工艺规程图23.4.2 焊接检验尺2 (WGU-7M)。
产品图示及使用说明如图3。
图33.4.3 焊接检验尺3(自制焊接尺)。
用途:用于检验焊趾角度是否满足要求。
4.1试件的准备4.1.1目视检测的必须条件4.1.1.1 光源在目视检查中,光照是必要条件之一,合适的照明条件是保证目视检测结果正确的前提。
由于人眼对背景光的限制和敏感程度不同,不同的光照将产生不同的效果,所以根据检测对象和环境,制定出具体的照度范围是必要的。
一般检测时,至少要有500勒克斯的光照强度,而用于检测或研究一些小的异常区时,则至少要有1000勒克斯的光照强度。
光源可以是自然光源(日光),也可以是人工光源,可视具体情况进行选择。
4.1.1.2 目视检测的分辨率目视检测使用的基本工具是人的眼睛,肉眼能看清什么,这是一个复杂的题目。
影响目视的因素包括照在被检物体上的光线波长或颜色,光强以及物体所处现场的背景颜色和结构等。
目视检测规范
目视检测规范1.范围本规范规定了阀门零部件铸件、锻件、焊缝及非金属密封件和阀门整机的目视检测流程。
2.引用标准API 6D《管线和管道阀门》API 6A《井口装置和采油树设备规范》ASME IX《焊接和钎焊评定标准》MSS SP 55《阀门、法兰、管件和其他管道部件用铸钢件质量标准-表面缺陷评定的目视检验方法》ASME B16.34《法兰、螺纹和焊连接的阀门》ISO 9712《无损检测人员的资格鉴定与认证》EN473《NDT人员的资格及资格认定一般原则》ASNT SNT-TC-IA《无损检测人员资格鉴定和认证》ISO 2859-1《计数检查的抽样程序-第1部分:用合格质量标准(AQL)指标进行批检验的抽样计划》3.目视检测条件1)目视检测人员必须按ISO 9712或EN473或ASNT SNT-TC-IA的要求,每年进行一次视力检查。
2)每一个铸件或锻件零部件都应该进行目视检测。
3)零部件的修理和再修理,所有易于接近表面均应进行目视检测。
4)焊缝应在热处理后和对焊缝有加工要求的在机加工后进行100%目视检测。
5)焊接件焊接完成待焊缝冷却后,清除表面焊渣和药皮。
6)每次目视检查均形成记录文件。
4.铸件的目视检测流程1)名词解释热烈、裂纹:铸钢件出现的线状裂纹。
缩孔:在铸钢件的浇、冒口切割处,存在的形状极不规则,孔壁粗糙并带有枝状结晶的孔洞砂(渣)眼:铸钢件表面带有沙粒(渣子)的孔洞。
气孔:铸钢件表面上大小不等、壁孔壁较光滑呈梨形、圆形、椭圆形的孔洞。
脊状突起:铸钢件表面上呈刺(脊)状的金属凸起物。
形状及不规则,呈网状或脉状分布的毛刺称脉纹。
鼠尾:铸钢件表面上较浅(小于5mm)的带有锐角的凹痕。
皱纹、冷隔:铸钢件上出现的一种未完全融合,边缘呈圆角状的穿透或不穿透的缝隙。
在表皮上一般带有较深的网状沟槽称为皱皮。
割疤:铸钢件在清理、切割浇冒口的过程中,由于修整不当而留下的疤痕。
结疤:轻度的表面凸起缺陷,通常为金属表面多出的一个掺杂着型砂的多孔的薄壳。
铸件常见缺陷和处理汇总
铸件常见缺陷、修补及检验一、常见缺陷1.缺陷的分类铸件常见缺陷分为孔眼、裂纹、表面缺陷、形状及尺寸和重量不合格、成份及组织和性能不合格五大类。
(注:主要介绍铸钢件容易造成裂纹的缺陷)1.1孔眼类缺陷孔眼类缺陷包括气孔、缩孔、缩松、渣眼、砂眼、铁豆。
1.1.1气孔:别名气眼,气泡、由气体原因造成的孔洞。
铸件气孔的特征是:一般是园形或不规则的孔眼,孔眼内表面光滑,颜色为白色或带一层旧暗色。
(如照片)气孔照片1产生的原因是:来源于气体,炉料潮湿或绣蚀、表面不干净、炉气中水蒸气等气体、炉体及浇包等修后未烘干、型腔内的气体、浇注系统不当,浇铸时卷入气体、铸型或泥芯透气性差等。
1.1.2缩孔缩孔别名缩眼,由收缩造成的孔洞。
缩孔的特征是:形状不规则,孔内粗糙不平、晶粒粗大。
产生的原因是:金属在液体及凝固期间产生收缩引起的,主要有以下几点:铸件结构设计不合理,浇铸系统不适当,冷铁的大小、数量、位置不符实际、铁水化学成份不符合要求,如含磷过高等。
浇注温度过高浇注速度过快等。
1.1.3缩松缩松别名疏松、针孔蜂窝、由收缩耐造成的小而多的孔洞。
缩松的特征是:微小而不连贯的孔,晶粒粗大、各晶粒间存在明显的网状孔眼,水压试验时渗水。
(如照片2)缩松照片2产生的原因同以上缩孔。
1.1.4渣眼渣眼别名夹渣、包渣、脏眼、铁水温度不高、浇注挡渣不当造成。
渣眼的特征是:孔眼形状不规则,不光滑、里面全部或局部充塞着渣。
(如照片3)渣眼照片3产生的原因是:铁水纯净度差、除渣不净、浇注时挡渣不好,浇注系统挡渣作用差、浇注时浇口未充满或断流。
1.1.5砂眼砂眼是夹着砂子的砂眼。
砂眼的特征是:孔眼不规则,孔眼内充塞着型砂或芯砂。
产生的原因是:合箱时型砂损坏脱落,型腔内的散砂或砂块未清除干净、型砂紧实度差、浇注时冲坏型芯、浇注系统设计不当、型芯表面涂料不好等。
1.1.6铁豆铁豆是夹着铁珠的孔眼、别名铁珠、豆眼、铁豆砂眼等。
铁豆的特征是:孔眼比较规则、孔眼内包含着金属小珠、常发生在铸铁件上。
铸件的表面和内部质量检测方法
铸件的表面和内部质量检测方法(图)铸件的检测主要包括尺寸检查、外观和表面的目视检查、化学成分分析和力学性能试验,对于要求比较重要或铸造工艺上容易产生问题的铸件,还需要进行无损检测工作,可用于球墨铸铁件质量检测的无损检测技术包括液体渗透检测、磁粉检测、涡流检测、射线检测、超声检测及振动检测等。
1 铸件表面及近表面缺陷的检测1.1液体渗透检测液体渗透检测用来检查铸件表面上的各种开口缺陷,如表面裂纹、表面针孔等肉眼难以发现的缺陷。
常用的渗透检测是着色检测,它是将具有高渗透能力的有色(一般为红色)液体(渗透剂)浸湿或喷洒在铸件表面上,渗透剂渗入到开口缺陷里面,快速擦去表面渗透液层,再将易干的显示剂(也叫显像剂)喷洒到铸件表面上,待将残留在开口缺陷中的渗透剂吸出来后,显示剂就被染色,从而可以反映出缺陷的形状、大小和分布情况。
需要指出的是,渗透检测的精确度随被检材料表面粗糙度增加而降低,即表面越光检测效果越好,磨床磨光的表面检测精确度最高,甚至可以检测出晶间裂纹。
除着色检测外,荧光渗透检测也是常用的液体渗透检测方法,它需要配置紫外光灯进行照射观察,检测灵敏度比着色检测高。
1.2涡流检测涡流检测适用于检查表面以下一般不大于6~7mm深的缺陷。
涡流检测分放置式线圈法和穿过式线圈法2种。
:当试件被放在通有交变电流的线圈附近时,进入试件的交变磁场可在试件中感生出方向与激励磁场相垂直的、呈涡流状流动的电流(涡流),涡流会产生一与激励磁场方向相反的磁场,使线圈中的原磁场有部分减少,从而引起线圈阻抗的变化。
如果铸件表面存在缺陷,则涡流的电特征会发生畸变,从而检测出缺陷的存在, 涡流检测的主要缺点是不能直观显示探测出的缺陷大小和形状,一般只能确定出缺陷所在表面位置和深度,另外它对工件表面上小的开口缺陷的检出灵敏度不如渗透检测。
1.3磁粉检测磁粉检测适合于检测表面缺陷及表面以下数毫米深的缺陷,它需要直流(或交流)磁化设备和磁粉(或磁悬浮液)才能进行检测操作。
铸件的表面和内部质量检测方法
铸件的表面和内部质量检测方法(图)铸件的检测主要包括尺寸检查、外观和表面的目视检查、化学成分分析和力学性能试验,对于要求比较重要或铸造工艺上容易产生问题的铸件,还需要进行无损检测工作,可用于球墨铸铁件质量检测的无损检测技术包括液体渗透检测、磁粉检测、涡流检测、射线检测、超声检测及振动检测等。
1 铸件表面及近表面缺陷的检测1.1液体渗透检测液体渗透检测用来检查铸件表面上的各种开口缺陷,如表面裂纹、表面针孔等肉眼难以发现的缺陷。
常用的渗透检测是着色检测,它是将具有高渗透能力的有色(一般为红色)液体(渗透剂)浸湿或喷洒在铸件表面上,渗透剂渗入到开口缺陷里面,快速擦去表面渗透液层,再将易干的显示剂(也叫显像剂)喷洒到铸件表面上,待将残留在开口缺陷中的渗透剂吸出来后,显示剂就被染色,从而可以反映出缺陷的形状、大小和分布情况。
需要指出的是,渗透检测的精确度随被检材料表面粗糙度增加而降低,即表面越光检测效果越好,磨床磨光的表面检测精确度最高,甚至可以检测出晶间裂纹。
除着色检测外,荧光渗透检测也是常用的液体渗透检测方法,它需要配置紫外光灯进行照射观察,检测灵敏度比着色检测高。
1.2涡流检测涡流检测适用于检查表面以下一般不大于6~7mm深的缺陷。
涡流检测分放置式线圈法和穿过式线圈法2种。
:当试件被放在通有交变电流的线圈附近时,进入试件的交变磁场可在试件中感生出方向与激励磁场相垂直的、呈涡流状流动的电流(涡流),涡流会产生一与激励磁场方向相反的磁场,使线圈中的原磁场有部分减少,从而引起线圈阻抗的变化。
如果铸件表面存在缺陷,则涡流的电特征会发生畸变,从而检测出缺陷的存在, 涡流检测的主要缺点是不能直观显示探测出的缺陷大小和形状,一般只能确定出缺陷所在表面位置和深度,另外它对工件表面上小的开口缺陷的检出灵敏度不如渗透检测。
1.3磁粉检测磁粉检测适合于检测表面缺陷及表面以下数毫米深的缺陷,它需要直流(或交流)磁化设备和磁粉(或磁悬浮液)才能进行检测操作。
铸件检验作业指导书
铸件检验作业指导书一、前言铸件作为机械制造业的主要零部件之一,具有复杂的形状和结构,由于生产和加工过程中存在很多因素的干扰,因此检验工作显得尤为重要。
这份作业指导书主要介绍铸件检验的相关知识和操作流程,帮助检验人员对铸件的质量进行评估和判断。
二、检验方案制定1. 确定检验标准铸件的质量标准通常由生产厂家或客户双方商定,符合国家行业标准或相关产品标准即可。
如国家标准《铸件缺陷评定标准》GB/T6414-1999等。
2. 确定检验参数检验参数应根据铸件的材质、形状、大小、重量和尺寸等因素来确定,包括检验方法、检验依据、检验标准等。
3. 确定检验方向因铸件结构和形状的特殊性,需要加强对不同角度的检验,尤其是对各种不便于检查的部位要加强检验。
三、检验对象及检验方法1. 检验对象常见的铸件检验对象包括铸钢件、铸铁件、铜合金、铝合金等,其中铸铁件的检验最为普遍。
2. 检验方法铸件的检验主要包括目视检查、放射性检测、磁粉检测、超声波检测、射线检测、渗透探伤等。
四、铸件检验流程1. 目视检查目视检查是最基本的检验方法,检验人员应细致地观察铸件外表面和截面是否有裂纹、气孔、夹杂、错边等缺陷,以及尺寸是否符合要求。
2. 放射性检测放射性检测一般用于较厚的铸铁件、钢铸件的质量控制工作,可检测出难以被其它检测方法发现的缺陷,如内部气泡、异物、缺陷等。
3. 磁粉检测磁粉检测可检测出铁磁性材料中发生的表层和近表层的裂纹、气孔等缺陷。
4. 超声波检测超声波检测可检验出铸铁件、铜合金、铝合金的内部缺陷,尤其是铝材料中的小气孔、夹渣和裂纹等。
五、检验报告检验报告是检验的结果,应准确地反映铸件的质量状况。
检验报告应包括检验结论、检验缺陷、标准引用、检验方法及检验数据等。
其中缺陷的判定应根据国家标准确定。
六、究责检验人员应严格执行检验方案,遵守检验规程和操作规范,严格按照检验标准执行检验任务,在检验过程中要注重细节和注意安全,做好检验记录,确保铸件的质量。
铸件表面质量评定准则
本标准规定了铸件表面质量评定的有关技术要求及评定方法;本标准适应于本厂所需铸件的表面质量评定。
1.技术要求铸件的铸造表面粗糙度应符合产品技术要求,当无明确技术要求时,按Rz8000验收;铸件的几何形状及尺寸应符合产品图纸及订货协议的要求;清理后的铸件外表面一般不允许有粘砂、氧化皮、结疤和影响零件装配及外表美观的缺陷;除特殊情况外,铸件表面允许存留浇冒口、毛刺、飞边、胀砂、多肉残余量,见表1:2.评定方法铸造表面粗糙度评定方法(GB15056-94)2.1.1本标准适用于采用GB6060.1规定的铸造表面粗糙度比较样块对铸件铸造表面粗糙度进行评定,对铸件铸造表面缺陷(如粘砂、结疤等)不列为被检表面;2.1.2铸件表面粗糙度参数等级:铸件表面粗糙度参数数值等级应符合GB6060.1规定。
2.1.3铸造表面粗糙度比较样块的比对方法:2.1.3.1以符合GB6060.1规定的铸造表面粗糙度比较样块,对被检铸件的铸造表面用视觉或触觉的方法进行比较;2.1.3.2试验前被检的铸造表面必须清理干净,样块表面和被检铸造表面都不得有锈蚀;2.1.3.3视觉比对时,应在光线充足的场地用肉眼直观比对,也可用放大镜观察比对;2.1.3.4触觉比对时,应用手指在被检铸造表面和相近2个参数等级比较样块表面触摸,获得同样感觉的那个等级,即为被检铸造表面粗糙度数值;2.1.3.5用样块比对时,应选用适于铸造合金材质和工艺方法的样块进行比对。
2.1.4铸造表面粗糙度等级的评定:2.1.4.1对被检铸造表面均匀划分若干个检测单元,用样块对检测单元逐一进行比对;2.1.4.2划分检测单元的数目应符合表2的规定,每个检测单元面积不得小于样块的面积;2.1.4.3检测单元的表面粗糙度参数值等级应以该表面内表面粗糙度参数值最大的等级评定。
当表面粗糙度介于比较样块两级参数值之间时,以数值大的等级评定。
2.1.4.4将所有检测单元的表面粗糙度参数值从小到大加以整理,以最小等级起的80%检测单元数中的最大数值等级定为该铸造表面粗糙度等级,但其余20%检测单元表面粗糙度参数等级比所定等级不得大于一个等级以上;2.1.4.5当20%检测单元的表面粗糙度等级比80%检测单元表面粗糙度等级大二个或二个等级以上时。
铸件的八个超声波探伤检测方法
铸件的⼋个超声波探伤检测⽅法铸件的⼋个超声波探伤检测⽅法根据铸件的不同情况,可选择以下相应的检测技术:(1)纵波直探头法缺陷反射波法对于厚度较⼤,表⾯较光滑的铸件,可采⽤纵波直探头,通过观察⼀次底⾯回波之前是否出现缺陷信号进⾏检测。
(2)纵波AVG法⽤AVG曲线可实时读取缺陷当量直径和当量DB。
(3)纵波双晶探头法要检测厚度⼩于45mm或较厚铸件近表⾯缺陷,可采⽤双晶探头;配合使⽤下⾯的ZGS试块(4)纵波单晶斜探头法如需检测裂纹,或由于形状和缺陷取向原因⽆法采⽤纵波检测的部位,可采⽤斜探头检测。
(5)⼆次缺陷反射波法对于厚度不⼤,表⾯较粗糙的铸件,可采⽤纵波直探头检测,通过观察⼀次底⾯和⼆次底⾯回波之间是否出现缺陷信号进⾏判断。
(6)多次回波法多次回波法对于厚度较薄,材质均匀,检测⾯与底⾯平⾏的铸件,可采⽤纵波直(7)分层检测法对厚度特⼤的铸件,如果⽤缺陷回波法检测,通常检测灵敏度需按最⼤厚度调整,这就使得仪器增益必须设置的很⼤,根据超声波的衰减特性,这样势必造成靠近表⾯位置的信号幅度过⾼,散射引起的杂波信号幅度也过⾼。
如果该部位存在缺陷,则缺陷信号将混于杂波信号中,⽆法分辨。
因此对于厚度特别⼤的铸件,⼀般采⽤分层法检测,即检测时将铸件厚度分为若⼲层,每⼀层分别采⽤该层的深度调整灵敏度进⾏检测,如下图所⽰。
对于近表⾯层,由于该层厚度⼩,声衰减较⼩,需要的仪器增益相对较低,杂波幅度也可相应下降,采⽤⼀般全厚度检测的缺陷回波法⽆法分辨的缺陷,此时有可能被观测到。
这样既满⾜了深层缺陷检测灵敏度要求,也解决了较⼩厚度部位的缺陷检测问题。
可见,分层检测法是解决铸件检测时杂波⼲扰的⼀种有效措施。
(8)纵波DAC法在实际检测时,利⽤仪器的距离幅度补偿(DAC)功能,不分层检测,也可达到与分层检测同样的效果。
注意:铸钢件表⾯粗糙,耦合条件差,检测前应对其表⾯进⾏打磨清理,要求粗植度R不⼤于12.5um。
铸钢件检测时常⽤黏度较⼤的耦合剂,如浆糊、黄油、⽢油、⽔玻璃等。
铸件外观质量验收规程
铸件表面质量验收规程编制:审核:批准目录1、目的 (2)2、适用范围 (3)3、引用标准 (3)4、验收方案及检验频次 (3)5、验收项目及标准 (3)5.1铸件表面缺陷的检验 (3)5.1.1表面缺陷检验一般要求 (3)5.1.2铸件外观质量等级 (4)5.1.3检验方法 (5)5.2 铸件尺寸的检验 (5)5.2.1铸件毛坯尺寸公差 (5)5.2.6铸件尺寸检验的规范 (8)5.2.7铸件尺寸的检验方法 (9)5.3 铸件重量检验 (9)5.4 表面粗糙度检验 (9)5.5 表面清理质量检验 (11)6、其他验收要求 (11)1、目的为加强本公司对外协铸件的质量控制,保证本公司产品的外观质量及加工性能,特制订铸件表面质量验收规程。
2、适用范围本规范适用于公司所有采用砂型铸造,黑色和有色合金铸件的外观质量验收,包括表面缺陷、尺寸精度、重量偏差、表面粗糙度的验收。
3、引用标准(1)JB/T 5000.4-2007重型机械通用技术条件第4部分铸铁件(2)JB/T 5000.6-2007重型机械通用技术条件第6部分铸钢件(3)GB6414-1999 铸件尺寸公差与机械加工余量(4)GB/T6060.1-1997 表面粗糙度比较样块。
(5)GB/T15056-1994 铸造表面粗糙度评定方法。
(6) Q/XC5101-2001 铸铁件通用技术条件。
(7) Q/XC512-90 有色合金通用技术条件。
4、验收方案及检验频次4.1表面缺陷项目为全检项,样件首检和批量供货,均要进行逐个检验,检验频次为100%。
4.2关键尺寸实行100%全检,非关键尺寸抽检10%。
4.4重量偏差与表面粗糙度的验收根据具体技术要求执行,无要求时可不做检验。
5、验收项目及标准铸件的表面质量主要包括铸件的表面缺陷、尺寸精度、重量偏差、形状偏差、表面粗糙度和铸件表面清理质量等。
5.1铸件表面缺陷的检验5.1.1表面缺陷检验一般要求(1)铸件非加工表面上的浇冒口应尽可能清理得与铸件表面同样平整,加工面上的浇冒口残留量应符合技术要求,若无要求,则按表8执行。
铸件磁粉探伤
铸件磁粉探伤是一种重要的无损检测技术,广泛应用于铸造行业,用于检测铸件中的表面和近表面缺陷。
这种技术基于磁粉在磁场作用下的聚集原理,通过磁化铸件并施加磁粉,使得缺陷处形成可见的磁粉堆积,从而实现对缺陷的检测和定位。
铸件磁粉探伤的基本原理是,当铸件被磁化时,缺陷处会形成漏磁场。
这个漏磁场会吸引磁粉,使得磁粉在缺陷处聚集,形成可见的磁痕。
通过观察和分析磁痕的形状、大小和分布,可以判断缺陷的性质、位置和严重程度。
铸件磁粉探伤的优点在于其操作简单、成本低廉、灵敏度高,能够检测出微小的表面和近表面缺陷。
此外,该技术对于铁磁性材料的检测效果尤为显著,因此在铸造行业中得到了广泛应用。
在进行铸件磁粉探伤时,需要注意以下几点:首先,磁化方法的选择应根据铸件的形状、尺寸和材质来确定,以确保磁化效果均匀且充分。
其次,磁粉的选择也很关键,应根据铸件的表面状况和缺陷类型来选择合适的磁粉类型和粒度。
最后,在观察和分析磁痕时,需要具备丰富的经验和专业知识,以确保准确判断缺陷的性质和位置。
总之,铸件磁粉探伤是一种重要的无损检测技术,对于确保铸件质量和提高生产效率具有重要意义。
在实际应用中,需要选择合适的磁化方法和磁粉类型,并结合丰富的经验和专业知识来准确判断缺陷的性质和位置。
随着科技的进步和铸造行业的发展,铸件磁粉探伤技术也将不断完善和优化,为铸造行业的可持续发展提供有力支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料工程学院材料成型教研室
材料工程学院材料成型教研室
铝合金铸件铸造技术
2.1.5 铸件内腔质量检验
铸件内腔质量检验项目包括:铸件的内腔形状和尺寸,铸造表面
粗糙度,各种铸造表面缺陷,铸件内腔清洁度等。
铸件内腔质量的检验方法基本上与前面相同。
测量工具应增加照明灯具、工业内窥镜、工业电视、内径量具、
测厚仪、深度尺、天平、尼龙刷等。
铝合金铸件铸造技术Fra bibliotek铸件外观检验 2.1.1铸件形状和尺寸检验 检查毛坯铸件的实际尺寸是否落在规定的毛坯铸件的尺寸公差 内。 检验对象:试生产铸件的首件;成批或大量生产铸件的随机抽样 铸件;单件或小批量生产的铸件。对在流水线上大批量生产的铸件 尺寸,进行几个控制性尺寸检测。 检验方法:划线检测是最常用的铸件尺寸检测方法,除此之外, 还有三坐标测量仪法、超声波测量法、解剖和着色纸印检测法。
材料工程学院材料成型教研室
铝合金铸件铸造技术
2.1.2 铸件表面粗糙度的评定
检验方法:铸造表面粗糙度用未经机械加工的毛坯铸件的铸造 表面轮廓算术平均偏差进行分级,并用全国铸造标准化技术委员会 监制的铸造表面粗糙度比较样块进行评定。 应按国家标准GB/T15056-1994《铸造表面粗糙度 评定方法》 的规定进行。 用比较样块评定毛坯铸件的表面粗糙度,不适用于浇道、冒口、
材料工程学院材料成型教研室
铝合金铸件铸造技术
铸件表面和近表面缺陷的目视检验
用肉眼或借助于低倍放大镜检查暴露在铸件表面的宏观缺陷,同时 检查铸件的生产标记是否正确齐全。 检查前,铸件生产厂应事先制定或与用户商定检查项目的合格品 标准。 检查时,应判定铸件对于检查项目是否合格,区分合格品、返修 品和废品。 目视外观检验可检查的缺陷有:飞翅、毛刺、裂纹、粘砂、浇不 到、错芯、错型、气孔、缩孔、砂眼等。
补贴的残余表面;铸件的表面缺陷应按缺陷处理,不列入被检表面。
材料工程学院材料成型教研室
铝合金铸件铸造技术
2.1.3 铸件浇冒口残余量的检验 铸件浇冒口残余量一般由供需双方商定,或参照相关的铸件标准,
原则上应与毛坯铸件表面齐平。铝合金铸件非加工面的浇冒口残余
量应与铸件齐平,加工面的浇冒口残余量应符合国家标准GB/T9438 -1999《铝合金铸件》的规定,通常应比铸钢件和铸铁件严格。 对铸件浇冒口残余量检验不合格的铸件应进行打磨或修补。修补 方法有焊补、粘补、腻子填补等,根据铸件质量要求,由供需双方 商定。