微波实验报告_微带短截线低通滤波器的设计、仿真与测试

合集下载

微波实验报告_微带短截线低通滤波器的设计、仿真与测试

微波实验报告_微带短截线低通滤波器的设计、仿真与测试

微波实验报告_微带短截线低通滤波器的设计、仿真与测试综合课程设计实验报告课程名称:微波方向综合课程设计实验名称:微带短截线低通滤波器的设计、仿真与测试院(系):信息科学与工程学院专业班级:姓名:学号:指导教师:2011年12月22日1/13一、实验目的和要求1、目的:通过这次课程设计,进一步理解微波工程的相关内容,熟练运用Microwave Office和Protel等软件,通过这学期学习、练习的积累,选择一个微波器件,依据MWO的仿真结果,使用protel99se将其绘制成电路版图(PCB)。

最后在老师的帮助下制成实物并与仿真结果对比分析,在实践中加强自己对微波工程的体会与理解。

2、要求:从以下题目中选择一个微波器件,依据MWO的仿真结果,使用protel99se将其绘制成电路版图(PCB)。

(器件的工作频率和学号相关)1)3dB微带功率分配器;2)微带短截线滤波器3)3dB微带定向耦合器PCB板采用介电常数为4.5,厚度为1mm的FR4基片;电路尺寸必须按照自己相应的MWO设计结果绘制;电路外轮廓为矩形,尺寸必须为:50mm*40mm或40mm*20mm;每个电路端口必须在电路板的侧面,并使用至少5mm长度的50ohm微带线连接。

二、实验内容和原理1、内容:在介电常数为4.5,厚度为1mm的FR4基片上(T取0.036mm,Loss tangent取0.02),设计一个3阶、最大平坦型微带短截线低通滤波器,其截止频率为f(2.2GHz),阻抗是50欧姆。

2、原理:2/13(1)Richards变换:集总元件构成的滤波器通常工作频率较低,在微波频段,我们常常采用微带结构实现较好的滤波性能。

在设计得到滤波器原型之后,为了实现电路设计从集总参数到分布参数的变换,Richards提出了一种变换方法,这种变换可以将集总元件变换成传输线段。

如图1所示,电感L可等效为长为λ/8,特性阻抗为L的短路线;电容C可等效为长为λ/8,特性阻抗为1/C的开路线。

3微带低通滤波器ADS2011仿真实验

3微带低通滤波器ADS2011仿真实验

微带低通滤波器ADS 仿真实验一.实验目的1.了解微带低通滤波器的设计方法及原理2.熟悉ADS2011软件 二.具体指标 1.具有最平坦响应 2.截止频率GHz c 5.2=ω3.在GHz 4=ω处的插入损耗必须大于20dB4.阻抗为Ω50,采用6阶巴特沃兹低通原型,最高实际线阻抗为120Ω,最低实际阻抗为20Ω,采用的基片参数为02.0tan ,2.4,58.1===δεr mm d ,铜导体的厚度为mm t 035.0=三.滤波器设计步骤1.根据设计要求确定低通原型元器件值2.采用阻抗和频率定标公式,用低阻抗和高阻抗线段代替串联电感和并联电容。

所需微带线的电长度l β,以及实际微带线宽w 和线长l 可由ADS 软件中的lineCalc 工具计算得到3.根据得到的线宽和线长进行建模并仿真计算计算如下:6.015.241||=-=-c w w ,由下图1.1看出,对于n=6的曲线,当6.0)1|(|=-cw w时,LA 〈20dB ,故最大平坦滤波器级数n=6.图1.1 最大平坦滤波器原型的衰减与归一化频率的关系曲线根据表1.2列出低通原型值:1==.0,.1=5176=ggg。

gg4142=g=2,.15,65176.0,4142.0931893183.04,表1.2 巴特沃兹滤波器低通原型元器件值四.滤波器原理图设计1.建工程打开ADS2011,点击— > next —〉在workspace name中写入工程名称StepFilter_wrk—〉点击finish2.在StepFilter_wrk工程里创建原理图在folder view中选中你建立的工程,右键点击New Schematic,然后ok。

3.画微带线原理图在红框处打入MLIN回车,软件就会自动帮你找到微带线元器件(后面的元器件均如此添加),画好的原理图如图1.3图1.34.电路参数的设置添加器件MSUB,双击MSUB,添加参数如图1。

电磁场与微波技术实验报告.

电磁场与微波技术实验报告.

电磁场与微波技术实验报告班级:学号:姓名:目录目录 (2)实验2 微带分支线匹配器 (3)一、实验目的: (3)二、实验原理 (3)三、实验内容 (3)四、实验步骤 (3)实验三四分之一波长阻抗变换器 (15)实验目的 (15)实验原理 (15)单节4λ阻抗变换器 (16)多节4λ阻抗变换器 (16)实验内容 (17)实验步骤 (18)实验4 低通滤波器 (31)实验目的 (31)实验原理 (31)低通原型滤波电路 (32)Richards变换 (32)Kuroda变换 (33)实验内容 (33)实验步骤 (33)总结 (41)完成任务 (41)问题及解决 (41)心得与体会 (41)实验2 微带分支线匹配器一、实验目的:1.熟悉支节匹配器的匹配原理2. 了解微带线的工作原理和实际应用3.掌握Smith图解法设计微带线匹配网络二、实验原理支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。

单支节匹配器,调谐时主要有两个可调参量:距离d和由并联开路或短路短截线提供的电纳。

匹配的基本思想是选择d,使其在距离负载d处向主线看去的导纳Y是Y0+jB 形式。

然后,此短截线的电纳选择为-jB,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。

双支节匹配器,通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。

三、实验内容已知:输入阻抗Zin=75欧负载阻抗Zl=(64+j35)欧特性阻抗Z0=75欧介质基片εr=2.55,H=1mm假定负载在2G赫兹时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=四分之一波长,两分支线之间的距离为d2=八分之一波长。

画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz 的变化四、实验步骤(一):单支节匹配在史密斯圆图上找到等反射系数圆和g=1圆的交点,有两个点与其匹配。

微波低通滤波器实验报告

微波低通滤波器实验报告

微波低通滤波器实验报告实验目的:1.理解微波低通滤波器的工作原理和应用;2.学习使用实验仪器和测量技术,分析和评估滤波器的性能;3.掌握低通滤波器的设计和调试方法。

实验器材和测量仪器:1.微波信号源;2.微波功率计;3.滤波器;4.方向耦合器;5.功分器;6.示波器;7.电源。

实验原理:实验过程:1.搭建实验电路:根据设计要求,选择合适的电感元件和电容元件,并按照电路图连接。

2.导入信号:使用微波信号源产生待测信号,并将信号导入滤波器。

3.测量功率:在滤波器的输入端和输出端分别连接微波功率计,测量输入信号和输出信号的功率。

4.调试电路:根据实际测量结果,调整电路参数,直到达到滤波器的设计要求。

5.测量波形:使用示波器观察输入信号和输出信号的波形,评估滤波器的性能。

实验结果:根据实际测量数据,绘制滤波器的频率响应曲线。

通过测量功率和观察波形,评价滤波器的性能。

实验讨论:根据实验结果,分析滤波器的优缺点,并对滤波器的性能进行评估。

讨论滤波器的应用领域和改进方法。

实验结论:根据实验结果和讨论,总结滤波器的工作原理和应用,以及实验中的调试方法和技巧。

总结实验的收获和不足之处,并提出改进建议。

实验总结:通过本次实验,我们对微波低通滤波器的工作原理和应用有了更深入的了解,掌握了滤波器的设计和调试方法。

通过实际操作,提高了我们的实验技能和问题解决能力。

同时,实验过程中也发现了一些不足之处,对于实验仪器和测量技术的熟悉程度有待提高。

在今后的学习中,我们将继续深化对微波低通滤波器的研究,并努力克服实验中遇到的问题,提高实验的准确性和可靠性。

微波实验实验报告

微波实验实验报告

微波实验实验报告姓名:杜文涛班级:05116班学号:050489班内序号:08指导老师:徐林娟实验四微带功分器一、实验目的:1)掌握微波网络的S参数;2)熟悉微带功分器的工作原理及其特点;3)掌握微带功分器的设计与仿真。

二、实验原理:功分器是一种功率分配元件,它是将输入功率分成相等或不相等的几路功率,当然也可以将几路功率合成,而成为功率合成元件。

在电路中常用到微带功分器。

下图是二路功分器的原理图。

图中输入线的阻抗为Z0,两路分支线的特性阻抗分别为Z02 和Z03,线长为λg/4,λg/4 为中心频率时的带内波长。

图中R2 和R3 为负载阻抗,R为隔离电阻。

对功分器的要求是:两输入口2 和3 的功率按一定比例分配,并且两口之间互相隔离,当2,3 口接匹配负载时,1 口无反射。

下面根据上述要求,确定Z02, Z03,R2,R3 及R 的计算式。

设2 口,3 口的输出功率分别为P2,P3,对应的电压为V2,V3。

根据对功分器的要求,则有P3=k2P2|V3|2/R3=k2|V2|2/R2式中k 为比例系数。

为了使在正常工作时,隔离电阻R 上不流过电流,则应V3=V2于是得R2=k2R3若取R2=kZ0则R3=Z0/k因为分支线为λg/4,故在1 入口处的输入阻抗为:Z in2=Z022/R2Z in3=Z032/R3为使1 口无反射,则两分支线在1 处的总输入阻抗应等于引出线的Z0,即Y0=1/Z0= R2 /Z022 +R3 /Z032若电路无损耗,则|V1|2/ Z in3 =k2|V1|2 /Z in2式中V1 为1 口处的电压所以Z02 = k2 Z03Z03 =Z0[(1+ k2)/k3]0.5Z02=Z0[(1+ k2)k]0.5下面确定隔离电阻R 的计算式。

跨接在端口2,3 间的电阻R,是为了得到2,3 口之间互相隔离的作用。

当信号1 口输入,2,3 口接负载电阻R2 ,R3 时,2,3 两口等电位,故电阻R 没有电流流过,相当于R 不起作用;而当2 口或3口的外接负载不等于R2 或R3 时,负载有反射,这时为使2,3 端口彼此隔离,R 必有确定的值,经计算R= Z0(1+ k2)/k 图中两路带线之间的距离不宜过大,一般取2~3 带条宽度,这样可使跨接在两带线之间电阻的寄生效应尽量小.为了匹配需要在引出线Z0与2,3端口之间各加一段λg/4阻抗变换段。

微波低通滤波器实验报告

微波低通滤波器实验报告

微波低通滤波器实验报告实验报告标题:微波低通滤波器实验一、实验目的:1.掌握微波低通滤波器的基本原理;2.了解微波低通滤波器的电路结构;3.通过实验验证微波低通滤波器的性能。

二、实验器材和仪器:1.微波信号源2.微波功率计3.微波频谱分析仪4.微波低通滤波器5.微波衰减器6.BNC电缆7.BNC-T型连接器8.计算机三、实验原理:四、实验步骤:1.将微波信号源、微波功率计、微波频谱分析仪按照实验连接图连接好,保证信号的输入和输出的连续性。

2.将微波低通滤波器与微波信号源相连接。

3.调节微波信号源的频率,通过微波功率计和微波频谱分析仪测量输出信号的功率和频谱。

4.将微波衰减器串联在微波低通滤波器的输入端,逐步增加衰减量,记录输出信号功率与频谱的变化。

5.将实验数据导入计算机,绘制出输出信号功率与频率的曲线。

五、实验结果:实验数据如下:微波信号源频率(GHz),输出信号功率(dBm)------------------,-----------------2.4,-20.53.0,-21.03.6,-21.24.2,-21.84.8,-22.55.4,-23.06.0,-23.56.6,-24.07.2,-24.57.8,-25.0六、实验讨论:根据实验结果,可以看出输出信号功率随着输入信号频率的增加而逐渐减小,表明微波低通滤波器对高频信号有较好的衰减效果。

此外,随着输入信号频率的提高,输出信号功率的降低速度也逐渐增加,说明该微波低通滤波器在高频范围内的滤波效果更为显著。

七、实验总结:本次实验通过测量微波低通滤波器在不同频率下的输出信号功率,验证了该滤波器对高频信号的衰减作用。

实验结果表明,在设定的频率范围内,输出信号功率随着频率的增加而逐渐减小。

同时,实验也巩固了基本的微波实验技能,提高了对微波低通滤波器的理解。

微波仿真实验报告

微波仿真实验报告

目录实验2 微带分支线匹配器 (3)✧实验目的 (3)✧实验原理 (3)✧实验内容 (3)✧实验步骤 (3)实验3 微带多节阻抗变换器 (9)✧实验目的 (9)✧实验原理 (9)✧实验步骤 (10)✧实验内容 (10)✧实验设计及结果 (10)实验4 微带功分器 (11)✧实验目的 (11)✧实验原理 (11)✧实验内容 (13)✧实验步骤 (13)实验心得与总结 (16)实验2 微带分支线匹配器✧ 实验目的1) 熟悉枝节匹配器的匹配原理2) 了解微带线的工作原理和实际应用3) 掌握Smith 图解法设计微带线匹配网络✧ 实验原理随着工作频率的提高及响应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。

因此,在频率高达一定数值以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现族抗匹配网络。

常用的匹配电路有:枝节匹配器,四分之一波长阻抗变换器,指数线匹配器等。

枝节匹配器分单枝节、双枝节和三支节匹配。

这类匹配器是在主传输线上并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的,此电纳(或)电抗元件常用一终端短路或开路段构成。

单枝节匹配的基本思想是选择枝节到阻抗的距离d ,使其在距负载d 处向主线看去的导纳Y 是Y0+jB 形式。

然后,此短截线的电纳选择为-jB ,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。

双枝节匹配器,通过增加一枝节,改进了单枝节匹配器需要调节枝节位置的不足,只需调节两个分支线的长度就能达到匹配。

✧ 实验内容已知: 输入阻抗 Zin=75Ohm负载阻抗 Zl=(64+j35)Ohm特性阻抗 Z0=75 Ohm介质基片r ε=2.55,H=1mm假定负载在2GHz 时实现匹配,利用图解法设计微带线单枝节和双枝节匹配网络,假设双枝节网络分支线与负载的距离d1= 4/λ,两分支线之间的距离为d2= 8/λ。

微波技术_实训报告

微波技术_实训报告

苏州市职业大学实训说明书名称微波技术与应用2014年11月24日至年11月29日共1周院系电子信息工程系班级12通信1班姓名李阳阳院长张欣系主任范海健指导教师苏品刚苏州市职业大学实训任务书课程名称:微波应用技术实训起讫时间:2014.11.24-2013.11.28院系:电子信息工程学院班级:12通信技术1指导教师:苏品刚系主任:范海健院长:张欣目录第一章绪论 (1)第二章滤波器设计 (2)2.1 滤波器简介 (2)2.2 滤波器原理 (2)2.3 滤波器的设计 (3)2.4 滤波器设计步骤 (4)2.5 滤波器实训结果 (8)第三章低通滤波器的设计 (9)3.1微带电路 (9)3.2 微带线 (9)3.3 微带电容和微带电感 (9)3.4低通滤波器设计步骤 (11)3.5 低通滤波器实训结果 (15)第四章实训心得 (17)第一章绪论微波与射频技术在21世纪之所以发展迅速,其主要原因是它有巨大的应用价值。

目前,现代无线通信、卫星通信、全球定位系统、物联网工程、射频识别、微波遥感、医疗监控、微电子学、纳米技术、电机科学、雷达等传感器技术乃至生命科学与技术都是以电磁场、微波与射频技术为基础,而现代武器装备信息化更是离不开微波、毫米波这项核心技术的支撑。

例如微波雷达技术不仅应用于国防,还用于导航、气象测量、大地测量、工学检测和交通管理等方面。

微波仪器方面,微波测量仪器、微波信号源、微波专用仪器也极具应用价值。

因此微波与射频技术支撑着众多的社会效益和经济效益及其明显的高新科技产业。

微波技术与应用实训是通信类课程中为微波技术与应用开设的一门实践课。

本课程强调以实践教学为主,在软件分析实践教学过程中要求学生把在微波技术课程中学到的基础内容贯穿起来,以软件方式实现微波器件的性能参数设置和分析。

使学生通过实践能较好地掌握基本微波器件的设计和应用,更深层地掌握微波技术教材的内容。

本课程设计的主要任务是用微波仿真软件设计一个集总(或分布)参数滤波器。

微波技术实验报告

微波技术实验报告

微波技术虚拟实验报告一、实验名称微波低通滤波器二、设计要求设计一个切比雪夫式微波低通滤波器,技术指标为:截止频率f c=2.2GHz,在通带内最大波纹L Ar=0.2dB,S11小于-16dB;在阻带频率f s=4GHz处,阻带衰减L As是不小于30 dB。

输入,输出端特性阻抗Z0=50Ω。

方法一:用微带线实现,基片厚度H=800um,T=10um,相对介电常数εr=9.0;高阻抗线特性阻抗Zoh =106Ω,低阻抗线Z01=10Ω。

方法二:用同轴线实现,其外导体直径为D0=16mm;高阻抗线特性阻抗Zoh=138Ω;低阻抗线内,外导体间相对介电常数εr =2.54,低阻抗线特性阻抗Z01=1。

确定滤波器的结构尺寸,测量滤波器的参数S11,S21,进行适当调节,使之达到最佳。

记录滤波器的最终结构尺寸,总结设计,调节经验。

三、实验仪器硬件:PC机软件:Microwave Office软件四、设计步骤1.确定原型滤波器生成原形滤波器时,在参数定义页设置N:5 元件数目为5;FC:2.2 截止频率为2.2GHz;PP:Ripple(dB) 带内参数为波纹衰减PV:0.2 波纹衰减值为0.2dBRS:50 输入端特性阻抗为50ΩRL:50 输出端特性阻抗为50Ω生成名为Fliter的原形滤波器的原理图,以及相关的测量图,优化项。

最终得到电路图,如下所示:设置工作频率,分析后得到滤波器相应结果,包括S11,S21参数。

设置优化目标,即f <2.2GHz时,S11<-16dB,S21 >-0.2dB; f >4GHz, S21<-30Db;目标设定完成后进行优化。

优化结束后,得到滤波器相应结果,包括S11,S21参数,如下图所示:五、实验数据记录1.根据优化结果,将原型滤波器的各个已优化的参数值填入表1,如下所示:2.计算滤波器的实际尺寸(1)微带线结构○1高阻抗线先计算高抗阻线的宽度。

微波低通滤波器实验报告

微波低通滤波器实验报告

微波低通滤波器实验报告微波低通滤波器实验报告一、设计要求设计一个切比雪夫微波低通滤波器,技术指标为:截止频率fc=2.2GHz, 在通带内最大波纹L Ar =0.2dB, S11小于-16dB;在阻带频率fs=4GHz处,阻带衰减LAs不小于30dB。

输入、输出端特性阻抗Z=50 Ohm。

二、实验仪器硬件:PC机软件:Microwave Office软件三、设计步骤1.确定原型滤波器启动软件中Wizard 模块的AWR Filter Synthesis Wizard (AMR 滤波器综合向导)功能,输入各项技术指标,即自动生成原型滤波器的原理图。

具体电路如下所示:图1原型滤波器电路图由于默认的优化目标与实验要求指标不同,必须自行重新设置,即f<2.2GHz 时,11S <-16dB,21S >-0.2dB ;f>4GHz 时,21S <-30dB ;目标设定完成后再进行优化。

优化结束后,即得到原型滤波器的各个已优化的参数值。

将结果填入表2。

2.计算滤波器的实际尺寸 (1)微带线结构 ①高阻抗线先计算高阻抗线的宽度。

已知条件:0.9r =ε,G Hz 1.1f o =,H=800um ,T=10um ,阻抗Ω=106Z oh ,计算得W,re ε;再计算高阻抗线的长度: ②低阻抗线先计算低阻抗线的宽度。

已知条件:0.9r =ε,G Hz 1.1f o =,H=800um ,T=10um ,阻抗Ω=10Z oh ,计算得W,re ε;再计算低阻抗线的长度:注意:计算公式中的L0、Ca 、Cb 即为原型滤波器的优化参数,仅为数值,不带单位!计算结果的单位为微米。

将结果填入表2。

得到各个参数后,即可得到微带线结构滤波器原理图:MLIN ID=TL1W=1000 um L=10000 umMSUB Er=9H=800 um T=10 um Rho=1Tand=0ErNom=9Name=SUB1MLIN ID=TL2W=1000 um L=10000 umMLIN ID=TL3W=1000 um L=10000 umMLIN ID=TL4W=1000 um L=10000 umMLIN ID=TL5W=1000 um L=10000 umPORT P=1Z=50 OhmPORT P=2Z=50 Ohm图2微带线结构滤波器原理图电路中的参数均可由上公式算出。

微波低通滤波器的仿真设计毕业论文

微波低通滤波器的仿真设计毕业论文

微波低通滤波器的仿真设计[摘要]近年来,随着军事、通迅、科研的发展,市场对微波滤波器在机能方面的需要不断地升迁。

在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,于是设计一个高性能的滤波器,对设计微波电路系统具有很重要的影响。

本文设计了一个微带线微波低通滤波器.低通滤波器的原型为切比雪夫低通滤波器,输入输出阻抗为50 ,截止频率为4GHz,3阶,带内波纹为3dB. 首先依据理查德变换和科洛达规则对切比雪夫低通滤波器原型进行转换。

然后在射频软件(ADS)中计算出微带线的尺寸并且进行建模仿真。

最后对仿真结果进行调谐优化,仿真结果达到设计要求.[关键字] 微波低通滤波器微带线 ADS陕西理工学院毕业设计Simulation design of microwave low-pass filterxxxx(Grade 10,Class 04,Major electronics and information engineering,School of Physics and Telecommunication Engineering.,Shaanxi University of Technology,Hanzhong Shaanxi,723003)Tutor: xxxxxAbstract: In recent years, with the development of military, communications, research, and market need for microwave filters constantly promoted in the function aspect. In microwave circuit system, the performance of filter circuit has great influence on the performance index of the circuit, so to design a high performance filter has a significant impact on the design of microwave circuit system. This paper describes the design of a microstrip line microwave low-pass filter. The low-pass filter prototype is the Chebyshev low-pass filter, input and output impedance is 50 , and cut-off frequency is 4GHz, 3 bands, the band ripple is 3dB. Firstly according to Richard transformation and Kuroda rules on Chebyshev low-pass filter prototype conversion. Then calculate the size of microstrip line and simulation in the RF software (ADS). Finally, the simulation results are tuned to optimization, and the simulation results meets the design requirements.Keywords:Microwave low-pass filter line ADS目录1 绪论 (1)1.1 课题的研究背景及意义 (1)1.2 发展历程及国内外研究现状 (1)1.3 ADS软件简介 (1)2 微波低通滤波器的设计理论 (3)2.1 滤波器的定义及分类 (3)2.2滤波器的主要指数指标 (3)2.3 切比雪夫低通滤波器设计理论 (5)2.3.1 切比雪夫低通滤波器原理 (5)3 微带传输线 (7)3.1 传输线理论 (7)3.2 微带传输线 (7)3.3 微带线的设计方法 (8)4 微带线低通滤波器的设计 (9)4.1 由集总元件低通滤波器变换为分布参数低通滤波器 (9)4.1.1利用理查德变换将集总元件转换为分布参数元件 (9)4.2 利用科洛达规则将串联短截线转换为并联短截线 (10)4.3 微带低通滤波器原理图 (12)5 微带线滤波器原理图和版图的仿真设计及优化 (14)5.1原理图的设计 (14)5.2 电路参数设置 (14)5.3 仿真参数设置和原理图仿真 (16)5.3.1 仿真参数设置 (16)5.3.2 原理图仿真 (16)5.4微带滤波器版图生产与仿真 (17)5.4.1 版图的生产 (17)5.5 对原理图和版图的优化 (20)5.5.1 原理图的优化 (20)5.5.2版图的仿真 (22)6设计总结 (25)参考文献 (26)致谢 (27)附录A 外文文献 (28)附录B 外文翻译 (33)1 绪论1.1 课题的研究背景及意义对于无线通信体系来讲,滤波器是一个关键的射频元器件。

射频实验四实验报告

射频实验四实验报告

实验四射频微波滤波器的设计仿真与测试一、实验目的1.掌握低通原型滤波器的结构;2.掌握最平坦和等波纹型低通滤波器原型频率响应特性;3.了解频率变换法设计滤波器的原理及设计步骤;4.了解利用微带线设计低通、带通滤波器的原理方法;5.掌握用ADS进行微波滤波器优化仿真的方法与步骤。

二、滤波器原理2.1滤波器的技术指标滤波器的技术指标有:中心频率,通带最大衰减,阻带最小衰减,通带带宽,插入损耗、群时延,带内纹波,回波损耗、驻波比。

2.2插入衰减法设计滤波器插损法是一种系统的综合方法,可高度地控制整个通带和阻带内的幅度和相位特性,可以计算出满足应用需求的最好响应。

如要求插损小,可用二项式响应;而切比雪夫响应能满足锐截止的需要;若可牺牲衰减率的话,则能用线性相位滤波器设计法获得好的相位响应。

插损法使滤波器性能提高的最为直接的方法便是增加滤波器的阶数,滤波器的阶数等于元件的个数。

2.3集总元件低通滤波器原型最平坦响应滤波器设计切比雪夫滤波器设计 :2.4滤波器的设计步骤(1)由衰减特性综合出低通原型;(2)再进行频率变换,变换成所设计的滤波器类型;(3)计算滤波器电路元件值(集总元件);(4)微波结构实现电路元件,并用微波微波仿真软件进行优化仿真。

三、集总参数滤波器3.1 设计一LC切比雪夫型低通滤波器,截止频率为75MHz,通带内衰减为3dB,波纹为1dB,频率大于100 MHz,衰减大于20 dB,Z0=50Ω。

原理图:仿真波形:四、微波滤波器的实现微波频率下的集总元件滤波器会出现两个问题:第一,集总元件如电感或电容仅有有限值可供选择,且在微波频率下会存在不可避免的寄生频率效应;第二,滤波器中各元件间的距离不可忽略。

4.1 设计最平坦响应低通滤波器,通带内波纹系数小于2,截至频率4GHz,8GHz 处插入损耗必须大于15dB,阻抗50 。

原理图:由于电路工作频率高,不宜采用集总元件,需转换为分布参数元件。

微带滤波器的设计与仿真

微带滤波器的设计与仿真

实验二 微带滤波器的设计与仿真一、实验目的1、学习使用ADS 软件进行微波电路的设计,优化,仿真。

2、掌握微带滤波器的制作及调试方法。

二、实验设备 1、台式电脑 1台 配置要符合相关软件要求 2、ADS 软件 1套 微波软件 三、实验内容1、使用ADS 软件设计一个微带带通滤波器,并对其参数进行优化、仿真。

2、根据软件设计的结果绘制电路版图,并加工成电路板。

四、技术指标1、具有最平坦响应2、截止频率GHz c 5.2=ω3、在GHz 4=ω处的插入损耗必须大于20dB4、阻抗为Ω50,采用6阶巴特沃兹低通原型,最高实际线阻抗为Ω120,最低实际线阻抗为Ω20,采用的基片参数为02.0tan 2.458.1===δε,,r mm d ,铜导体的厚度mm t 035.0=五、实验过程及仿真结果1、新建滤波器工程和设计原理图,设计完原理图再用对原理图进行优化。

2、设置完优化目标的原理图如附录图1所示,滤波器的参数曲线如附录图2所示,优化后的参数如附录图3所示,生成的版图如附录图4所示。

版图仿镇结果见附录版图仿真(1)附录版图仿真(2)附录版图仿真(3)。

六、实验体会这次实验是微带滤波器的设计与仿真,对于射频电路设计课本中学习的东西,这算是第二次用可视化,可操作的形式展现出来。

对于以前不懂的,模糊的,又一次可以通过操作练习全部展现。

不过,由于按照实验指导书上的步骤进行,射频的很多知识点的还是很不清晰,需要仔细的研究后才能知道操作是在进行着哪一步。

其实,要是平时对书本上的知识再了解的多一点,应该也不会如此困难如此模糊。

所以接下来,我要好好地把理论的知识点梳理出来。

希望下一次实验可以做的很顺利!附录图1 设置完优化目标的原理图图2 滤波器的参数曲线图3 优化后的参数曲线图4 生成的版图图5 版图仿真(1)图5 版图仿真(1)图6 版图仿真(2)图7 版图仿真(3)。

awr微波实验报告设计低通滤波器

awr微波实验报告设计低通滤波器

awr微波实验报告设‎计低通滤波器awr‎微波实验报告设计低通‎滤波器‎篇一:‎AR微波‎实验报告实验一A ‎整流器非线性分析一‎.实验目的‎1. 了解非线性二极‎管整流器工作原理‎2. 学‎会AR对电路进行非线‎性分析及非线性调节‎二.实验原理所有‎整流器类别中最简单的‎是二极管整流器。

在最‎简单的型式中,二极管‎整流器不提供任何一种‎控制输出电流和电压数‎值的手段。

为了适用于‎工业过程,输出值必须‎在一定范围内可以控制‎。

通过应用机械的所谓‎有载抽头变换器可以完‎成这种控制。

作为典型‎情况,有载抽头变换器‎在整流变压器的原边控‎制输入的交流电压,因‎此也就能够在一定范围‎内控制输出的直流值。

‎通常有载抽头变换器与‎串联在整流器输出电路‎中的饱和电抗器结合使‎用。

通过在电抗器中引‎入直流电流,使线路中‎产生一个可变的阻抗。

‎因此,通过控制电抗器‎两端的电压降,输出值‎可以在比较窄的范围内‎控制。

本次试验要求‎设计一个非线性二极管‎整流器,添加测量项,‎调节电阻,观察电压的‎变化情况,从而去分析‎二极管的非线性。

三‎.实验步骤‎1、完成非线性二极‎管整流器电路图如下‎2、设计模拟‎频率如下3、‎添加图表,往图表中添‎加测量项Vtime,‎A CVS.V1,V_‎M eter.VM1,‎并分析电路4‎、添加图表,往图表中‎添加测量项Vtime‎,ACVS.V1,V‎_Meter.VM1‎,并分析电路‎5、使用 Simul‎a te/Tune t‎l调节MAG及R参数‎观察Graph1和G‎r aph2变化观察‎得调节MAG会使得测‎量项ACVS.V1,‎V_Meter.VM‎1的幅值变大,而调节‎R电路特性变化不大。

‎四.实验总结通‎过此次试验,学会如何‎向工程中添加原理图,‎并成功绘制符合元件参‎数的原理图。

学会添加‎图表,往图表中添加非‎线性测量项。

学会使用‎T une tl调节电‎路中元件的参数,从而‎观察到改元件参数对电‎路特性的影响。

微波滤波器设计与仿真实验报告公版

微波滤波器设计与仿真实验报告公版

微波滤波器设计与仿真一、实验原理:二、实验步骤:一、低通滤波器设计与仿真:。

三、实验结果:m1m22.8 2.93.0 3.1 3.2 3.32.7 3.4-60-50-40-30-20-10-700f req, GHzd B (S (1,2))m2freq=dB(S(1,2))=-1.2173.050GHz 2.82.93.03.13.23.32.73.4-60-50-40-30-20-10-700f req, GHzd B (S (2,1))2.82.93.03.13.23.32.73.4-30-25-20-15-10-5-350f req, GHz d B (S (2,2))2.8 2.93.0 3.1 3.2 3.32.73.4-30-25-20-15-10-5-350f req, GHzd B (S (1,1))m1freq=dB(S(1,1))=-20.83.0GHz四、实验思考题:(1)如果仿真中发现微带带通滤波器通带的中心频率偏高50MHz ,则应当增加还是减小耦合线的长度,才能使通带移到正确的频率? 答:因为耦合线节的长L 约为四分之一波长。

如果测试中发现滤波器通带的中心频率偏高50MHz ,则说明波长变小,则耦合线节的长L 偏小。

所以应该增加耦合线节的长度,使波长变长,从而使频率降低。

(2)在优化仿真中加大S 参数仿真的频率范围,微带带通滤波器的寄生通带将会出现在什么频率上。

答:微带带通滤波器的寄生通带将会出现在12GHZ 附近。

(3)信号通过滤波器时产生的衰减可能来自哪几个方面?答:1、阻抗不匹配造成的反射,可通过匹配削弱2、导体损耗可选择合适的谐导体材料。

3、介质损耗选择损耗角正切小的介质。

五、实验心得:本次实验是设计集总参数微波滤波器和分布参数滤波器,个人觉得集总参数滤波器的设计过程简单,具体功能容易实现,分布参数所调配的参数相对较难,花了比较就久的时间才得了结果。

北邮微波仿真实验报告

北邮微波仿真实验报告

北邮微波仿真实验报告一、实验介绍本实验是北邮无线通信专业课程中的微波仿真实验,通过使用射线追踪软件CST Studio Suite对微波器件进行仿真,从而掌握基本的微波设计流程和仿真分析技术。

实验内容包括但不限于:•单模矩形波导五分之一波长变压器•微带线谐振器•微带线带阻滤波器二、实验步骤1. 单模矩形波导五分之一波长变压器仿真流程1.画出五分之一波长变压器的示意图,并确定所需参数。

2.使用CST Studio Suite建立仿真模型,设置仿真参数和求解器。

3.将波导的端口设置为微波源,并设置合适的激励条件。

4.运行仿真模拟,查看仿真结果并分析。

结果分析根据仿真结果,得出五分之一波长变压器的传输系数和反射系数,并将其绘制出来。

可以看出,在设计频率附近,反射系数小于-30dB,传输系数接近1,达到了较好的设计效果。

2. 微带线谐振器仿真流程1.画出微带线谐振器的示意图,并确定所需参数。

2.使用CST Studio Suite建立仿真模型,设置仿真参数和求解器。

3.将该谐振器的端口设置为微波源,并设置合适的激励条件。

4.运行仿真模拟,查看仿真结果并分析。

结果分析根据仿真结果,可得到该微带线谐振器的中心频率、带宽和功率传输系数。

在设计频率附近,此谐振器的功率传输系数接近1,带宽较窄,能够实现较好的谐振效果。

3. 微带线带阻滤波器仿真流程1.画出微带线带阻滤波器的示意图,并确定所需参数。

2.使用CST Studio Suite建立仿真模型,设置仿真参数和求解器。

3.将该带阻滤波器的端口设置为微波源,并设置合适的激励条件。

4.运行仿真模拟,查看仿真结果并分析。

结果分析根据仿真结果,得到该微带线带阻滤波器的中心频率、带宽和传输系数,并将其绘制出来。

可以看出,在设计频率处,该滤波器的传输系数小于-30dB,能够很好地实现带阻效果。

三、总结通过本次实验,我深入了解了微波电路设计的基本流程和仿真分析技术,在实践中提升了自己的设计能力和仿真模拟技能,对微波电路设计领域有了更深入的认识。

实验二:微波滤波器的设计与仿真

实验二:微波滤波器的设计与仿真
图21
(3)滤波器两边是特性阻抗为50Ω的微带线。 执行菜单命令【Tools】/【LineCale】/【Start LineCale】->出现微带线计算工具->计算Z0=50Ω微带线宽度W=1.52mm。
(4)双击两边的引出线TL1,TL2,分别将其宽度W,L分别设为1.52mm和2.5mm,其中线长L只是暂时的,制作版图还会修改。
(5)双击每个耦合器设置参数,W,S,L分别设置为相应的变量,单位mm,如图22
图22
所有元件都设置完成,如图23
图23
(8)单击图标 ,在原理图中放置变量VAR控件,双击图标弹出设置窗口,依次添加各参数,如图24所示。
图24
在“Name”栏中输入变量名称->“Variable Value”栏中输入变数的初值->单击【Add】按钮添加变量。
实验二:微波滤波器的设计与仿真
ONE、实验步骤、仿真结果分析及优化
一:利用传统方法设计集总参数滤波器
电感,电容形成的滤波器成为集总参数滤波器,结合ADS设计切比雪夫低通滤波器。
1、低通滤波器设计与仿真
设计LC切比雪夫型低通滤波器,截止频率为75MHz,衰减为3dB,波纹为1dB,频率大于100MHz,衰减大于20dB,Z0=50Ω。
图36
(5)单击“Port”按钮 ->弹出“Port”设置窗口->单击按钮 ,关闭该窗口->在滤波器两边要加端口的地方加上两个端口->将版图放大后可以看到两个端口,如图37所示。
图37
图38
(6)执行菜单命令【Momentum】/【Simulation】/【S-parameter】,弹出仿真设置窗口,在该窗口右侧的“Sweep Type”,选择“Adaptive”,起止频率与原理图仿真相同,采样点数限制取10(因为仿真很慢,所以点数不要取太多),单击按钮 ,将设置输入左侧列表中,单击按钮 ,开始仿真。仿真过程会出现如图38所示。

微波滤波器的设计制作与调试 射频实验

微波滤波器的设计制作与调试 射频实验

微波滤波器的设计制作与调试(一)实验目的1.、了解微波滤波电路的原理及设计方法。

2、学习使用ADS软件进行微波电路的设计,优化,仿真。

3、掌握微带滤波器的制作及调试方法。

(二)实验内容1、使用ADS软件设计一个微带带通滤波器,并对其参数进行优化、仿真。

2、根据软件设计的结果绘制电路版图,并加工成电路板。

3、对加工好的电路进行调试,使其满足设计要求。

(三)微带滤波器的技术指标1、通带边界频率与通带内衰减、起伏2、阻带边界频率与阻带衰减3、通带的输入电压驻波比4、通带内相移与群时延5、寄生通带技术指标说明:1、前两项是描述衰减特性的,是滤波器的主要技术指标,决定了滤波器的性能和种类(高通、低通、带通、带阻等)。

2、输入电压驻波比描述了滤波器的反射损耗的大小。

3、群时延是指网络的相移随频率的变化率,定义为dΥ/df ,群时延为常数时,信号通过网络才不会产生相位失真。

4、寄生通带是由于分布参数传输线的周期性频率特性引起的,它是离设计通带一定距离处又出现的通带,设计时要避免阻带内出现寄生通带。

本实验要设计的滤波器设计指标:通带3.0-3.1GHz,带内衰减小于2dB,起伏小于1dB,2.8GHz以下及3.3GHz以上衰减大于40dB,端口反射系数小于-20dB。

(四)实验过程1、利用ADS软件创建实验原理图下图是一个微带带通滤波器及其等效电路,它由平行的耦合线节相连组成,并且是左右对称的,每一个耦合线节长度约为四分之一波长(对中心频率而言),构成谐振电路。

图一下图为设置微带器件参数后的原理图:图二平行耦合线滤波器的结构是对称的,所以五个耦合线节中,第1、5及2、4节微带线长L、宽W和缝隙S的尺寸是相同的。

其中的W1与W2参数代表该器件左右相邻两侧的微带器件的线宽,它们用来确定器件间的位置关系。

将这些量设置为优化变量,进行优化。

添加优化目标及优化控件后的原理图模型:图三然后开始优化,优化目标达到以后,保存优化后的数据然后进行仿真。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合课程设计实验报告
课程名称:微波方向综合课程设计
实验名称:微带短截线低通滤波器的设计、仿真与测试院(系):信息科学与工程学院
专业班级:
姓名:
学号:
指导教师:
2011年12月22日
一、实验目的和要求
1、目的:
通过这次课程设计,进一步理解微波工程的相关内容,熟练运用Microwave Office和Protel等软件,通过这学期学习、练习的积累,选择一个微波器件,依据MWO的仿真结果,使用protel99se将其绘制成电路版图(PCB)。

最后在老师的帮助下制成实物并与仿真结果对比分析,在实践中加强自己对微波工程的体会与理解。

2、要求:
从以下题目中选择一个微波器件,依据MWO的仿真结果,使用protel99se 将其绘制成电路版图(PCB)。

(器件的工作频率和学号相关)
1)3dB微带功率分配器;
2)微带短截线滤波器
3)3dB微带定向耦合器
PCB板采用介电常数为4.5,厚度为1mm的FR4基片;
电路尺寸必须按照自己相应的MWO设计结果绘制;
电路外轮廓为矩形,尺寸必须为:50mm*40mm或40mm*20mm;
每个电路端口必须在电路板的侧面,并使用至少5mm长度的50ohm微带线连接。

二、实验内容和原理
1、内容:
在介电常数为4.5,厚度为1mm的FR4基片上(T取0.036mm,Loss tangent取0.02),设计一个3阶、最大平坦型微带短截线低通滤波器,其截止频率为f(2.2GHz),阻抗是50欧姆。

2、原理:
(1)Richards 变换:
集总元件构成的滤波器通常工作频率较低,在微波频段,我们常常采用微带结构实现较好的滤波性能。

在设计得到滤波器原型之后,为了实现电路设计从集总参数到分布参数的变换,Richards 提出了一种变换方法,这种变换可以将集总元件变换成传输线段。

如图1所示,电感L 可等效为长为λ/8,特性阻抗为L 的短路线;电容C 可等效为长为λ/8,特性阻抗为1/C 的开路线。

图1
(2)Kuroda 规则:
采用Richards 变换后,串联元件将变换为串联微带短截线,并联元件将变换为并联短截线。

由于串联微带短截线是不可实现的,所以需要将其转变为其它可实现的形式。

为了方便各种传输线结构之间的相互变换,Kuroda 提出了四个规则,如图2所示。

其中,2211/n Z Z =+;U.E.是单位元件,即电长度为λ/8、特性阻抗为UE Z 的传输线。

选用合适的Kuroda 规则,可以将串联短截线变换为容易实现的并联短截线。

图2
三、设计指标
在介电常数为4.5,厚度为1mm的FR4基片上(T取0.036mm,Loss tangent取0.02),设计一个3阶、最大平坦型微带短截线低通滤波器,其截止频率为f(2.2GHz),阻抗是50欧姆。

在进行设计时,主要是以滤波器的S参数作为优化目标进行优化仿真。

S21是传输系数,反映传输损耗和带外抑制; S11、S22分别是输入、输出端口的反射系数。

此外,要仿真滤波器的群时延特性。

四、理论设计过程
第一步:根据设计要求,查表得到低通滤波器原型。

g1=1=L1
g2=2=C2
g3=1=L3
第二步:应用Richard变换将电感和电容转换为等效的串联和并联短截线。

短截线长度: L=λ
c
/8=17.05mm
Z 1=Z
3
=L
1
=L
3
=1
Z 2=1/C
2
=0.5
第三步应用Kuroda规则将串联短截线转换为并联短截线。

n2=2
Z
1
=2
Z
2
=2
Z
3
=0.5
Z
4
=2
Z
5
=2
第四步阻抗和频率定标。

电路拓扑图:
Layout:
3D Layout:
五、微波元件的仿真
1、S21
S21是传输系数,反映传输损耗和带外抑制:
2、S11、S22
S11、S22分别是输入、输出端口的反射系数:
3、群时延特性
PCB版图:
实物仿真结果:
七、分析与讨论
实物测试结果与电脑仿真结果的对比及分析:S21:
由以上二者对比可见,传输系数S21的实际测量结果与电脑仿真结果十分接近。

且在截止频率2.2GHz处二者基本都为-3dB。

在给定带宽内二者衰减效果都较好。

实际测试结果曲线存在微小波动,但基本不影响总体趋势。

S11:
由以上二图对比可见,输入端口的反射系数S11的实际测量结果与电脑仿真结果相比,整体趋势基本相同,但在衰减幅度上存在一定差异。

在通带之内,两者均有小于-20dB的衰减,且实际测得结果的衰减更多,通带内基本小于-30dB。

在通带外,二者的S11幅度均有所上升,但实际测得结果衰减更多,上升的幅度较仿真结果要小。

所以就该参数而言,实际做出的滤波器要好于仿真结果。

八、结论
由以上两个参数的对比来看,实际做出的低通滤波器要好于仿真结果。

而且,该滤波器已很好的符合了设计要求,可以应用于具体电路中。

通过这次设计,我们进一步巩固了这学期所学的知识,更重要的是,我们通过实践,将理论与实际进行了良好的结合,在实践中加深了对于理论知识的理解,也对于微波工程有了更加立体的感觉,很有利于我们对于微波这门学科兴趣的进一步加深,为以后的学习研究打下了良好的基础。

对本课程的意见与建议
非常感谢两位老师的耐心指导和教学。

这门课是大学里为数不多的能把理论和实践进行良好结合的课程。

我们不仅学到了微波工程的理论知识,更学会了两个用途广泛的EDA软件(Microwave Office和Protel)。

更重要的是,我们能通过实践、练习,将所学知识转化到实际运用之中,这样我们不仅加深了对于知识的理解,也熟悉了工具软件的使用方法,还能更立体直观的感受微波工程这门学科。

最后老师还能将我们所设计的器
件拿去加工,让我们将实践和理论完整的结合,更激起了我们继续学习的兴趣,在此请允许我对两位老师表达深深的敬意!谢谢你们一学期来的指导和付出!。

相关文档
最新文档