一元二次方程概念、解法与根的判别式
一元二次方程根的判别式、根与系数关系
上述命题的逆命题也正确
例1:不解方程判断下列方程根的情况 ① x²-4x-1=0 ②x²+5=2x ③ x²-mx+m²+1=0
例2:k取何值时,方程4 x²-(k+2)x+(k-1)=0 ①有一个根是-1。 ②有两个相等的实根
解:∵方程x²+2ax+1=0有两个不相等的实根 ∴Δ 1=4a²-4>0 既a²>1 方程②中a>1 ∴ 2a²-1>1≠0 既方程②为一元二次方程 Δ 2=4a²-4(2a-1)2=-4(4a-1)(a-1) ∵a²>1 ∴a²-1>0 ∴(4a²-1)>0 2=-4(4a²-1)(a²-1)<0 ∴方程②无实根
一元二次方程的根与系数关系
一元二次方程的根与系数关系(或称韦达定理)是初中数学内容中一个很重要的 知识点,在中考中占有重要的地位,纵观近年全国各地的中考试题,这个知 识点的考查可以解决以下几个问题:
一元二次方程的根与系数的关系 如果一元二次方程ax 2+bx+c=0(a≠0)的两个实数根是x 1,x 2,那么
点评:本题的解题关键是把a、b看作一元二次方程x 2-3x+1=0的 两根,利用根与系数关系得a+b=3,ab=1,再通过运用整体代换 的思想代入运算,问题可求.利用根与系数的关系求与根有关的代数 式的值,
五、利用给出条件,确定一个一元二次方程中某个字母系数的值
例3 已知关于x的方程x 2+px+q=0的两实数根和的平方比两实数根之积 大7,而两实数根差的平方比两实数根之积的3倍小5,求p、q值.
(x 1-x 2) 2=3 x 1·x 2-5 ……③ ∵(x 1-x 2) 2=(x 1+x 2) 2-4 x 1·x 2
人教版21章一元二次方程知识点总结
21章一元二次方程知识点一、一元二次方程1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程.注意:〔1〕一元二次方程必须是一个整式方程;〔2〕只含有一个未知数;〔3〕未知数的最高次数是2 ; 〔4〕二次项系数不能等于0 2、一元二次方程的一般形式:ax2 bx c 0〔a 0〕,它的特征是:等式左边是一个关于未知数x的二次三项式,等式右边是零,其中ax2叫做二次项,a叫做二次项系数;bx 叫做一次项,b叫做一次项系数;c叫做常数项.注意:〔1〕二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号.〔2〕要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式.〔3〕形如ax2 bx c 0不一定是一元二次方程,当且仅当 a 0时是一元二次方程.二、一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解, 如:当x 2 . 2 2时,x 3x 2 0所以x 2是x 3x 2 0万程的解.一元二次方程的解也叫一元二次方程的根. 一元二次方程有两个根〔相等或不等〕三、一元二次方程的解法1、直接开平方法:直接开平方法理论依据:平方根的定义.利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.根据平方根的定义可知,x a是b的平方根,当b 0日寸,x a Vb , x a屈,当b<0时,方程没有实数根.三种类型:(1) x2a a 0的解是x ja ;(2) x m 2n n 0的解是x 品 m ;(3) mx n 2c m 0,且 c 0 的解是x ————n. m2、配方法:配方法的理论根据是完全平方公式a2 2ab b2 (a b)2,把公式中的a看做未知数x,并用x代替,那么有x2 2bx b2 (x b)2.(一)用配方法解二次项系数为1的一元二次方程用配方法解二次项系数为1的一元二次方程的步骤:(1)把一元二次方程化成一般形式(2)在方程的左边加上一次项系数绝对值的一半的平方,再减去这个数;(3)把原方程变为x m2 n的形式.(4)假设n 0,用直接开平方法求出x的值,假设n<0,原方程无解.(二)用配方法解二次项系数不是1的一元二次方程当一元二次方程的形式为ax2 bx c 0a 0,a 1时,用配方法解一元二次方程的步骤:(1)把一元二次方程化成一般形式(2) 先把常数项移到等号右边,再把二次项的系数化为1:方程的左、右两边同时除以二项的系数;(3)在方程的左、右两边加上一次项系数绝对值的一半的平方把原方程化为x m2 n的形式;(4)假设n 0,用直接开平方法或因式分解法解变形后的方程.3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法.一i兀二次方程ax2 bx c 0〔a 0〕的求根公式: 2b b 4ac 2x ------------------------ 〔b 4ac 0〕2a用求根公式法解一元二次方程的步骤是:〔1〕把方程化为ax2 bx c 0 a 0的形式,确定的值a,b.c 〔注意符号〕;〔2〕求出b2 4ac的值;并判断方程根的情况;〔3 〕假设b2 4ac 0 ,那么把a,b,及b2 4ac的值代人求根公式b ' 4ac,求出x i,x2. 2a2x4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法这种方法简单易行,是解一元二次方程最常用的方法.因式分解法的理论依据:如果两个因式的积等于0,那么这两个方程中至少有一个等于0,即假设pq=0时,那么p=0或q=0.用因式分解法解一元二次方程的一般步骤:〔1〕将方程的右边化为0 〔即化为一般式〕;〔2〕将方程左边分解成两个一次因式的乘积.〔3〕令每个因式分别为0,得两个一元一次方程.〔4〕解这两个一元一次方程,它们的解就是原方程的解.关键点:〔1〕要将方程右边化为0 〔即化为一般式〕;〔2〕熟练掌握多项式因式分解的方法,常用方法有:提公式法,公式法〔平方差公式,完全平方公式〕、十字相乘法.注意:一元二次方程解法的选择,应遵循先特殊,再一般,即先考虑能否用直接开平方法或因式分解法, 不能用这两种特殊方法时,再选用公式法,没有特殊要求,一般不采用配方法,由于配方法解题比较麻烦.三、一元二次方程根的判别式一i兀二次方程ax2 bx c 0〔 a 0〕中,b2 4ac叫做一i元二次方程ax2 bx c 0〔a 0〕的根的判别式,通常用“ 〞来表示,即b2 4acI 当4>0时,一元二次方程有2个不相等的实数根;II 当4=0时,一元二次方程有2个相同的实数根;III 当△ <0时,一元二次方程没有实数根利用根的判别式判定一元二次方程根的情况的步骤:①把所有一元二次方程化为一般形式;②确定a,b.c的值;③计算b2 4ac的值;④根据b2 4ac的符号判定方程根的情况.根的判别式的逆用在方程ax2 bx c 0a 0中,(1)方程有两个不相等的实数根b2 4ac>0(2)方程有两个相等的实数根b2 4ac=0(3)方程没有实数根b2 4ac < 0注意:逆用一元二次方程根的判别式求未知数的值或取值范围, 但不能忽略二次项系数不为0这一条件.四、一元二次方程根与系数的关系(韦达定理)如果方程ax2 bx c 0(a 0)的两个实数根是x1, x2 ,那么x i x2 b , x/2 -.a a也就是说,对于任何一个有实数根的一元二次方程, 两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.五、一元二次方程的应用知识点一列一元二次方程解应用题的一般步骤(1)审题,(2)设未知数,(3)列方程,(4)解方程,(5)检验,(6)作答.关键点:找出题中的等量关系.(1) “审〞指读懂题目、审清题意,明确和未知,以及它们之间的数量关系.这一步是解决问题的根底;(2) “设〞是指设元,设元分直接设元和间接设元,所谓直接设元就是问什么设什么,间接设元虽然所设未知数不是我们所要求的, 但由于对列方程有利,因此间接设元也十分重要.恰当灵活设元直接影响着列方程与解方程的难易;(3) “列〞是列方程,这是非常重要的步骤,列方程就是找出题目中的等量关系,再根据这个相等关系列出含有未知数的等式, 即方程.找出相等关系列方程是解决问题的关键;(4) “解〞就是求出所列方程的解;(5)检验应注意的是一元二次方程的解,有可能不符合题意,如线段的长度不能为负数,降低率不能大于100满等.因此,解出方程的根后,一定要进行检验.(6)作答知识点二用一元二次方程解与增长率(或降低率)有关的问题增长率问题的有关公式:增长数(增长了多少)=基数X增长率实际数(增长后的值)=基数+增长数增长率问题与降低率问题的数量关系及表示法:1, 假设基数为a,增长率X为,那么一次增长后的值为a 1 x , 两次增长后的值为al x2;2, 假设基数为a,降低率x为,那么一次降低后的值为al x , 两次降低后的值为al x2.两次增长后的总和等于基数+第一次降低后的值+第二次降低后的值知识点三用一元二次方程解与市场经济有关的问题与市场经济有关的问题:如:营销问题、水电问题、水利问题等.与利润相关的常用关系式有:(1)每件利润=销售价-本钱价;(2)利润率=(销售价一进货价)+进货价X 100%(3)销售额=售价X销售量知识点四数与数字的关系两位数=(十位数字)X10+个位数字三位数二(百位数字)X100+ (十位数字)X 10+个位数字连续的整数:设其中一数为x,另一数为x+1; (x-1 , x, x+1).连续的奇数:设其中一数为x,另一数为x+2; (x-2, x, x+2).连续的偶数:设其中一数为x,另一数为x+2; (x-2, x, x+2). 和一定的两数(和为a):设其中一数为x,另一数为a-x 差一定的两数(差为a):设其中一数为x,另一数为x+a 积一定的两数(积为a):设其中一数为x,另一数为a/x 商一定的两数(商为a):设其中一数为x,另一数为ax (x/a)知识点五传染问题:传染源:1个【每一轮1个可传染给x个】【前后轮患者数的比例为1: (1+x)】患者:第一轮后:共(1+x)个第二轮后:共1+ x + (1+x) x = (1+x) ? (1+x),即(1+x) 2个第三轮后:共(1+x) 2+ (1+x) 2? x = (1+x) 2? (1+x),即(1+x) 3个第n轮后:共(1+x) “个[注意:上面例举的是传染源为“ 1〞的情况得到的结论.假设传染源为a,那么第n轮后患者共为:a (1+X) n个]知识点六翻一番即表示为原量的2倍,翻两番即表示为原量的4倍.知识点七银行利率应用题〔含利滚利问题〕年利息=本金X 年利率〔年利率为 a%知识点八 几何类题:①等积变形,②动态几何问题,③梯子问题,④航海问题,⑤几何与图表信息,⑥探索存在问题,⑦平分几何图形 的周长与面积积问题,⑧利用图形探索规律最常见的如:求直角三角形的边.面积S 一定,两直角边和〔和为a 〕 一定:设其中一边为x,另一边为 a-x ,贝U l x 〔a-x 〕 =S 2面积S 一定,两直角边差〔差为a 〕 一定:设其中一边为x,另一边为 x+a 或〔X-a 〕贝U l x 〔x+a 〕 =$或1乂〔x-a 〕 =S 2 2 斜边c 一定,两直角边和〔和为a 〕 一定:设其中一边为x,另一边为 a-x ,那么 x 2+ 〔a-x 〕 2=c 2④斜边c 一定,两直角边差〔差为a 〕 一定:设其中一边为x,另一 边为 x+a 或 x-a 贝1J x 2+ 〔x+a 〕 2=c 2或 x 2+ 〔x-a 〕 2=c 2知识点九 赛制循环问题:【单循环比双循环少了一半】单循环:设参加的球队为x,那么全部比赛共1 [x 〔x-1 〕]场;双循环:设参加的球队为x,那么全部比赛共x 〔x-1 〕场;注:双循环公式X 〔X-1〕,单循环公式1X 〔X-1〕,其实也就可以理 2 解为单循环循环赛就是和每个对手比赛 1次〔对手数量=参赛队数量 -1〕,而每场比赛有2队参加,就得除以2.双循环比赛场次是单循存一年的本息和: 存两年的本息和: 存三年的本息和: 存n 年的本息和: 本金X 〔 1+年利率〕本金X 〔 1+年利率〕本金X 〔 1+年利率〕本金X 〔 1+年利率〕,即本金x ( 1+ a%) ,即本金x ( 1+a% ,即本金x ( 1+a% ,即本金x ( 1+a%环的2倍.类似于此题其它题型如:相互握手;铁路沿线有n个站点要设计多少种车票;一条线段上有n个点(含两个端点),①该线段上共有n (n-1)条有向线段,②该线段上共有:n (n-1)条线段、二次根式的相关概念1 .平方根:如果一个数的平方等于a,那么这个数就叫a的平方根,其中正的平方根而叫做a的算术平方根.2 .二次根式:形如a>0的式子叫做二次根式;3 .同类二次根式:二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式称为同类二次根式.4 .最简二次根式:满足两个条件:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.特别提示:二次根式,后有意义的条件是a>0 .二、二次根式的性质1. (1)三个非负性:①y>0(a>0);②册 2 a> 0(a> 0); 4a |a >0(a为任意实数).2.四个性质:_ 2① 4a a > 0(a > 0); =a (a>0)或-a(a <0)③ 7ab Va 而(a>0,b>0);④三、二次根式的运算:1 )二次根式的加减运算只需对同类二次根式进行合并;(2)二次根式的乘除法G x/b Vab(a > 0,b > 0) ^a^(a > 0,b>0)b特别提示:二次根式运算的结果应化为最简二次根式.。
一元二次方程的解法及判别
一元二次方程的解法及判别一、一元二次方程的定义一元二次方程是指只含有一个未知数,并且未知数的最高次数为2的方程。
一般形式为:ax^2 + bx + c = 0,其中a、b、c为常数,且a ≠ 0。
二、一元二次方程的解法1.因式分解法:将一元二次方程进行因式分解,使其变为两个一次因式的乘积等于0的形式,然后根据零因子定律求解。
2.公式法:利用一元二次方程的求根公式(也称二次公式)求解。
求根公式为:x = (-b ± √(b^2 - 4ac)) / (2a)。
三、一元二次方程的判别式判别式是用来判断一元二次方程的根的情况的数值。
判别式的公式为:Δ = b^2 - 4ac。
四、判别式的性质与解的情况1.当Δ > 0时,方程有两个不相等的实数根。
2.当Δ = 0时,方程有两个相等的实数根,也称为重根。
3.当Δ < 0时,方程没有实数根,而是有两个共轭的复数根。
五、一元二次方程的解法比较1.因式分解法适用于方程的系数较小,且容易分解的情况。
2.公式法适用于任何形式的一元二次方程,无论系数的大小和是否容易分解。
六、一元二次方程的应用一元二次方程在实际生活中有广泛的应用,如物体的运动轨迹、投资收益、面积计算等方面。
总结:一元二次方程的解法及判别是中学数学中的重要知识点,掌握因式分解法和公式法求解一元二次方程,以及理解判别式的性质和解的情况,对于解决实际问题具有重要意义。
习题及方法:已知一元二次方程x^2 - 5x + 6 = 0,求解该方程。
这是一个一元二次方程,我们可以尝试使用因式分解法来解它。
首先,我们需要找到两个数,它们的乘积等于常数项6,而它们的和等于一次项的系数(-5)。
这两个数是-2和-3。
因此,我们可以将方程重写为:(x - 2)(x - 3) = 0。
根据零因子定律,我们得到x - 2 = 0或x - 3 = 0。
解得x1 = 2,x2 = 3。
给定一元二次方程2x^2 + 5x - 3 = 0,求解该方程。
第五讲 公式法解一元二次方程和根的判别1
第五讲公式法解一元二次方程和根的判别式一、求根公式法:1.一般地,对于一元二次方程a+bx+c=0(a≠0),当时,它有两个实数根为这个公式叫做一元二次方程的求根公式,利用这个公式解一元二次方程的方法叫做求根公式法。
2.利用公式法解一元二次方程的一般步骤:(1)先把方程化为一般形式,即a+bx+c=0(a≠0)的形式;(2)正确地确定方程各项的系数a,b,c的值(注意正负号);(3)当-4ac<0时,方程没有实数根,就不需要解了(负数开方没有意义);(4)当-4ac≥0时,将a,b,c的值代入求根公式,求出方程的两个根。
二、一元二次方程的几种解法的联系及其特点:1.直接开平方法:适用于解形如=m(p≠0,m≥0)的方程,是配方法的基础。
2.配方法:是解一元二次方程通用的方法,是公式法法基础,没有配方法就没有公式法。
3.公式法:是解一元二次方程通用的方法,是解一元二次方程重要的方法。
4.因式分解法:是解一元二次方程比较简单的方法,但只适用于左边易因式分解而右边为0的一元二次方程。
(各种方法各有各的特点,具体选择解法根据方程特征)三、一元二次方程根的判别式:1.-4ac叫做一元二次方程a+bx+c=0(a≠0)的根的判别式,通常用符合“△”来表示,即△=2.一元二次方程a+bx+c=0(a≠0)的根的情况与△的关系:△>0 <=>△=0 <=>△<0 <=>△≥0 <=>例1.用公式法解方程:变式1:用公式法解方程:3+5x-2=0变式2:解关于x的方程:-m(3x-2m+n)-=0例2.选择适当的方法解下列方程:(1)7(=28 (2)-2y-399=0(3)2+1=2x (4)+3(2x+1)+2=0变式1:解方程:-y=-例3.不解方程,判断下列方程根的情况:(1)2+3x-4=0 (2)3+2=2x (3)+1= (4)a+bx=0(a≠0) (5)a+c=0(a≠0)变式1:关于X的方程+m(x+1)+x=0一定有实数根吗?为什么?例4.已知关于X的方程k-4kx+k-5=0有两个相等的实数根,求K的值并解这个方程。
一元二次方程的解法总结
一元二次方程的解法(直接开平方法、配方法、公式法和分解法)一元二次方程定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫做一元二次方程。
一般形式:ax²+bx+c=0(a,b,c为常数,x为未知数,且a≠0).顶点式: y=a(x—h)²+k(a≠0,a、h、k为常数)交点式:y=a(x—x₁)(x—x₂)(a≠0)[有交点A(x₁,0)和B(x₂,0)的抛物线,即b²-4ac≥0] .直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x—m)²=n(n≥0)的方程,其解为x=m±配方法:1.将此一元二次方程化为ax²+bx+c=0的形式(此一元二次方程满足有实根)2.将二次项系数化为13.将常数项移到等号右侧4。
等号左右两边同时加上一次项系数一半的平方5.将等号左边的代数式写成完全平方形式6。
左右同时开平方7.整理即可得到原方程的根公式法:1。
化方程为一般式:ax²+bx+c=0 (a≠0)2。
确定判别式,计算Δ(=b²—4ac);3。
若Δ〉0,该方程在实数域内有两个不相等的实数根:x=若Δ=0,该方程在实数域内有两个相等的实数根:x₁=x₂=若Δ〈0,该方程在实数域内无实数根因式分解法:因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。
用因式分解法解一元二次方程的步骤1. 将方程右边化为0;2. 将方程左边分解为两个一次式的积;3. 令这两个一次式分别为0,得到两个一元一次方程;4. 解这两个一元一次方程,它们的解就是原方程的解。
用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax²+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)²+k(a≠0)。
一元二次方程的解法及其根的判别式
§2.2 一元二次方程的解法及其根的判别式一、温故互查知识要点一元二次方程的概念及解法,根的判别式,根与系数的关系(选学).二、题组训练一1.(2011钦州)下列方程中,有两个不相等的实数根的是 ( )A .x 2+1=0B .x 2-2x +1=0C .x 2+x +2=0D .x 2+2x -1=02.用配方法解方程x 2-4x +2=0,下列配方正确的是( )A .(x -2)2=2B .(x +2)2=2C .(x -2)2=-2D .(x -2)2=63.已知关于x 的方程250x mx +-=的一个根是5,那么m = ,另一根是 .4.若关于x 的一元二次方程kx 2-3x +2=0有实数根,则k 的非负整数值是 .三、题组训练二1 解下列方程:(1) 3(x +1)2=13; (2) 3(x -5)2=2(x -5);(3) x 2+6x -7=0; (4) x 2-4x +1=0(配方法).例2 关于x 的一元二次方程2(4)210k x x ---= . (1)若方程有两个不相等的实数根,求k 的取值范围;(2)在(1)的条件下,自取一个整数k 的值,再求此时方程的根.四、中考连接1.下列方程中有实数根的是( )A .x 2+2x +3=0B .x 2+1=0C .x 2+3x +1=0D .x x -1= 1x -12.若关于x 的方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( )A .a <2B .a >2C .a <2且a ≠1D .a <-23.若直角三角形的两条直角边a 、b 满足(a 2+b 2)(a 2+b 2+1)=12,则此直角三角形的斜边长为 .4.阅读材料:若一元二次方程ax 2+bx+c =0(a ≠0)的两个实数根为x 1、x 2,则两根与方程系 数之间有如下关系:x 1+x 2=-b a ,x 1x 2=c a. 根据上述材料填空:已知x 1、x 2是方程x 2+4x +2=0的两个实数根,则1x 1 + 1x 2= . 5.解下列方程:(1)(y +4)2=4y ; (2)2x 2+1=3x (配方法);(3)2x (x -1)=x 2-1; (4)4x 2-(x -1)2=0.6.先阅读,然后回答问题:解方程x 2-|x |-2=0,可以按照这样的步骤进行:(1)当x ≥0时,原方程可化为x 2-x -2=0,解得x 1=2,x 2=-1(舍去).(2)当x ≤0时,原方程可化为x 2+x -2=0,解得x 1=-2,x 2=1(舍去).则原方程的根是_____________________.仿照上例解方程:x 2 -|x -1|-1=0.。
一元二次方程解和根的判别式
直接开平方法解一元二次方程若()02≥=a a x ,则x 叫做a 的平方根,表示为a x ±=,这种解一元二次方程的方法叫做直接开平方法。
(1)()02≥=a a x 的解是a x ±=;(2)()()02≥=+n n m x 的解是m n x -±=;(3)()()0,02≥≠=+c m c n mx 且的解是mn c x -±=。
配方法解一元二次方程1.用配方法解二次项系数为1的一元二次方程用配方法解二次项系数为1的一元二次方程的步骤:(1) 在方程的左边加上一次项系数的一半的平方,再减去这个数;(2) 把原方程变为()n m x =+2的形式。
(3) 若0≥n ,用直接开平方法求出x 的值,若n ﹤0,原方程无解。
2. 用配方法解二次项系数不是1的一元二次方程当一元二次方程的形式为()1,002≠≠=++a a c bx ax 时,用配方法解一元二次方程的步骤:(1)先把二次项的系数化为1:方程的左、右两边同时除以二项的系数;(2) 移项:在方程的左边加上一次项系数的一半的平方,再减去这个数,把原方程化为()n m x =+2的形式;(3)若0≥n ,用直接开平方法或因式分解法解变形后的方程。
因式分解法解一元二次方程1.如果两个因式的积等于0,那么这两个方程中至少有一个等于0,即若pq=0时,则p=0或q=0。
2.用因式分解法解一元二次方程的一般步骤:(1)将方程的右边化为0;(2)将方程左边分解成两个一次因式的乘积。
(3)令每个因式分别为0,得两个一元一次方程。
(4)解这两个一元一次方程,它们的解就是原方程的解。
3.关键点:(1)要将方程右边化为0;(2)熟练掌握多项式因式分解的方法,常用方法有:提公式法,公式法(平方差公式,完全平方公式).因式分解要求方程右边必须是0,左边能分解因式;公式法是由配方法推导而来的,要比配方法简单。
一元二次方程()002≠=++a c bx ax 的求根公式是:a ac b b x 242-±-= 注意:一元二次方程解法的选择,应遵循先特殊,再一般,即先考虑能否用直接开平方法或因式分解法,不能用这两种特殊方法时,再选用公式法,没有特殊要求,一般不采用配方法,因为配方法解题比较麻烦。
一元二次方程根的判别条件
一元二次方程根的判别条件一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c是常数且a≠0。
一元二次方程的根是指方程的两个解,即满足方程的x值。
根据判别式的值,可以将一元二次方程的根的情况分为以下三种:1.判别式大于0(b^2 - 4ac > 0):方程有两个不相等的实数根。
根据求根公式,方程的两个根分别为:x1 = (-b + √(b^2 - 4ac)) / (2a) 和 x2 = (-b -√(b^2 - 4ac)) / (2a)。
2.判别式等于0(b^2 - 4ac = 0):方程有两个相等的实数根,即重根。
根据求根公式,方程的两个根相等,都为:x = -b / (2a)。
3.判别式小于0(b^2 - 4ac < 0):方程没有实数根,而是有两个共轭的复数根。
根据求根公式,方程的两个根分别为:x1 = (-b + √(-Δ)i) / (2a) 和x2 = (-b - √(-Δ)i) / (2a),其中i是虚数单位。
判别式Δ = b^2 - 4ac的值决定了方程根的情况。
通过判断Δ的值,我们可以确定一元二次方程的根是实数根还是复数根,以及是否有重根。
总结:一元二次方程根的判别条件是根据判别式Δ = b^2 - 4ac的值来判断方程的根的情况,包括有两个不相等的实数根、有两个相等的实数根(重根)以及没有实数根(有两个共轭的复数根)。
这些判别条件可以帮助我们确定方程的根的性质。
习题及方法:1.习题:解方程 x^2 - 5x + 6 = 0。
方法:根据求根公式,a = 1, b = -5, c = 6。
计算判别式Δ = b^2 - 4ac = (-5)^2 - 4 * 1 * 6 = 25 - 24 = 1。
因为Δ > 0,所以方程有两个不相等的实数根。
应用求根公式得到:x1 = (5 + 1) / 2 = 3x2 = (5 - 1) / 2 = 1答案:x1 = 3, x2 = 1。
九年级数学一元二次方程的解法根的判别式
∴不论m取任何实数,上述方程总有两个不相等的实数根
典型例题
例3:m为何值时,关于x的一元二次方程 2x2-(4m+1)x+2m2-1=0: (1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?
解:∵a=2,b=-(4m+1),c=2m2-1 ∴b2-4ac=〔-(4m+1)〕2-4×2(2m2-1)=8m+9
心申乱了,全部忘记了,呐个长桌上の任何壹个人,地位、身份都只比他高不比他低.“鞠言!你当俺们都是傻子吗?”“你以为,你呐点手段,就能欺骗得了俺们吗?”“你说你杀了殷先生?俺倒要问问你,你凭哪个杀了殷先生?就凭你刚刚晋升成为道灵境の修行者?你知道殷先生是哪个实历吗? 道师境中期の修行者,并且擅闯暗杀!你壹个刚刚晋升道灵境の修行者,却说自身杀了殷先生,你叫俺们如何信任你?”许东大声の呵斥道.不过,许东の呐番话,倒是让不少人都暗暗点头.刚才他们也都震惊于鞠言居然没有被殷先生杀死,现在冷静下来,自然也不难想到呐壹点.以鞠言の实历,怎 么可能杀死道师境中期の殷先生?别说区区壹个鞠言,就是在场の人中,又有多少敢说自身能是殷先生对手?更别说要杀死殷先生.呐个暗夜尪牌,本就擅长暗夜擅长速度,你即便实历能稍微压制他,也未必能杀了他.就连道壹学院の掌院文广,都露出讶然の申色.如果说,是方若雨暗中帮鞠言弄死 了殷先生,那倒是有很大可能性.可鞠言却说,是他自身亲手杀了暗夜尪牌殷先生!第肆捌玖章证明实历鞠言目中寒光壹闪!感觉到鞠言の眼申后,许东下意识の身躯壹颤,他心中竟不自禁の生出壹股寒意.“可恶!”随后许东便恼羞成怒,心中壹声怒吼,他居然在壹个二拾岁の毛头小子面前露 出了惬意,呐简直就是奇耻大辱.他看向鞠言の眼申,愈发阴冷起来.“许东!”“俺怎么杀死殷先生の,那是俺の事情,与你没哪个关系!”鞠言冷冷の喝道.“
(完整版)一元二次方程的概念及解法(学生版)
一元二次方程的概念及解法知识图谱1、一元二次方程知识精讲一.一元二次方程的概念只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程的一般形式:ax 2c为常数项.bxc0(a0),a为二次项系数,b为一次项系数,判断是一元二次方程的标准:①整式方程②一元方程③二次方程二.一元二次方程的解一元二次方程的解:使方程左、右两边相等的未知数的值叫做方程的解,一元二次方程的解也叫做一元二次方程的根.三点剖析一.考点:一元二次方程的概念,一元二次方程的解.1二.重难点:一元二次方程的一般形式,一元二次方程的解.1.三.易错点:确定方程是否为一元二次方程只需要检验最高次项—--二次项的系数是否为零即可;2.注意对于关于x的方程ax 2,当a0时,方程是一元二次方程;当a0且b0 bxc0时,方程是一元一次方程;一元二次方程的系数一定要化为一般式之后再看.题模精讲题模一:概念例以下方程中是关于x的一元二次方程的是〔〕A.x210B.ax 2x2bxcC.3x22x53x2D.x1x21例方程(m2)x m3mx10是关于x的一元二次方程,那么m______例假设方程m1x2m x1是关于x的一元二次方程,那么m的取值范围是__________.例方程x422x13的二次项系数是______,一次项系数是_______,常数项是_______题模二:解例关于x的一元二次方程 a 1x2x a2 1 0的一个根是0,那么a的值为_________________.例x1是关于x的方程x2mx n 0的一个根,那么m22mn n2的值为_______.随堂练习2随练假设(m2)x m2x 3 0是关于x的一元二次方程,那么m的值为_________。
2随练关于x的方程(m1)x2 (m 1)x 3m 2 0,当m__________时是一元一次方程;当m__________时是一元二次方程随练假设一元二次方程(m2)x23(m215)xm240的常数项为零,那么m的值为_________随练假设关于x的一元二次方程〔a+1〕x2+x﹣a2+1=0有一个根为0,那么a的值等于〔〕A.﹣1B.0C.1D.1或者﹣1随练方程x2m2xn30的两根分别是2、3,那么mn__________随练假设x=1是关于x的一元二次方程x2+3mx+n=0的解,那么6m+2n=____.随练假设关于x的一元二次方程为ax2+bx+5=0〔a≠0〕的解是x=1,那么2021-a-b的值是〔〕A.2021B.2021C.2021D.20212、直接开平方法知识精讲一.直接开平方法假设x2aa0,那么x叫做a的平方根,表示为x a,这种解一元二次方程的方法叫做直接开平方法.二.直接开平方法的根本类型1.x2a(a0)解为:x a2.(x a)2b(b0)解为:x a b3.(ax2c(c0)解为:ax b c b)4.(ax b)2(cx d)2(ac)解为:ax b(cxd)三点剖析一.考点:直接开平方法.二.重难点:直接开平方法.三.易错点:直接开平方法解一元二次方程时注意一般都有两个解,不要漏解,如果是两个相等的解,也要写成x1x2a的形式.3题模精讲题模一:直接开平方法例求下面各式中x的值:〔1〕4x 2;9〔2〕x225.1例求x的值:1(5x1)2303随堂练习随练解以下方程:〔1〕2x280〔2〕2516x202〔3〕1x90随练解关于x的方程:x26x 9 (5 2x)22随练假设方程x 2 a 4有实数根,那么a的取值范围是________.随练解关于x的方程:2(3x1)2853、配方法知识精讲一.配方法4配方法:把方程化成左边是一个含有未知数的完全平方式,右边是一个非负常数,再利用直接开平方法求解的这样一种方法就叫做配方法.二.配方法的一般步骤:2 运用配方法解形如 ax bx c 0(a 0)的一元二次方程的一般步骤是:1.二次项系数化 1;2.常数项右移;3.配方〔两边同时加上一次项系数一半的平方〕;4.化成(x m) 2n的形式;5.假设n 0 ,选用直接开平方法得出方程的解.2 2b x)c0 b 2b2axbxc0(a0) a(x a a(x)a()c0b2b22a2ab2b24aca(x 2a ) 4a c (x 2a )4a 2 .三点剖析一.考点:配方法.二.重难点:配方法解一元二次方程,配方法求解最值或取值范围.三.易错点:在化成直接开平方法求解的时候需要检验方程右边是否是非负的,如果是那么利用直接开平方法求解即可,如果不是,原方程就没有实数解.题模精讲题模一:配方法2例用配方法解方程: x 6x 4例 用配方法解以下方程:〔1〕2x 21 0 8x 〔2〕x 24x2 0〔3〕x 21 x 1 034〕3y 2123y例 用配方法解方程 x 22x10 时,配方后得到的方程为〔〕A .〔x 22221)0 B .〔x1)0 C .〔x1)2 D .〔x1)2例用配方法解关于 x 的方程x 2pxq0〔p ,q 为常数〕5例22,x、y为实数,求x y的值x y4x6y130题模二:最值问题2例试用配方法说明x2x 3的值恒大于0例x、y为实数,求代数式x2y22x 4y 7的最小值例a,b,c是整数,且 a 2b 4,ab c2 1 0,求a b c的值随堂练习随练用配方法解方程:2x23x 10随练假设把代数式x25x 7化为x m2k的形式,其中m、k为常数,那么k m.随练a,b,c均为实数,且ab4,2c2ab43c10,求ab的值.随练用配方法说明2的值恒小于0 10x7x4622随练x ,y为实数,求代数式5x4y8xy2x4的最小值.4、公式法知识精讲一.公式法2 公式法:一元二次方程 ax bx c 0(a 0),用配方法将其变形为: 根的判别式 b 2 4ac ,x 1,x 2是方程的两根,假设 b 2 4ac 0,那么x 1,2二.公式法解一元二次方程的一般步骤1.把方程化为一般形式;2.确定a 、b 、c 的值; 3.计算b 2 4ac 的值;4.假设b 2 4ac 0,那么代入公式求方程的根; 5.假设b 2 4ac 0,那么方程无解.三.判别式与根的关系1. 0 时,原方程有两个不相等的实数解; 2. 0 时,原方程有两个相等的实数解; 3. 0 时,原方程没有实数解.b2b 2 4ac(x 2a )4a 224ac .bb2a三点剖析一.考点:公式法.二.重难点:利用公式法求解一元二次方程,利用判别式判断根的情况.三.易错点:在用公式法求解方程的解时,一定要判断“ 〞的取值范围,只有当0时,一元二次方程才有实数解.题模精讲7题模一:公式法例用公式法解关于x的一元二次方程m 1x22m 1x m 3 0.例解方程:x2+4x﹣1=0.例1解方程x(6x1)4x32(2x)2例用公式法解关于x的一元二次方程m1x22m1x m30.例解方程:xx 3x 20题模二:判别式与根的关系例以下一元二次方程中,有两个不相等实数根的方程是〔〕A.x2+1=0B.x2﹣3x+1=0C.x2﹣2x+1=0D.x2﹣x+1=0例关于x的一元二次方程mx22x10有两个不相等的实数根,那么m的取值范围是〔〕A.m1B.m1C.m1且m0D.m1且m0例关于x的方程〔a-6〕x2-8x+6=0有实数根,那么整数a的最大值是〔〕8A.6B.7C.8D.9随堂练习2随练用公式法解一元二次方程2x3x 10.随练解方程(x5)(x 7)12随练解关于x的方程:xpxq0.随练解关于x的方程x2x10.随练以下一元二次方程中无实数解的方程是〔〕A.x2+2x+1=0B.x2+1=0C.2D.2x=2x-1x-4x-5=0随练假设关于x的一元二次方程kx22x10有两个不相等的实数根,那么k的取值范围是〔〕A.k1B.k1C.k1且k1且k0k0D.随练关于x的一元二次方程〔m-1〕x2+x+1=0有实数根,那么m的取值范围是〔〕A.m≥-5且m≠1B.m≤5且m≠1 44C.m≥5D.m≤-5且m≠0 4495、因式分解法知识精讲一.因式分解法因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解,这种用分解因式解一元二次方程的方法叫做因式分解法.因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个为0,即:假设ab0,那么a0或b0.三点剖析一.考点:因式分解法解一元二次方程.二.重难点:利用提公因式法、公式法、分组分解法、十字相乘法等方法解一元二次方程.三.易错点:没有化成ab0的形式,例如由2x121从而导致漏解或x1直接得到2x1者直接得到2x10从而导致错解.题模精讲题模一:因式分解法例用因式分解法解方程:2x34xx30例2用因式分解法解方程:3x4x40.22例用因式分解法解方程:9x216x10.10例用因式分解法解方程:x23mx 2m2mn n20,〔m、n为常数〕随堂练习2随练用因式分解法解方程:2x136x.随练用因式分解法解方程:5x210x 5 31 x22随练用因式分解法解方程:6x x 350.222随练x的一元二次方程m1x63m1x7201〕.用因式分解法解关于〔m6、根与系数的关系知识精讲一.韦达定理11如果ax2bx c0(a0)的两根是x1,x2,那么x x b,x1x2c.〔隐含的条件:12a a0〕特别地,当一元二次方程的二次项系数为1时,设x1,x2是方程x2px q0的两个根,那么x1x2p12q.,xx二.韦达定理与根的符号关系在24ac0的条件下,假设x1,x2是ax2bx c0(a0)的两根〔其中x1x2〕我们有b如下结论:1.c0x1x20,假设b0,那么x1x2;假设b0,那么x1x2.a a a2.c0xx20.假设b0,那么x1x20;假设b0,那么x2x10.a1a a更一般的结论是:假设x1,x2是ax2bx c0(a0)的两根〔其中x1x2〕,且m为实数,当0时,一般地:〔1〕(x1m)(x2m)0x1m,x2m〔2〕(x1m)(x2m)0且(x1m)(x2m)0x1m,x2m〔3〕(x1m)(x2m)0且(x1m)(x2m)0x1m,x2m特殊地:当m0时,上述就转化为ax2bxc0(a0)有两异根、两正根、两负根的条件.三点剖析一.考点:韦达定理二.重难点:韦达定理的应用1.方程的一个根,求另一个根以及确定方程参数的值;2.方程,求关于方程的两根的代数式的值;3.方程的两根,求作方程;4.结合根的判别式,讨论根的符号特征;.逆用构造一元二次方程辅助解题:当等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理.三.易错点:在使用韦达定理的时候没有提前检验0是否成立题模精讲题模一:韦达定理例假设方程x24x c 0的一个根为23,那么方程的另一个根为______,c______.12例设x1、x2是方程x22k1xk220的两个不同的实根,且x11x218,那么k的值是.例如果a,b都是质数,且a213am0,b213bm0,求b a的值.a b随堂练习随练m,n是有理数,并且方程x2mxn0有一个根是52,那么mn_______.随练关于22有两个实数根,并且这两个根的平方和比这x的方程x2(m2)xm50两个根的积大16,求m的值.随练关于x的方程x24x2m80的一个根大于1,另一个根小于1,求m的取值范围.随练如果实数a,b分别满足a22a2,b22b2,求11的值a b13作业1假设|b1|a20,那么以下方程一定是一元二次方程的是〔〕A.ax25xb0B.b21x2a3x50C.a1x2b1x70D.b1x2ax10作业2关于x的方程(xa)2(ax2)2是一元二次方程,求a的取值范围.作业3a b2a、b的值?方程2x xx40是关于x的一元二次方程,求作业4假设n〔n≠0〕是关于x方程x2+mx+2n=0的根,那么 n+m+4的值为〔〕A.1B.2C.-1D.-2作业5关于x的一元二次方程m 2x2x m2 4 0有一根为0,那么m的值为_______.作业62解方程:31x6作业7解关于x的方程:3(x 1)22714作业8 用直接开平方法解以下一元二次方程〔1〕9x 216〔2〕x 2 16 05 〔3〕x23x 251〔4〕42x52293x1作业9解方程:2x 28x 3 0.作业10将方程x 2 4x10化为xm2n 的形式,其中m ,n 是常数,那么mn_____________作业 11 方程 2 6xq0可以配方成xp226xq2可以配成以下x 7的形式,那么 x 的〔 〕A .x 2B .29p5xp29D .xp22C .xp2 5m 2n 21 1作业12mnmn10,那么m n 的值为__________.作业13ab23,bc 23,那么a 2 b 2 c 2 ab bc ac 的值为__________.15作业14实数a ,b ,c 满足a 26b17,b 28c23,c 22a14,那么abc 的值为__________.y 1 z 2作业15 x12322 2设,求代数式xyz的最小值.作业16解方程3x 2 52x 1作业17用公式法解方程:ax 2 bx c0〔a 、b 、c 为常数且a0〕.作业18设方程x 2 2x1 4 0.求满足该方程的所有根之和作业19 一元二次方程 x 2+2x+1=0的根的情况〔〕A .有一个实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 没有实数根作业20关于x 的一元二次方程 2 2m 的取值范mx+〔2m-1〕x+1=0有两个不相等的实数根,那么围是〔 〕A .k >-1B .m >1且m ≠144 C .m <1且m ≠0 D .m ≥-1且m ≠04416作业21假设关于x 的方程kx 22k1xk10有实数根,求k 的取值范围.作业222xx35x3 的解是〔〕x5B .x32A .x 1522,x23D .xC .5作业23 用因式分解法解方程x 26x 94x 28x 4.作业24解关于x 的方程x 2p 2 q 2x pqpqpq.作业 25方程2x 2mx 2m 4 0的一个解为1,那么另一个解为__________,__________.作业26方程2x 2 mx 30的两根的平方和为 5,那么m=__________.作业27 实数k 为何值时,关于 x 的一元二次方程 x 2(2k 3)x (2k 4)0.1〕有两个正根?2〕两根异号,且正根的绝对值较大?3〕一根大于3,一根小于3?17作业28阅读材料:设一元二次方程ax2bx c0(a 0)的两根是x1、x2,那么根与系数关系为:x1x2b c pq1x1x22p10,1q20,且pq1,求q的值.a,a.pq作业29方程2〔m+1〕x2+4mx+3m=2,根据以下条件之一求m的值.1〕方程有两个相等的实数根;2〕方程有两个相反的实数根;3〕方程的一个根为0.作业30阅读下面的例题,解方程x2﹣|x|﹣2=0解:原方程化为 |x|2﹣|x|﹣2=0.令y=|x|,原方程化成y2﹣y﹣2=0解得:y1=2,y2=﹣1当|x|=2,x=±2;当|x|=﹣1时〔不合题意,舍去〕∴原方程的解是x1=2x2=﹣2请模仿上面的方法解方程:〔x﹣1〕2﹣5|x﹣1|﹣6=0.作业31x2y22x4y0解方程组:y4.2x0作业32观察下表,答复以下问题,第____个图形中“△〞的个数是“○〞的个数的5倍.18作33 察以下方程及其解的特征:1〕x+1=2的解x 1=x 2=1;x 2〕x+1=5的解x 1=2,x 2=1;x 2 2 ( 3〕x+1=10的解x 1=3,x 2=1;x 3 3⋯解答以下:x1〕猜想:方程x+1=26的解____;5( 2〕猜想:关于x 的方程x+1=____的解x 1=a ,x 2=1〔a ≠0〕;x a〔3〕下面以解方程x+1=26例,〔1〕中猜想的正确性.x52解:原方程可化 5x-26x=-5.〔下面大家用配方法写出解此方程的程〕作34三个关于 x 2 2 cxa0,cx2的一元二次方程axbxc 0,bx axb0恰有一个公共数根,a 2b 2c 2的__________bc ca ab19。
初中数学一元二次方程知识点总结(含方法技巧归纳,易错辨析)
初中数学⼀元⼆次⽅程知识点总结(含⽅法技巧归纳,易错辨析)
考情分析⾼频考点考查频率所占分值
1.元⼆次⽅程的概念★7~12分
2.⼀元⼆次⽅程的解法★★★
3.⼀元⼆次⽅程根的判别式★★
4.⼀元⼆次⽅程根与系数的关系★
5.利⽤⼀元⼆次⽅程解决实际问题★★★
1⼀元⼆次⽅程的定义及⼀般形式
定义:等号两边都是整式,只含有⼀个未知数(⼀元),并且未知数的最⾼次数是2(⼆次)的⽅程,
叫作⼀元⼆次⽅程.
点拨
对定义的理解抓住三个条件:“⼀元”“⼆次”“整式⽅程”,缺⼀不可,同时强调⼆次项的系数不为0.
⽤公式法解⼀元⼆次⽅程的记忆⼝诀
要⽤公式解⽅程,⾸先化成⼀般式.
调整系数随其后,使其成为最简⽐.
确定参数
,计算⽅程判别式.
判别式值与零⽐,有⽆实根便得知.
若有实根套公式,若⽆实根要告之.
3因式分解法
通过因式分解,使⼀元⼆次⽅程化为两个⼀次式的乘积等于0的形式,再使这两个⼀次式分别等
于0,从⽽实现降次,这种解⼀元⼆次⽅程的⽅法叫作因式分懈法.
因式分解法体现了将⼀元⼆次⽅程“降次”转化为⼀元⼀次⽅程来解的思想,运⽤这种⽅法的步
骤:
(1)将所有项移到⽅程的左边,将⽅程的右边化为0;
(2)将⽅程左边分解为两个⼀次因式的乘积;
(3)令每个因式分别等于零,得到两个⼀元⼀次⽅程;
(4)解这两个⼀元⼀次⽅程,他们的解就是原⽅程的解.。
专题2 一元二次方程的解法及根的判别式应用题型(学生版)
专题2一元二次方程的解法及根的判别式应用题型知识归纳理解一元二次方程的定义及一般形式,掌握一元二次方程的解法,熟练解各类一元二次方程;掌握一元二次方程根的判别式的相关知识点并熟练应用,这些是本节的重要知识点。
本专题主要对一元二次方程的解法及根的判别式应用题型进行总结,对其解法进行归纳总结,所选题型为近几年期末考试中的常考题型。
知识点梳理一、一元二次方程的定义(1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.(2)概念解析:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.(3)判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.知识点梳理二.一元二次方程的一般形式(1)一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.一次项系数b和常数项c可取任意实数,二次项系数a是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.(2)要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.知识点梳理三.一元二次方程的解(1)解一元二次方程-直接开平方法(2)解一元二次方程-配方法(3)解一元二次方程-公式法把x =(b 2﹣4ac ≥0)叫做一元二次方程ax 2+bx +c =0(a ≠0)的求根公式.(4)解一元二次方程-因式分解法(5)换元法解一元二次方程知识点梳理四.根的判别式利用一元二次方程根的判别式(△=b 2﹣4ac )判断方程的根的情况.一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.常考题型专练一、选择题1.若关于x 的方程2x 2x m 0-+=有实数根,则m 的取值范围为()A.m ≤1B.m 1≥ C.1m > D.1m <2.若双曲线my x=在第二、四象限,那么关于x 的方程2x 2x m 0-+=的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.条件不足,无法判断3.当4a b +=时,关于x 的一元二次方程220ax bx -++=的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定4.关于x 的一元二次方程230x x k -+=有实数根,则k 的取值范围是()A .k ≤94B.k ≥94C.94k <D.k ≤94且0k ≠5.实数a ,b 在数轴上的位置如图所示,则关于x 的一元二次方程210+-=ax bx 的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.只有一个实数根6.关于x 的一元二次方程260x x m -+=有两个不相等的实数根,则m 的值可能是()A.8B.9C.10D.117.若关于x 的一元二次方程2(1)220a x x --+=有实数根,则整数a 的最大值为()A.﹣1B.0C.1D.28.下列方程中,没有实数根的是()A .2310x x --=B .230x x -=C .2210x x -+=D .2230x x -+=9.新定义运算:a ※b =a 2﹣ab +b ,例如2※1=22﹣2×1+1=3,则方程x ※2=5的根的情况为()A .没有实数根B .有一个实数根C .有两个相等的实数根D .有两个不相等的实数根10.若关于x 的一元二次方程()22110m x x m -++-=有一个根为0,则m 的值是()A .1-B .0C .1D .1或1-二、填空题1.方程22x x =的解是________.2.若实数a 、b 分别满足2430a a -+=,2430b b -+=,且a b ≠,则11a b+的值为.3.一元二次方程2430x x -+=配方为2(2)x k -=,则k 的值是.4.如果关于x 的方程22(21)0x m x m --+=有两个不相等的实数根,那么m 的取值范围是________.5.在平面直角坐标系中,点(3,-2)关于原点对称的点的横纵坐标是x 的方程20x bx c ++=的两根,则b c +=________.三、解答题1.解方程:22(23)(32)x x +=+.2.已知关于x 的一元二次方程22230x x m --=.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且25αβ+=,求m 的值.3.关于x 的一元二次方程()2104kkx k x +++=.(1)若该方程有两个不相等的实数根,求k 的取值范围;(2)若该方程有两个相等的实数根,求该方程的解.4.利用我们学过的完全平方公式及不等式知识能解决方程或代数式的一些问题,请阅读下列材料:阅读材料:若m2﹣2mm+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+4ab+5b2+6b+9=0,求a=,b=;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2﹣4a+2b2﹣4b+6=0,求c的值;(3)若A=3a2+3a﹣4,B=2a2+4a﹣6,试比较A与B的大小关系,并说明理由.5.学习了完全平方公式以后,小明有了下面的发现:因为x2﹣2x+2=(x2﹣2x+1)+1=(x﹣1)2+1,不论x取什么值,(x﹣1)2≥0,所以(x﹣1)2+1≥1.因此,代数式x2﹣2x+2的值不小于1.这种把一个多项式或一个多项式中的某一部分化为一个完全平方式或几个完全平方式和的方法,称为配方法.请用配方法解决下列问题:(1)填空:①a2+6a+15=(a+3)2+.②若(a﹣1)2+b2+4b+4=0,则a=,b=.(2)已知m2+4m+n2﹣6n+13=0,求m、n的值.(3)比较代数式3x3+2x2﹣4x﹣3与3x3+x2+2x﹣12的大小.。
(中考考点梳理)一元二次方程-中考数学一遍过
考点05 一元二次方程一、一元二次方程的概念1.一元二次方程只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2.一般形式20ax bx c ++=(其中,,a b c 为常数,0a ≠),其中2,,ax bx c 分别叫做二次项、一次项和常数项,,a b 分别称为二次项系数和一次项系数.注意:(1)在一元二次方程的一般形式中要注意0a ≠,因为当0a =时,不含有二次项,即不是一元二次方程;(2)一元二次方程必须具备三个条件:①必须是整式方程;②必须只含有一个未知数;③所含未知数的最高次数是2.二、一元二次方程的解法1.直接开平方法适合于2()()0x a b b ±=≥或22()()ax b cx d ±=±形式的方程.2.配方法(1)化二次项系数为1;(2)移项,使方程左边只含有二次项和一次项,右边为常数项;(3)方程两边同时加上一次项系数一半的平方;(4)把方程整理成2()()0x a b b ±=≥的形式;(5)运用直接开平方法解方程.3.公式法(1)把方程化为一般形式,即20ax bx c ++=;(2)确定,,a b c 的值;(3)求出24b ac -的值;(4)将,,a b c 的值代入x =即可. 4.因式分解法基本思想是把方程化成()()0ax b cx d ++=的形式,可得0ax b +=或0cx d +=.三、一元二次方程根的判别式及根与系数关系1.根的判别式一元二次方程2(0)0ax bx c a ++=≠是否有实数根,由24b ac -的符号来确定,我们把24b ac -叫做一元二次方程根的判别式.2.一元二次方程根的情况与判别式的关系(1)当240b ac ->时,方程2(0)0ax bx c a ++=≠有两个不相等的实数根;(2)当240b ac -=时,方程2(0)0ax bx c a ++=≠有1个(两个相等的)实数根;(3)当240b ac -<时,方程2(0)0ax bx c a ++=≠没有实数根.3.根与系数关系对于一元二次方程20ax bx c ++=(其中,,a b c 为常数,0a ≠),设其两根分别为1x ,2x ,则12b x x a +=-,12c x x a=. 四、利用一元二次方程解决实际问题列一元二次方程解应用题步骤和列一元一次方程(组)解应用题步骤一样,即审、设、列、解、验、答六步.列一元二次方程解应用题,经济类和面积类问题是常考内容.1.增长率等量关系(1)增长率=增长量÷基础量.(2)设a 为原来量,m 为平均增长率,n 为增长次数,b 为增长后的量,则()1n a m b +=;当m 为平均下降率时,则有()1n a m b -=.2.利润等量关系(1)利润=售价-成本.(2)利润率=利润成本×100%. 3.面积问题(1)类型1:如图1所示的矩形ABCD 长为a ,宽为b ,空白“回形”道路的宽为x ,则阴影部分的面积为()(22)a x b x --.(2)类型2:如图2所示的矩形ABCD 长为a ,宽为b ,阴影道路的宽为x ,则空白部分的面积为()()a x b x --.(3)类型3:如图3所示的矩形ABCD 长为a ,宽为b ,阴影道路的宽为x ,则4块空白部分的面积之和可转化为()()a x b x --.图1图2 图3考向一 一元二次方程的概念一元二次方程必须具备三个条件:①必须是整式方程;②必须只含有一个未知数;③所含未知数的最高次数是2.典例1 下列方程中是关于x 的一元二次方程的是A .2210x x += B .ax 2+bx +c =0 C .x 2+x +1=0D .x (x +1)=x 2+7 【答案】C【名师点睛】本题主要考查一元二次方程的定义.根据一元二次方程的定义对每个选项进行判断即可.注意D 选项需要化简后进行观察.1.若方程()2110m x mx +--=是关于x 的一元二次方程,则m 的取值范围是 A .m ≠−1 B .m =−1C .m ≥−1D .m ≠0考向二 解一元二次方程一元二次方程的常见解法及适用情形:典例2 若2x =-是关于x a 的值为_______________. 【答案】1或4-【解析】因为2x =-是关于x2340a a +-=,整理得1)40()(a a +-=, 解得14a =-,21a =.故a 的值是1或4-.典例3 用配方法解方程2210x x +-=时,配方结果正确的是A .2(2)2x +=B .2(1)2x +=C .2(2)3x +=D .2(1)3x +=【答案】B【解析】因为2210x x +-=,所以2212x x ++=,即2(1)2x +=.故选B .2.一元二次方程23830x x +-=的解是_______________.3.方程()32)11(x x x -=-的根是_______________.考向三 一元二次方程根的判别式对于方程2(0)0ax bx c a ++=≠,24b ac ∆=-,①若∆>0,方程有两个不相等的实数根;②若∆=0,方程有两个相等的实数根;③若∆<0,方程没有实数根.典例4 已知关于x 的一元二次方程2210ax x +-=无实数根,则a 的取值范围是_______________.【答案】1a <-【解析】因为关于x 的一元二次方程2210ax x +-=无实数根,所以0a ≠,且44(1)0a ∆-⨯⨯-<=,解得1a <-.故a 的取值范围是1a <-.学-科网典例5 有两个一元二次方程:①20ax bx c ++=,②20cx bx a ++=,其中0a c +=,以下四个结论中,错误的是A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根B .如果方程①和方程②有一个相同的实数根,那么这个根必定是1x =C .如果4是方程①的一个根,那么14是方程②的一个根 D .方程①的两个根的符号相异,方程②的两个根的符号也相异【答案】B【解析】选项A ,214b ac ∆=-,224b ac ∆=-,12∆∆=,所以A 正确;选项B ,因为将1±分别代入方程,值相等,结合0a c +=,可知B 不正确;选项C ,因为1640a b c ++=,110164c b a ++=,即1640a b c ++=,故C 正确; 选项D ,由根与系数关系可知D 正确.故选B .4.一元二次方程22520x x --=的根的情况是A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根5.关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为A .1B .1-C .2D .2-考向四 根与系数关系设一元二次方程20(0)ax bx c a ++=≠的两根分别为1x ,2x ,则12bx x a +=-,12cx x a =.典例6 若1-是方程220x x c -+=的一个根,则c 的值为A .2-B .2-C .3D .1【答案】A【解析】由根与系数的关系可得另一个根为2(11-=+,所以(12c ==-. 故选A .典例7 如果1x ,2x 是一元二次方程2650x x --=的两个实根,那么2212x x +=_______________.【答案】46【解析】由根与系数关系,可得126x x +=,125x x =-,则222121212()2365246x x x x x x +=+-=+⨯=.6.若方程2410x x -+=的两根是1x ,2x ,则122(1)x x x ++的值为_______________.7.关于x 的方程022=++n mx x 的两个根是2-和1,则m n 的值为A .8- B .8C .16D .16-考向五 一元二次方程在实际问题中的应用列一元二次方程解实际问题的关键是找出题中的等量关系,利用等量关系列出方程.其中分析实际问题是解决问题的前提和基础,解一元二次方程是重要方法和手段,并注意解出的方程的解是否符合实际问题.典例8 某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是_______________.【答案】25%【解析】设药品平均每次降价的百分率是a ,则由题意可得243(616)a -=,25%. 典例9 经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是_______________.【答案】203(512)x -=【解析】由题意可得203(512)x -=.8.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是A .20%B .25%C .50%D .62.5%9.如图,在一块长为22米、宽为17米的长方形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与长方形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x 米,则根据题意可列出方程为A .()()2217300x x +-=B .()()22172300x x --=C .()()2217300x x ++=D .()()2217300x x --=1.下列方程为一元二次方程的是A .2220x xy y -+=B .223x x -=C .()231x x x +=-D .10x x+= 2.设1x ,2x 是方程2530x x +-=的两个根,则12x x +=A .5B .5-C .3D .3-3.如果2是方程230x x k -+=的一个根,则常数k 的值为A .1 B .2C .1-D .2-4.用公式法解﹣x 2+3x =1时,先求出a 、b 、c 的值,则a 、b 、c 依次为A .﹣1,3,﹣1B .1,﹣3,﹣1C .﹣1,﹣3,﹣1D .﹣1,3,15.方程230x x -=的解是A .3x =B .10x =,23x =C .10x =,23x =-D .11x =,23x = 6.方程()11x x x +=+的解是A .1x =B .1x =-C .10x =,21x =-D .11x =,21x =-7.若关于x 的一元二次方程22(2)520m x x m m -++-=的常数项为0,则m 的值为A .1B .2C .0或2D .0 8.一元二次方程2210x x --=的根的情况为A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根 9.已知关于x 的一元二次方程22(2)0x x m +--=有实数根,则m 的取值范围是A .1m >B .1m <C .1m ≥D .1m ≤10.关于x 的一元二次方程280x x q ++=有两个不相等的实数根,则q 的取值范围是A .16q <B .16q >C .4q ≤D .4q ≥11.已知c b a ,,为常数,点),(c a P 在第二象限,则关于x 的方程02=++c bx ax 根的情况是A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判断12.关于x 的一元二次方程22(2)10x a a x a +-+-=的两个实数根互为相反数,则a 的值为A .2B .0C .1D .2或013.如果2是方程230x x k -+=的一个根,则此方程的另一根为A .2B .1C .1-D .2- 14.设α,β是方程2210x x --=的两根,则代数式αβαβ++的值是A .1B .1-C .3D .3- 15.若关于x 的一元二次方程20x bx c -+=的两个实数根分别为2和4-,则b c +=A .10-B .10C .6-D .1- 16.已知一元二次方程2210x x --=的两根分别为1x ,2x ,则1211x x +的值为 A .2B .1-C .12- D .2- 17.2018年某市人民政府投入1000万元用于改造乡村小学班班通工程建设,计划到2020年再追加投资210万元,如果每年的平均增长率相同,那么该市这两年该项投入的平均增长率为A .10%B .8%C .1.21%D .12.1%18.已知一次函数y =kx +b 的大致图象如图所示,则关于x 的一元二次方程x 2﹣2x +kb +1=0的根的情况是A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .有一个根是019.用配方法解方程x 2+6x ﹣5=0时,应该变形为_______________.20.若方程220x x k ++=有两个不相等的实数根,则k 的取值范围是_______________. 21.已知关于x 的一元二次方程220x x m +-=有两个相等的实数根,则m 的值是_______________. 22.在一次聚会中,参加聚会的人每两位都相互握一次手,一共握手28次,设参加聚会有x 人,则可列方程_______________.23.若12,x x 是一元二次方程2350x x +-=的两个根,则221212x x x x +的值是_______________. 24.已知直角三角形两边的长是方程218650x x -+=的两个根,则第三边的长为_______________. 25.设α,β是方程(1)(4)5x x +-=-的两实数根,则33βααβ+=_______________. 26.解下列方程:(1)2235()x -=;(2)22330x x --=; (3)2()330x x --+=.27.关于x 的一元二次方程2(3)220x k x k -+++=.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.28.已知关于x 的方程28120x x a ++-=有两个不相等的实数根.(1)求a 的取值范围;(2)当a 取满足条件的最小整数时,求出方程的解. 29.根据要求,解答下列问题.(1)根据要求,解答下列问题.①方程2210x x -+=的解为________________________; ②方程2320x x -+=的解为________________________; ③方程2430x x -+=的解为________________________;……(2)根据以上方程特征及其解的特征,请猜想:①方程2980x x -+=的解为________________________;②关于x 的方程________________________的解为11x =,2x n =. (3)请用配方法解方程2980x x -+=,以验证猜想结论的正确性.30.如图,要在长、宽分别为50米、40米的矩形草坪内建一个正方形的观赏亭.为方便行人,分别从东、南、西、北四个方向修四条宽度相同的矩形小路与亭子相连,若小路的宽是正方形观赏亭边长的15,小路与观赏亭的面积之和占草坪面积的325,求小路的宽.31.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6 cm2?(2)在(1)中,△PQB的面积能否等于8 cm2?说明理由.32.某商店经销一种成本为每千克20元的水产品,据市场分析,若按每千克30元销售,一个月能售出500kg,销售单价每涨(或跌)1元,月销售量就减少(或增加)10kg,解答以下问题:(1)当销售单价定为每千克35元时,计算月销售量和月销售利润;(2)商店想在月销售成本不超过6000元的情况下,使得月销售利润达到8000元,销售单价应为多少?(3)商店要使得月销售利润达到最大,销售单价应为多少?此时利润为多少?1.(2018贵州省铜仁)关于x的一元二次方程x2﹣4x+3=0的解为A.x1=﹣1,x2=3 B.x1=1,x2=﹣3C.x1=1,x2=3 D.x1=﹣1,x2=﹣32.(2018湖南省湘西州)若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为A.1 B.﹣3C.3 D.43.(2018甘肃省陇南)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是A.k≤﹣4 B.k<﹣4C.k≤4D.k<44.(2018辽宁省锦州)一元二次方程2x2−x+1=0的根的情况是A.两个不相等的实数根B.两个相等的实数根C.没有实数根D.无法判断5.(2018四川省泸州)若关于x 的一元二次方程()222110x k x k +-+-=有实数根,则k 的取值范围是A .k ≥1B .k >1C .k <1D .k ≤16.(2018福建)已知关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,下列判断正确的是A .1一定不是关于x 的方程x 2+bx +a =0的根B .0一定不是关于x 的方程x 2+bx +a =0的根C .1和﹣1都是关于x 的方程x 2+bx +a =0的根D .1和﹣1不都是关于x 的方程x 2+bx +a =0的根7.(2018河南)下列一元二次方程中,有两个不相等实数根的是 A .x 2+6x +9=0 B .x 2=xC .x 2+3=2xD .(x ﹣1)2+1=08.(2018湖北省咸宁)已知一元二次方程2x 2+2x ﹣1=0的两个根为x 1,x 2,且x 1<x 2,下列结论正确的是 A .x 1+x 2=1 B .x 1•x 2=﹣1 C .|x 1|<|x 2|D .x 12+x 1=129.(2018广西壮族自治区贵港)已知α,β是一元二次方程x 2+x ﹣2=0的两个实数根,则α+β﹣αβ的值是 A .3 B .1 C .﹣1D .﹣310.(2018山东省潍坊)已知关于x 的一元二次方程mx 2﹣(m +2)x +4m=0有两个不相等的实数根x 1,x 2.若11x +21x =4m ,则m 的值是 A .2B .﹣1C .2或﹣1D .不存在11.(2018黑龙江省龙东地区)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛? A .4B .5C .6D .712.(2018浙江省舟山)欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC △,使90ACB ∠= ,2a BC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是A .AC 的长B .AD 的长C .BC 的长D .CD 的长13.(2018四川省资阳)已知关于x 的一元二次方程mx 2+5x +m 2﹣2m =0有一个根为0,则m =_____. 14.(2018云南省曲靖)关于x 的方程ax 2+4x ﹣2=0(a≠0)有实数根,那么负整数a =_____(一个即可). 15.(2018贵州省毕节)已知关于x 的一元二次方程x 2﹣x ﹣m =0有两个不相等的实数根,则实数m 的取值范围是_____.16.(2018湖南省益阳)规定:()a b a b b ⊗=+,如:()2323315⊗=+⨯=,若23x ⊗=,则x =_____.17.(2018湖北省荆州)关于x 的一元二次方程x 2﹣2kx +k 2﹣k =0的两个实数根分别是x 1、x 2,且x 12+x 22=4,则x 12﹣x 1x 2+x 22的值是_____.18.(2018四川省达州)已知:m 2﹣2m ﹣1=0,n 2+2n ﹣1=0且mn ≠1,则1mn n n++的值为_____. 19.(2018甘肃省兰州)解方程:23220x x --=.20.(2018湖北省十堰)已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根. (1)求k 的取值范围;(2)若此方程的两实数根x 1,x 2满足x 12+x 22=11,求k 的值.21.(2018湖北省孝感)已知关于x 的一元二次方程()()()321x x p p --=+. (1)试证明:无论p 取何值此方程总有两个实数根;(2)若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值. 22.(2018黑龙江省绥化)已知关于x 的一元二次方程2520x x m -+=有实数根. (1)求m 的取值范围; (2)当52m =时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.23.(2018重庆)在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设.该县政府计划:2018年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍.(1)按计划,2018年前5个月至少要修建多少个沼气池?(2)到2018年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值.据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2.为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投入10a %,全部用于沼气池和垃圾集中处理点建设.经测算:从今年6月起,修建每个沼气池与垃圾集中处理点的平均费用在2018年前5个月的基础上分别增加a %,5a %,新建沼气池与垃圾集中处理点的个数将会在2018年前5个月的基础上分别增加5a %,8a %,求a 的值.1.【答案】A【解析】根据一元二次方程的定义可得:m +1≠0,解得:m ≠−1. 故选A .【名师点睛】本题考查了一元二次方程的定义,解题的关键是掌握一元二次方程必须满足三个条件: (1)必须是整式方程;(2)未知数的最高次数是2;(3)二次项系数不为0.根据一元二次方程的定义求解即可. 2.【答案】113x =,23x =-3.【答案】11x =,223x =【解析】()32)11(x x x -=-,即312()(0)1x x x ---=,即()(20)31x x --=,即320x -=或10x -=,解得11x =,223x =. 4.【答案】B【解析】由22520x x --=可得2(5)42(2)410∆=--⨯⨯-=>,所以方程22520x x --=有两个不相等的实数根. 故选B . 5.【答案】A【解析】由题可得=4401k k ∆-=⇒=. 故选A . 6.【答案】5【解析】根据题意得124x x +=,121x x =,所以12212124(1)15x x x x x x x ++=+=+=+. 7.【答案】C【解析】因为关于x 的方程022=++n mx x 的两个根是2-和1,所以12m -=-,22n=-,所以2m =,4n =-,所以2(4)16m n =-=.故选C .9.【答案】D【解析】设道路的宽应为x 米, 由题意得(22−x )(17−x )=300, 故选D .【名师点睛】此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.1.【答案】B【解析】A 、是二元二次方程,故不是一元二次方程,故此选项错误; B 、是一元二次方程,故此选项正确;C 、原方程化简整理后是一元一次方程,故此选项错误;D 、是分式方程,不是一元二次方程,故此选项错误; 故选B .【名师点睛】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.利用一元二次方程的定义:含有一个未知数,未知数的最高次数为2次,这样的整式方程称为一元二次方程,判断即可. 2.【答案】B故选B . 3.【答案】B【解析】因为2是方程230x x k -+=的一个根,所以22320k -⨯+=,解得2k =. 故选B . 4.【答案】A【解析】方程﹣x 2+3x =1整理得:﹣x 2+3x ﹣1=0, 则a ,b ,c 依次为﹣1,3,﹣1. 故选A .【名师点睛】将一元二次方程整理成一般形式后即可判断出a ,b ,c 的值. 5.【答案】B【解析】由230x x -=,可得3()0x x -=,则10x =,23x =. 故选B . 6.【答案】D【解析】()11x x x +=+,即(1)(1)0x x x +-+=,即(1)(1)0x x +-=,即10x +=或10x -=, 所以11x =-,21x =, 故选D.【名师点睛】本题是个易错题,因为不知道1x +是否为0,所以不能直接利用等式的性质2两边除以(1)x +.7.【答案】D【解析】由题意可得22020m m m ⎧-=⎨-≠⎩,解得0m =.故选D .【名师点睛】本题主要考查一元二次方程的概念,一元二次方程的解和解方程的应用,关键是得出220m m -=且20m -≠.8.【答案】B【解析】因为2241(1(0))8∆=--⨯⨯-=>,所以方程有2个不相等的实数根. 故选B . 9.【答案】C【解析】由题意得240b ac ∆=-≥,即2[20)12]4(m -⨯⨯--≥,解得1m ≥. 故选C . 10.【答案】A【解析】由题可得6440q ∆=->,解得16q <. 故选A . 11.【答案】B【解析】因为点),(c a P 在第二象限,所以0a <,0c >,所以0ac <,所以240b ac ∆=->,所以方程02=++c bx ax 有两个不相等的实数根. 故选B .13.【答案】B,有一个根是2,则另一个根是321-=.故选B . 12cx x a=.故选B . 14.【答案】A【解析】由根与系数关系,可得2αβ+=,1αβ=-,则211αβαβ++=-=. 故选A . 15.【答案】A【解析】由根与系数关系可得2(4)b +-=,2(4)c ⨯-=,解得2b =-,8c =-.所以10b c +=- .故选A .16.【答案】D【解析】由根与系数的关系可得122x x +=,121x x =-,所以22121111221x x x x x x ++===--. 故选D . 17.【答案】A【解析】设该市这两年该项投入的平均增长率为x ,依题意可得21000(1)2101000x ⨯+=+,解得10.110%x ==,2 2.1x =-(舍去). 即该市这两年该项投入的平均增长率为10%. 故选A . 18.【答案】A【解析】∵一次函数y =kx +b 的图象经过第一、三、四象限,∴k >0,b <0, ∴△=(−2)2−4(kb +1)=−4kb >0,∴方程x 2﹣2x +kb +1=0有两个不等的实数根. 故选A .【名师点睛】判断根的情况,只要看根的判别式△=b 2−4ac 的值的符号就可以了. 19.【答案】(x +3)2=14【解析】方程移项得:x 2+6x =5,配方得:x 2+6x +9=14,即(x +3)2=14.【名师点睛】此题考查了解一元二次方程的方法:配方法,熟练掌握完全平方公式是解本题的关键.方程中常数项移到右边,两边加上9,利用完全平方公式化简得到结果,即可作出判断. 20.【答案】1k <【解析】因为方程220x x k ++=有两个不相等的实数根,所以∆>0,即22410k -⨯⨯>,解得1k <,故填1k <.学=科网21.【答案】1-【解析】因为关于x 的一元二次方程220x x m +-=有两个相等的实数根,所以2240m ∆=+=,解得1m =-. 22.【解析】参加聚会的有x 人,每个人都要握手(1)x -次,可列方程: 23.【答案】15【解析】因为12,x x 是一元二次方程2350x x +-=的两个根,所以123x x +=-,125x x =-,所以2212121212()15x x x x x x x x +=+=.25.【答案】47【解析】方程(1)(4)5x x +-=-可化为2310x x -+=,因为α,β是方程(1)(4)5x x +-=-的两实数根,所以3αβ+=,1αβ=,所以222(+)27αβαβαβ=-=+,4422222=()2αβαβαβ++-47=,所以334447βααβαβαβ+=+=.26.【答案】(1)3x =±;(2)x =;(3)13x =,24x =.【解析】(1)2235()x -=,开平方可得3x -=,即3x =±,所以方程2235()x -=的解为3x =±. (2)由22330x x --=,可得2,3,3a b c ==-=-,24330b ac ∆=-=>,所以x ==,所以方程22330x x --=的解为x =(3)2()330x x --+=,即2()(30)3x x ---=,即()[()1]330x x --=-, 即4)30()(x x --=,解得13x =,24x =, 所以方程2()330x x --+=的解为13x =,24x =.【名师点睛】一元二次方程的解法:(1)直接开平方法,没有一次项的方程适用;(2)配方法,所有方程适用;(3)公式法,所有方程适用;(4)因式分解法,可因式分解的方程适用. 27.【答案】(1)证明见解析;(2)0k <.【解析】(1)因为222[(3)]4(22)21(1)0k k k k k ∆=-+-+=-+=-≥, 所以方程总有两个实数根.(2)因为2(3)22(2)(01)x k x k x x k -+++=--=-,所以12x =,21x k =+,因为方程总有一根小于1,所以11k +<,即0k <.故k 的取值范围为0k <.【思路分析】(1)由方程根的判别式0∆≥即可求证;(2)由因式分解法可将方程化为1()2)(x x k ---的形式,解出两根即可.28.【答案】(1)4a >-;(2)13x =-,25x =-.【解析】(1)根据题意可得284(12)0a ∆=-->,解得4a >-.(2)因为4a >-,所以最小的整数为3-,所以2812(3)0x x ++--=,即28150x x ++=,解得13x =-,25x =-.【思路分析】(1)方程有两个不相等的实数根,判别式大于0,由此可求参数的取值范围;(2)利用(1)的结论求出a 的值,代入原方程解方程即可.29.【答案】(1)①11x =,21x =,②11x =,22x =,③11x =,23x =;(2)①11x =,28x =,②2)0(1x n x n ++=-;(3)11x =,28x =,猜想结论正确.【解析】(1)①11x =,21x =;②11x =,22x =;③11x =,23x =.(2)①11x =,28x =;②2)0(1x n x n ++=-.(3)2980x x -+=,即298x x -=-,即281819844x x -+=-+,即249(924x =-, 所以7292x -=±, 所以11x =,28x =.故猜想结论正确.30.【答案】小路的宽为2米.【解析】设小路的宽为x 米,由题意得,(5x )2+(40+50)x ﹣2×x ×5x =325×40×50, 解得x =2或x =﹣8(不合题意,舍去)答:小路的宽为2米.【名师点睛】考查一元二次方程的应用,读懂题目,找出题目中的等量关系列出方程是解题的关键.根据“小路与观赏亭的面积之和占草坪面积的325”,建立方程求解即可得出结论. 31.【答案】(1)2或3秒;(2)不能.【解析】(1)设经过x 秒以后△PBQ 的面积为6 cm 2, 则12×(5﹣x )×2x =6, 整理得:x 2﹣5x +6=0,解得:x =2或x =3.答:2或3秒后△PBQ 的面积等于6 cm 2 .(2)设经过x 秒以后△PBQ 面积为8 cm 2,则12×(5﹣x )×2x =8, 整理得:x 2﹣5x +8=0,因为△=25﹣32=﹣7<0,所以此方程无解,故△PQB 的面积不能等于8 cm 2.【名师点睛】此题主要考查了一元二次方程的应用,找到关键描述语“△PBQ 的面积等于6 cm 2”,得出等量关系是解决问题的关键.(1)设经过x 秒钟,△PBQ 的面积等于6 cm 2,根据点P 从A 点开始沿AB 边向点B 以1 cm/s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2 cm/s 的速度移动,表示出BP 和BQ 的长可列方程求解.(2)通过判定得到的方程的根的判别式即可判定能否达到8 cm 2.32.【答案】(1)月销售量为450千克,月销售利润为6750元;(2)销售单价应为60元;(3)销售单价应为50元,此时利润为9000元.【解析】(1)月销售量为500−10×(35−30)=450(千克),月销售利润为(35−20)×450= 6750(元).(3)设应涨价x 元,∵月销售利润()()2302050010104005000y x x x x =+--=-++ 210(20)9000x =--+,∴当20x =时,9000y =最大值,答:商店要使得月销售利润达到最大,销售单价应为50元,此时利润为9000元.【名师点睛】本题考查的是一元二次方程的应用和二次函数的应用,解答本题的关键是读懂题意,找到合适的等量关系,然后设出未知数正确列出方程.注意熟记等量关系:销售利润=每件利润×数量.(1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量即可求出题目的结果;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x 元,根据这个等式即可列出方程求解,再结合销售成本不超过6000元进行取舍即可;(3)根据(2)中的相等关系列出函数解析式,化为顶点式即可求出答案.1.【答案】C 【解析】x 2−4x +3=0,分解因式得:(x −1)(x −3)=0,解得:x 1=1,x 2=3.故选C .【名师点睛】本题考查了解一元二次方程——因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).2.【答案】C【解析】设方程的另一个解为x 1,根据题意得:﹣1+x 1=2,解得:x 1=3.故选C .【名师点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣b a 、两根之积等于c a 是解题的关键.设方程的另一个解为x 1,根据两根之和等于﹣b a,即可得出关于x 1的一元一次方程,解之即可得出结论.3.【答案】C【解析】根据题意得∆=42﹣4k ≥0,解得k ≤4.故选C .【名师点睛】本题考查了根的判别式,根据判别式的意义得∆=42﹣4k ≥0,然后解不等式即可.一元二次方程ax 2+bx +c =0(a≠0)的根与∆=b 2﹣4ac 有如下关系:当∆>0时,方程有两个不相等的实数根;当∆=0时,方程有两个相等的实数根;当∆<0时,方程无实数根.4.【答案】C【解析】∵∆=b 2 −4ac =1−8=−7<0,∴一元二次方程2x 2 −x +1=0没有实数根.故选C .【名师点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的根的判别式∆=b 2−4ac ,先计算∆=b 2−4ac 的值,再根据计算结果判断方程根的情况即可.当∆>0,方程有两个不相等的实数根;当∆=0,方程有两个相等的实数根;当∆<0,方程没有实数根.5.【答案】D【解析】∵关于x 的一元二次方程x 2+2(k ﹣1)x +k 2﹣1=0有实数根,∴∆=b 2﹣4ac =4(k ﹣1)2﹣4(k 2﹣1)=﹣8k +8≥0,解得:k ≤1.故选D .【名师点睛】直接利用根的判别式进而分析得出k 的取值范围.∆>0时,一元二次方程有两个不等实根;∆=0时,一元二次方程有两个相等实根;∆<0时,一元二次方程无实根.6.【答案】D【解析】∵关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,∴()()22102410a b a +≠⎧⎪⎨∆-+⎪⎩==,∴b =a +1或b =−(a +1). 当b =a +1时,有a −b +1=0,此时−1是方程x 2+bx +a =0的根;当b =−(a +1)时,有a +b +1=0,此时1是方程x 2+bx +a =0的根.∵a +1≠0,∴a +1≠−(a +1),∴1和−1不都是关于x 的方程x 2+bx +a =0的根.故选D .【名师点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当∆=0时,方程有两个相等的实数根”是解题的关键.根据方程有两个相等的实数根可得出b =a +1或b =−(a +1),当b =a +1时,−1是方程x 2+bx +a =0的根;当b =−(a +1)时,1是方程x 2+bx +a =0的根.再结合a +1≠−(a +1),可得出1和−1不都是关于x 的方程x 2+bx +a =0的根.7.【答案】B【解析】A 、x 2+6x +9=0.∆=62−4×9=36−36=0,方程有两个相等实数根;B 、x 2=x ,即x 2−x =0.∆=(−1)2−4×1×0=1>0,方程有两个不相等实数根;C 、x 2+3=2x ,即x 2−2x +3=0.∆=(−2)2−4×1×3=−8<0,方程无实根;D 、(x −1)2+1=0,即(x −1)2=−1,则方程无实根.故选B .【名师点睛】本题考查的是一元二次方程根的判别式,根据一元二次方程根的判别式判断即可. 一元二次方程ax 2+bx +c =0(a ≠0)的根与∆=b 2−4ac 有如下关系:①当∆>0时,方程有两个不相等的实数根;②当∆=0时,方程有两个相等的实数根;③当∆<0时,方程无实数根.8.【答案】D【解析】根据题意得x 1+x 2=﹣22=﹣1,x 1x 2=﹣12,故A 、B 选项错误; ∵x 1+x 2<0,x 1x 2<0,∴x 1、x 2异号,且负数的绝对值大,故C 选项错误; ∵x 1为一元二次方程2x 2+2x ﹣1=0的根,∴2x 12+2x 1﹣1=0,∴x 12+x 1=12,故D 选项正确, 故选D .【名师点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.直接利用根与系数的关系对A 、B 进行判断;由于x 1+x 2<0,x 1x 2<0,则利用有理数的性质得到x 1、x 2异号,且负数的绝对值大,则可对C 进行判断;利用一元二次方程解的定义对D 进行判断.9.【答案】B【解析】∵α,β是方程x 2+x ﹣2=0的两个实数根,∴α+β=﹣1,αβ=﹣2,∴α+β﹣αβ=﹣1−(−2)=−1+2=1,故选B .【名师点睛】本题考查了一元二次方程根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a是解题的关键.根据根与系数的关系得α+β=﹣1,αβ=﹣2,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.10.【答案】A【解析】∵关于x 的一元二次方程mx 2﹣(m +2)x +4m =0有两个不相等的实数根x 1、x 2, ∴()202404m m m m ≠⎧⎪⎨∆=+-⋅>⎪⎩,解得:m >﹣1且m ≠0,。
一元二次方程的求根公式及根的判别式
(4)“公式法”是一般方法,只要明确了二次项系数、一次系数及常数项,若方程有实
根,就一定可以用求根公式求出根,但因为要代入 以对某些特殊方程,解法又显得复杂了。
2、在运用 b2-4ac 的符号判断方程的根的情况时,应注意以下三点:
(1)b2-4ac 是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确 定 a、b、c,求出 b2-4ac;
;
”类型的题目,如果用“公式法”就显得多
;
(3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简
化作用,思考于“因式分解法”之后,“公式法”之前。如方程
则 6391 这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为
就易解,若一次项系数中有偶因数,一般也应考虑运用。
一元二次方程的求根公式及根的判别式
主讲:黄冈中学高级教师 余国琴 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程 ax2+bx+c=0(a≠0)进行配方,当 b2-4ac≥0 时的根为
. 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式 法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程 ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数 a、b、c 的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形 式. 2、一元二次方程的根的判别式
(1)当 b2-4ac>0 时,方程有两个不相等的实数根
(2)当 b2-4ac=0 时,方程有两个相等的实数根
(3)当 b2-4ac<0 时,方程没有实数根.
二、重难点知识
15、一元二次方程根的判别式
一元二次方程知识点7、一元二次方程根的判别式1、一元二次方程有无解的判定:对于一元二次方程)0(02≠=++a c bx ax a c x a b x c x a b x a c bx ax -=+⇒-=+⇒-=+⇒222)(2222244)2()2(a ac b a b a c a b x a b x -=+-=++⇒22244)2(a ac b a b x -=+⇒0402≥⇒≠a a (1)当042≥-ac b 时:2244a ac b -≥0,有意义根据平方根的定义,有x +a b 2=±2244a ac b -即x =a ac b b 242-±-;(2)当042<-ac b 时:负数没有平方根在实数范围内x 的值不存在,所以方程没有实数根。
2、判别式的定义:把ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 根的判别式,通常用符号“∆”来表示,即ac b 42-=∆。
3、判别式的作用:判定一元二次方程根有无情况和根的个数一般地,一元二次方程)0(02≠=++a c bx ax :①0>∆,方程有两个不相等的实数根;②0=∆,方程有两个相等的实数根;③0<∆,方程没有实数根。
例13、不解方程,直接判断方程根的情况例14、应用根的判别式确定系数中所含字母的取值范围例15、证明方程根的存在性问题例16、根的判别式在实际问题中的应用例17、一元二次方程判别式的综合探究题知识点8、一元二次方程根与系数关系1、韦达定理:若方程)0(02≠=++a c bx ax 的两根为21,x x ,则ac x x a b x x =⋅-=+2121;。
推论1.若方程02=++q px x 的两根为21,x x ,则q x x p x x =⋅-=+2121;;推论2.以两个数21,x x 为根的一元二次方程是0)(21212=++-x x x x x x 。
一元二次方程概念、解法、根的判别式(含答案)
学生做题前请先回答以下问题问题1:关于一元二次方程的定义中,思考次序为________,________,________.问题2:解一元二次方程的思路是设法将其转化成__________处理.主要解法有:____________,____________,____________,____________等.问题3:想一想一元二次方程的四种解法中,每种解法对应的一元二次方程的特征是什么?一元二次方程概念、解法、根的判别式一、单选题(共15道,每道6分)1.下列方程:①;②;③;④;⑤;⑥(a,b,c是常数);⑦;⑧.其中属于一元二次方程的有( )个.A.2B.3C.4D.5答案:A解题思路:试题难度:三颗星知识点:一元二次方程的定义2.方程的二次项、一次项系数和常数项分别是( )A.3,5,2B.C.3,-5,-2D.答案:D解题思路:试题难度:三颗星知识点:一元二次方程的一般形式3.若方程是关于x的一元二次方程,则( )A.m=±2B.m=2C.m=-2D.m=3答案:B解题思路:试题难度:三颗星知识点:一元二次方程的定义4.关于x的一元二次方程的一个根是0,则实数a的值为( )A.-1B.0C.1D.-1或1答案:A解题思路:试题难度:三颗星知识点:一元二次方程的解5.用配方法解关于x的方程,此方程可变形为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:配方法6.若一元二次方程的两个根分别是m+1与2m-4,则的值为( )A. B.4C.36D.答案:B解题思路:试题难度:三颗星知识点:直接开平方法7.已知关于x的一元二次方程有两个不相等的实数根,则m的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:根的判别式8.若关于x的方程有实数根,则整数a的最大值是( )A.6B.7C.8D.9答案:C解题思路:试题难度:三颗星知识点:根的判别式9.用公式法解方程,下列代入公式正确的是( )A. B.C. D.答案:D试题难度:三颗星知识点:公式法10.用公式法解方程,下列代入公式正确的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:公式法11.一元二次方程的解是( )A. B.C. D.解题思路:试题难度:三颗星知识点:分解因式法12.方程的解为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:分解因式法13.三角形的两边长分别为2和6,第三边是方程的一个根,则第三边的长为( )A.7B.3C.7或3D.无法确定答案:A解题思路:试题难度:三颗星知识点:分解因式法14.一元二次方程的解为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:分解因式法15.对于高次方程,可以采用换元法,设将方程降次,先求出y的值,再来求解x的值,则原方程根的个数有( )A.0个B.2个C.3个D.4个答案:B解题思路:试题难度:三颗星知识点:分解因式法。
一元二次方程的概念及解法
一元二次方程的概念及解法要点一、一元二次方程的概念1.一元二次方程只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式()ax bx c a 2++=0≠0,a 为二次项系数,b 为一次项系数,c 为常数项.3.要点归纳(1)要判断一个方程是一元二次方程,必须符合以下三个标准:①一元二次方程是整式方程,即方程的两边都是关于未知数的整式. ②一元二次方程是一元方程,即方程中只含有一个未知数. ③一元二次方程是二次方程,也就是方程中未知数的最高次数是2.(2)任何一个关于x 的一元二次方程经过整理都可以化为一般式ax bx c 2++=0 (a ≠0).要特别注意对于关于x 的方程ax bx c 2++=0.当a ≠0时,方程是一元二次方程;当a =0且b ≠0时,方程是一元一次方程.(3)关于x 的一元二次方程式()ax bx c a 2++=0≠0的项与各项的系数.ax 2为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项.【例1】下面关于x 的方程中:①ax bx c 2++=0;②()()x x 223−9−+1=1;③x x21++5=0;④x x 23−2+5−6=0;⑤||x x 2−3−3=0;⑥x kx 2++3=0(k 为常数)是一元二次方程_________. 【解析】(1)②⑥.【变式1】判断下列各式哪些是一元二次方程. ①;②;③;④; ⑤ ;⑥ ;⑦ .【答案】②③⑥.【解析】①不是方程;④不是整式方程;⑤ 含有2个未知数,不是一元方程;⑦ 化简后没有二次项,不是2次方程. ②③⑥符合一元二次方程的定义.【例2】关于x 的方程2x 2−(a +1)x =x (x −1)−1的一次项系数是-1,则a .【答案】原方程化简为x 2-ax+1=0,则-a=-1,a=1.21x x ++2960x x −=2102y =215402x x −+=2230x xy y +−=232y =2(1)(1)x x x +−=21x x ++215402x x −+=2230x xy y +−=2(1)(1)x x x +−=【变式2-1】若一元二次方程()()m x m x m 222−2+3+15+−4=0的常数项为零,则m 的值为_________.由题意可知,m 2−4=0,m −2≠0,故m =−2【变式2-2】若a b a b x x 2+−−3+1=0是关于x 的一元二次方程,求a 、b 的值.分以下几种情况考虑: ①a b 2+=2,a b −=2,此时a 4=3,b 2=−3;②a b 2+=2,a b −=1,此时a =1,b =0; ③a b 2+=1,a b −=2,此时a =1,b =−1;【例3】(1)已知关于x 的一元二次方程()m x x m 22−1+2+−1=0有一个根是x =0,则m 的值为_______.(1)由于为一元二次方程,∴m −1≠0,而x =0代回方程得到:m 2−1=0.综上可知m =−1.(2)x=1是x 2−ax +7=0的根,则a= .【答案】当x=1时,1-a+7=0,解得a=8.(3)已知关于x 的一元二次方程 有一个根是0,求m 的值. 由题意得【变式3-1】如果关于x 的一元二次方程x 2+px+q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是( ) A .-3,2 B .3,-2 C .2,-3 D .2,3 【答案】A ;【解析】∵ x =2是方程x 2+px+q =0的根,∴ 22+2p+q =0,即2p+q =-4 ①同理,12+p+q =0,即p+q =-1 ②联立①,②得 解之得:【变式3-2】已知a 是一元二次方程x x 2−2−1=0的根,求下列各式的值:①a a 1−;②a a221+;③a a a 22−3−3++52. (2)①由a a 2−2−1=0知,a ≠0,故a a 1−2−=0,即a a1−=2;②a a a a 22211⎛⎫+=−+2=6 ⎪⎝⎭;③由于a a 2=2+1,代入所求得,原式a a a 2+1−3=2+1−3++5=52. 22(1)210m x x m −++−=24,1,p q p q +=−⎧⎨+=−⎩3,2.p q =−⎧⎨=⎩【例4】关于x 的方程2()0a x m b ++=的解是12x =−,21x =,(a ,m ,b 均为常数,0a ≠),则方程2(2)0a x m b +++=的解是__________.(3)14x =−,21x =−.【变式4-1】关于x 的方程a (x+m )2+n=0(a ,m ,n 均为常数,m≠0)的解是x 1=﹣2,x 2=3,则方程a (x+m ﹣5)2+n=0的解是( )A .x 1=﹣2,x 2=3B .x 1=﹣7,x 2=﹣2C .x 1=3,x 2=﹣2D .x 1=3,x 2=8 【答案】D ;【思路点拨】把后面一个方程中的x ﹣5看作整体,相当于前面一个方程中的x 求解.【解析】∵关于x 的方程a (x+m )2+n=0的解是x 1=﹣2,x 2=3,(m ,n ,p 均为常数,m≠0), ∴方程a (x+m ﹣5)2+n=0变形为a[(x ﹣5)+m]2+n=0,即此方程中x ﹣5=﹣2或x ﹣5=3, 解得x=3或x=8.故选D .要点二、一元二次方程的解法1. 直接开平方法:适用于解形如()(),≥ax b c a c 2+=≠00的一元二次方程. 2. 配方法:解形如()ax bx c a 2++=0≠0的一元二次方程,运用配方法解一元二次方程的一般步骤是: ① 将二次项系数化为1. ② 将常数项右移.③配方(两边同时加上一次项系数一半的平方). ④化成()x m n 2+=的形式.⑤若≥n 0,直接开平方得出方程的解.【例5】解方程:(1)()x x x 22−6+9=5−2 (2)()()x x 224−2−3−1=0【解析】(1)()()x x 22−3=5−2,()x x −3=±5−2,x 1=2,x 28=3.(2)()()x x 224−2=3−1,()()x x 2−2=±3−1,x 1=−3,x 2=1【变式5】解方程: (1) 3x+2)2=4(x ﹣1)2;(2)(x-2)2=25.【答案】解:(1) 3x+2=±2(x ﹣1),∴3x+2=2x ﹣2或3x+2=﹣2x+2, ∴x 1=﹣4;x 2=0.(2) (x-2)=±5 ∴x-2=5或x-2=-5 ∴x 1=7,x 2=-3.【例6】用配方法解方程:(1)x x 2−4−1=0(2)x x 22−8−3=0(3)x x 24−6−4=0【解析】(1)x x 2−4−1=0,()x 2−2=5,x =2±,x 1=2x 2=2;(2)x x 22−8−3=0,()x 22−2=11,x =2,x 1=2x 2=2; (3)x x 24−6−4=0,x 2325⎛⎫−= ⎪416⎝⎭,x 1=2,x 11=−2.【变式6】用配方法解方程:(1)2x 2﹣4x ﹣3=0; (2)3x 2﹣12x ﹣3=0. 【思路点拨】方程(1) (2)的的次项系数不是1,必须先化成1,才能配方,这是关键的一步.配方时,方程左右两边同时加上一次项系数一半的平方,目的是把方程化为的形式,然后用直接开平方法求解. 【答案与解析】解:(1)∵2x 2﹣4x ﹣3=0,∴,∴,∴x ﹣1=±,∴.(2)3x 2﹣12x ﹣3=0,3x 2﹣12x=3, x 2﹣4x=1, x 2﹣4x+4=1+4,2()(0)mx n P P +=≥(x ﹣2)2=5, x ﹣2=, x 1=2+,x 2=2﹣;(3)2x 2+3=5x (4) 【答案】(3). (4)①当时,此方程有实数解,;②当时,此方程无实数解.3.公式法:将()ax bx c a 2++=0≠0进行配方可以得到:b b ac x a a 222−4⎛⎫+= ⎪24⎝⎭. 当≥b ac 2−40时,两个根为,x 12=b ac 2−4=0时,两根相等为bx x a12−==2;当b ac 2−4<0时,没有实数根.可以用△表示b ac 2−4,△称为根的判别式.20x px q ++=2235x x +=2253x x −=−25322x x −=−2225535()()2424x x −+=−+251()416x −=5144x −=±123,12x x ==20x px q ++=222()()22p px px q ++=−+224()24p p qx −+=240p q −≥12x x ==240p q −<运用公式法解一元二次方程的一般步骤是: ①把方程化为一般形式; ②确定a 、b 、c 的值; ③计算b ac 2−4的值;④若≥b ac 2−40,则代入公式求方程的根; ⑤若b ac 2−4<0,则方程无实数根. 【例7】解方程:(1)()x x 2−5=2+1(2)()x x x x 1⎛⎫6+1+4−3=22+ ⎪2⎝⎭【解析】(1)()x x x x 22−5=2+1⇒−2−7=0,()2=2−4⨯1⨯−7=32△,∴原方程的解为:x 1=1+,x 2=1−(2)()x x x x x x 21⎛⎫6+1+4−3=22+⇒6+−4=0 ⎪2⎝⎭,()△2=1−4⨯6⨯−4=97故,x 12,∴原方程的解为:x 1=,x 2=. 【教师备课提示】这道题主要是想让孩子们练习用公式法去解一元二次方程,牢记解一元二次方程的公式.4.因式分解法:适用于方程一边是零,另一边是一个易于分解的多项式.因式分解法的一般步骤:② 将方程化为一元二次方程的一般形式;③ 把方程的左边分解为两个一次因式的积,方程右边是零; ③令每一个因式分别为零,得到两个一元一次方程; ④解出这两个一元一次方程的解可得到原方程的解.【例8】解方程:(1)22320x x −−= (2)2(21)36x x −=−(3)26x −=−【解析】(1)22320x x −−=,(21)(2)0x x +−=,112x =−,22x =;(2)2(21)36x x −=−,2(21)3(12)x x −=−,2(21)(1)0x x −+=,112x =,21x =−.(3)1x =,2x =. 【教师备课提示】这道题主要是想让孩子们练习用因式分解的方法去解一元二次方程. 【变式8】解方程:(1)﹣3x 2+22x ﹣12=12.(2)3x 2﹣x ﹣4=0【思路点拨】先把方程变形,然后利用因式分解法解方程,注意对于二次项系数的分解. 【答案与解析】解:(1)原式变形得:3x 2﹣22x+24=0,(3x ﹣4)(x ﹣6)=0, 3x ﹣4=0或x ﹣6=0, ∴ x 1=,x 2=6. (2)3x 2﹣x ﹣4=0,分解因式得:(3x ﹣4)(x+1)=0, ∴(3x ﹣4)=0或(x+1)=0 ∴ x 1=,x 2=﹣1;【例9】选择合适的方法求解下列方程:(1)x x 2547−25−572=0(2)x 23=1【解析】(1)方程系数较大,公式法过于麻烦,考虑用因式分解,由于572−547=25,故可以简单分解为:()()x x 547−572+1=0,解为x 1=−1,x 2572=547.(2)公式法解决:()△2=−4⨯3⨯−1=18>0,所以由公式法知x =解为x 1,x 2【课后作业】1.(北京市第十三中学2010-2011九年级数学期中)如果关于x 的方程()a x x 2−1+5−6=0是一元二次方程,则( ) A .a >1 B .a =1 C .a <1 D .a ≠12.如果关于x 的方程()m m x x 2−7−3−+3=0是关于x 的一元二次方程,则m 的值为______.3.关于x 的一元二次方程x ax a 2++=0的一个根是x =3,则a =________.4.若实数a ,b ,c 满足a b c 4−2+=0,则关于x 的一元二次方程()ax bx c a 2++=0≠0一定有一个根_________.5.三角形两边的长是3和4,第三边的长是方程x x 2−12+35=0的根,则该三角形的周长为( ) A .14 B .12 C .12或14 D .以上都不对【解析】1.D ;2.−3;3.9−4;4.x =−2;5.B6.已知a 是方程x x 2+−1=0的根,求a a a 32−−3+1的值.【解析】由题意a a 2+−1=0,∴a a 2=−+1,∴原式()()a a a a a a 22=−+1−−3+1=−2++1=−1.7.解方程:(1)()x 22−4−6=03(2)x x 22−8−198=0 (3)()()x x −5−7=1【解析】(1)1x 1=,x 2=7;(2)x 1=2,x 2=2;(3)()()x x x x 2−5−7=1⇒−12+34=0,△2=12−4⨯1⨯34=8,故,x 1212±==628.解关于x 的方程:(1)x mx m n 222−2+−=0(2)x a ax a 22+3=4−2+1(3)()()a b c x ax a b c 2−++2++−=0【解析】(1)原式可以因式分解为:()()x m n x m n −−−+=0,解为x m n 1=+,x m n 2=−.(2)x a 1=3−1,x a 2=+1.(3)二次项系数中含有字母,所以要加以讨论, ①若a b c −+=0,则原方程成为()ax a b c 2++−=0若a =0,则c b −=0,原方程为x 0+0=0,x 可为一切实数. 若a ≠0,则a b c ax a a−−+−2===−122. ②若a b c −+≠0,则原方程成为[]()()()x a b c x a b c +1−+++−=0,得x 1=−1,c a bx a b c2−−=−+.9.解方程:()()x x x x 2222+−22+=3.【解析】设x x m 22+=,则原方程化为m m 2−2−3=0,即()()m m −3+1=0,代回可得:()()x x x x 222+−32++1=0,即x x 22+−3=0或x x 22++1=0.x x 22+−3=0,可化为()()x x 2+3−1=0,解得x 1=1,x 23=−2;x x 22++1=0,用公式法解决,△2=1−4⨯2⨯1=−7<0,故此方程无实数根.综上方程解为:x 1=1,x 23=−2.。