初一数学上册《4.4平面图形》

合集下载

华师大版数学七年级上册《4.4平面图形》说课稿

华师大版数学七年级上册《4.4平面图形》说课稿

华师大版数学七年级上册《4.4 平面图形》说课稿一. 教材分析华师大版数学七年级上册《4.4 平面图形》这一节的内容,主要围绕着平面图形的性质和判定进行展开。

本节课的内容是学生学习了平面几何的基础知识之后,进一步深入研究平面图形的特点和规律。

通过本节课的学习,学生能够掌握平面图形的性质和判定方法,提高解决几何问题的能力。

教材从简单的图形入手,逐步引出平面图形的性质和判定定理。

例如,通过观察和操作,学生可以发现平行四边形的性质,掌握平行四边形的判定方法。

接着,教材又引导学生探究矩形、菱形、正方形的性质和判定,使学生能够灵活运用这些性质和判定方法解决实际问题。

此外,教材还通过丰富的例题和练习题,帮助学生巩固所学知识,提高解题能力。

学生在学习过程中,可以通过自主探究、合作交流的方式,深入理解平面图形的性质和判定,培养逻辑思维能力和创新意识。

二. 学情分析七年级的学生已经具备了一定的几何基础,对于一些基本的平面图形有一定的了解。

但是,他们对平面图形的性质和判定方法的认识还比较模糊,需要通过具体的学习和实践来进一步掌握。

此外,学生在学习过程中可能存在对几何图形直观感知不足、逻辑思维能力有待提高等问题。

针对学生的实际情况,教师在教学过程中要注重启发引导,让学生通过观察、操作、思考、交流等方式,自主探索平面图形的性质和判定方法。

同时,要关注学生的个体差异,给予不同程度的学生个性化的指导,使他们在原有基础上得到提高。

三. 说教学目标1.知识与技能目标:使学生掌握平行四边形、矩形、菱形、正方形的性质和判定方法,能够灵活运用这些性质和判定方法解决实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生的逻辑思维能力和创新意识。

3.情感态度与价值观目标:激发学生学习几何的兴趣,培养他们克服困难、解决问题的信心和勇气。

四. 说教学重难点1.教学重点:平行四边形、矩形、菱形、正方形的性质和判定方法。

2.教学难点:对平面图形性质和判定方法的理解和运用。

北师大版七年级数学上册《第四章基本平面图形4.4角的比较》说课稿

北师大版七年级数学上册《第四章基本平面图形4.4角的比较》说课稿

北师大版七年级数学上册《第四章基本平面图形4.4角的比较》说课稿一. 教材分析《北师大版七年级数学上册》第四章主要介绍基本平面图形,而4.4节“角的比较”是这一章的重要内容。

本节内容通过探讨角的大小比较,让学生进一步理解角的概念,掌握角的度量方法,并能够运用角的性质解决实际问题。

教材通过丰富的实例和练习,引导学生探究角的大小与边长、开口大小之间的关系,培养学生的观察能力、分析能力和动手能力。

二. 学情分析学生在学习本节内容前,已经掌握了角的概念、度的概念以及角的度量方法。

但学生对角的大小比较可能还比较陌生,需要通过实例和练习来进一步理解和掌握。

此外,学生可能对角的度量工具(量角器)的使用还不够熟练,需要在教学中加强练习。

三. 说教学目标1.知识与技能目标:让学生理解角的大小比较方法,掌握用度量工具(量角器)比较角的大小。

2.过程与方法目标:通过观察、实验、探究等方法,让学生掌握角的大小与边长、开口大小之间的关系。

3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生的观察能力、分析能力和动手能力。

四. 说教学重难点1.教学重点:角的大小比较方法,用度量工具(量角器)比较角的大小。

2.教学难点:角的大小与边长、开口大小之间的关系。

五. 说教学方法与手段1.教学方法:采用观察、实验、探究等教学方法,引导学生主动参与,积极思考。

2.教学手段:使用多媒体课件、实物模型、量角器等教学工具,帮助学生直观地理解角的大小比较。

六. 说教学过程1.导入:通过生活实例引入角的大小比较,激发学生的学习兴趣。

2.新课导入:介绍角的大小比较方法,引导学生观察、实验,探究角的大小与边长、开口大小之间的关系。

3.课堂讲解:讲解角的大小比较方法,引导学生通过度量工具(量角器)进行角的大小的比较。

4.练习巩固:设计不同类型的练习题,让学生运用所学知识解决问题。

5.课堂小结:总结本节课的主要内容,强调角的大小比较方法和注意事项。

北师大版七年级数学上册《基本平面图形——角的比较》教学PPT课件(4篇)

北师大版七年级数学上册《基本平面图形——角的比较》教学PPT课件(4篇)

角的大小的比较方法: (1)如果已知角是锐角、直角、钝角、平角、周角几类中不同 类的角,就可以直接由它们之间的关系比较出它们的大小; (2)可以通过量角器进行量度来比较角的大小; (3)可以根据各角在同一图中的位置关系比较角的大小.
角的平分线
活动:大家在练习本上画一个角,然后把角的两边 对折,展开以后你会发现折痕把角分成了两个角, 这两个角有什么关系呢,它们又和原来的角有着怎 样的等量关系?
4.4 角的比较
知识回顾 比较两条线段的长短的方法? 1、度量法:用刻度尺测量线段的长度的方法。 2、叠合法:将其中一条线段移到另一条线段 上作比较。
猜想:比较两个角的大小方法?
获取新知
问题:有一天学生张虎和王鹏各带了一把折扇(如图),下面是他们的 一段对话:
张:我的折扇大一些,所以我的折扇的角也大一些.
2
2
2
(2)结合(1)的结论可求出∠DOE的度数,从而求出∠BOE的度数
解:(1)因为OC平分∠AOD,
1 所以∠DOC= 2 ∠AOD.
因为OE平分∠BOD,
1
所以∠DOE= 2∠BOD.
所以∠COE=∠DOC+∠DOE=
1
(∠AOD+∠BOD)
= 1 ∠AOB= 1 ×130°=65°.
2
2
2
2. 已知,如图,∠AOB = 130°,∠AOD = 30°,∠BOC = 70° ,问:OC 是∠AOB 的平 分线吗?OD 是∠AOC 的平分线吗?
解: OC不是∠AOB 的平分线 OD是∠AOC 的平分线 B
C D
A O
3. 如图,直线 m 外有一定点 O,A 是 m 上的 一个动点,当点 A 从左向右运动时,观察∠α 和 ∠β 是如何变化的,∠α 和 ∠β 之间有关系吗?

北师大版七年级数学上册第四章《基本平面图形》教案

北师大版七年级数学上册第四章《基本平面图形》教案

第四章基本平面图形1 线段、射线、直线1.了解线段的描述性概念,了解射线、直线的概念,了解线段、射线、直线之间的区别与联系.2.掌握线段、射线、直线的表示方法.3.通过操作活动了解两点确定一条直线等事实,积累操作活动经验,培养学生的观察能力.4.能使学生积极参与到数学活动中来,感受图形世界的丰富多彩,激发学生的学习兴趣.【教学重点】线段、射线与直线的概念及表示方法【教学难点】直线的性质的发现、理解及应用.一、情境导入,初步认识线段、射线、直线对大家而言并不陌生,在小学里我们对它已有了了解.现在我们继续学习线段、射线,直线的相关知识.【教学说明】学生通过回忆小学里学过的知识,加深印象,激发学生探求新知的欲望.二、思考探究,获取新知1.线段、射线、直线的概念问题1生活中,有哪些物体可以近似地看做线段、射线,直线?【教学说明】学生很容易从生活中找到线段、射线、直线的例子,通过观察,加深对线段、射线、直线概念的理解.教材第106页“议一议”上面的内容.【归纳总结】线段、射线都是直线的一部分,射线、直线不可度量,线段可以度量.2.线段、射线、直线的表示方法.问题2线段、射线、直线该怎样表示呢?【教学说明】学生通过观察,了解并掌握线段、射线、直线的表示方法.我们可以用以下方式分别表示线段、射线、直线:【归纳结论】线段、射线、直线都可以用两个大写字母表示,也可以用一个小写字母表示.注意:表示射线时,端点字母必须写在前面.3.直线的性质问题3教材第107页上面的“做一做”.【教学说明】学生通过动手操作,进一步掌握直线的性质,体会数学与生活的密切联系,激发学生的积极性和主动性.【归纳结论】经过两点有且只有一条直线.这一事实可以简述为:两点确定一条直线.4.几何画图问题4按下列语句画图:(1)点P不在直线l上;(2)线段a、b相交于点P;(3)直线a经过点A,而不经过点B;(4)直线l和线段a、b分别交于A、B两点.【教学说明】学生通过动手操作,理解相应几何语句的意义,同时能结合语句画出正确的几何图形.【归纳结论】规范画图是学好几何的基础,要养成规范画图,画图完毕即标上表示点或线的字母的良好习惯.三、运用新知,深化理解1.下列语句错误的是()A.延长线段ABB.延长射线ABC.直线m和直线n相交于P点D.直线AB向两方无限延伸,所以不能延长直线AB2.举出一个能反映“经过两点有且只有一条直线”的实例.3.指出下图中的直线、射线、线段,并一一表示出来.4.作图题:已知平面上四点A、B、C、D,如图.(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于E;(4)连接AC、BD相交于点F.【教学说明】学生自主完成,加深对教学知识的理解,检测本节课内容的掌握情况,为后面的学习打下坚实的基础.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.B2.如栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线.3.直线AB(或直线AC,直线BC);射线AB,射线BC,射线CB,射线BA;线段AB,线段AC,线段BC.4.四、师生互动,课堂小结1.师生共同回顾线段、射线、直线的有关知识.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材“习题4.1”中选取.2.完成练习册中本课时的相应作业.本节课从学生了解线段、射线、直线的概念及表示方法到探究直线的性质和通过动手操作,培养学生动手、动脑习惯,激发学生学习兴趣.2 比较线段的长短1.了解“两点之间线段最短”的性质;能借助尺、规等工具比较两条线段的大小;能用圆规作一条线段等于已知线段;理解线段中点的概念,会用数量关系表示中点及进行相应的计算.2.感受用类比的思想比较两条线段的大小,经过体会由感性认识上升到理性认识的过程,发展学生的符号感和数感;发展几何图形意识和探究意识.3.在积极参与、合作交流中体验到教学活动中充满着探索和创造,在学习中获得成功的经验,提高学习数学的兴趣.【教学重点】线段长短的两种比较方法:线段中点的概念及表示方法;线段的和、差、倍、分关系.【教学难点】叠合法比较两条线段大小;会画一条线段等于已知线段.一、情境导入,初步认识把弯曲的河道改直就可以缩短航程.在公园的河面上修建曲折的桥,就能增加观光的路程,你知道这其中的道理吗?怎样比较两个同学的高矮?你有哪些方法?【教学说明】通过生活中常见的例子,体会数学与生活的紧密联系,激发学生学习兴趣.二、思考探究,获取新知1.线段公理问题1 教材第110页图4—6及有关图的内容.【教学说明】学生通过观察,实际操作,很容易得出正确的结论.【归纳结论】两点之间的所有连线中,线段最短.这一事实可以简述为:两点之间,线段最短.我们把两点之间线段的长度,叫做这两点之间的距离.2.线段的比较问题2 教材第110页的“议一议”.【教学说明】学生通过实物的比较到线段的比较,归纳比较两条线段长短的方法.【归纳结论】如果直接观察难以判断,我们可以有两种方法进行比较:一种方法是用刻度尺量出它们的长度,再进行比较,即度量法;另一种方法是把其中的一条线段移到另一条线段上去,将其中的一个端点重合在一起加以比较,即叠合法.3.作一条线段等于已知线段问题3 如图,已知线段AB,用尺规作一条线段等于已知线段AB.【教学说明】学生通过操作,掌握作一条线段等于已知线段的方法.作图规律如下:(1)作射线A′C′(如图所示);(2)用圆规在射线A′C′上截取A′B′=AB.线段A′B′就是所求作的线段.4.线段中点的定义及表示方法如图,点M把线段AB分成相等的两条线段AM与BM,点M叫做线段AB的中点,这时AM=BM=12AB(或AB=2AM=2BM).5.线段中点性质的运用问题4 在直线l上顺次取A,B,C三点,使得AB=4cm,BC=3cm.如果点O是线段AC的中点,那么线段OB的长度是多少?【教学说明】学生画图加以分析,与同伴进行交流,进一步掌握线段中点的性质.【归纳结论】线段的和,差,中点计算时,应注意数形结合,根据已知条件画出图形再加以分析.三、运用新知,深化理解1.如图,从A到B有3条路径,最短的路径是()A.①B.②C.③D.都一样第1题图第2题图2.如图,已知线段AD>BC,则线段AC与BD的关系是()A.AC>BDB.AC=BDC.AC <BDD.不能确定3.已知线段AB=8cm,在直线AB上取点C,使BC=2cm,则线段AC的长是___cm.4.教材第112页上方的“随堂练习”第1题.5.教材第112页上方的“随堂练习”第2题.6.已知点A、B、C是同一直线上的三个点,且AC=9cm,BC=5cm,求线段AB和BC的中点间的距离.【教学说明】学生自主完成,加深对新学知识的理解,检测线段的比较,线段的中点等知识的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.C2.A3.10或64.可用刻度尺量出AB各线段的长度,再量出线段A′B′的长度.将AB各线段和与A′B′长度作比较,也可用尺规作图法将AB的每段长度移到线段A′B′上,再做判断.5.6. 4.5cm四、师生互动,课堂小结1.师生共同回顾线段的公理,线段的比较,线段的中点等有关知识.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,进行知识的提炼和归纳.【板书设计】1.布置作业:从教材“习题4.2”中选取.2.完成练习册中本课时的相应作业.本节课从学生探究线段的公理,线段的比较方法,线段的中点的表示方法,到运用线段中点的性质解决具体问题等方面,培养学生动手、动脑习惯,提高学生解决问题的能力.3 角1.通过实际情境,理解角的有关概念,掌握角的表示方法.2.会进行角的度量,以及度、分、秒的互化.3.进一步认识锐角、钝角、直角、平角、周角及其大小关系.4.通过问题情境,认识角、表示角、度量角、进行角的互化,经历角的静态定义到动态定义的形成过程,体会运动变化的思想方法.发展学生的符号感和数感.5.结合本课教学特点,教育学生热爱生活,热爱学习,激发学生学习兴趣.【教学重点】理解角的概念与表示方法,学会角度的测量,以及度、分、秒的互化.【教学难点】度、分、秒的互化.一、情境导入,初步认识教材第114页最上方的彩图及相关问题.【教学说明】学生很容易从生活中的图形中找到角.初步感受角的形象,体会角与生活的紧密联系.二、思考探究,获取新知1.角的概念与表示方法问题1 角是由什么图形组成的?角有哪些表示方法?【教学说明】学生在小学对角的概念与表示方法有一定的了解,此时教师加以规范,有助于学生进一步掌握角的概念及表示方法.【归纳结论】角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点,这两条射线是角的两边.角的表示方法常见的有三种:(1)用三个或一个大写的英文字母表示;(2)用一个小写的希腊字母表示;(3)用数学标注.注意:顶点处只有一个角时才能用一个大写的英文字母表示.问题2 教材第114页下方“做一做”.【教学说明】学生通过观察,分析,进一步掌握角的表示方法.2.用旋转的观点描述角及认识平角,周角问题3 教材第115页“议一议”.【教学说明】学生通过观察,从旋转的角度体会角的形成.【归纳结论】角可以看成是由一条射线绕着它的端点旋转而成的.3.角的度量及度、分、秒的换算问题4 在小学数学中,我们已知道:1平角=180°,1周角=360°.度量角的单位除了度,还有哪些?相邻单位间的进率又是多少呢?【教学说明】教师引导学生了解角的度量单位,掌握相邻单位间的进率.【归纳结论】为了更精密地度量角,我们规定:问题5 计算:(1)1.45°等于多少分?等于多少秒?(2)1800″等于多少分?等于多少度?【教学说明】学生通过计算,与同伴进行交流,熟练掌握度、分、秒的计算.问题6 教材第116页“做一做”.【教学说明】学生通过观察,动手操作,进一步掌握角的表示方法和角的度量,会用角度来表示方位.三、运用新知,深化理解1.下列说法正确的是()A.平角是一条直线B.一条射线是一个周角C.两边成一条直线时组成的角是平角D.一个角不是锐角就是钝角2.教材第116页下方的“随堂练习”第1题.3.教材第116页下方的“随堂练习”第2题.【教学说明】学生自主完成,检测对角的有关知识的掌握情况,加深对新学知识的理解,对学生的疑惑、教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.C2.(1)北偏东90°(2)虎豹园在南偏东0°(正南方),猴山在北偏东0°(正北方),大象馆在北偏东45°;(3)图略.∠AOC=∠AOB=90°,∠AOD=∠BOD=45°,∠COD=135°,∠BOC=180°;(4)锐角有∠BOD、∠AOD、∠AOC,钝角为∠COD、∠BOC,直角为∠AOB、∠AOC,平角为∠BOC.3.(1)15 ′,900″;(2)45′,0.75°.四、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对知识的理解.【板书设计】1.布置作业:从教材“习题4.3”中选取.2.完成练习册中本课时的相应作业.本节课从学生了解角的概念及表示方法,到角的度量及度、分、秒的换算,培养学生动手动脑习惯,激发学生学习兴趣.4 角的比较1.运用类比的方法,会比较两个角的大小.2.认识角的平分线,掌握角的和、差、倍、分关系.3.通过类比线段大小的比较,掌握角的大小比较方法,认识角的平分线及表示方法,发展学生的符号感和数感,发展几何图形意识和探究意识.4.在积极参与,合作交流中体验到教学活动充满着探索和创造,提高学生学习数学的兴趣.【教学重点】会比较角的大小,会分析图中角的和差关系,能熟练运用角的平分线.【教学难点】角的和、差、倍、分关系.一、情境导入,初步认识还记得怎样比较线段的长短吗?类似地,你能比较角的大小吗?【教学说明】通过类比线段大小的比较方法,学生很容易得到角的大小比较方法.二、思考探究,获取新知1.角的大小比较问题1 怎样比较角的大小呢?【教学说明】学生通过类比线段大小的比较方法,再与同伴交流,归纳角的大小比较方法.【归纳结论】与比较线段的长短类似,如果直接观察难以判断,我们可以有两种方法对角进行比较:一种方法是用量角器量出它们的度数,再进行比较,即度量法;另一种方法是将两个角的顶点及一条边重合,另一条边放在重合边的同侧就可以比较大小,即叠合法.问题2 教材第119页上方的“做一做”.【教学说明】学生通过观察、分析,与同伴进行交流,进一步掌握角的大小比较方法.3.角的平分线定义及表示方法教材第119页上方的“做一做”.问题 3 已知EOF为一直线,∠AOB=90°,OE平分∠COB,∠EOC=15°,求∠AOF的度数.【教学说明】学生观察、分析,与同伴交流,通过计算,进一步掌握角的平分线的性质及角的和差关系.【归纳结论】在进行角的和、差、倍、分计算时,往往结合图形来分析数量关系.4.估量角的度数问题4 (1)如图估计∠AOB,∠DEF的度数.(2)量一量,验证你的估计.【教学说明】学生先估量,再用量角器量一量,验证自己的估计是否正确.三、运用新知,深化理解1.∠AOB的内部任取一点C,作射线OC,那么下列各式中正确的是()A.∠AOB>∠AOCB.∠AOC>∠BOCC.∠BOC=∠AOCD.∠BOC>∠AOC2.教材第120页上面“随堂练习”第1题.3.教材第120页上面“随堂练习”第2题.4.如图所示,OB是∠AOC的平分线,DO平分∠COE,若∠AOE=128°,求∠BOD的度数.【教学说明】学生自主完成,加深对新学知识的理解,检测对角的大小比较,角的平分线性质的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.A2.(1)135°,135°,45°(2)图中两个钝角相等,一个钝角和一个锐角的和为180°.3.45°,30°,60°4.64°四、师生互动,课堂小结1.师生共同回顾角的大小比较,角的平分线性质等知识点.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对知识的理解.【板书设计】1.布置作业:从教材“习题4.4”中选取.2.完成练习册中本课时的相应作业.本节课从学生探究角的大小比较方法,角的平分线定义及性质,到运用角的和、差、倍、分解决具体问题,培养学生应用知识的能力,激发学生学习的兴趣.5 多边形和圆的初步认识1.在具体情境中认识多边形和圆,了解与多边形和圆有关的概念.2.会计算扇形圆心角的度数.3.经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩,在丰富的活动中训练发散思维和逻辑思维.4.结合本课教学特点,教育学生热爱生活,热爱学习,体验数学与生活的密切联系,激发学生学习数学的兴趣.【教学重点】掌握正多边形的边、角特点和扇形圆心角的求法.【教学难点】多边形对角线条数计算公式的推导.一、情境导入,初步认识教材第122页最上方的彩图及相关问题.【教学说明】学生很容易从生活中的例子找到多边形和圆,使学生有一个初步认识.二、思考探究,获取新知1.多边形及有关概念教材第122页彩图下方的内容.问题1 (1)n边形有多少个顶点、多少条边、多少个内角?(2)过n边形的每一个顶点有几条对角线?【教学说明】学生通过观察,动手操作,与同伴进行交流,找出一般规律.【归纳结论】n边形有n个顶点,n条边,n个内角.过n边形的每一个顶点有(n-3)条对角线.n边形一共有32n n()条对角线.问题2 各边相等,各角也相等的多边形叫做正多边形.【教学说明】学生通过观察、比较、度量,验证自己的猜测. 【归纳结论】各边相等,各角也相等的多边形叫做正多边形.2.圆及有关概念问题3 教材第123页下方的“做一做”.【教学说明】学生通过观察生活中的例子,再通过画图,初步认识圆和扇形.【归纳结论】平面上,一条线段,绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点O称为圆心,线段OA称为半径.圆上任意两点A,B间的部分叫做圆弧,简称弧.记作AB,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA,OB所组成的图形叫做扇形,顶点在圆心的角叫做圆心角.3.求扇形的圆心角和扇形面积问题4 将一个圆分割成三个扇形,它们的圆心角的度数比为1∶2∶3,求这三个扇形的圆心角的度数.【教学说明】学生通过计算,掌握扇形圆心角的求法.【归纳结论】把一个圆分成若干个扇形,这些扇形的圆心角度数之和为360°.问题5(1)将一个圆分成三个大小相同的扇形,你能算出它们的圆心角的度数吗?你知道每个扇形的面积和整个圆的面积的关系吗?与同伴进行交流.(2)画一个半径是2cm的圆,并在其中画一个圆心角为60°的扇形,你会计算这个扇形的面积吗?与同伴进行交流.【教学说明】学生通过思考、分析,进一步掌握扇形圆心角和扇形面积的求法.三、运用新知,深化理解1.从六边形的一个顶点出发可引____条对角线,它们将这个六边形分割成___个三角形.六边形一共有___条对角线.2.教材第124页下方的“随堂练习”第1题.3.教材第124页下方的“随堂练习”第2题.【教学说明】学生自主完成,加深对新学知识的理解,检测对多边形和圆的有关知识的掌握情况,对学生的疑惑,教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.3,4,92.如地板砖是正方形,蜂巢是正六边形.3.∠AOB=72°,∠AOC=108°,∠BOC=180°.四、师生互动,课堂小结1.师生共同回顾多边形和圆及有关概念.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对知识的理解.【板书设计】1.布置作业:从教材“习题4.5”中选取.2.完成练习册中本课时的相应作业.本节课从学生了解多边形和圆的相关概念,到计算扇形圆心角的度数,培养学生分析问题、解决问题的能力,激发学生学习兴趣.章末复习1.掌握本章重要知识,能灵活运用所学知识解决具体问题.2.通过梳理本章知识,感受图形世界的丰富多彩,回顾解决问题中所涉及的分类和类比思想.体会由感性认识上升到理性认识的过程,发展学生的符号感和数感.3.在运用本章知识解决具体问题过程中,进一步体会数学与生活的密切联系,增强数学应用意识,激发学生学习兴趣.【教学重点】回顾本章知识,构建知识体系.【教学难点】利用本章相关知识解决具体问题教学过程.一、知识框图,整体把握二、释疑解感,加深理解1.直线的性质经过两点有且只有一条直线,即两点确定一条直线.2.线段公理两点之间的所有连线中,线段最短,即两点之间,线段最短.3.线段的中点把线段分成相等的两条线段的点,叫做线段的中点.4.角的平分线从一个角的顶点引出一条射线,把这个角分成两个相等的角.这条射线叫做这个角的平分线.三、典例精析,复习新知例1过平面内的四个点中的任意两个点可以画直线的条数是().A.4B.6C.4或6D.1,4或6【分析】平面内的四个点的位置关系有三种:①四个点在同一直线上,②有三个点在同一直线上,③任意三个点都不在同一直线上,所以应分三种情况讨论,故选D.例2 如图,从A到B最短的路线是().A.A—G—E—BB.A—C—E—BC.A—D—G—E—BD.A—F—E—B【分析】从A到B,EB这一段是必走的,关键是看从A到E哪条路最近,由“两点之间线段最短”可知应选D.例3计算:(1)47°53′43″+53°47′42″;(2)22°30′16″×6;(3)92°56′3″-46°57′54″;(4)176°52′÷3.【分析】角之间的运算是60进制,加减运算要将度与度、分与分、秒与秒之间分别加减;分、秒相加时逢60要进位,相减时要借1当60;乘法运算要用乘数分别与度、分、秒相乘,然后逢60进位;除法运算要用除数分别去除度、分、秒,度、分的余数乘60分别化为分、秒,一般除到秒,然后四舍五入.解:(1)47°53′43″+53°47′42″=(47°+53°)+(53′+47′)+(43″+42″)=100°+100′+85″=101°41′25″;(2)22°30′16″×6;=(22°+30′+16″)×6=132°+180′+96″=135°1′36″;(3)92°56′3″-46°57′54″;=(91°-46°)+(115′-57′)+(63″-54″)=45°+58′+9″=45°58′9″;(4)176°52′÷3=58°+(2°+52′)÷3=58°+172′÷3=58°+57′+1′÷3=58°57′20″.例4 在同一个小学的小明、小伟、小红三位同学住在A、B、C三个在住宅区,如图所示:A、B、C三点共线,且AB=60m,BC=100m.他们打算合租一辆车去上学,准备只设一个停靠点,为使三位同学步行到停靠点的路程之和最小,你认为停靠点应该设在_____________.【分析】若设在A处,三人步行路程之和为60+(60+100)=220m;若设在B处,则三人步行路程之和为60+100=160m;若设在C处,三人步行路程之和为(60+100)+100=260m.解:B处例5 已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC的中点,求线段AM的长度.【分析】题中说明A、B、C三点共线,但无法判断点C是线段AB上,还是在AB 的延长线上,所以要分两种情况,求AM的长.例6 如图所示,已知AB为一条直线,O是AB上一点,OC是∠AOD的平分线,OE在∠BOD内,∠DOE=13∠BOD,∠COE=72°,求∠EOB的度数.【分析】本题主要考查角的平分线与角的和、差、倍分问题的应用,找准各角之间的关系,列等式解决.四、复习训练,巩固提高1.如图,A,B,C三点共线,图中有___条线段,___条射线,能用字母表示的射线有____条.第1题图第2题图2.比较如图所示的线段的长度:(1)DC_____AC;(2)AD+DC_____AC;(3)AD+BD______AB.其依据是___________________________.3.下列说法中,错误的是().A.经过一点的直线可以有无数条B.经过两点的直线只有一条C.一条直线只能用一个字母表示D.线段CD和线段DC是同一条线段4.如图所示,如果∠AOD>∠BOC,那以下列说法正确的是().A.∠COD>∠AOBB.∠AOB>∠CODC.∠COD=∠AOBD.∠COD与∠AOB的大小关系不能确定5.已知:如图所示,点A、B、C、D,按下列要求画图:(1)射线AD,直线BC;(2)射线BA,射线CD;(3)连接AC,并延长AC.第5题图第6题图6.如图所示,已知线段a、b、c,用圆规和直尺画线段.使它等于2a+b-c.(只需画图,不要求写画法).7.计算:(1)43°25′+54°46′;(2)90°3′-57°21′44″;(3)33°15′6″×4;(4)176°52′÷3.8.半径为6的圆中,扇形AOB的圆心角为150°,请在图中圆内画出这个扇形,并求出它的面积(结果保留π).9.如图,已知点C为线段AB上一点,AC=12cm,CB=23AC,D、E分别为AC、AB的中点,求DE的长.【教学说明】这部分安排了几个比较典型的重点题型,加深对本章知识的理解,进一步提高学生综合运用所学知识的能力,前几题可由学生自主完成,最后两题可由师生共同探讨得出结论.【答案】1. 3 6 42. <= >两点之间,线段最短3.C4.B5.6.如图所示,线段AE就是所求作的线段2a+b-c.7.(1)98°11′(2)32°41′16″(3)133°24″(4)58°57′20″8.如图,扇形∠AOB的面积为:π×62×150360=15π.五、师生互动,课堂小结本课堂你能完整地回顾本章所学的有关知识吗?你学会了哪些与本章有关的数学思想方法?你还有哪些困惑与疑问?【教学说明】学生回顾本章知识,积极与同伴交流,对于学生的困惑与疑问,教师应及时指导.1.布置作业:从教材“复习题4”中选取.2.完成练习册中本章复习课的练习.。

北师大版数学七年级上册《 第四章 基本平面图形 》说课稿

北师大版数学七年级上册《 第四章 基本平面图形 》说课稿

北师大版数学七年级上册《第四章基本平面图形》说课稿一. 教材分析北师大版数学七年级上册《第四章基本平面图形》这一章节,主要介绍了多边形的概念、分类及性质。

本章内容是学生继学习三角形、四边形之后,进一步拓展对平面图形的认识。

通过本章的学习,使学生能够掌握多边形的性质,培养学生的空间想象能力、逻辑思维能力和数学表达能力的初步形成。

二. 学情分析面对七年级的学生,他们在之前的学习过程中已经掌握了三角形、四边形的基本概念和性质,具备了一定的数学基础。

但是,对于多边形的理解,还需要进一步的引导和培养。

此外,学生的空间想象能力和逻辑思维能力还有待提高,因此,在教学过程中,需要注重启发引导,激发学生的学习兴趣,培养学生的数学思维。

三. 说教学目标根据新课程标准的要求和学生的实际情况,本节课的教学目标设定如下:1.知识与技能目标:使学生掌握多边形的概念、分类及性质,能够运用所学知识解决一些实际问题。

2.过程与方法目标:通过观察、操作、思考、表达等过程,培养学生的空间想象能力、逻辑思维能力和数学表达能力的初步形成。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队协作能力和创新精神。

四. 说教学重难点本节课的教学重点是多边形的概念、分类及性质的理解和运用。

教学难点是对于多边形性质的推理论证,以及学生空间想象能力的培养。

五. 说教学方法与手段为了实现本节课的教学目标,我将以“引导探究,合作学习”的教学方法为主,结合多媒体教学手段,引导学生观察、操作、思考、表达,激发学生的学习兴趣,培养学生的数学思维。

六. 说教学过程1.导入新课:通过回顾三角形、四边形的基本概念和性质,引出多边形的概念,激发学生的学习兴趣。

2.探究多边形的性质:引导学生通过观察、操作、思考、表达等过程,探索多边形的性质,总结出多边形的基本性质。

3.分类讨论:引导学生对多边形进行分类,了解不同类型多边形的特点,加深对多边形性质的理解。

4.应用拓展:通过一些实际问题,让学生运用所学知识解决问题,提高学生的应用能力。

七年级上册数学第四章基本平面图形

七年级上册数学第四章基本平面图形

O C A D B OC A E DB 第四章 基本平面图形3【知识点】【知识点】角的平分线: 从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

14、多边形: 由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。

由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。

从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n 边形分割成(n-2)个三角形。

n 边形内角和等于(n-2)×1800,正多边形(每条边都相等,每个内角都相等的多边形)的每个内角都等于(n-2)×1800 / n 过n 边形一个顶点有(n-3)条对角线,n 边形共(n-3)×n / 2条对角线. 圆、弧、扇形圆、弧、扇形 圆:平面上一条线段绕着固定的一个端点旋转一周,另一个端点形成的图形叫做圆。

固定的端点称为圆心固定的端点称为圆心 弧:圆上A 、B 两点之间的部分叫做圆弧,简称弧。

两点之间的部分叫做圆弧,简称弧。

扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

圆心角:顶点在圆心的角叫圆心角。

圆心角:顶点在圆心的角叫圆心角。

4.4 角的比较※课时达标 1.1.若若OC 是∠是∠AOB AOB 的平分线的平分线,,则∠则∠AOC=_____;AOC=_____;AOC=_____;∠∠AOC=12______; ______; ∠∠AOB=2_______. 2.12平角平角=_____=_____=_____直角直角直角, , 14周角周角=______=______=______平角平角平角=_____=_____=_____直角直角直角,135,135,135°角°角°角=______=______=______平角平角平角. . 3.3.如图如图如图,(1),(1),(1)∠∠AOC=_____ +_____ = ____ -____ ;(2) (2)∠∠AOB=______-______ =______-_____.第第3题图题图 第第4题图题图4.4.如图如图如图,O ,O 是直线AB 上一点上一点,,∠AOC=90AOC=90°°,∠DOE=90DOE=90°°,则图中相等的角有则图中相等的角有_________对对( ( 小于直角的角小于直角的角小于直角的角))分别是______.5.5.下列说法正确的是下列说法正确的是下列说法正确的是( ). ( ).A. A.两条相交直线组成的图形叫做角两条相交直线组成的图形叫做角两条相交直线组成的图形叫做角B. B.有一个公共端点的两条线段组成的图形叫做角有一个公共端点的两条线段组成的图形叫做角有一个公共端点的两条线段组成的图形叫做角C. C.一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角D. D.角是从同一点引出的两条射线角是从同一点引出的两条射线角是从同一点引出的两条射线★基础巩固1.1.已知已知O 是直线AB 上一点上一点,OC ,OC 是一条射线是一条射线, ,则∠则∠则∠AOC AOC 与∠与∠BOC BOC 的关系是的关系是( ). ( ).A. A.∠∠AOC 一定大于∠一定大于∠BOCB.BOC B.BOC B.∠∠AOC 一定小于∠一定小于∠BOC BOCC. C.∠∠AOC 一定等于∠一定等于∠BOCD.BOC D.BOC D.∠∠AOC 可能大于可能大于,,等于或小于∠等于或小于∠BOC BOC2.2.已知∠已知∠已知∠AOB=3AOB=3AOB=3∠∠BOC,BOC,若∠若∠若∠BOC=30BOC=30BOC=30°°,则∠则∠AOC AOC 等于等于( ) ( )A.120 A.120°°B.120 B.120°或°或6060°°C.30 C.30°°D.30 D.30°或°或9090°°3.3. a Ð和b Ð的顶点和一边都重合的顶点和一边都重合,,另一边都在公共边的同侧另一边都在公共边的同侧,,且a b Ð>Ð,那么a Ð的另一半落在另一半落在b Ð的( ).A. A.另一边上另一边上另一边上B. B. B.内部内部内部;C.; C.; C.外部外部外部D. D. D.以上结论都不对以上结论都不对以上结论都不对4.2704.270°°=_______=_______直角直角直角_____________________平角平角平角________________________周角周角周角. .5.5.已知一条射线已知一条射线OA,OA,如果从点如果从点O 再引两条射线OB 和OC,OC,使∠使∠使∠AOB=60AOB=60AOB=60°°, , ∠∠BOC=20BOC=20°°,求∠求∠求∠AOC AOC 的度数的度数. .6.6.如图如图如图,,如果∠如果∠1=651=651=65°°1515′′,∠2=782=78°°3030′′,求∠求∠33是多少度是多少度? ?312☆能力提高7.7.如图(如图(如图(11),OD,OE 分别是∠分别是∠AOC AOC 和∠和∠BOC BOC 的平分线的平分线,,∠AOD=40AOD=40°°,∠BOE=25BOE=25°°,求∠求∠AOB AOB 的度数的度数. . 解解:∵OD 平分∠平分∠AOC,OE•AOC,OE•AOC,OE•平分∠平分∠平分∠BOC(•BOC(•BOC(•已知已知已知)•,• )•,•∴∠∴∠∴∠AOC=•2•AOC=•2•AOC=•2•∠∠AOD,•∠∠BOC=•2•BOC=•2•∠∠_____( ),∵∠∵∠AOD=40AOD=40AOD=40°°,∠_______=25_______=25°°(已知已知), ),∴∠∴∠AOC=2AOC=2AOC=2××4040°°=80=80°°(•(•等量代换等量代换等量代换). ).∠BOC=2BOC=2××( )( )°°=( ),∴∠∴∠∴∠AOB=________. AOB=________.8.8.如图(如图(如图(22),若∠若∠AOC=AOC=AOC=∠∠DOB,DOB,则∠则∠则∠AOB= AOB= AOB= ∠∠COD;•COD;•若∠若∠若∠AOB=•AOB=•AOB=•∠∠COD,•COD,•则∠则∠则∠AOC___AOC___AOC___∠∠DOB.9.9.已知∠已知∠已知∠AOB AOB 和∠和∠BOC BOC 之和为180180°°,这两个角的平分线所成的角是这两个角的平分线所成的角是_______. _______.10.10.如图(如图(如图(33),∠AOB 是直角是直角,,∠AOC=38AOC=38°°,∠COD=COD=∠∠COB=1:2,COB=1:2,则∠则∠则∠BOD=( ). BOD=( ).A.38 A.38°°B.52 B.52°°C.26 C.26°°D.64 D.64°° E C B B A D OCB A DO (1) (2)CB AD OE C BA DO(3) (4)11.11.如图(如图(如图(44)所示)所示,OE ,OE 平分∠平分∠BOC,OD BOC,OD 平分∠平分∠AOC,AOC,AOC,∠∠BOE=20BOE=20°°,∠AOD=40•AOD=40•°°,•,•求∠求∠求∠DOE DOE 的度数的度数. .●中考在线12.12.用一副三角尺用一副三角尺用一副三角尺,,可以拼出小于180180°的角有°的角有n 个,则n 等于等于( ). A.4 B.6 C.11 D.13 ( ). A.4 B.6 C.11 D.13 13.13.已知已知α、β都是钝角都是钝角,,甲、乙、丙、丁四人计算16(α+β)的结果依次是5050°°,26,26°°,72•,72•°°,90,90°°,那么结果正确的可能是果正确的可能是( ). A.( ). A.( ). A.甲甲 B. B.乙乙 C. C.丙丙 D. D.丁丁14.14.点点P 在∠在∠MAN MAN 内部内部,,现在四个等式现在四个等式::①∠①∠PAM=PAM=PAM=∠∠MAP;MAP;②∠②∠②∠PAN=PAN=12∠A;•A;•③∠③∠③∠MAP=MAP=12∠MAN,MAN,④∠④∠④∠MAN=2MAN=2MAN=2∠∠MAP,其中能表示AP 是角平分线的等式有是角平分线的等式有( ). A.1( ). A.1个 B.2个 C.3个 D.4个15.15.如图如图如图,,∠AOD=AOD=∠∠BOC=90BOC=90°°,∠COD=42COD=42°°,求∠求∠AOC AOC AOC、∠、∠、∠AOB AOB 的度数的度数. .O C ADB16.16.如图如图如图,OA ,OA ,OA⊥⊥OB OB、、OC OC⊥⊥OD,OE 是OD 的反向延长线的反向延长线. .(1) (1)试说明∠试说明∠试说明∠AOC=AOC=AOC=∠∠BOD.(2) (2)若∠若∠若∠BOD=50BOD=50BOD=50°°,求∠求∠AOE. AOE.O CAE DB17.17.如图如图如图,AO ,AO ,AO⊥⊥CO,BO CO,BO⊥⊥DO,DO,∠∠BOC=30BOC=30°°,求∠求∠AOD AOD 的度数的度数..O CADB18.18.如图所示如图所示如图所示,OE ,OE 平分∠平分∠BOC,OD BOC,OD 平分∠平分∠AOC,AOC,AOC,∠∠BOE=20BOE=20°°,∠AOD=40•AOD=40•°°,•,•求∠求∠求∠DOE DOE 的度数的度数..E CB ADO19.19.如图如图如图,AO ,AO ,AO⊥⊥CO,BO CO,BO⊥⊥DO,DO,∠∠BOC=30BOC=30°°,求∠求∠AOD AOD 的度数的度数..OCA DB4.5 多边形和圆的初步认识※课时达标1.________1.________,,__________________,,__________________,,__________________等都是多边形等都是多边形等都是多边形. .2.2.各边相等,各角也相等的多边形叫做各边相等,各角也相等的多边形叫做各边相等,各角也相等的多边形叫做____________. ____________.3.3.下列说法中正确的是下列说法中正确的是下列说法中正确的是( ( ).A.A.圆上任意两点间的部分叫做圆弧圆上任意两点间的部分叫做圆弧圆上任意两点间的部分叫做圆弧B. B. B.圆上任意两点间的线段叫做弧圆上任意两点间的线段叫做弧圆上任意两点间的线段叫做弧C. C.圆上任意两点间的线段长度叫做弧圆上任意两点间的线段长度叫做弧圆上任意两点间的线段长度叫做弧D. D. D.任意两点间的部分叫做弧任意两点间的部分叫做弧任意两点间的部分叫做弧4.4.将一个圆分割成三个扇形,它们的圆心角的度数比为将一个圆分割成三个扇形,它们的圆心角的度数比为1:2:3,则这三个扇形的圆心,则这三个扇形的圆心角的度数分别是角的度数分别是角的度数分别是( ( ).A.30 A.30°,°,°,606060°,°,°,909090°°B.60 B.60°,°,°,120120120°,°,°,180180180°°C.40 C.40°,°,°,808080°,°,°,120120120°°D.50 D.50°,°,°,100100100°,°,°,150150150°°5.5.如图如图如图,,从四边形ABCD 的顶点A 出发,可以画出出发,可以画出__________________对角线对角线对角线,,是线段是线段____. ____.6.6.将一个圆分成三个大小相同扇形,则它们的圆心角是将一个圆分成三个大小相同扇形,则它们的圆心角是将一个圆分成三个大小相同扇形,则它们的圆心角是__________________°。

北师大版数学七年级上册教案 4第四章《基本平面图形》回顾与思考

北师大版数学七年级上册教案 4第四章《基本平面图形》回顾与思考

第四章《基本平面图形》回顾与思考课时课题:第四章《基本平面图形》回顾与思考课型:复习课教学目标:1.经历观察、测量、折叠、模型制作等活动,发展空间观念.2.在现实情景中认识线段、射线、直线、角、多边形、扇形、圆等简单的平面图形,了解其含义及相关的性质.3.会进行线段或角的大小比较及有关计算,会进行角的单位间的简单换算.4.能用尺规作图作一条线段等于已知线段.5.经历在操作活动中探索图形性质的过程,了解简单图形的性质,发展有条理的思考与表达能力.教学重点、难点:重点:在现实的生活背景中识别“三线”,掌握线段或角的大小比较的方法,会求线段的长度和角的度数,并能进行简单的说理.难点:对图形性质的理解以及简单的画图,能运用类比法复习线段和角的大小比较及有关计算.教法及学法指导:本章是初中平面几何的起始章,概念较多,不但要知其然,更要知其所以然,能够把他们多作比较,发现它们的内在联系,并作记忆. 要运用类比法复习线段和角的大小比较及有关运算,要经常动手去画一些基本图形,在画图过程中领悟并提高能力,同时,注意画出的图形要整洁、美观、大方.教学过程:一、情境导入:各位同学,今天是“三线”、“角”和“平面图形”三位先生竞选的日子,欢迎同学们的参与,请你们做观察团,看看他们谁能获胜. 首先了解一下他们的竞选团队.(设计意图:在学生充分思考、交流的基础上,帮助学生梳理知识结构,总结各知识点之间的联系. 其中三线的概念及性质与角的有关概念及换算是需要加强的要点.)下面有请“三位先生”分别就当选后重点“关注”的问题作演说.二、重点知识回顾1.直线、射线和线段(1)基本概念①“一根拉紧的绳子”可以近似地看作_________,线段有________个端点,它可以比较__________和度量.②将线段向一个方向无限延长就形成了________,射线有_______个端点,射线不能度量和比较大小.③将线段向两个方向无限延长就形成了_____,直线______端点,不能度量和比较大小.④两点之间线段的__________叫做两点之间的距离;线段上把线段分成相等的两条线段的点,叫做___________.(2)表示方法①线段的两种表示方法:用____________表示(即线段的两端点)或用__________表示.②射线的两种表示方法:用_____________表示,其中端点字母必须写在前面,如射线OA,就不能再记作射线AO;用__________表示,如射线l.③直线的两种表示方法:用___________表示,没有顺序,如直线AB或直线BA表示同一条直线;用___________表示,如直线a.(3)重要结论及性质①两点之间的所有连线中,__________最短;②经过两点有且只有________条直线,或者两点确定________条直线.③比较两条线段长短的方法主要有_________和_________.2.角(1)基本概念①角是由两条__________组成的几何图形,这个公共端点我们称为角的________;角也可以看成是由一条射线_________旋转而成的图形. 角的大小与角的两边的长短_______.②从一个角的顶点引出的一条射线,若把这个角分成两个相等的角,则这条射线叫做这个角的__________.(2)表示方法①用三个大写英文字母表示,___________必须写在中间;②当角的顶点只有一个角时,可用_________个大写字母来表示;③用希腊字母或用________来表示.(3)重要结论①1周角=______平角=______直角=______度;1°=_________′=_________″.②类比线段的大小比较,比较角的大小的方法有_________和_________.3.多边形及圆(1)由一些不在同一条直线上的________依次首尾相连组成的封闭平面图形,叫做多边形. 如三角形、四边形、五边形、六边形等都是多边形.①各边相等,各角也相等的多边形叫做____________.②在多边形中,连结_____________两个顶点的线段,叫做多边形的对角线.(2)在平面上,一条线段绕着它_____________旋转一周,另一个端点形成的图形叫做圆. 固定的端点称为___________.①圆上______________叫做圆弧,简称弧.②顶点在_________的角叫做圆心角.③有一条弧和经过这条弧的端点的两条________所组成的图形叫做扇形.(设计意图:主要通过填空的方式复习本章所学习的相关基本知识,使学生通过这种方图1 式对所学的知识进行及时的巩固,最终达到掌握并灵活应用的目的.)亲爱的选民们,三位候选人介绍的都很详尽、全面,下面有请“三位先生”把今后的工作重点和专题研究作详细介绍.三、专题研究专题1: “三线”的概念及性质例1 下列语句正确的是( ).A .画直线AB=10厘米B .直线、射线、线段中,线段最短.C .画射线OB=3厘米D .延长线段AB 到点C ,使得BC=AB解析:直线、射线的延伸性决定了直线、射线无长度,不能比较大小. 故选D.温馨提示:本题要求能根据几何语言规范而准确地画出图形. 要做到这一点,第一:要读懂这些几何语句;第二:要抓住这些基本图形的共同特点及细微区别.跟踪练习(选作):1.已知平面内的四个点A 、B 、C 、D ,过其中两点画直线,已知最多可以画m 条,最少可以画n 条,则m n +的值为_________.2.京沪高铁通车后,乘火车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站可到达枣庄站,那么从济南西站到枣庄站需要制作的火车票价格有( ).A .8种B .9种C .10种D .11种(设计意图:涉及到本专题的内容主要有直线、射线和线段的有关概念、直线的性质及线段的应用等问题,重点考查学生对基础知识和基本技能的掌握情况. 此外,本专题还特别注意考查学生发现问题、解决问题的能力.)专题2:线段长度的计算例2 如图1,已知线段AD=6cm ,AC=BD=4cm ,E 、F 分别是线段AB 、CD 的中点. 求线段EF 的长.解析:因为AC=BD=4cm ,所以AB=AD -BD=6-4=2(cm),CD=AD -AC=2cm.又因为E 、F 分别是AB 、CD 的中点,所以AE=12AB=1cm ,FD=12CD=1cm. 所以EF= AD -(AE +FD)=6-(1+1)=4(cm).温馨提示:本题将求EF 的问题转化为求AE 和FD 的问题,从而使问题顺利求解,这体现了转化思想. 若要正确地解决这类问题,须要理清各线段之间的和、差、倍、分关系.跟踪练习(选作):1.如果点C 在线段AB 上,则下列选项中不能够判定点C 是线段AB 中点的是( ).A .AC=12AB B .AC=BC C .AB=2AC D .AC +BC=AB 2.已知A 、B 、C 三点在同一条直线上,M 、N 分别为线段AB 、BC 的中点,且 AB = 60,BC = 40,则MN 的长为___________. (设计意图:求线段的长度是本章的重要题型之一,是初中阶段求线段长度的入门知识,也是中考必考知识点,因此,应重点掌握. 解决这类问题,线段的和、差、倍、分是基础,通常利用线段中点的定义,并运用方程、比例等知识来综合解决.)专题3:角度的换算例3(1)将68.34︒用度、分、秒表示;(2)将131836'''︒用度表示.解析:(1)因为整数部分是68︒,所以需要将0.34︒化为分,即600.34=20.4''⨯;再把0.4'化为秒,即600.4=24''''⨯. 所以68.34=682024'''︒︒.(2)将131836'''︒用度表示,应先将36''化为分,即36''=1360.660''⨯=(),所以图3 180.618.6'''+=,再把18.6'化为度,即118.618.60.3160'=︒⨯=︒(). 所以131836'''︒=13.31︒. 温馨提示:角的换算单位是60进制,几分几秒化成度,要从秒开始,除以进率60;度化成几分几秒,要从分开始,乘以进率60.跟踪练习(选作):1.若12512'∠=︒,225.12∠=︒,325.2∠=︒,则下列结论正确的是( ).A .13∠=∠B .23∠=∠C .12∠=∠D .123∠=∠=∠2.下列单位换算中,错误的是( ). A .03902⎛⎫'= ⎪⎝⎭ B .0.25900''︒= C .125.4512545'︒=︒ D .05100018⎛⎫''= ⎪⎝⎭(设计意图:要求学生掌握角度的换算方法,角度的换算与时间中的小时、分、秒类似,都是60进制,要注意克服十进制的习惯,借一当60,逢60进一.)专题4、角度的计算例4 如图2,将一副三角板折叠放在一起,使直角的顶点重合于点O ,则∠AOC +∠DOB=____________.解析:观察图形可知∠AOC=∠AOD +∠DOC ,所以可得∠AOC +∠DOB=∠AOD +∠DOC +∠DOB=∠AOB +∠DOC=90°+90°=180°. 故填180°.温馨提示:本题可以利用一副三角板,按要求进行操作,进而找到解接题的突破口. 实事上,本题无论如何按要求叠放,其和总是一个常数,为两个直角的和.跟踪练习(选作):1.如图3,已知点O 是直线AD 上的一点,∠AOB 、∠BOC 、∠COD 三个角从小到大依次相差25︒,则∠AOB 的度数为______________.2.如图4,已知∠AOB=∠COD=90°,∠AOD=5∠BOC ,则∠BOC 的度数为_______.(设计意图:角同线段一样,都是平面几何的基础,角的计算通常离不开如下知识点:周角,平角,直角,角的平分线,角的和、差、倍、分,以及方程等,解决这类问题,通常是在认真审题的基础上,将有关知识融为一体来解决.)专题5:与多边形、圆有关的计算例5 如图5,若扇形DOE 与扇形AOE 的圆心角的度数之比为1:2.求这五个圆心角的度数.解析:扇形AOB 的圆心角度数为360°×15%=54°;扇形BOC 的圆心角度数为360°×25%=90°;扇形COD 的圆心角度数为360°×30%=108°; 扇形DOE 的圆心角度数为(360°-54°-90°-108°)×112+=36°; 扇形DOE 的圆心角度数为(360°-54°-90°-108°)×212+=72°. 温馨提示:用扇形圆心角所对应的比去乘以360°,即可求出相应扇形圆心角的度数. 跟踪练习(选作): 图2 图4图51.在一个直径为6cm 的圆中,莉莉画了一个圆心角为120°的扇形,则这个扇形的面积为( ).A .πcm 2B .2πcm 2C .3πcm 2D .6πcm 22.小敏测得正六边形的一个内角为120°,则其余五个角的和为__________.(设计意图:生活中有很多图形都是由我们熟悉的平面图形组成的,如果我们用“数学的眼光”观察周围的世界,就会感受到数学无处不在. 在本章中与圆有关的计算,主要是计算圆心角的度数和扇形面积问题,题目一般比较简单.)专题6:数几何图形的个数例6 如图,在锐角∠AOB 内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;……照此规律,画10条不同射线,可得锐角_________ 个.解析:先探究一般规律:在锐角∠AOB 内部,画1条射线有1+2=3个角;画2条不同射线有1+2+3=6个角;画3条不同射线有1+2+3+4=10个角;画4条不同射线有1+2+3+4+5=15个角;……所以在锐角∠AOB 的内部,画10条不同射线,可得锐角的个数为:1+2+3+…+10=66(个). 故填66.温馨提示:从简单情形入手,可类比得到一般性的规律:在锐角AOB ∠的内部,画n 条不同的射线,可得锐角的个数为:()()()1123 (1122)n n n n ++++++=++. 跟踪练习(选作):1.在同一平面内,三条直线两两相交,最多..有3个交点,那么4条直线两两相交,最.多.有 个交点,8条直线两两相交,最多..有 个交点. 2.观察下列图形,填写下表:(设计意图:数几何图形的个数在本章主要涉及两个问题:①数线(包括线段、射线、直线)的条数;②数角(通常指小于平角的角)的个数. 解决这类问题通常是根据题意,画出图形,借助于图形,采用“由特殊到一般”的方法,探寻规律.)从三位候选人的陈述中可以看出,他们是最能够时刻为选民们着想并全心全意服务的,现在开始投票……四、课时小结在本章中,需要注意的问题有:1.对线段、射线、直线的概念理解不透,出现延长直线或延长射线之类的错误;在表示射线时,没有把端点放在前面;数线段或直线的条数时,方法不当出现数重或漏数的现象.多边形四边形 五边形 六边形 七边形 n 边形 从一个顶点引对角线的条数1 3 多边形被对角线分成的三角形的个数 3 5图6 图7 2.连结两点间线段的长度,叫做这两点的距离. 这里应注意线段与距离的区别,距离是线段的长度,是一个量;线段则是一个图形,它们之间是不等同的.3.角的顶点处有几个角时,不能用一个大写字母表示;要注意平角与直线的区别,平角可以度量,它的大小是180°,直线不可以度量;平角有一个顶点和两条边,直线则没有.4.误认为“各边相等的多边形是正多边形”,或不能正确理解弧与扇形的概念.(设计意图:课时小结由学生发言,为他们提供一个互相交流的平台,让学生养成反思与总结的习惯,并揭示学习中遇到的常见误区,做到防患于未然.)五、课堂检测1.按下列语句画图:点M 在直线a 上,也在直线b 上,但不在直线直线c 上,直线a 、b 、c 两两相交,下列图形符合题意的是( ).2.下列说法中:①球是特殊的圆;②三角形也是多边形;③弧可以看作是扇形;④正多边形的边长相等;⑤顶点在圆心的角叫圆心角. 不正确的有( ).A .1个B .2个C .3个D .4个3.已知∠AOB=50°,作射线OC ,使∠AOC=32°,则∠BOC 的度数为_________.4.如图6,线段AB 被P 、Q 分成2:3:3三部分,其中AP=4cm ,则线段AB 的长为___________.5.如图7,OE ,OF 分别是∠AOC 与∠BOC 的平分线,且∠EOF=90°,小玲认为A 、O 、B •三点在同一直线上,你同意她的观点吗?请说明理由.(设计意图:要求学生在5~7分钟内完成,规定时间和内容,一方面可以了解学生对本节课所复习内容的掌握情况,同时也可以培养学生快速准确解答问题的能力.)六、作业设计1.如图8,已知线段AB=4,点O 是线段AB 上的点,点C 、D 分别是线段OA 、OB 的中点.(1)求线段CD 的长. (2)若点O 运动到线段AB 的延长线上,其它条件不变,求线段CD 的长.2.如图9,O 是直线AB 上一点,已知∠AOC=50°,OD 平分∠AOC ,∠DOE=90°.(1)请你数一数,图中小于平角的角有__________个.(2)求∠BOD 的度数;(3)试判断OE 是否平分∠BOC ,并说明理由.七、板书设计图9图8 A . B . C . D .回顾与思考知识框架图例题教学反思1.本章涉及的概念以及常见作图术语比较多,复习时要认真搞清概念及性质的含义,要咬文嚼字仔细推敲,领会图形的表示方法,体会几何语言的严谨性.2.用处理线段问题的类似方法来解决角的问题,可以促进问题的转化,用类比推理法解决数学问题,可以帮助同学们由已建立起的知识结构来构造新的知识结构.3.几何题一般都附有示意图,其目的不仅增加题目的直观性,还防止理解上产生歧义. 在计算线段的长度、角的度数时,对于无图题,让学生明确:当所画的图形不惟一时,要注意分类讨论,考虑周全,唯有如此,才会得到全面而又正确的答案.。

华师大版数学七年级上册《4.4 平面图形》教学设计

华师大版数学七年级上册《4.4 平面图形》教学设计

华师大版数学七年级上册《4.4 平面图形》教学设计一. 教材分析《4.4 平面图形》是华师大版数学七年级上册的一个重要内容。

本节内容主要让学生初步认识平面图形,了解平面图形的性质,学会用坐标表示平面图形的位置,以及掌握用几何语言描述平面图形的方法。

教材通过丰富的实例和活动,引导学生观察、思考、探究,从而培养学生的空间观念和几何思维能力。

二. 学情分析七年级的学生已经具备了一定的几何知识,对一些基本的平面图形有了一定的了解。

但学生在小学阶段对图形的认识更多的是直观的,缺乏理性的分析。

因此,在教学过程中,教师需要关注学生的认知基础,通过引导学生观察、操作、思考,帮助学生建立平面图形的概念,培养学生用几何语言描述图形的能力。

三. 教学目标1.知识与技能:使学生掌握平面图形的性质,学会用坐标表示平面图形的位置,会用几何语言描述平面图形。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间观念和几何思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生合作交流、积极探究的精神。

四. 教学重难点1.重点:平面图形的性质,坐标表示平面图形的位置,用几何语言描述平面图形。

2.难点:对平面图形的理解和用几何语言描述平面图形。

五. 教学方法采用问题驱动法、情境教学法、合作交流法等多种教学方法,引导学生观察、操作、思考,激发学生的学习兴趣,培养学生的问题解决能力和几何思维能力。

六. 教学准备1.教师准备:熟悉教材内容,了解学生的认知基础,设计好教学活动。

2.学生准备:预习教材内容,了解基本平面图形。

3.教学资源:多媒体教学设备、平面图形的相关图片或实物、坐标系图等。

七. 教学过程1.导入(5分钟)通过展示一些生活中的平面图形,如教室的黑板、电视屏幕、书本封面等,引导学生关注平面图形,激发学生的学习兴趣。

同时,让学生尝试用几何语言描述这些图形。

2.呈现(10分钟)呈现教材中关于平面图形的定义和性质,引导学生初步认识平面图形。

华东师大版七年级上册数学课件:4.4 平面图形(共16张PPT)

华东师大版七年级上册数学课件:4.4 平面图形(共16张PPT)

A
B
C
D
3、用一个平面去截一个几何体,得到的截面是圆,
这个几何体可能是( D ) A、圆锥 B、圆柱 C、球体 D、以上都有可
能 3
1、内容:课本143--144页内容。 2、时间:3分钟。 3、方法:独立自学 4、要求: (1)多边形边数与三角形个数之间的关系?
(2)能否用一般的式子表示出其中的关系?
136页 习题 1. 2
15
16
7
讨论 3.有几个三角形?几个四边形?
4个 6个
8
讨论
4.想一想,下面的图形中哪几 个是多边形?说说你的理由。
9
内容回顾
1) 圆与多边形定义 2) 组成多边形的两个条件:
有线段组成 封闭 3) 把多边形分成三角形后,三角
形的个数与多边形边数的关系: 三角形的个数=多边形的边数- 2
10
1、在下列图形中:圆、正方体、长方形、球、三角形、五边形、 四棱柱平面图形有_圆_、__长__方_形__、_三__角__形_、__五_边__形___ 2.下列图形有几个是六边形?
4.4 平面图形
熊富霞王岩数学工作坊 1
1、内容:课本P133—P134页的内容 2、时间:5分钟 3、方法:前3分钟自学,后2分钟小组讨论自学时遇到的问题 4、要求:
1.掌握圆和多边形的定义 2.理解多边形和三角形的联系。
2
是多边形
是多边形
是圆
是多边形
2、下列图形中哪个是五边形( A )
是多边形
多边形还有其它的分割成三角形的方 法吗?若有请以四边形为例说明,并想 一想分割后三角形个数与四边形边数的 关系。
n-1
n
n-2
13
你又能发现什么规律吗?

新北师大版初中数学七年级上册 第四单元 基本平面图形 教案(全)

新北师大版初中数学七年级上册 第四单元 基本平面图形 教案(全)

4.1 线段、射线、直线教学目标:1、在现实情境中理解线段、直线、射线等简单的平面图形,感受图形世界的丰富多彩。

2、通过操作活动,了解两点确定一条直线等事实,积累操作活动经验。

教学重点:线段、射线、直线的概念及表示方法;了解三者的基本的特点,理解一个公理教学难点:几何语言的表达方法教学过程:一.预习:1.请同学们阅读教材,勾出重点和不懂的。

2.(1)绷紧的琴弦、人行横道线都可以近似地看做。

线段有端点。

(2)将线段向一个方向无限延长就形成了。

射线有端点。

(3)将线段向两个方向无限延长就形成了。

直线端点。

34.点与直线的位置关系点在直线上,即直线点;点在直线外,即直线点。

5.经过一点可以画条直线;经过两点有且只有条直线,即确定一条直线。

二.探究新知(一)创设情境,引入课题:用多媒体出示一组生活中的图片,有绷紧的琴弦、手电光束、笔直铁轨、筷子图、人行横道.让学生观察,问:你们能在其中发现我们所熟知的几何图形吗?(二)探究1. 线段射线和直线的概念及表示方法:讨论后讲解后完善预习中的表格。

线段特点及表示方法:射线特点及表示方法:直线特点及表示方法:探究2:(1)经过一个已知点A画直线,可以画多少条?经过两个点A、B画直线,又可以画多少条?(2)如果你想将一根细木条固定在墙上,至少需要几枚钉子?归纳:经过两点有且(“有”表示“存在性”,“只有”表示“唯一性”)练习1:如图,已知点A、B、C是直线m上的三点,请回答(1)射线AB与射线AC是同一条射线吗?cba BCADB CA(2)射线BA 与射线BC 是同一条射线吗? (3)射线AB 与射线BA 是同一条射线吗?(4)图中共有几条直线?几条射线?几条线段?分析:线段有两个端点;射线有一个端点,向一方无限延伸;直线没有端点,向两方无限延伸2、判断题: 1)、射线是向两方无限延伸的; ( ) 2)、可以用直线上的一个点来表示该直线 ( ) 3)、“射线AB ”也可以写成“射线BA ” ( ) 4)、线段AB 与线段BA 是指同一条线段 ( ) 探究3:点与直线的位置关系:(画图)1)、点P 在直线a 上(或说:直线a 经过点P ) 2)点P 在直线a 外 (或说:直线a 不经过点P )4.两条直线相交:当两条不同的直线有一个公共点时,称两条直线相交,公共点叫做它们的交点。

北师大版七年级数学上册第四章基本平面图形(教案)

北师大版七年级数学上册第四章基本平面图形(教案)
五、教学反思
在今天的教学过程中,我发现学生们对于基本平面图形的概念和分类掌握得还不错,但是在具体的案例分析中,部分学生在辨别角的类型和识别四边形特性时遇到了一些困难。这让我意识到,理论知识虽然重要,但将理论知识与实际应用结合起来,让学生在实际情境中去感受和理解这些概念,才是他们真正消化和吸收知识的关键。
最后,总结回顾环节,我通过提问的方式检验了学生们对今天所学知识的掌握情况,总体来说,他们对重点知识的掌握还算扎实。但是,我也意识到,对于难点的理解和运用,还需要在后续的课堂中继续巩固和强化。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平面图形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在讲授新课的过程中,我尽量用生活中的实例来解释角、三角形和四边形的性质,这样做的效果是明显的,学生们能够更直观地理解这些抽象的几何概念。不过,我也注意到,对于一些空间想象力较弱的学生来说,仅凭语言描述和静态图形展示可能还不够,今后我需要寻找更多直观的教学工具,比如动态模型或者互动软件,来帮助他们更好地理解和记忆。
-重点二:三角形的定义及特性。掌握不等边三角形、等腰三角形、等边三角形的性质。
-举例:通过实际操作,让学生观察和比较不同三角形的边长和角度特点。
-重点三:四边形的定义及特性。理解矩形、正方形、平行四边形、菱形的性质。
-举例:分析生活中的四边形物体(如桌面、书籍、窗户等),让学生直观感受四边形的特性。
-重点四:周长的计算方法。掌握三角形和四边形周长的计算公式。

北师大版七年级数学上册第四章基本平面图形4.4 角的比较

北师大版七年级数学上册第四章基本平面图形4.4 角的比较

探究新知
讨论探究
图中有几个角?它们之间有什么关系?
图中有3个角:∠AOC,∠AOB,
∠BOC.
O
它们的关系:
C B
A
∠AOC 是∠AOB 与∠BOC的和,记作∠AOC = ∠AOB
+∠BOC; ∠AOB 是∠AOC与∠BOC的差,记作∠AOB = ∠AOC-
∠BOC; 类似地,∠AOC-∠AOB=∠BOC .
巩固练习
变式训练 计算下列角的度数.
(1) 如图①,若∠AOC=35°,∠BOC=40°,则
∠AOB= 75 °.
A
A
C
C
O
B
图①
O
B
图②
(2) 如图②,若∠AOB= 60°,∠BOC=40°, 则 ∠AOC=20°.
巩固练习
(3) 若∠AOB =60°,∠AOC =30°,则 ∠BOC= 90或30 °. 提示:无图条件下要分情况讨论.
所以∠COD=∠DOE = 30°, O
A
所以∠BOD =∠BOC+∠COD = 40°+30°= 70°.
探究新知
(3) 如果∠AOE=140°, ∠COD=30°,那么∠AOB
是多少度?
DC
解:因为 ∠COD=30°, E
OD 平分∠COE,
B
所以 ∠COE=2∠COD=60°,
所以 ∠AOC=∠AOE-∠COE
C
成两个相等的角,这条射
线叫做这个角的平分线.
O
A
应用格式:
因为OC 是∠AOB 的角平分线,
所以
∠AOC
=∠BOC

1 2
∠AOB,
∠AOB =2∠BOC =2∠AOC.

北师大版数学七年级上册《 第四章 基本平面图形 》教学设计

北师大版数学七年级上册《 第四章 基本平面图形 》教学设计

北师大版数学七年级上册《第四章基本平面图形》教学设计一. 教材分析北师大版数学七年级上册《第四章基本平面图形》的教学内容主要包括了平面图形的认识、性质和计算。

本章内容是学生从小学到初中阶段的一个过渡,对于培养学生的空间观念和逻辑思维能力具有重要意义。

平面图形的学习不仅可以帮助学生建立几何的基本概念,而且对于提高学生的数学思维能力和解决实际问题的能力具有重要作用。

二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于简单的平面图形有一定的认识。

但是,学生的几何知识还不够系统,对于一些复杂的平面图形的性质和计算还比较陌生。

因此,在教学过程中,需要引导学生通过观察、操作、思考、探究等活动,逐步建立和巩固平面图形的知识体系。

三. 教学目标1.知识与技能:使学生掌握基本平面图形的性质和计算方法,提高学生的空间想象能力和逻辑思维能力。

2.过程与方法:通过观察、操作、思考、探究等活动,培养学生的几何思维方法和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作能力和自主学习能力。

四. 教学重难点1.教学重点:基本平面图形的性质和计算方法。

2.教学难点:对复杂平面图形的理解和计算。

五. 教学方法1.情境教学法:通过设置有趣的情境,激发学生的学习兴趣,引导学生主动参与学习活动。

2.问题驱动法:通过提出问题,引导学生思考和探究,培养学生解决问题的能力。

3.合作学习法:学生进行小组讨论和合作,培养学生的团队协作能力和沟通能力。

六. 教学准备1.教学素材:准备相关的平面图形图片、模型等教学素材。

2.教学工具:准备黑板、粉笔、多媒体设备等教学工具。

七. 教学过程1.导入(5分钟)通过展示一些生活中的平面图形,如教室的黑板、课本封面等,引导学生关注平面图形,激发学生的学习兴趣。

2.呈现(10分钟)介绍基本平面图形的性质和计算方法,如正方形、矩形、三角形等。

通过示例和讲解,使学生理解并掌握这些图形的性质和计算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面图形说课稿
课程标准分析
让学生了解点、线、多边形可组成各种柔美的图案,而这些图案,又有着广博的应用;让学生直观地认识形形色色的平面图形,认识多边形,认识到多边形可由三角形组合而成;通过观察、操作,直观认识平面图形,并通过图案设计的活动,能欣赏现实世界中的美丽图案.
教材分析
1.地位与作用:本节课是在学习了立体图形的视图与立体图形的表面展开图以后学习的,学生已经认识立体图形与平面图形之间的关系.要研究立体图形往往从平面图形开始,同时也是为下一步研究和学习平面几何做准备,所以说,本节课的学习起承前启后的作用.
2.重点与难点:本节的重点是认识一些多边形的特征,多边形和三角形的关系;难点是图形的设计与分割组合.
教法分析
本节课的引入是通过实际物体表面形状的描画,得到了八边形、圆、六边形、三角形、长方形.教师在教学时可找一些包装盒等作为教具,让学生画出它们的表面,从而较直观地认识到圆是一个由曲线围成的封闭图形.三角形、四边形、六边形、八边形都是多边形,初步实现从感性认识到理性认识、从详尽到抽象的认识过程.对于多边形与三角形的关系,教材上提供了一种分法,在教学时还可以提醒学生去思考研究另外的一些分法.对于试一试中的图案设计,可以让学生事先收集在生活、学习中由点、线、多边形和圆等图形组成的图案,再与同学之间互相交流,从而认识到简单图形应用的广博性和学习的必要性.本节课主要以学生自主探究、合作研讨、实践创新为主.
学法分析
学习本节时要注意以下几点:(1)再繁复的平面图形都是由若干个简单的基本图形组合而成,因此,对于繁复平面图形的把握,一定要从简单的基本图形入手,即学习多边形也要从三角形入手,通过三角形的知识推出多边形的有关知识;(2)多观
察一些平面图形,并注意它的名称与它的边的关系,便于理解定义;(3)在学习过程中注意从感性认识到理性认识,从详尽到抽象的过渡.。

相关文档
最新文档