机械动力学大作业
机械动力学大作业

机械动力学大作业
一、问题及要求
建立单自由度杆机构(有无滑块均可)动力学模型,由静止启动,选择一个固定驱动力矩,绘制原动件在一周内的运动关系线图,具体
机构及参数自拟。
、建立模型
建立如图一所示机构:已知驱动力矩M=20Nm阻力矩M=10 Nm 杆1长120mm转动惯量为J i=0.16kgm2 ;杆3质量为1kg,转动惯量为
j3=0.16kgm2;杆2质量、转动惯量忽略,其他参数如图所示。
求:建立系统运动方程。
二、求解过程
M3图一
方法:利用等效力学模型法进行动力学分析
解:取杆1为等效件,有
f w3
M v= Mi - M3—(1)
jv=ji+02+j3)(—y ⑵
< XWj/
w3120 3
—二—=一=0.75 Wi 160 4
又有(2)可知J V为常数则可知:
Ki
M v=J v i
则错误!未找到引用源。
四、采用ADAMS软件或Matlab/Simulink 环境,建立机械系统的动力学模型,借助软件进行求解计算和结果分析。
(1)利用Adams软件,建模后如图:
图2
图3
(2)当杆1由图1所示位置开始运动一周,机构运动时间为0.03秒, 利用Adam漱件分析杆件1角加速度错误!未找到引用源。
随时间的变化关系图,如图4所示:
图 线系关动运的内周一在件动原
4
图
uoqB 」曰|总3。
\/」e[n6uv
0/SS3
y
s s C6唾
二 N 2
I 」善E。
机械原理大作业——牛头刨床

机械原理大作业——牛头刨床大作业,一,平面连杆机构的运动分析题号: 6班级 : 姓名 : 学号 : 同组者 :成绩 :完成时间 :目录题目、原始数据及要求 ..................................................................... .......................1 一平面连杆机构运动分析方程 ..................................................................... . (1)1.1速度计算公式 ..................................................................... .. (2)1.2加速度计算公式 ..................................................................... ..............2 二程序 ..................................................................... (3)2.1计算程序框图 ..................................................................... (3)2.2计算源程序 ..................................................................... .........................4 三 3.1 (一组数据 Lab =200mm)计算结果 (9)3.2运动线图 ..................................................................... . (10)3.3 体会 ..................................................................... .................................... 12 四 4.1(第二组数据 Lab =150mm)计算结果 . (12)4.2 运动线图 ..................................................................... .. (13)4.3 体会 ..................................................................... .................................... 15 五 5.1(第三组数据 Lab =220mm)计算结果 . (16)5.2 运动线图 ..................................................................... (17)5.3 体会 ..................................................................... ...................................... 21 六参考资料 ..................................................................... (21)题目、原始数据及要求:图所示为一牛头刨床(?级机构)。
机械原理大作业1

一、牛头刨床机构的运动分析下图为一牛头刨床(Ⅲ级机构)。
假设已知各构件的尺寸如表2所示,原动件1以等角速度w1=1rad/s沿着逆时针方向回转,试求各从动件的角位移、角速度和角加速度以及刨头C点的位移、速度和加速度的变化情况。
二、牛头刨床机构的运动分析方程 1)位置分析建立封闭矢量多边形建立一直角坐标系,并标出各杆矢量及其方位角,其中共有4个未知量3θ(θ2=3θ)、4θ、3S 、5S 。
利用两个封闭图形ABDEFA 和EDCGE ,建立两个封闭矢量方程,由此可得:3125DE AB DE CD l s h h l l l h s →→→→→→→→→⎧+=++⎪⎨⎪+=+⎩(1)把(1)写成投影方程得:433214331143543cos *cos *cos *sin *sin *sin *cos *cos 0*sin *sin DE AB DE AB DE CD DE CD l s h l l s h l l l s l l h θθθθθθθθθθ*+=+⎫⎪+=+⎪⎬+-=⎪⎪+=⎭(2) 由以上各式用型转化法可求得4335s s θθ、、、,滑块2的方位角23θθ=2111*cos *sin b AB b AB x h l y h l θθ=+⎧⎨=+⎩ 44*cos *sin d DE d DE x l y l θθ=⎧⎨=⎩3s =3)*sin *()/*cos *(/c d CD d CD b d c d CD d CD b d s x x l x l x x s y y l y l y y s αα=+=+-⎧⎪⎨=+=+-⎪⎩ 3tan c dc dy y x x θ-=- 5c s x =()ae AE =44()tan *cos d c DE y h y l θθ+-=高斯消去法求解 2)速度分析对(2)求一次导数得:44333331144333331144334433*sin *s '*cos *sin **sin **cos *'*sin *cos **cos **sin **sin *0*cos **cos *0DE AB DE AB DE CD c DE CD l s l l s s l l l v l l θωθθωθωθωθθωθωθωθωθωθω-+-=-⎫⎪++=⎪⎬---=⎪⎪+=⎭(3)矩阵式:3334313334313443cos *sin *sin 0'*sin sin *cos *cos 0*cos 0*sin *sin 100*cos *cos 00DE AB DE AB CD DE CD DE c s l s l s l l l l l l v θθθθθθθθθθωθθ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ω⎢⎥⎢⎥⎢⎥=ω1⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ (4)采用高斯消去法可求解(4)可解得角速度ω2,ω3; 3)加速度分析把(4)对时间求导数得:333433334334434cos *sin *sin 0''sin *cos *cos 00*sin *sin 10*cos *cos 0DE DE CD DE CD DE c s l s s l l l l l a θθθθθθθθαθθ--⎡⎤⎡⎤⎢⎥⎢⎥α⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎣⎦⎣⎦33333444433333343443334443344*sin '*sin **cos **cos 0'*cos '*cos **sin **sin 00**cos **cos 00**sin **sin 0DE DE CD DE CD DE c s s l s s s l l l l l v ωθθωθωθωθθωθωθωθωθωωθωθ----⎡⎤⎡⎤⎢⎥⎢⎥--ω⎢⎥⎢⎥=-⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦1111**cos **sin 00AB AB l l ωθωθ-⎡⎤⎢⎥-⎢⎥+ω1⎢⎥⎢⎥⎣⎦(5)采用高斯消去法可求解(5)可解得角加速度α2,α3,α5,α6三、程序流程图四、计算源程序#include<stdio.h>#include<stdlib.h>#include<math.h>/* 定义变量*/const double PI = 3.14159265358979;const int N = 4;const double EPSILON = 0.0001;const int T = 1000;/* 代入已知量*/double Lab=160,Lcd=1020,Lde=250,h=900,h1=460,h2=120,Omega1=1;/* 声明子函数*/void AngleDisplacement(double[12],double);/* 角位移函数*/void AngleVelocity(double[N][N],double[N],double[12],double);/* 角速度函数*/void AngleAcceleration(double[N][N],double[N][N],double[N],double [12]);/* 角加速度函数*/void GaussE(double [N][N],double [N],double [N]);/* 高斯消去法函数*/void ModulusMatrixA(double [12],double [N][N]);/* 矩阵A函数*/void ModulusMatrixB(double [12],double ,double [N]);/* 矩阵B函数*/void MatrixDA(double [12],double [N][N]);/* 矩阵DA函数*/void MatrixDB(double [12],double ,double [N]);/* 矩阵DB函数*//* 主函数*/void main(){int i,j;FILE *fp;double data[36][12];double value[12],a[N][N],da[N][N],b[N],db[N],Phi1;char flag;/* 打开文件*/if((fp = fopen("Data","w")) == NULL){printf("文件打开错误!\n");exit(0);}fprintf(fp,"Lab =%lf \n",Lab);fprintf(fp,"s3\tPhi3\tPhi4\ts5\t");fprintf(fp,"s3'\tOmega3\tOmega4\ts5'\t");fprintf(fp,"s3''\tEpsilon3\tEpsilon4\ts5''");printf("\n\n 牛头刨床机构运动分析程序\n\n\n");printf("\n");printf(" 是否开始计算(Y/N):");scanf("%c",&flag);if(flag =='Y'){/*计算并写入文件*/value[0] = 480;value[1] = 65 * PI / 180;value[2] = 10 * PI / 180;value[3] = 500;for(i = 0;i < 36; i++){Phi1 = i * PI / 18;AngleDisplacement(value,Phi1);ModulusMatrixB(value,Phi1,b);ModulusMatrixA(value,a);AngleVelocity(a,b,value,Phi1);MatrixDA(value,da);MatrixDB(value,Phi1,db);AngleAcceleration(a,da,db,value);for(j = 1;j < 3; j++)value[j] = value[j] * 180 / PI;for(j = 0;j < 12; j++)data[i][j] = value[j];fprintf(fp,"\n");for(j = 0;j < 12; j++)fprintf(fp,"%12.3f\t",data[i][j]);}fclose(fp);/* 输出数据*/printf("\n\n\n计算结果如下:\n");for(i = 0;i < 36; i++){Phi1=i * PI / 18;printf("\n输出Phi1=%d时的求解\n",i*10);printf(" S3 Phi3 Phi5 S5\n");for(j = 0;j < 4; j++)printf("%lf\t",data[i][j]);printf("\n");printf(" S3' Omega3 Omega5S5'\n");for(j = 4;j < 8; j++)printf("%lf\t",data[i][j]);printf("\n");printf(" S3'' Epsilon3 Epsilon5 S5''\n");for(j = 8;j < 12; j++)printf("%lf\t",data[i][j]);printf("\n");}printf("\n程序运行结束,计算结果已写入Date文件中,请打开查看。
机械原理大作业1连杆机构27题

大作业1 连杆机构运动分析1、运动分析题目如图所示机构,已知机构各构件的尺寸为280mm AB =,350mm BC =,320mm CD =,160mm AD =,175mm BE = 220mm EF =,25mm G x =,80mm G y =,构件1的角速度为110rad/s ω=,试求构件2上点F 的轨迹及构件5的角位移、角速度和角加速度,并对计算结果进行分析。
2、建立坐标系建立以点A 为原点的固定平面直角坐标系图 13、对机构进行结构分析该机构由I级杆组RR(原动件1)、II级杆组RRR(杆2、杆3)和II级杆组RPR(滑块4及杆5)组成。
I级杆组RR,如图2所示;II 级杆组RRR,如图3所示;II级杆组RPR,如图4所示。
图2图 3图 44、各基本杆组运动分析的数学模型(1)同一构件上点的运动分析:图 5如图5所示的构件AB,,已知杆AB 的角速度=10/rad s ω,AB 杆长i l =280mm,可求得B 点的位置B x 、B y ,速度xB v 、yB v ,加速度xB a 、yB a 。
=cos =280cos B i x l ϕϕ; =sin =280sin B i y l ϕϕ;==-sin =-BxB i B dx v l y dt ωϕω; ==cos =;B yB i B dyv l x dt ωϕω222B 2==-cos =-BxB i d x a l x dt ωϕω;2222==-sin =-ByB i B d y a l y dtωϕω。
(2)RRRII 级杆组的运动分析:图 6如图6所示是由三个回转副和两个构件组成的II 级组。
已知两杆的杆长2l 、3l 和两个外运动副B 、D 的位置(B x 、B y 、D x 、D y )、速度(xB yB xD yD v v v v 、、、)和加速度(xB yB xD yD a a a a 、、、)。
求内运动副C 的位置(C C x 、y )、速度(xC yC v 、v )、加速度(xC yC a 、a )以及两杆的角位置(23ϕϕ、)、角速度(23ϕϕ、)和角加速度(23ϕϕ、)。
机械原理大作业范文

机械原理大作业范文摘要:机械传动是机械学中的基础内容之一,广泛应用于各个行业和领域。
本文将对机械传动的原理、类型以及应用进行系统的介绍和探讨。
首先介绍了机械传动的定义和作用,然后详细介绍了各种常见的机械传动类型,包括齿轮传动、皮带传动、链传动等,并分别对其工作原理进行了分析。
最后列举了一些机械传动的应用案例,证明了机械传动在现实生活中的重要性和广泛性。
一、引言机械传动是将动力从一个地方传递到另一个地方的机械装置。
它作为机械工程学的基础内容,广泛应用于工业、农业、建筑等各个领域。
机械传动具有传递力量的功能,并能实现运动的改变、平衡、变速等目的。
本文将对机械传动的类型、原理以及应用进行详细介绍。
二、机械传动的类型机械传动可以分为多种类型,常见的有齿轮传动、皮带传动、链传动等。
齿轮传动是利用齿轮间的啮合来传递扭矩和运动的一种传动方式,具有传动效率高、传动比稳定等优点。
皮带传动则是通过绕在两个轮子上的带子来传递力量,常用于需要减速的场合。
链传动与皮带传动类似,但是链传动的传动效率更高,扭矩传递更稳定。
三、机械传动的工作原理1.齿轮传动:齿轮传动采用齿轮之间的啮合来实现传动的目的。
主要通过齿轮的大小、齿数来调整传递的速度和扭矩。
其中,齿轮的齿数比称为传动比,可以实现速度的改变。
齿轮传动通常包括齿轮轴、轴承、齿轮齿廓等组成部分。
2.皮带传动:皮带传动通过绕在轮子上的带子来传递力量。
常见的皮带传动有平行轴带传动和交叉轴带传动。
通过调整轮子的直径和材料来改变传递效果。
皮带传动具有传递动力平稳、减震效果好的特点。
3.链传动:链传动与皮带传动类似,也是通过绕在轮子上的链条来传递力量。
链传动具有噪音低、传动效率高等优点,广泛应用于自行车、摩托车等交通工具中。
四、机械传动的应用1.工业应用:机械传动在工业制造中有广泛的应用。
例如,齿轮传动被广泛应用于机床、起重机械、输送设备等,实现力量的传递和工作的协调。
皮带传动常用于风机、泵等需要平稳传递动力的设备中。
机械动力学作业

仿真运动结束后的如图1-5所示。
图1-5仿真运动结束后的图
建立测量(滑块的位移、速度、加速度)
1)鼠标右键单击需要测量的部件,系统打开右键快捷菜单,选择Measure;
2)系统打开参数对话框,将Characteristic设为CM Position,Component设为X,测量X向位移;
图1-1曲柄滑块机构
本次所使用的运动仿真软件是ADAMS2012版,启动ADAMS/View程序,打开ADAMS软件,进行新建模型,然后在检查和设置建模基本环境,准备工作都完成后,就开始进行几何建模,建模完成图如下图1-2所示。
进行施加运动副和驱动,施加铰接副,在曲柄同地面框架连接,和曲柄连杆之间的连接,以及在连杆和滑块上处通过铰接副将连杆和滑块连接。滑块和地面也要进行棱柱副连接。运动副施加完成后的图,如图1-3所示。
3)点击Apply,出现空白的测量窗口;
4)重复上述步骤,将Characteristic设为CM Velocity,新建测量速度;
5)重复上述步骤,将Characteristic设为CM Acceleration,新建测量加速度;
测量后测得结果如图1-6,1-7,1-8所示。
图1-6滑块位移图
图1-7滑块速度图
图1-3运动副施加完成后的图
定义曲柄的运动
①在主工具箱的运动工具集,选择旋转运动工具图标 ,显示定义旋转运动对话框;
②在Set up栏,输入360;选择JOINT_1,完成转速设置。
定义曲柄运动后,如图1-4所示。
图1-4定义曲柄运动
对曲柄滑块机构进行仿真分析
1)仿真分析
第二次机械动力学大作业 方利升

z1z3 z1 z3 w2 z z z w1 w3 z z w1 z1 z3 w3 2 1 3 1 3
章节 PART
05
动力学模型
Z5 Z1 Z 4 Z1 Z3
2 Z12 ( Z 2 Z 32 ) Z 5 Z1 Z12 J11 J1 J 2 2 J4 2 J5 2 2 Z 2 ( Z1 Z 3 ) ( Z1 Z 3 ) 2 Z 4 Z1 Z 3 2 2
章节 PART
02
结构简图
章节 PART
Z1
14
03
参数分析
Z2
10 驱动力矩
Z3
14 齿轮1阻力矩
Z4
11 齿轮3阻力矩
Z5
43
M4
M1
M3
章节 PART
04
受力分析
发动机经过离合器,变速器等机构将驱动扭矩M4 传递给差速器,在差速器中,驱动扭矩M4从主动 齿轮4开始经过从动轮5(行星架H),行星轮 2,2'以及中心轮1,3,最后传递到左右轮子上, (传递到左右轮力矩符合一定的力矩分配关系), 从而左右轮开始运动,运动中受到环境的阻力矩 M1,M3,当汽车直线运动时,M1=M3,当汽车转弯时, M1与M3不相等。
小组分工
方利升:动力学建模、动力学模型求解、ppt制作、讲述ppt 游小峰:确定物理参数、动力学模型求解、ppt制作 何顺清:受力分析、动力学模型求解、ppt制作 刘 锐:提出方案、关键问题的提出与解决、动力学模型求解
谢谢观看
THANK YOU
2
2
2 Z1Z 3 Z12 Z 32 Z 5 Z1Z 3 Z1Z 3 J12 J 2 - 2 J 4 2 J5 2 2 2 2 ( Z Z ) Z ( Z Z ) ( Z Z ) Z Z Z 3 2 1 3 1 3 1 4 1 3
哈工程机械动力学大作业

机械动力学大作业含弹性摆杆的铰链四杆机构动力学仿真学号:院系名称:机电工程学院专业:机械工程学生姓名:本次进行设计和分析的对象为平面铰链四杆机构,在Adams的环境下,通过对四杆机构进行建模以及运动仿真,绘制出摆杆的相关曲线图。
为了形成有效的对比,先建立含有刚性摆杆的四杆机构,进行运动仿真,绘制出摆杆的相关曲线。
再建立含有柔性摆杆的铰链四杆机构,所有参数设置均和刚性摆杆一样。
考虑到弹性摇杆可能发生较大的形变,不利于观测,绘制摇杆运动曲线时选择摇杆的质心作为参考点。
在Adams中主要有三种方法创建柔性构件,第一种是将刚性构件离散化后采用柔性梁连接;第二种是直接将刚体替换为柔性体;第三种是运用有限元分析的方法建立柔性构件。
本次建模,主要采用前两种方法建立柔性摆杆。
运用有限元建立柔性构件,等以后再进行深入研究。
同时两种方法建立的柔性杆可以形成对比。
通过本次设计,主要学习了Adams 软件建模以及运动仿真、图形处理、刚柔混合建模的操作方法,对自己也是一个很大锻炼和提升。
设计的为平面曲柄摇杆机构。
相关参数如:曲柄长L=200mm,宽W=60mm,高D=30mm;连杆长L=427mm,宽W=30mm,高D=20mm;摇杆长L=403mm,宽W=40mm,高D=20mm;机架长L=600mm,宽W=40mm,高D=20mm;曲柄角速度为40deg/sec。
经过验证,最短杆长度加上最长杆长度小于中间两根杆的长度之和,满足曲柄存在的条件,且最长杆为机架,故为曲柄摇杆机构。
一、建模过程1、建立四个标记点,这四个点依次连接就可以确定一个铰链四杆机构。
2、建立四根杆的模型3、在杆件之间添加转动副4、选择最长杆为机架并固定5、给曲柄添加驱动,使曲柄角速度为40deg/sec。
6、使模型的显示方式为实体显示7、进行运动仿真,主要通过时间和步长来控制仿真运动的快慢。
8、载入动画,进行图像处理,绘制曲线图。
9、将刚性摇杆换成柔性的摇杆并添加转动副和驱动10、进行运动仿真11、载入动画,进行图像处理,绘制曲线。
机械动力学大作业分析实例-基于ADAMS的单自由度六杆复合式组合机构动力学分析及仿真

机械动力学大作业——基于ADAMS的单自由度六杆复合式组合机构动力学分析及仿真学号:专业:学生姓名:任课教师:2012年10月18日一、题目要求:采用ADAMS软件或Matlab/Simulink 环境,建立简单机械系统的动力学模型,借助软件进行求解计算和结果分析。
建立单自由度杆机构(有无滑块均可)动力学模型,由静止启动,选择一固定驱动力矩,绘制原动件在一周内的运动关系线图,具体机构及参数自拟。
二、所选题目:在下图所示的六杆复合式组合机构,已知l AB=150mm,l BC=500mm,l DC=260mm,l BE=250mm,l AF=600mm,l AD=410mm,杆2和杆2'固结,BE垂直于BC,AF垂直于AD,曲柄1的驱动力矩为2000NM,构件质量m1=20kg,m2=40kg,m2’=20kg,m3=30kg,m4=70kg,滑块5质量忽略不计,构件6为机架;质心位置l CS1=75mm,l CS3=130mm,质心S5在点E,构件1、3绕质心的转动惯量J S1=0.0375kg·m2,J S3=0.176kg·m2;曲柄1的驱动力矩M1=2000N·m,方向为逆时针,作用在A 点;该机构在工作行程时滑块受到摩擦力作用,静摩擦系数0.5,动摩擦系数0.3,试分析曲柄回转一周过程中:(1)曲柄1与X轴正方向夹角Φ1随时间变化的关系,曲柄1转动的角速度ω1以及角加速度a1随时间变化的关系;(2)杆3与Y轴反方向夹角Φ2随时间变化的关系,杆3转动的角速度ω3以及角加速度a3随时间变化的关系;(3)滑块5与杆4的相对速度V5与加速度a5随时间变化的关系。
三、建立模型:运用Link命令创建杆1、2、2'、3、4构件。
运用Box命令创建滑块5构件和机架6。
根据各杆长度,运用辅助Marker点、Move 、Rotate 等命令调整各构件的相对位置,并在各构件上单击右键,在修改命令中添加构件的质量信息,以及杆1、3绕质心的转动惯量,其中滑块5的质量为0,创建完成后的机构模型如图下所示。
机械系统动力学大作业

《机械系统动力学》课程作业小组成员:王凌飞 20150702081t王毅 20150702041 指导教师:***学院:机械工程学院专业:机械工程重庆大学机械工程学院二〇一五年十一月机械系统动力学大作业一、 问题描述图1为汽车结构简化模型:图1 汽车结构简化模型图2为汽车结构受力分析:图2 受力分析图已知22120.64m 4000kg 2000N s/m r m c c ====⋅121220000N/m0.9m1.4m k k l l ====r :车辆的回转半径。
初始条件为:0x x θθ====。
外部冲击力矩:)(10t δ。
试用MATLAB 中的ode45函数求解并画出0-5s 内的位移x 和转角θ的响应。
单位冲击函数()t δ的定义:1,()0,t t t δ=⎧=⎨≠⎩,其图像如图3所示。
00.511.5tδ图3 单位冲击函数图像二、求解过程1.系统运动方程不考虑冲击力矩,由图2机构受力分析得到系统运动方程如下:0)()()()(112221112221=-+++-+++θθk l k l x k k c l c l x c c x m (1) 0)()()()(222121112212122211222=++-+++-+θθk l k l x l k l k c l c l x l c l c x mr (2) 考虑t=0时刻,系统受到一个冲击力矩)(10t δ,此时运动学方程表示为:0)()()()(112221112221=-+++-+++θθk l k l x k k c l c l x c c x m (3) 222222211221122112211()()()()10()mr c l c l x l c l c k l k l x l k l k t θθθδ+-+++-++= (4)2.运动方程一阶常微分方程组形式令,,,,4321x x x x x x ====θθ 则t=0时:12212222114121221133422222422112221142211111223()/()/()/()/[10()/()()()]/x x x c c x m l c l c x m k k x m l k l k x m x x x l c l c x l c l c x l k l k x l k l k x mr =⎧⎪=-+---+--⎪⎨=⎪⎪=---+---+⎩ t>0时:12212222114121221133422222422112221142211111223()/()/()/()/[()/()()()]/x x x c c x m l c l c x m k k x m l k l k x m x x x l c l c x l c l c x l k l k x l k l k x mr =⎧⎪=-+---+--⎪⎨=⎪⎪=---+---+⎩ 3. MATLAB 程序求解运动方程ode45函数主程序文件solution.m ,如下所示: clc;clear;r=0.8; m=4000; c1=2000; c2=2000; k1=20000; k2=20000; l1=0.9; l2=1.4; t0=0; tf=5;x0=[0,0,0,0];[t,x]=ode45('f1',[t0 tf],x0); subplot(3,1,1) plot(t,x);subplot(3,1,2) plot(t,x(:,1)); subplot(3,1,3) plot(t,x(:,3));ode45函数微分关系函数文件f1.m ,如下所示:function xdot=f1(t,x) r=0.8; m=4000; c1=2000; c2=2000; k1=20000; k2=20000; l1=0.9; l2=1.4; t0=0; tf=5;xdot=zeros(4,1); xdot(1)=x(2);xdot(2)=-(c1+c2)/m*x(2)-(l2*c2-l1*c1)/m*x(4)-(k1+k2)/m*x(1)-(l2*k2-l1*k1)/m*x(3);xdot(3)=x(4); if t<=0xdot(4)=10/(m*r*r)-(c2*l2-c1*l1)/(m*r*r)*x(2)-(c2*l2*l2+c1*l1*l1)/(m*r*r)*x(4)-(k2*l2-k1*l1)/(m*r*r)*x(1)-(l1*l1*k1+l2*l2*k2)/(m*r*r)*x(3); elsexdot(4)=-(c2*l2-c1*l1)/(m*r*r)*x(2)-(c2*l2*l2+c1*l1*l1)/(m*r*r)*x(4)-(k2*l2-k 1*l1)/(m*r*r)*x(1)-(l1*l1*k1+l2*l2*k2)/(m*r*r)*x(3); end在MATLAB 中运行以上两个程序,即可得0~5s 内汽车系统的位移x 与转角θ的响应。
机械系统动力学作业

6
3)、工作辊有大质量差时
图 3-5 在上下工作辊有很大的质量和质量差下固有频率的变化趋势
图 3-6 在上下工作辊有很大的质量和质量差下上下工作辊的主振型差的变化趋势 以上两图是在 m3=30,m2 逐渐减小的情况下得到的,当上下工作辊有很大的质量并且有相对大的差 距时,这里只是对这种变化情况分析 f 和 dh 的变化趋势。由上图 3-5 和图 3-6 可知,在 f4 下,上下工作辊 振型有变化,但是还是维持在很大的高度情况;而在 f3 的情况下有较大的 dh 变化。
各阶振型的图形表示为:
第一阶
第二阶
第三阶
图 2-1 各阶主振型图示
4
第四阶
三、当各参数变化时的分析和优化 3.1 参数[k]和[m]变化对系统的影响
由(2.4)式可知影响固有频率 f 和各阶主振型的因素有[k]和[m]的变化引起,所以这只对这两种情况 进行 MATLAB 计算并画出图形来对比和分析各参数变化时对系统的影响。且影响轧件质量的只要是由上下 工作辊的上下振型差距(dh)决定的。
f2
f3
151.83
481.92
表 2-4 第二阶 -0.4947 -0.2159 0.4555 0.7079
各阶主振型 第三阶 -0.0763 0.7039 0.7019 -0.0778
机械动力学作业

机械动力学作业1、机械动力学的研究内容机械动力学是一门基于Newton力学,研究机械系统宏观动态行为的学科。
该学科的研究对象包括几乎所有具有机械功能的系统,其研究范围涵盖了这类系统的建模与仿真、动力学分析与设计、动力学控制、运行状态监测和故障诊断等。
该学科的主要任务是采用尽可能低的代价使产品在设计、研制、运行各阶段具有最佳的动力学品质。
机械动力学是机械原理的主要组成部分。
它研究机械在运转过程中的受力、机械中各构件的质量与机械运动之间的相互关系,是现代机械设计的理论基础。
研究机械运转过程中能量的平衡和分配关系。
主要研究的是:在已知外力作用下,求具有确定惯性参量的机械系统的真实运动规律;分析机械运动过程中各构件之间的相互作用力;研究回转构件和机构平衡的理论和方法;机械振动的分析;以及机构的分析和综合等等。
研究内容概况6个方面:1、在已知外力作用下,求具有确定惯性参量的机械系统的真实运动规律;分析机械运动过程中各构件之间的相互作用力;研究回转构件和机构平衡的理论和方法;机械振动的分析;以及机构的分析和综合等等。
为了简化问题,常把机械系统看作具有理想、稳定约束的刚体系统处理。
对于单自由度的机械系统,用等效力和等效质量的概念,可以把刚体系统的动力学问题转化为单个刚体的动力学问题;对多自由度机械系统动力学问题一般用拉格朗日方程求解。
机械系统动力学方程常常是多参量非线性微分方程,只在特殊条件下可直接求解,一般情况下需要用数值方法迭代求解许多机械动力学问题可借助电子计算机分析计算机根据输入的外力参量、构件的惯性参量和机械系统的结构信息,自动列出相应的微分方程并解出所要求的运动参量。
2、分析机械运动过程中各构件之间的相互作用力。
这些力的大小和变化规律是设计运动副的结构、分析支承和构件的承载能力以及选择合理润滑方法的依据。
在求出机械真实运动规律后可算出各构件的惯性力,再依据达朗伯原理用静力学方法求出构件间的相互作用力。
机械动力学考试题与答案

平面机构惯性力完全平衡的线性独立向量法
代入式(11.1),得总质心S点的向量方程为
机构四边形的约束方程为
令rS表达式中与时间相关的项之系数为零,即
将式(11.6)中代入式(11.5),得rS为
式(11.10)表明,此时,总质心S为一个静止点,既没有速度也没有加速度,机构的惯性力之和为零。式(11.8)、式(11.9)为铰链四杆机构惯性力平衡的几何条件。
激励分为两大类:确定激励和随机激励。可以用时间的确定函数来描述的激励属于确定激励,如:脉冲函数,周期函数,简谐函数。不能用时间的确定函数来描述的激励为随机激励。确定激励产生的响应为确定响应,随机激励产生的响应为随机响应,只能用概率统计的方法描述。线性系统用线性微分方程来描述,非线性系统通过非线性微分方程来描述。非线性微分方程的求解比较复杂,忽略掉非线性因素将非线性系统简化为线性系统,是常见的做法,但是一些非线性现象如分叉和混沌,用简化了的线性方程式无法解释的,在机械弹性动力学中,有如下两种趋向并存,正确的忽略非线性因素,建立简化的线性模型,以求分析的简便性;计入必要的非线性因素,求解非线性方程,以求分析的精确性并揭示非线性现象。
机械动力学第二章作业(答案)

第二章习题2- 1如图2-1所示,长度为L 、质量为m 的均质刚性杆由两根刚度为k 的弹簧系住,求杆绕O 点微幅振动的微分方程。
222...2..011T J 2231V 2(sin )(1cos )222()0m 0322ml L Lk mg dT V dtmg k L θθθθθθθ==⋅=⋅+-+=⎛⎫++= ⎪⎝⎭解:设系统处于静平衡位置时势能为,当杆顺时针偏转角时动能:势能:由能量守恒原理,得化简得:2- 2如图2-2所示,质量为m 、半径为r 的圆柱体,可沿水平面作纯滚动,它的圆心O 用刚度为k 弹簧相连,求系统的振动微分方程。
22 (2)2..0111T J ,2221V ()2()03m 02m r J mr k r dT V dtk θθθθθθ⎛⎫=+= ⎪⎝⎭=+=+=解:设系统处于静平衡位置时势能为,当杆顺时针偏转角时动能:势能:由能量守恒原理,得化简得:2- 3如图2-3所示,质量为m 、半径为R 的圆柱体,可沿水平面作纯滚动,与圆心O 距离为a 处用两根刚度为k 的弹簧相连,求系统作微振动的微分方程。
图2- 1 图2- 22.222..220111T J ,2221V (2)[()]2()032()02m R J mR k R a dT V dt mR k R a θθθθθ⎛⎫=+= ⎪⎝⎭=⋅++=++=解:设系统处于静平衡位置时势能为动能:势能:由能量守恒原理,得化简得: 2- 4求图2-4所示弹簧-质量-滑轮系统的振动微分方程(假设滑轮与绳索间无滑动)。
2.222....0111T J ,2221V ()2()0()02m r J Mr k r dT V dt x r x r M m x kx θθθθθ⎛⎫=+= ⎪⎝⎭=⋅+===++=解:设系统处于静平衡位置时势能为动能:势能:由能量守恒原理,得其中,,化简得: 2- 5质量可忽略的刚性杆-质量-弹簧-阻尼器系统参数如图2-5所示,2L 杆处于铅垂位置时系统静平衡,求系统作微振动的微分方程。
机械原理大作业1(10)

Harbin Institute of Technology机械原理大作业一课程名称:机械原理设计题目:连杆机构运动分析院系:机电工程学院班级:设计者:学号:指导教师:设计时间:2014年6月6日1、运动分析题目在如图所示的干草压缩机中,已知:lAB=150mm,lBC=600mm,lCE=120mm,lCD=500mm,lEF=600mm,xD=400mm,yD=500mm,yF=600mm,曲柄1作等速转动,其转速n1=50r/min。
求在一个运动循环中活塞5的位移,速度和加速度变化曲线。
2、建立坐标系建立以点A为原点的固定平面直角系1.各基本杆组的运动分析数学模型(1)原动件AB(Ⅰ级组)已知原动件AB的转角ψ1=0~2π原动件AB的角速度ω1=5π/3rad/s 原动件AB的角加速度α1=0运动副A的位置坐标xA =0 yA=0A点与机架相连,即该点速度和加速度均为0。
运动副A的速度vxA =0 vyA=0运动副A的加速度axA =0 ayA=0原动件AB长度lAB=150mm 可求出运动副B的位置坐标xB =xA+lABcosψ1yB=xA+lABsinψ1运动副B的速度vxB = vxA-ω1lABsinψ1vyB= vyA+ω1lABcosψ1运动副B的加速度a xB = axA-ω12 lABcosψ1-α1lABsinψ1ayB=ayA-ω12 lABsinψ1+α1lABcosψ1(2) BCD(RRRⅡ级杆组)由(1)知B点位置坐标、速度、加速度运动副D点位置坐标xD =400mm yD=500D点与机架相连,即该点速度和加速度均为0。
运动副D的速度vxD =0 vyD=0运动副D的加速度axD =0 ayD=0杆BC长 lBC=600mm杆CD长 lC=500mm 可求得BC杆相对于X轴正方向转角ψ2=2arctanB0+√A02+B02−C02A0+B0CD杆相对于x轴正方向转角ψ3=arctan y C−y Dx C−x D其中A0=2lBC(xD-xB),B=2 lBC(yD-yB),C=l BC2+l BD2−l CD2,l BD2=(x D−x B)2+(y D−yB)2求导可得BC杆ω2、α2和CD杆ω3、α3。
机械原理大作业凸轮机构有关公式

机械原理大作业凸轮机构有关公式凸轮机构是机械传动中常见的一种机构,具有转动曲线的特点,可以将驱动轴的转动运动通过凸轮的滚动轮廓来实现对从动件的相应动作控制。
在凸轮机构的设计和分析中,有一些与凸轮曲线有关的公式是十分重要的。
一、凸轮曲线方程凸轮曲线是指凸轮的滚动轮廓,可以通过数学方法来表示。
常见的凸轮曲线方程有圆弧、椭圆、正弦曲线等。
其中,最常用的是圆弧和直线的组合,这种凸轮曲线被称为简谐凸轮曲线。
简谐凸轮曲线方程可以表示为:y = r (1 - cos(θ - θ0))其中,r为凸轮半径,θ为凸轮角度,θ0为凸轮曲线的初相位差。
凸轮在其中一角度θ的位置的坐标可以通过此公式计算得出。
二、凸轮曲线的导数和导数变化率在凸轮机构的设计和分析中,对凸轮曲线的导数和导数变化率也有相当重要的影响。
凸轮的导数表示了凸轮曲线的斜率,而导数的变化率表示了凸轮曲线的曲率。
凸轮曲线的导数可以表示为:dy/dθ = r sin(θ - θ0)凸轮曲线的导数变化率可以表示为:d²y/dθ² = r cos(θ - θ0)通过对凸轮的导数和导数变化率的计算和分析,可以确定从动件的运动状态和速度变化情况,进而进行凸轮机构的设计和优化。
三、凸轮压力和压力角在凸轮机构中,凸轮和从动件之间存在着压力作用。
对于凸轮的任何一个位置,凸轮所施加的压力可以通过力的分解计算得出,并且可以利用凸轮的转角来表示。
凸轮的压力可以表示为:F = P * r * cos(θ - θ0)其中,P为压力系数,r为凸轮半径,θ为凸轮角度,θ0为凸轮曲线的初相位差。
凸轮的压力角可以表示为:φ = atan(dy/dθ)其中,dy/dθ为凸轮曲线的导数。
凸轮的压力角可以用来描述凸轮的主动件施加力的方向和作用范围,对凸轮机构的设计和分析具有指导意义。
以上是凸轮机构常见的几个重要的公式,通过这些公式可以计算和分析凸轮机构的运动学和动力学性能,为凸轮机构的设计和优化提供指导。
机械动力学大作业ppt课件

2
dJV () d
M1
F阻
V3
1
J1A
JS 2
L1 L1
x
2
m2
EF L1 L1 x
2
m3
(xsin e)L1
(L1 x)
2
..
1
.
2
2
dJV () d
11
12
小组分工
方利升:动力学建模、动力学模型求解、ppt制作 游小峰:提出方案、动力学模型求解、ppt制作 何顺清:受力分析、确定物理参数、动力学模型求解、ppt制作 刘 锐:关键问题的提出与解决、动力学模型求解、讲述ppt
13
谢谢观看
THANK YOU
14
பைடு நூலகம்
2(xsin e)(L1 x)
2
可求出来 x x()
2 L1 1 L1 x
v3 2 CE (xsin e)L1
1
1
(L1 x)
则MV MV ()
9
10
05
章节 PART 动力学模型
利用微分方程:
M(V )
JV
()
1
.
2
7
05
章节 PART 动力学模型
取杆1为等效件,求解杆1的角加速度
MV
M1 F阻
V3
1
JV
J1A
J
S
2
2 1
2
m2
vs2
1
2
中石油(北京)机械动力学第一次在线作业

作业第1题动力学反问题是已知机构的(),求解输入转矩和各运动副反力及其变化规律。
您的答案:B题目分数:0.5此题得分:0.5批注:动力学反问题概念第2题动力学正问题是给定机器的输入转矩和工作阻力,求解机器的()。
您的答案:A题目分数:0.5此题得分:0.5批注:动力学正问题概念第3题动态静力分析适用于分析()。
您的答案:A题目分数:0.5此题得分:0.5批注:动力学分类第4题动态静力分析应用于()。
您的答案:C题目分数:0.5此题得分:0.5批注:动力学分类第5题动力分析是()。
您的答案:D题目分数:0.5此题得分:0.5批注:动力分析概念第6题弹性动力分析考虑构件的()。
您的答案:D题目分数:0.5此题得分:0.5批注:弹性动力学分析第7题设机构中的活动构件数位6,含低副数目为2,含高副数目为3,则构件的自由度数为()。
您的答案:B题目分数:0.5此题得分:0.5批注:自由度概念第8题对于不存在多余约束和()的机构,动态静力分析是一个静定问题。
您的答案:A题目分数:0.5此题得分:0.5批注:自由度知识点第9题在高速运动下,惯性载荷是周期性波动的,是引起()的主要激励。
您的答案:A题目分数:0.5此题得分:0.5批注:机构的摆动力和摆动力矩第10题平衡的实质就是采用构件质量再分配等手段完全地或部分地消除()。
您的答案:C题目分数:0.5此题得分:0.5批注:平衡概念第11题质量代换是将构件的质量用若干集中质量来代换,使这些代换质量与原有质量在()上等效。
您的答案:B题目分数:0.5此题得分:0.5批注:质量代换概念第12题两点静代换适用于构件的()恰在两铰链连线上的情况。
您的答案:C题目分数:0.5此题得分:0.5批注:两点静代换第13题两点动代换后的系统与原有系统在()上是完全等效的。
您的答案:D题目分数:0.5此题得分:0.5批注:两点动代换第14题您的答案:B题目分数:0.5此题得分:0.5批注:机构的摆动力和摆动力矩第15题机械动力学是研究机械在力作用下的运动和机械在运动中产生的力的科学。
研究生机械动力学与动态特性分析课程大作业

研究生机械动力学与动态特性分析课程大作业1、用机械网络分析以下系统的简化模型:画出下面系统的机械网络图,设计和分析减震效果。
(1)碎石机(用双重动力减震器) (2)风镐(用一个动力减震器)(1)解:如图(1)碎石机模型中:M1和K1构成主系统,pcos ωt 为施加在主系统的激振力;M2、K2及M3、K3组成复式双重动力减震器系统,对主系统产生的震动进行减震。
现用机械网络图分析其减震效果。
图1 碎石机机械网络图由此可分别计算其阻抗,接着得到总阻抗,再计算总导纳。
对于K2、M2系统有:222222222211ωωωM K K M M K H -=-= M 1 M 2K 2K 1 手镐M 1 M 2M 3K 2K 3K 1pcos wt(1)(2)222222221K M M K H Z -==ωω 同理有,对于K3、M3系统:233323233311ωωωM K K M M K H -=-= 323233331K M M K H Z -==ωω 由此可以计算总阻抗为:))(()()())()((32322223322222232332322221132323322222221132211K M K M M K K M M K K M K M K M M K K M M K K M M K M K Z Z M K Z ---+-+---=-+-+-=++-=ωωωωωωωωωωωωωωω 所以总导纳为:233222222323323222211323222)()())()(())((1ωωωωωωωωωM K K M M K K M K M K M M K K M K M Z H -+-+-----== 由此,在M1上作用)cos()(t p t F ω=的激励后,激励振幅为0≥p ,可以求出M1的振动幅值相应为:233222222323323222211323222)()())()(())((ωωωωωωωωωM K K M M K K M K M K M M K pK M K M p H X -+-+---•--=•= 当M1的振动幅值X=0时,即减振效果达到了最好,为此应有:0))((323222=--K M K M ωω解此方程有:222ω=M K 或 233ω=M K 因此,对于碎石机双重动力减震器的设计应该使得222ω=M K 和233ω=M K ,这样才能得到最佳的减振效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单自由度杆机构的Adams动力学仿真
摘要:文章分析了单自由度的铰链机构的动力学问题,已知原动件曲柄的转矩,绘制输出件摆杆的运动曲线。
首先在Adams软件中构造连杆,添加三个连杆,使其成一定角度,相互连接。
再在两杆之间添加转动副,并且头尾连杆与地相连。
并在曲柄处加转矩,最后进行仿真,并绘出相应图表。
关键词:铰链机构;Adams仿真
1、机构模型的建立
根据题目要求,选择一个铰链四杆机构——曲柄摇杆机构为模型,其结构简图如图1所示。
其中,曲柄1为原动件。
图1曲柄摇杆机构简图
在Adams软件中,建立该曲柄摇杆机构的模型如图2所示。
图2 Adams中的曲柄摇杆机构模型
曲柄摇杆机构各连杆的惯性参数参考表1。
杆件的材料均选择钢材(密度ρ=7.801×10-6 kg•mm-3,杨氏模量E=2.07×105 N•mm-2,泊松比μ=0.29)。
表1 传动导杆机构各部件惯性参数
2、利用Adams软件添加约束和力矩
杆1和地之间有转动副,杆1和杆2、杆2和杆3之间有转动副,杆3和地之间有转动副。
杆1为原动件,在杆1上添加转矩。
转矩大小为30。
图3约束与转矩
3、进行仿真
点击仿真按钮,开始仿真,选择仿真时间为2s,可以观察到该机构各个时间的运动状态如图4和图5所示。
(a)T=0时刻(b)T=1时刻
图4仿真过程中机构模型的运动状态
(a)T=1.2时刻(b)T=2时刻
图5仿真过程中机构模型的运动状态
结论
当原动件曲柄的转矩取为30时,点击“后处理”,可以绘制出输出件摆杆的位移曲线、角速度曲线、加速度曲线分别如图10、图11和图12所示。
图10输出件摆杆的位移曲线
图11输出件摆杆的角速度曲线
图12输出件摆杆的角加速度曲线
参考文献
[1]陈立平,张云清,任卫群.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社.2005.。