Matlab求解线性方程组非线性方程组

合集下载

非线性方程组求解-Matlab-fsolve-Read

非线性方程组求解-Matlab-fsolve-Read

非线性方程组求解-Matlab-fsolve实例一:①建立文件fun.m:function y=fun(x)y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ...x(2) - 0.5*cos(x(1))+0.3*sin(x(2))];②>>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve'))注:...为续行符m文件必须以function为文件头,调用符为@;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。

实例二:①建立文件fun.mfunction F=myfun(x)F=[x(1)-3*x(2)-sin(x(1));2*x(1)+x(2)-cos(x(2))];②然后在命令窗口求解:>> x0=[0;0]; %设定求解初值>> options=optimset('Display','iter'); %设定优化条件>> [x,fv]=fsolve(@myfun,x0,options) %优化求解%MATLAB显示的优化过程Norm of First-order Trust-region Iteration Func-count f(x) step optimality radius0 3 1 2 11 6 0.000423308 0.5 0.0617 12 9 5.17424e-010 0.00751433 4.55e-005 1.253 12 9.99174e-022 1.15212e-005 9.46e-011 1.25 Optimization terminated: first-order optimality is less than options.TolFun.x =0.49660.0067fv =1.0e-010 *0.31610.0018实例三:求下列非线性方程组在(0.5,0.5) 附近的数值解。

Matlab中的非线性优化和非线性方程求解技巧

Matlab中的非线性优化和非线性方程求解技巧

Matlab中的非线性优化和非线性方程求解技巧在科学和工程领域中,我们经常会遇到一些复杂的非线性问题,例如最优化问题和方程求解问题。

解决这些问题的方法主要分为线性和非线性等,其中非线性问题是相对复杂的。

作为一种强大的数值计算工具,Matlab提供了许多专门用于解决非线性优化和非线性方程求解的函数和方法。

本文将介绍一些常用的Matlab中的非线性优化和非线性方程求解技巧。

非线性优化是指在给定一些约束条件下,寻找目标函数的最优解的问题。

在实际应用中,往往需要根据实际情况给出一些约束条件,如等式约束和不等式约束。

Matlab中的fmincon函数可以用于求解具有约束条件的非线性优化问题。

其基本语法如下:[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)其中,fun是目标函数,x0是初始值,A、b是不等式约束矩阵和向量,Aeq、beq是等式约束矩阵和向量,lb、ub是变量的上下边界。

x表示最优解,而fval表示最优解对应的目标函数值。

另外,非线性方程求解是指寻找使得方程等式成立的变量值的问题。

Matlab中提供的fsolve函数可以用于求解非线性方程。

其基本语法如下:x = fsolve(fun,x0)其中,fun是方程函数,x0是初始值,x表示方程的解。

除了fmincon和fsolve函数之外,Matlab还提供了一些其他的非线性优化和非线性方程求解函数,例如lsqnonlin、fminunc等,这些函数分别适用于无约束非线性优化问题和带约束非线性方程求解问题。

除了直接调用这些函数外,Matlab还提供了一些可视化工具和辅助函数来帮助我们更好地理解和解决非线性问题。

例如,使用Matlab的优化工具箱可以实现对非线性优化问题的求解过程可视化,从而更直观地观察到优化算法的收敛过程。

此外,Matlab还提供了一些用于计算梯度、雅可比矩阵和海塞矩阵的函数,这些函数在求解非线性问题时非常有用。

MATLAB求解非线性方程

MATLAB求解非线性方程
具体例子如下:
x^2 + x*y + y = 3
x^2 - 4*x + 3 = 0
解法:
>> [x,y] = solve('x^2 + x*y + y = 3','x^2 - 4*x + 3 = 0')
运行结果为
x =
1 3
y =
1 -3/2
即x等于1和3;y等于1和-1.5

>>[x,y] = solve('x^2 + x*y + y = 3','x^2 - 4*x + 3= 0','x','y')
x(1)-k*sqrt(x(2))];
%求解过程
H=0.32;
Pc0=0.23;W=0.18;
x0 = [2*W; Pc0+2*H]; %取初值
options = optimset('Display','off');
k=0:0.01:1; %变量取值范围[0 1]
for i=1:1:length(k)
3、非线性方程数值求解
matlab里solve如何使用,是否有别的函数可以代替它.
matlab里我解y=9/17*exp(-1/2*t)*17^(1/2)*sin(1/2*17^(1/2)*t)=0这样的方程为什么只得到0这一个解,如何可以的到1/2*17^(1/2)*t=n*(pi)这样一族解??
-.283
-2.987
y =
1.834-3.301*i
1.834+3.301*i
-.3600

Matlab解方程(方程组)

Matlab解方程(方程组)

Matlab 解方程这里系统的介绍一下关于使用Matlab求解方程的一系列问题,网络上关于Matlab求解方程的文章数不胜数,但是我大体浏览了一下,感觉很多文章都只是零散的介绍了一点,都只给出了一部分Matlab函数例子,以至于刚接触的人面对不同文章中的不同函数一脸茫然,都搞不清楚这些函数各自的用途,也不知道在什么样的情况下该选择哪个函数来求解方程,在使用Matlab解方程时会很纠结。

不知道读者是否有这样的感觉,反正我刚开始接触时就是这样的感觉,面对网络搜索到一系列函数都好想知道他们之间是个什么关系。

所谓的方程就是含有未知数的等式,解方程就是找出使得等式成立时的未知数的数值。

求方程的解可以转换成不同形式,比如求函数的零点、多项式的根。

方程分类很多,按照未知数个数分为一元、二元、多元方程;按照未知数组合形式分为线性方程和非线性方程;按照非零项次数是否一致分为齐次方程和非齐次方程。

线性方程就是方程中未知数次数是一次的,未知数之间不存在指、对、2及以上幂次的关系,线性方程又分为一元线性方程,也就是一元一次方程;多元线性方程,也就是多元一次方程,多以线性方程组的形式出现(包括齐次线性方程组和非齐次线性方程组)。

在Matlab中求解方程的函数主要有roots、solve、fzero、和fsolve函数等,接下来详细的介绍一下各个Matlab函数的使用方法和使用场合。

一、直接求解法(线性方程组)直接求解法不需要借助任何的Matlab函数,主要用于求解线性方程组,也就是未知数次数是一次的方程组,包括齐次线性方程组合非齐次线性方程组。

当然既然可以求解方程组自然也就可以求解单个方程。

主要针对A x=b形式的方程,其中A是未知数系数矩阵,x是未知数列向量,b是常数列向量,当b=0时就是齐次线性方程组,b ≠0时是非齐次线性方程组。

用左除法,x=A\b例:求解线性方程组的解12341242341234251357926640x x x x x x x x x x x x x x +-+=⎧⎪-+=-⎪⎨+-=⎪⎪+--=⎩解:即直接利用b 左除以A 。

matlab 方程组 解

matlab 方程组 解

matlab 方程组解一、概述Matlab是一种强大的数学计算软件,它可以用来解决各种数学问题,包括解方程组。

在Matlab中,求解方程组是一个非常重要的功能,因为很多实际问题都可以转化为方程组的形式。

本文将详细介绍如何使用Matlab求解线性方程组和非线性方程组。

二、线性方程组1. 线性方程组的定义线性方程组是指各个未知量的次数都不超过1次的代数方程组。

例如:2x + 3y = 54x - 5y = 6就是一个包含两个未知量x和y的线性方程组。

2. Matlab中求解线性方程组方法在Matlab中,可以使用“\”或者“inv()”函数来求解线性方程组。

其中,“\”表示矩阵左除,即Ax=b时,求解x=A\b;“inv()”函数表示矩阵求逆,即Ax=b时,求解x=inv(A)*b。

例如,在Matlab中求解以下线性方程组:2x + 3y = 54x - 5y = 6可以使用以下代码:A=[2,3;4,-5];b=[5;6];x=A\b输出结果为:x =1.00001.0000其中,“A”为系数矩阵,“b”为常数矩阵,“x”为未知量的解。

三、非线性方程组1. 非线性方程组的定义非线性方程组是指各个未知量的次数超过1次或者存在乘积项、幂项等非线性因素的代数方程组。

例如:x^2 + y^2 = 25x*y - 3 = 0就是一个包含两个未知量x和y的非线性方程组。

2. Matlab中求解非线性方程组方法在Matlab中,可以使用“fsolve()”函数来求解非线性方程组。

该函数需要输入一个函数句柄和初始值向量,输出未知量的解向量。

例如,在Matlab中求解以下非线性方程组:x^2 + y^2 = 25x*y - 3 = 0可以使用以下代码:fun=@(x)[x(1)^2+x(2)^2-25;x(1)*x(2)-3];x0=[1;1];[x,fval]=fsolve(fun,x0)输出结果为:Local minimum found.Optimization completed because the size of the gradient is less thanthe default value of the function tolerance.<stopping criteria details>ans =1.60561.8708其中,“fun”为函数句柄,表示要求解的非线性方程组,“x0”为初始值向量,“[x,fval]”为输出结果,其中“x”表示未知量的解向量,“fval”为函数值。

matlab实验 非线性方程(组)求解

matlab实验 非线性方程(组)求解

数学实验报告Matlab的简单应用——非线性方程(组)求解姓名班级学号学院2013年5月12日一、实验目的1.熟悉MATLAB软件中非线性方程(组)的求解命令及其用法。

2.掌握求非线性方程近似根的常用数值方法——迭代法。

3.了解分叉与混沌概念。

二、实验问题1.利用弦截法编程对方程x^5+x-1=0进行求解实验,并与二分法、牛顿切线法进行比较;2.方程f(x)=x^2+x-4=0在(0,4)内有唯一的实根,现构造以下三种迭代函数:(1)g1(x)=4-x^2,迭代初值x0=4;(2)g2(x)=4/(1+x),迭代初值x0=4;(3)g3(x)=x-(x^2+x-4)/(2x+1),迭代初值x0=4;分别用给出的3种迭代函数构造迭代数列x(k+1)=g1(x(k)),i=1,2,3,观察这些迭代数列是否收敛,若收敛能否收敛到方程f(x)=0的解。

除此之外,你还能构造出其他收敛的迭代吗?4.分别取不同的参数值r,做迭代数列x(n+1)=rx(n)(1-x(n)),n=0,1,2……,观察分叉与混沌现象。

步骤1:首先,分别取参数r为0,0.3,0.6,0.9,1.2,1.5,1.8,2.1,2.4,2.7, 3.0,3.3,3.6,3.9等14个值,按迭代序列迭代150步,分别产生14个迭代序列{x(k)},k=0,1,…,150;其次,分别取这14个迭代序列的后50个迭代值(x100,x101,…,x150),画在以r为横坐标的同一坐标面rox上,每一个r取值对应的迭代值点为一列。

步骤2:对(1)中图进行观察分析,容易发现:(1)当r为0,0.3,0.6,0.9,1.2,1.5,1.8,2.1,2.4,2.7时,每个r对应的50个迭代值凝聚在一点,这说明对这些r的取值所产生的迭代序列是收敛的。

(2)当r为3,3.3时,r对应的50个迭代值凝聚在两个点,这说明这些r值所对应的迭代序列不收敛,但凝聚在两个点附近;同时也说明当r在2.7和3之间取值时,对应的迭代序列从收敛到不收敛,轨道由一只分为两支开始出现分叉现象。

matlab求解非线性方程组及极值

matlab求解非线性方程组及极值

matlab求解非线性方程组及极值默认分类2010-05-18 15:46:13 阅读1012 评论2 字号:大中小订阅一、概述:求函数零点和极值点:Matlab中三种表示函数的方法: 1. 定义一个m函数文件, 2.使用函数句柄; 3.定义inline函数, 其中第一个要掌握简单函数编写, 二, 三中掌握一个。

函数的'常规'使用有了函数了, 我们怎么用呢, 一种是直接利用函数来计算, 例如: sin(pi), 还有我们提到的mysqr(3)...另一种是函数画图, 例如Plottools中提到的ezplot, ezsurf... 但是这也太小儿科了, 有没有想过定义函数后, 利用它来: 求解零点(即解f(x)=0方程), 最优化(求最值/极值点), 求定积分, 常微分方程求解等. 当然这里由于篇幅有限(空间快满了)以及这个只是'基础教程'的缘故, 只提及一些皮毛知识, 掌握这些后, 如果需要你可以进一步学习.解f(x)=0已知函数求解函数值=0所表示的方程, Matlab中有两个函数可以做到, fzero和fsolve前者只能解一元方程, 后者可以解多元方程组, 不过基本使用形式上差不多:解=fzero(函数, 初值, options)解=fsolve(函数, 初值, options)关于解: fzero给出的是x单值的解, fsolve给出的是解x可能处于的区间, 当然, 这个区间很窄.关于'函数', 还记得前面提到的三种表示方法吧, 在这里都可以用, 记住就是: 如果直接使用函数名, 要用单引号将它括起来, 而函数句柄, inline函数可以直接使用.关于'初值': 电脑比较笨, 它寻找解的办法是尝试不同地x值, 摸索解在哪里, 所以我们一开始就要给它指明从哪里开始下手, 初值这里, 可以只给它一个值, 让它在这个值附近找解, 也可以给它一个区间(区间用[下限,上限]这种方式表示), 它会在这个区间内找解.fzero的一些局限, 如果你给定的初值是区间, 而恰好函数在区间端点处同号, fzero会出错, 而如果你只给一个初值, fezro又有可能'走错方向', 例如给初值2让它解mysqr这个函数方程就出错了, FT!寻找函数极值/最值Matlab中也有两个函数可以做到, 是: fminbnd: 寻找一元函数极小值; fminsearch: 寻找多元函数极小值(当然一元也行). 别问我怎么没有找极大值的Matlab函数, 你把原函数取负数, 寻找它的极小值不就行了. 相关语法:x=fminbnd(函数, 区间起始值, 区间终止值)x=fminsearch(函数, 自变量初值)相关说明: fminbnd中指定要查找极小值的自变量区间, 好像不指定也行, 不过那样的话, 如果函数有多个极小值就可能比较难以预料结果了.fminsearch中要给定一个初值, 这个初值可以是自变量向量(将自变量依次排在一起组成向量)的初值, 也可以是表示向量初值区间的一个矩阵.函数: 那三种形式都适用, 但是记住, 直接使用函数名称需要加单引号!cite from:/qq529312840/blog/item/3687e4c7e7e2d6d9d0006049.html二、实例+讲解(1)非线性方程数值求解:1 单变量非线性方程求解在MATLAB中提供了一个fzero函数,可以用来求单变量非线性方程的根。

matlab求解非线性方程组

matlab求解非线性方程组

非线性方程组求解1.mulStablePoint用不动点迭代法求非线性方程组的一个根function [r,n]=mulStablePoint(F,x0,eps)%非线性方程组:f%初始解:a%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-6;endx0 = transpose(x0);n=1;tol=1;while tol>epsr= subs(F,findsym(F),x0); %迭代公式tol=norm(r-x0); %注意矩阵的误差求法,norm为矩阵的欧几里德范数n=n+1;x0=r;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend2.mulNewton用牛顿法法求非线性方程组的一个根function [r,n]=mulNewton(F,x0,eps)if nargin==2eps=1.0e-4;endx0 = transpose(x0);Fx = subs(F,findsym(F),x0);var = findsym(F);dF = Jacobian(F,var);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx;n=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx; %核心迭代公式tol=norm(r-x0);n=n+1;if(n>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend3.mulDiscNewton用离散牛顿法法求非线性方程组的一个根function [r,m]=mulDiscNewton(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=transpose(x0)-inv(J)*fx;m=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;4.mulMix用牛顿-雅可比迭代法求非线性方程组的一个根function [r,m]=mulMix(F,x0,h,l,eps)if nargin==4eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = transpose(x0)-dr; m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend5.mulNewtonSOR用牛顿-SOR迭代法求非线性方程组的一个根function [r,m]=mulNewtonSOR(F,x0,w,h,l,eps)if nargin==5eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = transpose(x0)-dr;m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend6.mulDNewton用牛顿下山法求非线性方程组的一个根function [r,m]=mulDNewton(F,x0,eps)%非线性方程组:F%初始解:x0%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-4;endx0 = transpose(x0);dF = Jacobian(F);m=1;tol=1;while tol>epsttol=1;w=1;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);F1=norm(Fx);while ttol>=0 %下面的循环是选取下山因子w的过程r=x0-w*inv(dFx)*Fx; %核心的迭代公式Fr = subs(F,findsym(F),r);ttol=norm(Fr)-F1;w=w/2;endtol=norm(r-x0);m=m+1;x0=r;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend7.mulGXF1用两点割线法的第一种形式求非线性方程组的一个根function [r,m]=mulGXF1(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;8.mulGXF2用两点割线法的第二种形式求非线性方程组的一个根function [r,m]=mulGXF2(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;9.mulVNewton用拟牛顿法求非线性方程组的一组解function [r,m]=mulVNewton(F,x0,A,eps)%方程组:F%方程组的初始解:x0% 初始A矩阵:A%解的精度:eps%求得的一组解:r%迭代步数:mif nargin==2A=eye(length(x0)); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendx0 = transpose(x0);Fx = subs(F, findsym(F),x0);r=x0-A\Fx;m=1;tol=1;while tol>epsx0=r;Fx = subs(F, findsym(F),x0);r=x0-A\Fx;y=r-x0;Fr = subs(F, findsym(F),r);z= Fr-Fx;A1=A+(z-A*y)*transpose(y)/norm(y); %调整A A=A1;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end10.mulRank1用对称秩1算法求非线性方程组的一个根function [r,n]=mulRank1(F,x0,A,eps)if nargin==2l = length(x0);A=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-inv(A)*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-inv(A)*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;A1=A+ fr *transpose(fr)/(transpose(fr)*y); %调整A A=A1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end11.mulDFP用D-F-P算法求非线性方程组的一组解function [r,n]=mulDFP(F,x0,A,eps)if nargin==2l = length(x0);B=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;B1=B+ y*y'/(y'*z)-B*z*z'*B/(z'*B*z); %调整AB=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end12.mulBFS用B-F-S算法求非线性方程组的一个根function [r,n]=mulBFS(F,x0,B,eps)if nargin==2l = length(x0);B=eye(l); %B取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;u = 1 + z'*B*z/(y'*z);B1= B+ (u*y*y'-B*z*y'-y*z'*B)/(y'*z); %调整B B=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end13.mulNumYT用数值延拓法求非线性方程组的一组解function [r,m]=mulNumYT(F,x0,h,N,eps)format long;if nargin==4eps=1.0e-8;endn = length(x0);fx0 = subs(F,findsym(F),x0);x0 = transpose(x0);J = zeros(n,n);for k=0:N-1fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endinJ = inv(J);r=x0-inJ*(fx-(1-k/N)*fx0);x0 = r;endm=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;14.DiffParam1用参数微分法中的欧拉法求非线性方程组的一组解function r=DiffParam1(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);for k=1:NFx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endinJ = inv(J);r = x0 - ht*inJ*Fx0;x0 = r;end15.DiffParam2用参数微分法中的中点积分法求非线性方程组的一组解function r=DiffParam2(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nxt = x0;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx0)/h(i);endinJ = inv(J);x1 = x0 - ht*inJ*Fx0;for k=1:Nx2 = x1 + (x1-x0)/2;Fx2 = subs(F,findsym(F),x2);J = zeros(n,n);for i=1:nxt = x2;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx2)/h(i);endinJ = inv(J);r = x1 - ht*inJ*Fx0;x0 = x1;x1 = r;end16.mulFastDown用最速下降法求非线性方程组的一组解function [r,m]=mulFastDown(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0-J*lamda; %核心迭代公式fr = subs(F,findsym(F),r);tol=dot(fr,fr);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;17.mulGSND用高斯牛顿法求非线性方程组的一组解function [r,m]=mulGSND(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endDF = inv(transpose(J)*J)*transpose(J);r=x0-DF*fx; %核心迭代公式tol=norm(r-x0);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;18.mulConj用共轭梯度法求非线性方程组的一组解function [r,m]=mulConj(F,x0,h,eps)format long;if nargin==3eps=1.0e-6;endn = length(x0);x0 = transpose(x0);fx0 = subs(F,findsym(F),x0);p0 = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)*(1+h);p0(:,i) = -(subs(F,findsym(F),x1)-fx0)/h;endm=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0+p0*lamda; %核心迭代公式fr = subs(F,findsym(F),r);Jnext = zeros(n,n);for i=1:nx1 = r;x1(i) = x1(i)+h;Jnext(:,i) = (subs(F,findsym(F),x1)-fr)/h;endabs1 = transpose(Jnext)*Jnext;abs2 = transpose(J)*J;v = abs1/abs2;if (abs(det(v)) < 1)p1 = -Jnext+p0*v;elsep1 = -Jnext;endtol=norm(r-x0);p0 = p1;x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;19.mulDamp用阻尼最小二乘法求非线性方程组的一组解function [r,m]=mulDamp(F,x0,h,u,v,eps)format long;if nargin==5eps=1.0e-6;endFI = transpose(F)*F/2;n = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsj = 0;fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;afx = subs(F,findsym(F),x1);J(:,i) = (afx-fx)/h;endFIx = subs(FI,findsym(FI),x0);for i=1:nx2 = x0;x2(i) = x2(i)+h;gradFI(i,1) = (subs(FI,findsym(FI),x2)-FIx)/h;ends=0;while s==0A = transpose(J)*J+u*eye(n,n);p = -A\gradFI;r = x0 + p;FIr = subs(FI,findsym(FI),r);if FIr<FIxif j == 0u = u/v;j = 1;elses=1;endelseu = u*v;j = 1;if norm(r-x0)<epss=1;endendendx0 = r;tol = norm(p);m=m+1;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endendformat short;。

Matlab中常用的数学函数解析

Matlab中常用的数学函数解析

Matlab中常用的数学函数解析Matlab是一个强大的数值计算和可视化软件,它提供了丰富的数学函数,方便用户进行各种数学运算和分析。

在本文中,我们将解析一些常用的Matlab数学函数,介绍其用法和应用场景。

一、求解方程和优化问题在科学和工程领域,求解方程和优化问题是常见的任务。

Matlab提供了许多函数用于这些目的,其中最常用的是solve和fmincon函数。

1. solve函数solve函数用于求解代数方程或方程组。

例如,我们想求解一个一元二次方程2x^2 + 3x - 5 = 0的根,可以使用solve函数:```syms xeqn = 2*x^2 + 3*x - 5 == 0;sol = solve(eqn, x);```solve函数返回一个包含根的结构体sol,我们可以通过sol.x获得根的值。

当然,solve函数也可以求解多元方程组。

2. fmincon函数fmincon函数是Matlab中的一个优化函数,用于求解有约束的最小化问题。

例如,我们希望找到一个函数f(x)的最小值,同时满足一些约束条件,可以使用fmincon函数:```x0 = [0.5, 0.5]; % 初始解A = [1, 2]; % 不等式约束系数矩阵b = 1; % 不等式约束右侧常数lb = [0, 0]; % 变量下界ub = [1, 1]; % 变量上界nonlcon = @mycon; % 非线性约束函数options = optimoptions('fmincon', 'Algorithm', 'sqp'); % 优化选项[x, fval] = fmincon(@myfun, x0, A, b, [], [], lb, ub, nonlcon, options);```其中,myfun为目标函数,mycon为非线性约束函数。

fmincon函数返回最优解x和最小值fval。

非线性方程组求解及matlab实现讲解

非线性方程组求解及matlab实现讲解

牛顿迭代法收敛速度快,但它要求计算函数导数的值
弦截法


牛顿迭代法收敛速度快,但它要求计算函数导数的值。 在科学与工程计算中,常会碰到函数导数不易计算或 者算式复杂而不便计算的情况 弦截法的基本思想与牛顿法相似,即将非线性函数线 性化后求解。两者的差别在于弦截法实现函数线性化 的手段采用的是两点间的弦线(用差商代替导数), 而不是某点的切线
f xk xk 1 xk xk xk 1 f xk f xk 1
弦截法示意图
弦截法注意事项


与牛顿法只需给出一个初值不同,弦截法需要给出两 个迭代初值。如果与逐步扫描法结合起来,则最后搜 索的区间的两个端点值常可作为初值 弦截法虽比牛顿法收敛速度稍慢,但在每次迭代中只 需计算一次函数值,又不必求函数的导数,且对初值 要求不甚苛刻,是工程计算中常用的有效计算方法之 一



不动点迭代 牛顿法 弦截法 抛物线法 威格斯坦法(Wegstein)
不动点迭代法
我们可以通过多种方法将方程式
f x 0
例如方程
转化为
x g x
c0
x c 0,
2
可以转化为以下不同形式
2 x x xc (1)
(2)
x
x2 c 1 c x (3) x x 2x 2 x
松弛迭代法

有些非线性方程用前面的不动点迭代法求解时, 迭代过程是发散的。这时可以引入松弛因子, 利用松弛迭代法。通过选择合适的松弛因子, 就可以使迭代过程收敛
xn1 xn xn xn
迭代法是计算数学的一种重要方法,用途很广,求解 线性方程组和矩阵特征值时也要用到这种方法

matlab十个简单案例编写

matlab十个简单案例编写

matlab十个简单案例编写1. 求解线性方程组线性方程组是数学中常见的问题之一,而MATLAB提供了用于求解线性方程组的函数。

例如,我们可以使用"linsolve"函数来求解以下线性方程组:2x + 3y = 74x - 2y = 2代码如下所示:A = [2, 3; 4, -2];B = [7; 2];X = linsolve(A, B);disp(X);解释:上述代码定义了一个2x2的矩阵A和一个2x1的矩阵B,分别表示线性方程组的系数矩阵和常数向量。

然后,使用linsolve函数求解线性方程组,结果存储在X中,并通过disp函数打印出来。

运行代码后,可以得到x=2和y=1的解。

2. 求解非线性方程除了线性方程组外,MATLAB还可以用于求解非线性方程。

例如,我们可以使用"fzero"函数求解以下非线性方程:x^2 + 2x - 3 = 0代码如下所示:fun = @(x) x^2 + 2*x - 3;x0 = 0;x = fzero(fun, x0);disp(x);解释:上述代码定义了一个匿名函数fun,表示非线性方程。

然后,使用fzero函数传入fun和初始值x0来求解非线性方程的根,并通过disp函数打印出来。

运行代码后,可以得到x=1的解。

3. 绘制函数图像MATLAB提供了强大的绘图功能,可以帮助我们可视化函数的形状和特征。

例如,我们可以使用"plot"函数绘制以下函数的图像:y = cos(x)代码如下所示:x = linspace(0, 2*pi, 100);y = cos(x);plot(x, y);解释:上述代码首先使用linspace函数生成一个从0到2π的100个等间距点的向量x,然后计算对应的cos值,并存储在向量y中。

最后,使用plot函数将x和y作为横纵坐标绘制出函数图像。

运行代码后,可以看到cos函数的周期性波动图像。

MATLAB求解非齐次线性方程组

MATLAB求解非齐次线性方程组

MATLAB 求解⾮齐次线性⽅程组根据线性代数中求解⽅程组的基本知识,⾸先应判断系数矩阵的秩是否和增⼴矩阵的秩相等,若不等,则⽆解;若有解,根据秩和未知量个数的关系,判断是唯⼀解还是⽆穷多解;若为⽆穷多解,其通解为齐次⽅程组的通解加⾮齐次⽅程组的特解。

求⾮齐次线性⽅程组Ax=b 的特解,可直接使⽤命令A\b ,求解齐次线性⽅程组的通解,可以使⽤函数null 或rref 来实现。

命令含义B = null(A,'r')求系数矩阵为A 的齐次线性⽅程组Ax=0的基础解系,结果为有理数,B 的列向量即基础解系的列向量Z = null(A)求出Ax=0的基础解系后,将基础解系的向量正交单位化,存储在Z 中C = rref(A)求出矩阵A 的⾏最简形矩阵(reduced row echelon form )function [S_H, S_P] = solveLS(A,b)% 输⼊参数A :系数矩阵% 输⼊参数b :Ax=b 的常数项列向量b% S_H :齐次线性⽅程组的基础解系% S_P :⾮齐次线性⽅程组的特解if size(A,1) ~= length(b) %size(A,1)求矩阵的⾏数error('输⼊数据错误,请重新输⼊!');return;elseB = [A,b]; %增⼴矩阵rank_A = rank(A); %求系数矩阵的秩rank_B = rank(B); %求增⼴矩阵的秩if rank_A ~= rank_B %⽆解情况disp('线性⽅程组⽆解!');S_H = [];S_P = [];else if rank_B == size(A,2) %若增⼴矩阵的秩 = 未知量个数%size(A,2)求矩阵的列数,相当于length(A)disp('线性⽅程组有唯⼀解!');S_P = A\b; %求唯⼀解S_H = [];elsedisp('线性⽅程组有⽆穷解!');S_H = null(A,'r');%求出齐次⽅程组的基础解系S_P = A\b; %求⾮齐次⽅程组的特解endendend例 使⽤Matlab 求解⽅程组A=[1 2 -2 3; 2 4 -3 4; 5 10 -8 11];b=[2 5 12]';format rat;[S_H, S_P]=solveLS(A,b)运⾏结果线性⽅程组有⽆穷解!S_H =-2 11 00 20 1S_P =7/4-1/2该线性⽅程组有⽆穷多解,通解为⎧⎩⎨+2−2+3=2x 1x 2x 3x 42+4−3+4=5x 1x 2x 3x 45+10−8+11=12x 1x 2x 3x 4x =++,,∈R k 1⎛⎝⎜⎜⎜−2100⎞⎠⎟⎟⎟k 2⎛⎝⎜⎜⎜1021⎞⎠⎟⎟⎟⎛⎝⎜⎜⎜07/40−1/2⎞⎠⎟⎟⎟k 1k 2。

MATLAB编程与工程应用——第7章 MATLAB解方程与函数极值

MATLAB编程与工程应用——第7章 MATLAB解方程与函数极值
一般调用格式( ode45为例) 一般调用格式(以ode45为例) 为例 [t,y]=ode45('fname',tspan,y0) 其中fname是定义f(t,y)的函数文件名,该函数文件必 须返回一个列向量。 tspan形式为[t0,tf],表示求解区间。要获得问题在时 间点t0,t1,…tf上的解,则令tspan=[t0,t1,…,tf] (要求是单调的) y0是初始状态列向量。 t和y分别给出时间向量和相应的状态向量。 求ቤተ መጻሕፍቲ ባይዱ描述振荡器的经典的Ver Pol微分方程 例7.9 求解描述振荡器的经典的Ver der Pol微分方程 d2y verderpol.m exp7_9.m 2 dy (1 y ) + 1 = 0
MATLAB解方程与函数极值
7.1 线性方程组求解
二、迭代解法
迭代解法非常适合求解大型系数矩阵的方程组。在数值 分析中,迭代解法主要包括 Jacobi迭代法、GaussSerdel迭代法、超松弛迭代法和两步迭代法。 Jacobi迭代法 1.Jacobi迭代法 对于线性方程组Ax=b,如果A为非奇异方阵,即aii≠0, 则A可分解为A=D-L-U,其中D为对角阵,其元素为A的对 角元素,L与U为A的下三角阵和上三角阵,于是Ax=b化为: x=D-1(L+U)x+D-1b 与之对应的迭代公式为: x(k+1)=D-1(L+U)x(k)+D-1b 利用jacobi jacobi迭代法求方程的解 例7.4 利用jacobi迭代法求方程的解 exp7_4.m jacobi.m
如s=2时
j =1 j =1
i 1
i 1
1 ym +1 = ym + h[ f ( xm , ym ) + f ( xm + h, ym + h)] 2

matlab求线性方程组的解

matlab求线性方程组的解

matlab求线性方程组的解求解线性方程分为两种方法–直接法和迭代法常见的方法一共有8种直接法Gauss消去法Cholesky分解法迭代法Jacobi迭代法Gauss-Seidel迭代法超松弛迭代法共轭梯度法Bicg迭代法Bicgstab迭代法这里我从计算代码的角度来解释一下,代码按以下顺序给出。

把方程组直接带入已知条件,就可以得到答案。

适用条件Gauss消去法:求解中小规模线性方程(阶数不过1000),一般用于求系数矩阵稠密而且没有任何特殊结构的线性方程组Cholesky分解法:对称正定方程优先使用,系数矩阵A是n 阶对称正定矩阵Jacobi迭代法非奇异线性方程组,分量的计算顺序没有关系Gauss-Seidel迭代法与Jacobi迭代法相似,但计算的分量不能改变超松弛迭代法Jacobi迭代法和Gauss-Seidel迭代法的加速版,由Gauss-Seidel迭代法改进而来,速度较快共轭梯度法需要确定松弛参数w,只有系数矩阵具有较好的性质时才可以找到最佳松弛因子。

但好处是不用确定任何参数,他是对称正定线性方程组的方法也是求解大型稀疏线性方程组最热门的方法Bicg迭代法本质是用双共轭梯度求解线性方程组的方法,对求解的方程没有正定性要求Bicgstab迭代法本质是用稳定双共轭梯度求解线性方程组的方法,对求解的方程没有正定性要求Gauss消去法第一、二个函数ltri、utri是一定要掌握的,后面的几乎每个函数都要用到ltri简单来说,当Ly=bb,L(非奇异下三角矩阵)已知求yfunction y =ltri(L,b)n=size(b,1);y=zeros(n,1);for j =1:n-1y(j)=b(j)/L(j,j);b(j+1:n)=b(j+1:n)-y(j)*L(j+1:n,j); endy(n)=b(n)/L(n,n);utri简单来说,当Ux=yy,U(非奇异上三角矩阵)已知求xfunction x =utri(U,y)n=size(y,1);x=zeros(n,1);for j = n:-1:2x(j)=y(j)/U(j,j);y(1:j-1)=y(1:j-1)-x(j)*U(1:j-1,j);endx(1)=y(1)/U(1,1);gauss算法,计算时粘贴过去就好function[L,U]=gauss(A)n=size(A,1);for k =1:n-1A(k+1:n,k)=A(k+1:n,k)/A(k,k);A(k+1:n,k+1:n)=A(k+1:n,k +1:n)-A(k+1:n,k)*A(k,k+1:n);endL=tril(A,-1)+eye(n);U=triu(A);使用例子已经知道一个线性方程组,这里我就不写出数学形式了,A是系数矩阵,直接把上面写好的函数复制过来在运算就可以。

非线性方程(组):MATLAB内置函数solve,vpasolve,fsolve,fzer。。。

非线性方程(组):MATLAB内置函数solve,vpasolve,fsolve,fzer。。。

求解函数多项式型⾮多项式型⼀维⾼维符号数值算法solve ⽀持,得到全部符号解若可符号解则得到根⽀持⽀持⽀持当⽆符号解时 符号解⽅法:利⽤等式性质得到标准可解函数的⽅法基本即模拟⼈⼯运算vpasolve ⽀持,得到全部数值解(随机初值)得到⼀个实根⽀持⽀持\times ⽀持未知fsolve 由初值得到⼀个实根由初值得到⼀个实根⽀持⽀持\times ⽀持优化⽅法,即⽤优化⽅法求解函数距离零点最近,具体⽅法为信赖域⽅法。

包含预处理共轭梯度(PCG)、狗腿(dogleg)算法和Levenberg-Marquardt 算法等fzero 由初值得到⼀个实根由初值得到⼀个实根⽀持\times \times ⽀持⼀维解⾮线性⽅程⽅法,⼆分法、⼆次反插和割线法的混合运⽤具体原理见数值求解⾮线性⽅程的和roots ⽀持,得到全部数值解\times ⽀持\times \times ⽀持特征值⽅法,即将多项式转化友矩阵(companion matrix)然后使⽤求矩阵特征值的算法求得所有解(那是另外⼀个问题了)⾮线性⽅程(组):MATLAB 内置函数solve,vpasolve,fsolve,fzer 。

MATLAB 函数 solve, vpasolve, fsolve, fzero, roots 功能和信息概览 也就是说,之前写了⼏篇关于⾮线性求解的,如⼆分法、⽜顿法(参见)、⼆次反插法(参见),只有⼀个库函数⽤了类似的⽅法。

各函数⽤法详解1. (符号/数值)解⽅程(组)函数 solve 官⽅参考页: solve 是基本的⽤于符号解⽅程的内置函数,返回类型为符号变量矩阵(m\times n sym)。

当⽆法符号求解时,抛出警告并输出⼀个数值解。

基本形式为:solve(eqn, var, Name, Val); % eqn 为符号表达式/符号变量/符号表达式的函数句柄, var 为未知量; Name 为附加要求,Val 为其值 可以⽤solve 解⼀维⽅程。

实验2利用matlab解非线性、微分方程组答案

实验2利用matlab解非线性、微分方程组答案

实验2 利用matlab解(非)线性、微分方程(组)-答案1、对于下列线性方程组:(1)请用直接法求解;(2)请用LU分解方法求解;(3)请用QR分解方法求解;(4)请用Cholesky分解方法求解。

(1)>> A=[2 9 0;3 4 11;2 2 6]A =2 9 03 4 112 2 6>> B=[13 6 6]'B =1366>> x=inv(A)*Bx =7.4000-0.2000-1.4000或:>> X=A\BX =7.4000-0.2000-1.4000(2)>> [L,U]=lu(A);>> x=U\(L\B)x =7.4000-0.2000-1.4000(3)>> [Q,R]=qr(A);>> x=R\(Q\B)x =7.4000-0.2000-1.4000(4)>> chol(A)??? Error using ==> cholMatrix must be positive definite.2、设迭代精度为10-6,分别用Jacobi 迭代法、Gauss-Serdel 迭代法求解下列线性方程组,并比较此两种迭代法的收敛速度。

Jacobi 迭代法:>> A=[10 -1 0;-1 10 -2;0 -2 10];>> B=[9 7 5]';>> [x,n]=jacobi(A,B,[0,0,0]',1e-6)x =0.99370.93680.6874n =11Gauss-Serdel 迭代法:>> A=[10 -1 0;-1 10 -2;0 -2 10];>> B=[9 7 5]';>> [x,n]=gauseidel(A,B,[0,0,0]',1e-6)x =0.99370.93680.6874n =73、求解非线性方程010=-+x xe x 在2附近的根。

MATLAB解方程组(线性与非线性方程组)

MATLAB解方程组(线性与非线性方程组)

例7-9 求下列非线性方程组在(0.5,0.5) 附近的数值解。 (1) 建立函数文件myfun.m。 function q=myfun(p) x=p(1); y=p(2); q(1)=x-0.6*sin(x)-0.3*cos(y); q(2)=y-0.6*cos(x)+0.3*sin(y); (2) 在给定的初值x0=0.5,y0=0.5下,调用fsolve函数求方程的根。 x=fsolve('myfun',[0.5,0.5]',optimset('Display','off')) x= 0.6354 0.3734
2.Gauss-Serdel迭代法 在Jacobi迭代过程中,计算时,已经得到,不必再用,即原来的迭代
公式Dx(k+1)=(L+U)x(k)+b可以改进为Dx(k+1)=Lx(k+1)+Ux(k)+b, 于是得到:
x(k+1)=(D-L)-1Ux(k)+(D-L)-1b 该式即为Gauss-Serdel迭代公式。和Jacobi迭代相比,Gauss-Serdel
7.1.2 迭代解法 迭代解法非常适合求解大型系数矩阵的方程组。在数值分析中,迭代
解法主要包括 Jacobi迭代法、Gauss-Serdel迭代法、超松弛迭代法 和两步迭代法。
1.Jacobi迭代法 对于线性方程组Ax=b,如果A为非奇异方阵,即aii≠0(i=1,2,…,n),则
可将A分解为A=D-L-U,其中D为对角阵,其元素为A的对角元素, L与U为A的下三角阵和上三角阵,于是Ax=b化为: x=D-1(L+U)x+D-1b 与之对应的迭代公式为:
(2) QR分解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求解线性方程组
solve,linsolve
例:
A=[5 0 4 2;1 -1 2 1;4 1 2 0;1 1 1 1];
%矩阵的行之间用分号隔开,元素之间用逗号或空格
B=[3;1;1;0]
X=zeros(4,1);%建立一个4元列向量
X=linsolve(A,B)
diff(fun,var,n):对表达式fun中的变量var求n阶导数。

例如:F=sym('u(x,y)*v(x,y)'); %sym()用来定义一个符号表达式
diff(F); %matlab区分大小写
pretty(ans) %pretty():用习惯书写方式显示变量;ans是答案表达式
非线性方程求解
fsolve(fun,x0,options)
为待解方程或方程组的文件名;fun其中
x0位求解方程的初始向量或矩阵;
option为设置命令参数
建立文件fun.m:
function y=fun(x)
y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ...
x(2) - 0.5*cos(x(1))+0.3*sin(x(2))];
>>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve'))
注:
...为续行符
m文件必须以function为文件头,调用符为@;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。

Matlab求解线性方程组
AX=B或XA=B
在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符“/”和“\”。

如:
X=A\B表示求矩阵方程AX=B的解;
的解。

XA=B表示矩阵方程B/A=X.
对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理。

如果矩阵A不是方阵,其维数是m×n,则有:
m=n 恰定方程,求解精确解;
m>n 超定方程,寻求最小二乘解;
m<n 不定方程,寻求基本解,其中至多有m个非零元素。

针对不同的情况,MATLAB将采用不同的算法来求解。

一.恰定方程组
恰定方程组由n个未知数的n个方程构成,方程有唯一的一组解,其一般形式可
用矩阵,向量写成如下形式:
Ax=b 其中A是方阵,b是一个列向量;
在线性代数教科书中,最常用的方程组解法有:
(1)利用cramer公式来求解法;
(2)利用矩阵求逆解法,即x=A-1b;
(3)利用gaussian消去法;
法求解。

lu)利用4(.
一般来说,对维数不高,条件数不大的矩阵,上面四种解法所得的结果差别不大。

前三种解法的真正意义是在其理论上,而不是实际的数值计算。

MATLAB中,出于对算法稳定性的考虑,行列式及逆的计算大都在lu分解的基础上进行。

在MATLAB中,求解这类方程组的命令十分简单,直接采用表达式:x=A\b。

在MATLAB的指令解释器在确认变量A非奇异后,就对它进行lu分解,并最终给出解x;若矩阵A的条件数很大,MATLAB会提醒用户注意所得解的可靠性。

如果矩阵A是奇异的,则Ax=b的解不存在,或者存在但不唯一;如果矩阵A接近奇异时,MATLAB将给出警告信息;如果发现A是奇异的,则计算结果为inf,并且给出警告信息;如果矩阵A是病态矩阵,也会给出警告信息。

注意:在求解方程时,尽量不要用inv(A)*b命令,而应采用A\b的解法。

因为后者的计算速度比前者快、精度高,尤其当矩阵A的维数比较大时。

另外,除法命令的适用行较强,对于非方阵A,也能给出最小二乘解。

二.超定方程组
对于方程组Ax=b,A为n×m矩阵,如果A列满秩,且n>m。

则方程组没有精确解,此时称方程组为超定方程组。

线性超定方程组经常遇到的问题是数据的曲线拟合。

对于超定方程,在MATLAB中,利用左除命令(x=A\b)来寻求它的最小二乘解;还可以用广义逆来求,即x=pinv(A),所得的解不一定满足Ax=b,x只是最小二乘意义上的解。

左除的方法是建立在奇异值分解基础之上,由此获得的解最可靠;广义逆法是建立在对原超定方程直接进行householder变换的基础上,其算法可靠性稍逊与奇异值求解,但速度较快;
】7【例
求解超定方程组
A=[2 -1 3;3 1 -5;4 -1 1;1 3 -13]
A=
2 -1 3
3 1 -5
4 -1 1
1 3 -13
b=[3 0 3 -6]';
rank(A)
ans=
3
x1=A\b
x1=
1.0000
2.0000
1.0000
x2=pinv(A)*b
x2=
1.0000
2.0000
1.0000
A*x1-b
ans=
1.0e-014
-0.0888
-0.0888
-0.1332
可见x1并不是方程Ax=b的精确解,用x2=pinv(A)*b所得的解与x1相同。

三.欠定方程组
欠定方程组未知量个数多于方程个数,但理论上有无穷个解。

MATLAB将寻求一个基本解,其中最多只能有m个非零元素。

特解由列主元qr分解求得。

】8【例
解欠定方程组
A=[1 -2 1 1;1 -2 1 -1;1 -2 1 5]
A=
1 -
2 1 1
1 -
2 1 -1
1 -
2 1 -1
1 -
2 1 5
b=[1 -1 5]'
x1=A\b
Warning:Rank deficient,rank=2 tol=4.6151e-015
x1=
-0.0000
1.0000
x2=pinv(A)*b
x2=
-0.0000
0.0000
1.0000
四.方程组的非负最小二乘解
在某些条件下,所求的线性方程组的解出现负数是没有意义的。

虽然方程组可以得到精确解,但却不能取负值解。

在这种情况下,其非负最小二乘解比方程的精确解更有意义。

在MATLAB中,求非负最小二乘解常用函数nnls,其调用格式为:(1)X=nnls(A,b)返回方程Ax=b的最小二乘解,方程的求解过程被限制在x 的条件下;
(2)X=nnls(A,b,TOL)指定误差TOL来求解,TOL的默认值为
TOL=max(size(A))*norm(A,1)*eps,矩阵的-1范数越大,求解的误差越大;(3)[X,W]=nnls(A,b) 当x(i)=0时,w(i)<0;当下x(i)>0时,w(i)0,同时返回一个双向量w。

【例9】求方程组的非负最小二乘解
A=[3.4336 -0.5238 0.6710
-0.5238 3.2833 -0.7302
0.6710 -0.7302 4.0261];
b=[-1.000 1.5000 2.5000];
[X,W]=nnls(A,b)
X=
0.6563
0.6998
W=
-3.6820
-0.0000
-0.0000
x1=A\b
x1=
-0.3569
0.5744
0.7846
A*X-b
ans=
1.1258
0.1437
-0.1616
A*x1-b
ans=
1.0e-0.15
-0.2220
0.4441。

相关文档
最新文档