高二数学三角函数值测试题
高二数学专题复习三角函数练习题(含答案)
高二数学专题复习三角函数练习题(含答案)一、选择题(每题5分,共75分)1.若α是第三象限角,则 2所在的象限是()A.第一或第二象限;B.第三或第四象限;C.第一或第三象限;D.第二或第四象限.)2.(3.()4.()5.()6.将函数图象上所有点的横坐标缩短为原来的,纵坐标不变,再将所得的图象向右平移 12个单位长度,得到函数的图象,则()7.已知函数f(x)=Atan(ωx+φ)y=f(x)的部分图象如图,则f()=()8.=()9.在中,则是()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形10.已知函数的图象如图所示,则φ的值是()11.已知sinα+cosα=2,则tanα=()12.已知sin(﹣x)=cos(x﹣),则tan(x﹣)等于()13.在中,分别是角的对边,且()14.已知角在第四象限内,()15.()二、解答题(共15题,共75分)16.已知中,角,,所对的边分别为,,,满足,且。
(1)求角的大小;(2)点在线段的延长线上,且,若,求的面积.17.函数的部分图像如图所示,把函数的图像向右平移个单位,得到函数的图像.(1)当x∈R时,求函数的单调递增区间;(2)对于,是否总存在唯一的实数,使得成立?若存在,求出实数m的值或取值范围;若不存在,说明理由18.已知中,内角,,所对的边分别为,,,且满足.。
(1)求角的大小;(2)设是边上的高,且求面积的最小值.19.(1)求函数的单调递减区间;(2)求实数的取值范围.20.在中,角A,B,C 的对边分别为a,b,c,.(1)求A;(2)若的面积为,点D 在线段AC 上,且,求BD的最小值.参考答案一、选择题第1题第2题第3题第4题第5题DBACB二、解答题第16题(1)将sinA =3sinB 代入33sinAsinB -cosBcisC=12得:sinBsinC -cosBcisC=12-cos (B +C )=12第6题第7题第8题第9题第10题CBDCA第11题第12题第13题第14题第15题DBDDB-cos(π-A)=12A= 3(2)将A= 3,a=3b,c=2代入a²=b²+c²-2bccos A,得(b+2)(b-1)=0所以:b=1S△ABC=3+34第17题(1)单调递增区间:-512 + ≤ ≤ +112 (2)当m∈(1,3]时,使得成立。
习题高二数学习题三角函数
习题高二数学习题三角函数习题高二数学习题三角函数一、基础知识巩固1. 已知sinθ = 3/5,且θ的终边落在第三象限,求cosθ。
2. 已知tanθ = -4/3,且θ的终边落在第四象限,求cotθ。
3. 求sin^2θ + cos^2θ的值。
4. 已知tanα = 3/4,求sin(α+90°)的值。
5. 解方程sinx = cosx。
二、求值计算1. 计算下列各式的值:(1) sin45° + cos30°(2) tan60° * cos30°(3) cot(45° + 60°) ÷ sec75°(4) 2sin60° - sin120°2. 若sinx = 1/2,且x的终边落在第二象限,求cos(π - x)的值。
三、应用题1. 电线杆高12米,斜度为20°,求电线与水平线之间的距离。
2. 两船同时从岸边出发,船A顺水方向速度为20 km/h,船B逆水方向速度为12 km/h,两船同时行驶4小时后,两船之间的距离为多少?3. 一机动车行驶在直线水平道路上,其前方离直线路径5米处有一障碍物,机动车司机从该障碍物顺时针方向观察,与其后方准直线路径的夹角为60°,求机动车由直线路径向右移动3米后,与障碍物的最小距离。
四、证明题1. 证明公式sin(α+β) = sinαcosβ + cosαsinβ。
2. 证明公式tan(α+β) = (tanα + tanβ) / (1 - tanαtanβ)。
3. 证明sin^2x - cos^2x = 1 - 2cos^2x。
五、综合题1. 已知sinθ = 4/5,且θ的终边落在第二象限,求cos(π - θ) + sin(π/2 + θ)的值。
2. 某人沿着一条弯曲的小路向前行走。
若沿直线行走的标准速度为60 km/h,沿曲线行走的速度为40 km/h,且曲线半径为500 m,求此人相对于水平方向的合速度。
高二常考的三角函数的试题整理
高二常考的三角函数的试题整理经典数学题【例一】1.(2009·江苏常州一模)已知角α是第三象限角,则角-α的终边在第________象限. 2.(2010·连云港模拟)与610°角终边相同的角表示为______________.1sin 2θ3.(2010·浙江潮州月考)已知2<1,则θ所在象限为第________象限.π3π4.(2010·南通模拟)已知角θ的终边经过点P(-4cos α,3cos α)(<α<,则sin θ+cos θ=________.22ππ-且sin θ+cos θ=a,其中a∈(0,1),则关于tan θ的值,以下四个答案中,可能正5.(2010·福州调研)已知θ∈22111确的是________(填序号).①-3 ②3或③- ④-3或-3336.(2009·江西九江模拟)若角α的终边与直线y=3x重合且sin α<0,又P(m,n)是角α终边上一点,且|OP|10,则m-n=________.|sin α||cos α|7.(2010·山东济南月考)已知角α的终边落在直线y=-3x (x<0)上,则=________.sin αcos α8.(2010·南京模拟)某时钟的秒针端点A到中心点O的距离为5 cm,秒针均匀地绕点O旋转,当时间t=0时,点A与钟面上标12的点B重合.将A、B两点间的距离d(cm)表示成t(s)的函数,则d=________,其中t∈[0,60].π49.(2010·泰州模拟)若0”,“<”或“=”填空).2π210.(2010·镇江模拟)已知角θ的终边上一点P(3,m),且sin θm,求cos θ与tan θ的值.411.(2010·江苏南京模拟)在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合:31(1)sin α;(2)cos α.2212.(2010·佳木斯模拟)角α终边上的点P与A(a,2a)关于x轴对称(a≠0),角β终边上的点Q与A关于直线y=x对称,求sin α·cos α+sinβ·cosβ+tan α·tan β的值.同角三角函数的基本关系及诱导公式1.(2010·南通模拟)cos(-174-sin(-174π)的值为___________________________.2.(2010·江苏镇江一模)设tan(5π+α)=m,则sin(α-3π)+cos(π-α)sin(-α)-cos(π+α)的值为__________.3.(2009·辽宁沈阳四校联考)已知sin α+cos αsin α-cos α=2,则sin αcos α=________.4.(2008·浙江理,8)若cos α+2sin α=-,则tan α=__________.5.(2008·四川理,5)设0≤α<2π,若sin α3cos α,则α的取值范围是____________.6.(2010·吉林长春调研)若sin α+cos α=tan α0<α<π2,则α的取值范围是__________. 7.(2009·苏州二模)sin21°+sin22°+sin23°+…+sin289°=________.8.(2010·浙江嘉兴月考)已知f(x)= 1-xπ1+xα∈(2,π),则f(cos α)+f(-cos α)=________.9.(2009·北京)若sin θ=-45tan θ>0,则cos θ=____________________________________.10.(2010·泰州模拟)化简:(1)1-cos4α-sin4α1-cosα-sinα2sin(π4x)+6cos(π; 4-x).11.(2010·盐城模拟)已知sin22α+sin 2αcos α-cos 2α=1,α∈(0,π2),求sin α、tan α的值.12.(2009·福建宁德模拟)已知0<α<π52sin αcos α-cos α+12cos α-sin α=-5,试求1-tan α和差倍角的三角函数1.(2010·山东青岛模拟)cos 43°cos 77°+sin 43°·cos 167°的值为________. 2.(2010·南京模拟)已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=________.3.(2009·湖北四校联考)在△ABC中,3sin A+4cos B=6,4sin B+3cos A=1,则∠C的大小为________.4.(2009·湖南长沙调研)在锐角△ABC中,设x=sin A·sin B,y=cos A·cos B,则x,y的大小关系是________.5.(2009·广东韶关模拟)已知tan α=2,则sin 2α-cos 2α1+cosα________.6.(2010·无锡模拟)1+tan x1-tan x2 010,则1cos 2x+tan 2x的值为________.7.(2010·苏州调研)若锐角α、β满足(1+3tan α)·(13tan β)=4,则α+β=________. 8.(2009·江苏南通二模)已知sin αcos β=12,则cos αsin β的取值范围是____________.9.(2010·苏、锡、常、镇四市调研)若tan(α+β)=2π1π5,tan(β-4)=4,则tan(α+4=________.10.(2008·广东)已知函数f(x)=Asin(x+φ) (A>0,0<φ<π) (x∈R)的最大值是1,其图象经过点Mπ13,2. (1)求f(x)的解析式;(2)已知α、β∈0,π2,且f(α)=3125,f(β)=13,求f(α-β)的值.11.(2010·宿迁模拟)已知向量a=(cos α,sin α),b=(cos β,sin β),|a-b|=41313(1)求cos(α-β)的值;(2)若0<α<π2,-π42β<0,且sin β=-5,求sin α的值.三角函数的图象与性质1.(2009·大连一模)y=sin(2x+π6)的最小正周期是_____________________________.2.(2010·扬州模拟)y=2-cos__________,此时x=________.3π3.(2010·盐城模拟)函数y=tan(x)的定义域是________________.4.(2009·牡丹江调研)已知函数y=2cos x(0≤x≤1 000π)的图象和直线y=2围成一个封闭的平面图形,则这个封闭图形的面积是________5.(2010·江苏盐城月考)已知函数y=tan ωx在(-,内是减函数,则ω的取值范围是________________.7.(2009·浙江宁波检测)定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周8.(2010·连云港模拟)sin 2,cos 1,tan 2的大小顺序是________________.9.(2008·全国Ⅱ理)若动直线x=a与函数f(x)=sin x和g(x)=cos x的图象分别交于M、N两点,则|MN|的最大值为_______.11.(2008·陕西)已知函数f(x)=2sincos+3cos.12.(2010·山东济宁第一次月考)设a=sin2b. ,cos x+sin x,b=(4sin x,cos x-sin x),f(x)=a·4(1)求函数f(x)的解析式(3)设集合A=x6x≤3,B={x||f(x)-m|<2},若A⊆B,求实数m的取值范围.三角函数的`最值及应用1.(2010·连云港模拟)函数y3sin(2x)-cos 2x的最小值为________.2.(2010·泰州模拟)若函数y=2cos ωx在区间[0,上递减,且有最小值1,则ω的值可以是________.3.(2010·湖北黄石调研)设函数f(x)=2sin(+.若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为____.4.(09·湖南株州模拟)函数y=sin 2x按向量a平移后,所得函数的解析式是y=cos 2x+1,则模最小的一个向量a=__.5.(2009·广东惠州二模)函数y=Asin(ωx+φ)(ω>0,|φ|<在同一单调区间内的x=x29291小值-________________________.2a+b,ab≤0,6.(2010·广西南宁检测)定义运算a*b=a则函数f(x)=(sin x)*(cos x)的最小值为________., ab>0,b7.(2010·苏州调研)一半径为10的水轮,水轮的圆心距水面7,已知水轮每分钟旋转4圈,水轮上点P到水面距离y与时间x(s)满足函数关系y=Asin(ω+φ)+7(A>0,ω>0),则A=________,ω=________. 8.(2009·徐州二模)函数y=(sin x-a)2+1,当sin x=a时有最小值,当sin x=1时有最大值,则a的取值范围是_______. 9.(2009·江苏)函数y=Asin(ωx+φ)(A、ω、φ为常数,A>0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω=10.(2010·镇江模拟)已知函数f(x)=cos(2ωx+2φ) (A>0,ω>0,0<φ<),且y=f(x)的最大值为2,其图象上相邻两对称轴间的距离为2,并过点(1,2).(1)求φ;(2)计算f(1)+f(2)+…+f(2 008).11.( 10·辽宁瓦房店月考)如图所示,某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b. (1)求这段时间的最大温差; (2)写出这段曲线的函数解析式.12.(2010·吉林延吉模拟)如图,在一个奥运场馆建设现场,现准备把一个半径为3 m的球形工件吊起平放到6 m高的平台上,工地上有一个吊臂长DF=12 m的吊车,吊车底座FG高1.5 m.当物件与吊臂接触后,钢索CD的长可通过顶点D处的滑轮自动调节并保持物件始终与吊臂接触.求物件能被吊车吊起的最大高度,并判断能否将该球形工件吊到平台上?解三角形1.(2010·江苏靖江调研)在△ABC中,若(a+b+c)(b+c-a)=3bc,则A=________.2.(2010·宿迁模拟)在△ABC中,已知acos A=bcos B,则△ABC的形状为____________. 3.(2010·江苏淮阴模拟)如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为____________. 4.(2010·浙江绍兴模拟)△ABC中,a,b,c分别为∠A,∠B,∠C的对边,如果a,b,c成等差数列,∠B=30°,△ABC的面积为,那么b=__________.25b,A=2B,则cos B=________. 26.(2010·南通模拟)一船以每小时15 km的速度向东航行,船在A处看到一个灯塔M在北偏东60°方向,行驶4 h后,船到达B处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.7.(2009·福建泉州二模)如图所示,我炮兵阵地位于地面A处,两观察所分别位于地面C处和D处,已知CD=6 000 m,∠ACD=45°,∠ADC=75°,目标出现于地面B处时测得∠BCD=30°,∠BDC=15°,则炮兵阵地到目标的距离是________________(结果保留根号).8.(2009·江西宜泰模拟)线段AB外有一点C,∠ABC=60°,AB=200 km,汽车以80 km/h的速度由A向B行驶,同时摩托车以50 km/h的速度由B向C行驶,则运动开始____ h后,两车的距离最小. 9.(2009·广东改编)已知△ABC中,∠A、∠B、∠C的对边分别是a、b、c,若a=c=6+2,且∠A=75°,则b=________.10.(2009·安徽)在△ABC中,C-A=sin B=23(1)求sin A的值;(2)设AC=6,求△ABC的面积.11.(2009·山东泰安第二次月考)在海岸A处,发现北偏东45°方向,距A处3-1)海里的B处有一艘走私船,在A处北偏西75°方向,距A处2海里的C处的缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度从B处向北偏东30°的方向逃窜,问缉私船沿什么方向能最快追上走私船,并求出所需要的时间.5.(2008·四川,7)△ABC的三内角A、B、C的对边边长分别为a、b、c.若a=三角函数的综合应用1.(2009·济宁期末)已知a=(cos 2α,sin α),b=(1,2sin α-1),α∈π),若a·b=,则25πtan(α+的值为________.2.(2008·江苏)若AB=2,AC2BC,则S△ABC的最大值是________.3.(2009·肇庆期末)定义运算a*b=a2-ab-b2,则sin=________.4.(2009·广州第二次联考)已知a,b,x,y∈R,a2+b2=4,ax+by=6,则x2+y2的最小值为________.5.(2010·宿州模拟)若函数f(x)=sin(x+α)-2cos(x-α)是偶函数,则cos2α=________.6.(2010·泰州调研)函数f(x)=(sin2x+(cos2x+)的最小值是________. 2 009sinx2 009cosx7.(2009·福建文)已知锐角△ABC的面积为33,BC=4,CA=3,则角C的大小为________.8.(2010·苏南四市模拟)俗话说“一石激起千层浪”,小时候在水上打“水漂”的游戏一定不会忘记吧.现在一个圆形2π波浪实验水池的中心已有两个振动源,在t秒内,它们引发的水面波动可分别由函数y1=sin t和y2=sin(t+来描3述,当这两个振动源同时开始工作时,要使原本平静的水面保持平静,则需再增加一个振动源(假设不计其他因素,则水面波动由几个函数的和表达),请你写出这个新增振动源的函数解析式______________. 9.(2010·南通模拟)2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于____________.经典数学题【例二】知识考点:本节知识的考查一般以填空题和选择题的形式出现,主要考查锐角三角函数的意义,即运用sina、cosa、tana、cota准确表示出直角三角形中两边的比(a为锐角),考查锐角三角函数的增减性,特殊角的三角函数值以及互为余角、同角三角函数间的关系。
高中数学三角函数经典练习题专题训练(含答案)
高中数高中数学三角函数经典练习题专题训练姓名 _____ 班级 ____ 学号—得分说明:1、本试卷包括第I卷(选择题)和第Il卷(非选择题)两部分。
满分IOO 分。
考试时间90分钟。
2、考生请将第I卷选择题的正确选项填在答题框内,第Il卷直接答在试卷±o考试结束后,只收第Il卷第I卷(选择题)评卷人得分一.单选题(每题3分,共601.已知函数y=sin (ωx+φ)(ω>0, ∣ Φ ∣ <γ )的部分图象如图所示,则5 “的值分别D. 4,2.下列说法正确的个数是()①小于90°的角是锐角:② 钝角一左大于第一象限角;③ 第二象限的角一总大于第一象限的角: ④ 始边与终边重合的角为0° .A ・0B ・1C ・2D ・33.若 0<yVx<”,且 tan2×=3tan (×-y ),则 x+y 的可能取值是( )Hnnn A- 6B- Γc∙ 4D- 34.已知函数y=tan (ωx ) (ω>0)的最小正周期为2几,则函数y=ωc osx 的值域是()III I A •卜2, 2] B •卜1, 1]C ・[亍-]D. -]5.在ZkABC 中,si∩4=⅛^- (a 、b 、C 分别为角A 、B 、C 的对应边),则Z ∖ABC 的形状为2 ZC ( ) A.正三角形 B.直角三角形C.等腰直角三角形D.等腰三角形6.已知函数f (X )=Cosxsin 2X,下列结论中错误的是( )A. f (X )既是偶函数又是周期函数B. f (X )最大值是1C. f (X )的图象关于点(#, 0)对称D. f (X )的图象关于直线X=兀对称7. sin55o si∩650 -cos55o cos65° 值为()8・若角α终边上一点的坐标为(1, -1),则角α为( )C.D.JlA. 2k πB. 2kπ-γ4C.∏ +-J-D. kπ-5.,其中 k∈Z9. 为了得到函^ = Sin(2τ~)的图象,只需把函数y = $in(2x+”)的图象( )A.向左平移芋个B.向左平移耳个C.向右平移芋个D.向右平移号个单位长度单位长度单位长度单位长度10. 已知α是第二象限的角,那么耳是第几象限的角( )A. 第一、二象限角B.第二、三象限角C.第一、三象限角 D.第三、四象限角11. 函数y=cos (2x-^∙),在区间[-£,兀]上的简图是()0 Z12.已知α为锐角,Sin ( α ÷j -) =£,则Sina 的值是(4D-53 A-5C.223.已知 cos2 0 +sin α (2Sin(IJ) =⅛ A.C.n ) ♦则 tan (CX+γ)的值为()42 D-314. 已知 m>0> 且 mcos ∏ -Sin α =JIsin 则 tanΦ=( ) A. -2B- -2C.D. 215.已知 COS « +λ∣3^sin α =7» 则2∏COS ("T"-2(】) 的值等于(c916.为了得到函数Y=3cos2×的图彖,只需把函数y=3sin (2x*)的图象上所有的点()A.向右平行移动B.向右平行移动C.向左平行移动D.向左平行移动 号个单位长度 2个单位长度号个单位长度蒙个单位长度33o17. ^tana = -^并且α是第二象限角,那么Sina 的值为( )A. ±李B.C.D. fKJ ⅜J18.若α是锐角,且COS (α÷2-)卑,贝IlSinU 的值等于( )A. ∫6÷~6~ B沪B- 6C ⅛1 6D 2^^, 6 19. 严 4 若 COSa =WU 是第三象限角, 则 ta∏(→γ)=()IIA. 2B ・~C.・2D ・-T2220.在ZkABC 中,若 3cos (A-B) +5COSC=0,则 tanC 的最大值为( )3 4J2 I-A- J B - 3c∙ -TD- -2J 1第Il 卷 (非选 择题)A.二•填空题(每题3分,共15分))的图象向右平移号个单位长度,再向下平移1个单位长度,则得 O 到的函数的解析式是4 ∏22.已知π < α + β <- π ,・π < a -β <-^-t 则2a 的取值范用是 ______C O 耳 0( 、11] 0( 23∙已知(I ' B 均为锐角'且tanβ=~al~a* 则tan (O+P)=—已知¥ V BVa <乎,COS ( a - β )=特,Sin ( a + β ) =-⅛∙,贝∣J Sin a +cos β =25. sinl4o cosl6o +cosl4o sinl60 的值等于 ________评卷人得分525 26.函数 f (x) =2acos 2×+bsinxcosx,满足 f (0) =2, f(2)f (I)求函数f(X)的最大值和最小值;(2)若 a , β ∈ (0, π ) t f ( a ) =f ( β ) , Ji a ≠ β ,求 tan ( a + β )的值.TT ∏ 27.已知向:‰= (2 Sin θ )与b = (COS 0 , 1)互相垂直,英中。
高二文科数学三角函数练习
高二文科数学 三角函数练习(1)一、 选择题1.已知sin α=45,且α为第二象限角,那么tan α的值等于 ( ) (A)34 (B)43- (C)43 (D)43- 2.若θ是第三象限角,且02cos <θ,则2θ是 ( )A .第一象限角B .第二象限角C .第三象限角D .第四象限3.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π(B)-3π(C)6π(D)-6π4.sin (-6π19)的值是()A .21B .-21C .23D .-23 5.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为() (A)3π (B)32π(C)3(D)26.下列三角函数:其中函数值与sin 3π的值相同的是( )①sin (n π+3π4);②cos (2n π+6π);③sin (2n π+3π);④cos [(2n +1)π-6π];⑤sin [(2n +1)π-3π](n ∈Z ).A .①②B .①③④C .②③⑤D .①③⑤7.设是第二象限角,则sin cos αα= ( )(A) 1 (B)tan 2α (C) -tan 2α (D)1-8.已知sin(4π+α)=23,则sin(43π-α)值为() A. 21 B. —21 C. 23 D. —239、如果角θ满足2cos sin =+θθ,那么1tan tan θθ+的值是() A .1- B .2- C .1 D .210.化简:)2cos()2sin(21-∙-+ππ得()A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2)11 若α是三角形的一个内角,且sin α+cos α=32,则三角形为 ( )(A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)等腰三角形12.若cos (π+α)=-510,且α∈(-2π,0),则tan (2π3+α)的值为() A .-36 B .36 C .-26 D .26 二、 填空题13. —1223πrad 化为角度应为. 14.已知sin αcos α=81,且4π<α<2π,则cos α-sin α的值为 ______________. 15.已知cos(4π+α)=23,则sin(43π+α)=16.cos π7 +cos 2π7 +cos 3π7 +cos 4π7 +cos 5π7 +cos 6π7=. 17.角α的终边上有一点P (m ,5),且)0(,13cos ≠=m m α,则sin α+cos α=______. 三、解答题18.若cos α=23,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.19.若2cos sin 2cos sin =-+αααα, (1)求tan α(2)求2sin 2α-3sin αcos α-2cos 2α20.若扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?21 、已知51cos sin =+ββ,且πβ<<0. (1)求ββcos sin 、ββcos sin -的值;(2)求βsin 、βcos 、βtan 的值.(3)求sin 3β – cos 3β的值。
人教版高二第一章三角函数单元测试精选(含答案)1
人教版高二第一章三角函数单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.tan 600o =( )A .B .-C D .【来源】甘肃省平凉市静宁县第一中学2017-2018学年高一下学期期末考试数学(文)试题 【答案】C2.函数tan sin tan sin y x x x x =+--在区间(2π,32π)内的图象是( )A .B .C .D .【来源】2008年高考江西卷理科数学试题 【答案】D3.要得到函数y =cos 23x π⎛⎫+ ⎪⎝⎭的图象,只需将函数y =cos2x 的图象( )A .向左平移π个单位长度 B .向左平移π个单位长度C .向右平移6π个单位长度 D .向右平移3π个单位长度 【来源】浙江省金华十校2017-2018学年高一上学期期末调研考试数学试题 【答案】B4.已知0>ω,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是( ) A .15[,]24B .13[,]24C .1(0,]2D .(0,2]【来源】2012年全国普通高等学校招生统一考试理科数学(课标卷带解析) 【答案】A5.已知cos cos θθ=,tan tan θθ=-|,则2θ的终边在( ) A .第二、四象限B .第一、三象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上【来源】辽宁省营口市2017-2018学年高一4月月考数学试题 【答案】D6.记0cos(80)k -=,那么0tan100=( )A .B .C D .【来源】2010年普通高等学校招生全国统一考试(全国Ⅰ)理科数学全解全析 【答案】B7.在ABC ∆中,tan tan tan A B A B ++=,则C 等于( )A .6π B .4π C .3π D .23π 【来源】广西宾阳县宾阳中学2017-2018学年高一5月月考数学试题 【答案】C8.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】B9.如图,在平面直角坐标系xOy 中,质点M N ,间隔3分钟先后从点P ,绕原点按逆时针方向作角速度为6π弧度/分钟的匀速圆周运动,则M 与N 的纵坐标之差第4次达到最大值时,N 运动的时间为( )A .37.5分钟B .40.5分钟C .49.5分钟D .52.5分钟【来源】福建省福州格致中学2017-2018学年高一下学期第四学段质量检测数学试题 【答案】A10.函数sin(2)3y x π=+图象的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=【来源】2008年普通高等学校招生全国统一考试数学文科(安徽卷) 【答案】D11.函数y =的定义域是( )A .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .()22,233k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,266k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .()222,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【来源】2019年一轮复习讲练测 4.3三角函数的图象与性质 【答案】D12.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期 A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关【来源】2019高考备考一轮复习精品资料 专题十八 三角函数的图象和性质 教学案 【答案】B象关于y 轴对称,则m 的最小值是( ) A .6π B .3π C .23π D .56π 【来源】2011届江西省湖口二中高三第一次统考数学试卷 【答案】C14.若tan 3α=,4tan 3β=,则tan()αβ-= A .3B .3-C .13D .13-【来源】北京市清华附中2017-2018学年高三数学十月月考试题(文) 【答案】C 15.若sin cos 1sin cos 2αααα+=-,则tan 2α等于( )A .34-B .34C .43-D .43【来源】2012年全国普通高等学校招生统一考试文科数学(江西卷带解析) 【答案】B16.函数()sin()f x x ωϕ=+(其中2πϕ<)的图象如图所示,为了得到()sin g x xω=的图象,则只要将()f x 的图象A .向右平移个单位长度B .向右平移个单位长度C .向左平移个单位长度D .向左平移个单位长度【来源】2015届福建省八县(市)一中高三上学期半期联考文科数学试卷(带解析) 【答案】A17.曲线sin (0,0)y A x a A ωω=+>>在区间2π0,ω⎡⎤⎢⎥⎣⎦上截直线2y =及1y =-所得的弦长相等且不为0,则下列对A ,a 的描述正确的是( ). A .12a =,32A >B .12a =,32A ≤ C .1a =,1A ≥ D .1a =,1A ≤【来源】广东省华南师范大学附属中学2016-2017学年高一上学期期末考试数学试题 【答案】A价y (单位:元/平方米)与第x 季度之间近似满足关系式:()()500sin 95000y x ωϕω=++>.已知第一、二季度的平均单价如下表所示:则此楼盘在第三季度的平均单价大约是( ) A .10000B .9500C .9000D .8500【来源】第一章全章训练 【答案】C19.函数5sin(2)2y x π=+的图象的一条对称轴方程是( ) A .2x π=-B .4πx =-C .8x π=D .54x π=【来源】2012-2013学年黑龙江省集贤县第一中学高一上学期期末考试数学试题(带解析) 【答案】A 20.已知-2π<θ<2π,且sin θ+cos θ=a ,其中a ∈(0,1),则关于tan θ的值,在以下四个答案中,可能正确的是( ) A .-3B .3或13C .-13D .-3或-13【来源】浙江省温州中学2016-2017学年高一下学期期中考试数学试题 【答案】C 21.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D 22.1cos()2πα+=-,322παπ<<,()sin 2πα-的值为( )A .B .12C .±D .2【来源】江西省上饶市“山江湖”协作体2018-2019学年高一下学期统招班第一次月考【答案】D23.若0<α<β<π4,sinα+cosα=a,sinβ+cosβ=b,则( ).A .a <bB .a >bC .ab <1D .ab >2【来源】河北省石家庄市辛集中学2015-2016学年高一下学期综合练习(三)数学试题 【答案】A24.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3a =,7c =,60C =︒,则b = ( ) A .5B .8C .5或-8D .-5或8【来源】正余弦定理 滚动习题(三) [ 范围 1 ] 【答案】B25.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7sin()6πα+的值是( )A .5-B .5C .45-D .45【来源】广东省广州市执信中学2018-2019学年度上学期高三测试数学(必修模块)试题 【答案】C26.将函数sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数 A .在区间,44ππ⎡⎤-⎢⎥⎣⎦ 上单调递增 B .在区间,04π⎡⎤-⎢⎥⎣⎦ 上单调递减 C .在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增 D .在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减 【来源】黑龙江省牡丹江市第一高级中学2017-2018学年高二下学期期末考试数学(文)试题 【答案】A27.若α是第三象限的角, 则2απ-是( )A .第一或第二象限的角B .第一或第三象限的角C .第二或第三象限的角D .第二或第四象限的角【来源】浙江省杭州第二中学三角函数 单元测试题28.已知函数()()0,0,2f x Asin x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则函数()f x 的解析式为 ( )A .()sin()84f x x ππ=+B .()sin()84f x x ππ=-C .3()sin()84f x x ππ=+D .3()sin()84f x x ππ=-【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】A29.曲线cos 2y x =与直线y =在y轴右侧的交点按横坐标从小到大依次记为1P ,2P ,3P ,4P ,5P ,…,则15PP 等于 ( )A .πB .2πC .3πD .4π【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】B二、填空题30.若sin(+θ)=25,则cos2θ= . 【来源】2017届福建福州外国语学校高三文上学期期中数学试卷(带解析) 【答案】31.已知直线l :mx +y +3m −√3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与y 轴交于C ,D 两点,若|AB|=2√3,则|CD|=__________. 【来源】2016年全国普通高等学校招生统一考试理科数学(全国3卷参考版) 【答案】432.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【答案】二33.设定义在R 上的函数()()0,122f x sin x ππωϕωϕ⎛⎫=+>-<<⎪⎝⎭,给出以下四个论断:①()f x 的周期为π; ②()f x 在区间,06π⎛⎫-⎪⎝⎭上是增函数;③()f x 的图象关于点,03π⎛⎫⎪⎝⎭对称;④()f x 的图象关于直线12x π=对称.以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题(写成“p q ⇒”的形式)______________.(其中用到的论断都用序号表示) 【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】①④⇒②③ 或①③⇒②④ 34.关于下列命题:①若,αβ是第一象限角,且αβ>,则sin sin αβ>; ②函数sin()2y x ππ=-是偶函数;③函数sin(2)3y x π=-的一个对称中心是(,0)6π;④函数5sin(2)3y x π=-+在,]1212π5π[-上是增函数,所有正确命题的序号是_____.【来源】2018-2019学年高中数学(人教A 版,必修4)第一章《三角函数》测试题 【答案】②③ 35.在ABC ∆中,若B a bsin 2=,则A =______.【来源】正余弦定理 滚动习题(三) [ 范围 1 ] 【答案】30o 或150o36.若sin()2cos(2),αππα-=-则sin()5cos(2)3cos()sin()παπαπαα-+----的值为____________.【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】35-37.若函数f (x )=sin 2x+cos 2x ,且函数y=f 2x ϕ⎛⎫+ ⎪⎝⎭(0<φ<π)是一个偶函数,则φ的值等于_____.【答案】π4三、解答题38.已知函数()3sin(2)3f x x π=-,(1)请用“五点作图法”作出函数()y f x =的图象;(2)()y f x =的图象经过怎样的图象变换,可以得到sin y x =的图象.(请写出具体的变换过程)【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】(1)见解析;(2)变换过程见解析.39.在△ABC 中,222a c b +=(1)求B 的大小;(2)求cos A +cos C 的最大值.【来源】浙江省嘉兴市第一中学2017-2018学年高二10月月考数学试题 【答案】(1)π4(2)140.已知A 、B 、C 是△ABC 的三个内角,向量m =(-1,n =(cos A ,sin A ),且m ·n =1. (1)求角A ; (2)若221sin 2cos sin BB B+-=-3,求tan C . 【来源】2017秋人教A 版高中数学必修四:学业质量标准检测3【答案】(1)3π;(2) . 41.已知函数()()()sin 0,0,02f x A x A ωϕωϕπ=+>><<的部分图象如图所示,且()506f f π⎛⎫=⎪⎝⎭.(1)求函数()f x 的最小正周期;(2)求()f x 的解析式,并写出它的单调递增区间. 【来源】第一章全章训练【答案】(1)π;(2)()22sin 23f x x π⎛⎫=+⎪⎝⎭;单调递增区间为7,,1212k k k ππππ⎡⎤--∈⎢⎥⎣⎦Z .42.已知函数()f x =4tan xsin (2x π-)cos (3x π-)-.(Ⅰ)求f (x )的定义域与最小正周期; (Ⅱ)讨论f (x )在区间[,44ππ-]上的单调性.【来源】2017秋人教A 版高中数学必修四:学业质量标准检测3 【答案】(Ⅰ){|,}2x x k k Z ππ≠+∈,π;(Ⅱ)在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 43.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 【来源】2008年普通高等学校招生全国统一考试数学文科(安徽卷)【答案】(Ⅰ)见解析(Ⅱ)函数()f x 在区间[,]122ππ-上的值域为[ 44.设函数()sin(2)()3f x A x x R π=+∈的图像过点7(,2)12P π-.(2)已知10()21213f απ+=,02πα-<<,求1cos()sin()2sin cos 221sin cos ππαααααα-++-+++的值; (3)若函数()y g x =的图像与()y f x =的图像关于y 轴对称,求函数()y g x =的单调区间.【来源】浙江省杭州第二中学三角函数 单元测试题【答案】(1)()223f x sin x π⎛⎫=+ ⎪⎝⎭;(2)713-;(3)单减区间为15(,)()1212k k k z ππππ-+∈, 单增区间为511(,)()1212k k k z ππππ++∈. 45.(1)已知角α的终边经过点P (4,-3),求2sin α+cos α的值;(2)已知角α的终边经过点P (4a ,-3a )(a ≠0),求2sin α+cos α的值;(3)已知角α终边上一点P 与x 轴的距离与y 轴的距离之比为3∶4,求2sin α+cos α的值.【来源】第3章章末检测-2018-2019版数学创新设计课堂讲义同步系列(湘教版必修2)【答案】(1)-25(2)见解析(3)见解析 46.是否存在实数a ,使得函数y =sin 2x +acosx +5a 8−32在闭区间[0,π2]上的最大值是1?若存在,求出对应的a 值;若不存在,请说明理由.【来源】重庆市万州二中0910年高一下学期期末考试【答案】f max (t)=f(a 2)=a 42+58a −12=1, 47.A,B 是单位圆O 上的点,点A 是单位圆与x 轴正半轴的交点,点B 在第二象限,记∠AOB =θ,且sinθ=45.(1)求点B 的坐标;(2)求sin (π+θ)+2sin(π2−θ)2tan (π−θ)的值.【来源】2015-2016学年广西钦州港开发区中学高二上第一次月考理科数学试卷(带解析)【答案】(1)(−35,45);(2)−53. 48.已知函数()sin 214f x x π⎛⎫=++ ⎪⎝⎭(1)用“五点法”作出()f x 在7,88x ππ⎡⎤∈-⎢⎥⎣⎦上的简图; (2)写出()f x 的对称中心以及单调递增区间;(3)求()f x 的最大值以及取得最大值时x 的集合.【来源】2018-2019学年高中数学(人教A 版,必修4)第一章《三角函数》测试题【答案】(1)见解析;(2)k ππ,028⎛⎫+ ⎪⎝⎭,k Z ∈,最大值为2,此时,,8x k k ππ=+∈Z . 49.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2a =,5c =,3cos 5B =. (1)求b 的值;(2)求sin C 的值.【来源】正余弦定理 滚动习题(三) [ 范围 1 ]【答案】(1; (2.50.已知函数f (x )=4sin π-3x ⎛⎫ ⎪⎝⎭cos . (1)求函数f (x )的最小正周期和单调递增区间;(2)若函数g (x )=f (x )-m 区间在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点x 1,x 2,求实数m 的取值范围,并计算tan(x 1+x 2)的值.【来源】人教A 版2018-2019学年高中数学必修4第三章三角恒等变换测评【答案】(1)T=π,递增区间为π5ππ-,π1212k k ⎡⎤+⎢⎥⎣⎦(k ∈Z).(2) m ∈-3.。
高中数学三角函数练习题及答案
高中数学三角函数练习题及答案一、填空题1.已知四面体ABCD,M 、N 分别为棱AD 、BC 的中点,F 为棱AB 上异于A 、B 的动点.则下列结论中正确的结论的序号为__________.①线段MN 的长度为1;②若点G 为线段MN 上的动点,则无论点F 与G 如何运动,直线FG 与直线CD 都是异面直线;③MFN ∠的余弦值的取值范围是⎡⎢⎣⎭; ④FMN1.2.已知函数()1sin sin 34f x x x π⎛⎫=⋅+- ⎪⎝⎭定义域为[](),m n m n <,值域为11,24⎡⎤-⎢⎥⎣⎦,则n m-的最小值是________.3.已知三棱锥S ABC -中,SA SB SC ==,ABC 是边长为4的正三角形,点E ,F 分别是SC ,BC 的中点,D 是AC 上的一点,且EF SD ⊥,若3FD =,则DE =___________. 4.已知函数()[)[]243,0,3,92sin ,3,156x x y f x x x π⎧⎛⎫-∈⎪ ⎪⎪⎝⎭==⎨⎪∈⎪⎩若存在实数a 、b 、c 、d 满足()()()()f a f b f c f d ===(其中a b c d <<<),则()()a b cd +⋅的取值范围是______.5.在ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,D 为边BC 上的一点,若6c =,b =sin BAD ∠=,cos BAC ∠=,则AD =__________. 6.在ABC 中,记角,,A B C 所对的边分别是,,a b c ,面积为S ,则24Sb ac+的最大值为___________.7.通信卫星与经济、军事等密切关联,它在地球静止轨道上运行,地球静止轨道位于地球赤道所在平面,轨道高度为km h (轨道高度是指卫星到地球表面的距离).将地球看作是一个球(球心为O ,半径为km r ),地球上一点A 的纬度是指OA 与赤道平面所成角的度数,点A 处的水平面是指过点A 且与OA 垂直的平面,在点A 处放置一个仰角为θ的地面接收天线(仰角是天线对准卫星时,天线与水平面的夹角),若点A 的纬度为北纬30,则tan θ________.8.已知(sin )21,22f x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,那么(cos1)f =________.9.1643年法国数学家费马曾提出了一个著名的几何问题:已知一个三角形,求作一点,使其到这个三角形的三个顶点的距离之和为最小.它的答案是:当三角形的三个角均小于120°时,所求的点为三角形的正等角中心(即该点与三角形的三个顶点的连线段两两成角120°),该点称为费马点.已知ABC 中,其中60A ∠=︒,1BC =,P 为费马点,则PB PC PA +-的取值范围是__________.10.已知正四棱柱1111ABCD A B C D -中,2AB =,13AA =.若M 是侧面11BCC B 内的动点,且AM MC ⊥,则1A M 的最小值为__________.二、单选题11.已知双曲线2221(0)y x b b-=>的左、右焦点分别为1F ,2F ,过点2F 作直线l 交双曲线的右支于A ,B 两点.若11||::3:3:2AB AF BF =,则双曲线的离心率为( ) A .333B .2C .113D .1112.已知1F ,2F 分别是椭圆2222:1(0)x yE a b a b+=>>的左、右焦点,若在椭圆E 上存在点M ,使得12MF F △的面积等于2122sin b F MF ∠,则椭圆E 的离心率e 的取值范围为( )A .3,12⎡⎫⎪⎢⎪⎣⎭B .30,2⎛⎤⎥ ⎝⎦ C .12,22⎛⎤⎥ ⎝⎦D .2,12⎡⎫⎪⎢⎪⎣⎭13.如图,设1F ,2F 是双曲线()22210xy a a-=>的左、右焦点,过点2F 作渐近线的平行线交另外一条渐近线于点A ,若12AF F △的面积为54,离心率满足12e <<,则双曲线的方程为( )A .2215x y -=B .2214x y -=C .2213x y -=D .2212x y -=14.在三棱锥A BCD -中,2AB AD BC ===,13CD =22AC =3BD =,则三棱锥外接球的表面积为( ) A .927πB .9πC .1847πD .18π 15.若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为( )A .4B .8C .12D .1616.已知函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,66f x f x ππ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,22f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,下列四个结论: ①4πϕ=②93()2k k N ω=+∈ ③02f π⎛⎫-= ⎪⎝⎭④直线3x π=-是()f x 图象的一条对称轴其中所有正确结论的编号是( ) A .①②B .①③C .②④D .③④17.已知函数()()sin 302f x x πϕϕ⎛⎫=-<≤ ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π上单调递增,现有如下三个结论:①ϕ的最小值为3π; ②当ϕ取得最大值时,将函数()f x 的图像向左平移18π个单位后,再把曲线上各点的横坐标伸长到原来的2倍,得到函数()g x 的图像,则132g π⎛⎫= ⎪⎝⎭;③函数()f x 在[]0,2π上有6个零点. 则上述结论正确的个数为( ) A .0B .1C .2D .318.已知函数2()sin f x x x =⋅各项均不相等的数列{}n x 满足||(1,2,3,,)2i x i n π≤=.令*1212()([()()()())]n n F n x x x f x f x f x n N =+++⋅+++∈.给出下列三个命题:(1)存在不少于3项的数列{},n x 使得()0F n =;(2)若数列{}n x 的通项公式为*1()()2n n x n N =-∈,则(2)0F k >对k *∈N 恒成立;(3)若数列{}n x 是等差数列,则()0F n ≥对n *∈N 恒成立,其中真命题的序号是( )A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3)19.设锐角ABC ∆的三个内角,,A B C 的对边分别为,,a b c 且1c =,2A C =,则ABC ∆周长的取值范围为( )A .(0,2+B .(0,3C .(2+D .(220.△ABC 中,BD 是AC 边上的高,A=4π,BD AC =( )A .14B .12C .23D .34三、解答题21.已知向量()()()3cos ,cos ,sin ,cos 0a x x b x x ωωωωω=-=>,若函数()12f x a b =⋅+的最小正周期为π.(1)求()f x 的解析式;(2)若关于x 的方程22cos 22cos 23301212a f x x f x x a ππ⎡⎤⎡⎤⎛⎫⎛⎫++-+--+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦在04π⎡⎤⎢⎥⎣⎦,有实数解,求实数a 的取值范围.22.已知函数()cos f x x =.(1)若,αβ为锐角,()f αβ+= 4tan 3α=,求cos2α及tan()βα-的值;(2)函数()(2)3g x f x =-,若对任意x 都有2()(2)()2g x a g x a ≤+--恒成立,求实数a 的最大值;(3)已知3()()()=2f f f αβαβ+-+,,(0,)αβπ∈,求α及β的值.23.已知函数()cos f x x x =,()sin g x x =,0,2x π⎡⎤∈⎢⎥⎣⎦.(1)求证:()()f x g x ≤;(2)若()ax g x bx <<在0,2π⎛⎫⎪⎝⎭上恒成立,求a 的最大值与b 的最小值.24.已知函数2()2sin cos ()f x x x x a a R =-++∈,且(0)f = (1)求a 的值;(2)若()f x ω在[0,]π上有且只有一个零点,0>ω,求ω的取值范围. 25.已知ABC ∆的三个内角、、A B C 的对边分别为a b c 、、,且22b c ac =+, (1)求证:2B C =;(2)若ABC ∆是锐角三角形,求ac的取值范围.26.已知函数()2sin 2cos 3f x x a x =+-.(1)当1a =时,求该函数的最大值;(2)是否存在实数a ,使得该函数在闭区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为1?若存在,求出对应a的值;若不存在,试说明理由.27.对于函数()f x ,若存在定义域中的实数a ,b 满足0b a >>且()()2()02a bf a f b f +==≠,则称函数()f x 为“M 类” 函数. (1)试判断()sin f x x =,x ∈R 是否是“M 类” 函数,并说明理由;(2)若函数()2|log 1|f x x =-,()0,x n ∈,*n N ∈为“M 类” 函数,求n 的最小值. 28.已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足sin()n n b a =,集合*{|,}n S x x b n ==∈N .(1)若10a =,23d π=,求集合S ; (2)若12a π=,求d 使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,n T n b b +=,T 是不超过5的正整数,求T 的所有可能值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S .29.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,已知sin tan 1cos BC B=-.(Ⅰ)求证:ABC ∆为等腰三角形;(Ⅱ)若ABC ∆是钝角三角形,且面积为24a ,求2b ac 的值.30.已知函数())2cos cos 1f x xx x =+-.(1)求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值;(2)若()85f x =-,2,3x ππ⎡⎤∈⎢⎥⎣⎦,求cos2x 的值;(3)若函数()()0y f x ωω=>在区间,62ππ⎡⎤⎢⎥⎣⎦上是单调递增函数,求正数ω的取值范围.【参考答案】一、填空题1.①④2.3π 34.()135,2165.467.2rr h-+ 8.1π-##1π-+9.⎫⎪⎪⎣⎭10二、单选题11.A 12.A 13.B 14.A 15.B 16.B 17.C 18.D 19.C 20.A 三、解答题21.(1)()sin(2)6f x x π=-;(2)1a 或732a +-.【解析】(1)根据向量数量积的坐标运算及三角公式,化简可得()f x 的解析式; (2)先化简()sin 212f x x π+=,利用换元法,设sin 2cos2t x x =-,把目标方程转化为关于t 的方程,分离参数后进行求解.【详解】 (1)因为()()()3cos ,cos ,sin ,cos 0a x x b x x ωωωωω=-=>,所以()2111cos 213sin cos 22222x f x a b x x x x ωωωωω+=⋅+=-+=-+ sin(2)6x πω=-.因为()f x 的最小正周期为π,所以22ππω=,即1ω=,所以()sin(2)6f x x π=-. (2)由(1)可知()sin 212f x x π+=.因为2(sin 2cos 2)x x +22sin 22sin 2cos 2cos 2x x x x =++12sin 2cos2x x =+, 222(sin 2cos 2)sin 22sin 2cos 2cos 2x x x x x x -=-+12sin 2cos2x x =-,所以22(sin 2cos2)12sin 2cos211(sin 2cos2)x x x x x x ⎡⎤+=+=+--⎣⎦.令sin 2cos2t x x =-,则22(sin 2cos 2)2x x t +=-,则方程22cos 22cos 23301212a fx x f x x a ππ⎡⎤⎡⎤⎛⎫⎛⎫++-+--+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦可化为()2222330a t t a ---+=,即22230at t a +--=.因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以2,444x πππ⎡⎤-∈-⎢⎥⎣⎦,所以sin 2cos 22[1,1]4t x x x π⎛⎫=-=-∈- ⎪⎝⎭.所以由题意可知,方程22230at t a +--=在[1,1]t ∈-时有解; 令2()223g t at t a =+--,当0a =时,()23g t t =-,由()0g t =得32t =(舍);当0a ≠时,则22230at t a +--=可化为212132t a t-=-,令22132t y t-=-,[1,1]t ∈-,设32u t =-,则1(3),[1,5]2t u u =-∈,2212(3)11(3)222u u y u u⎡⎤--⎢⎥--⎣⎦==⨯1762u u ⎛⎫=+- ⎪⎝⎭,因为7u u+≥u = 当1u =时,7u u+取到最大值8,所以3,1]y ∈,所以13,1]a ∈,解得1a 或732a +-. 所以实数a 的取值范围是1a 或732a +- 【点睛】本题主要考查三角函数的性质,利用向量的坐标运算及三角公式把目标函数化简为最简形式,是这类问题常用求解方向,方程有解问题通常利用分离参数法来解决,侧重考查数学运算的核心素养. 22.(1)72cos 2,tan()2511αβα=--=;(2)265-;(3)3παβ== 【解析】 【分析】(1)根据同角三角函数的关系和二倍角的余弦公式可求得cos2α的值,利用二倍角的正切公式、同角三角函数的基本关系以及两角差的正切公式可求解tan()βα-的值;(2)由余弦函数的有界性求得()g x 的值域,再将不等式分离参数,并令()1t g x =-,可得1a t t ≤+对[5,3]t ∈--恒成立.易知函数1y t t=+在[5,3]t ∈--单调递增,求出其最小值,则可得265a ≤-,从而求得a 的最大值; (3)利用和差化积公式(需证明)以及二倍角公式,将该式化简,配凑成22(2coscos)sin 0222αβαβαβ+---+=,再结合,(0,)αβπ∈,即可求出α及β的值.【详解】 解:(1)4tan 3α=,且α为锐角, 4sin 5α∴=,3cos 5α=,22tan 24tan 21tan 7ααα==--则227cos 2cos sin 25ααα=-=-,又()cos()f αβαβ+=+=,αβ为锐角,sin()αβ∴+=,tan()2αβ+=-, tan()tan[()2]βααβα∴-=+-242()tan()tan 227241tan()tan 2111(2)()7αβααβα---+-===+++-⨯-; (2)()(2)3cos 23[4,2]g x f x x =-=-∈--,2()(2)()2g x a g x a ≤+--对任意x 恒成立,即2()2()2(()1)g x g x g x a -+≤-对任意x 恒成立, 令()1[5,3]t g x =-∈--,211t a t t t+∴≤=+对[5,3]t ∈--恒成立,又函数1y t t=+在[5,3]t ∈--单调递增,∴当5t =-时,min 126()5t t +=-,265a ∴≤-,则a 的最大值为265-; (3)3()()()2f f f αβαβ+-+=, 即3cos cos cos()2αβαβ+-+= , cos cos()22αβαβα+-=+coscossinsin2222αβαβαβαβ+-+-=-,cos cos()22αβαββ+-=-coscos+sinsin2222αβαβαβαβ+-+-=,cos cos 2coscos22αβαβαβ+-∴+=,又2cos()2cos12αβαβ++=-,232coscos2cos 12222αβαβαβ+-+∴-+=, 则24cos 4coscos10222αβαβαβ++--+=, 22(2coscos)1cos 0222αβαβαβ+---+-=, 即22(2coscos)sin 0222αβαβαβ+---+=,2cos cos 022sin 02αβαβαβ+-⎧-=⎪⎪∴⎨-⎪=⎪⎩,又0απ<<,0βπ<<, 3παβ∴==.【点睛】本题考查了同角三角函数间的关系,两角和与差的三角函数公式,二倍角余弦和正切公式,不等式恒成立问题,考查了运算能力和转化能力,属于综合性较强的题. 23.(1)答案见解析;(2)a 最大值为2π,b 的最小值为1. 【解析】 【分析】(1)构建函数()cos sin h x x x x =-,通过导数研究函数()h x 在0,2π⎡⎤⎢⎥⎣⎦单调性并计算最值,可得结果.(2)构造函数()sin M x x cx =-,通过分类讨论的方法,0c ≤,1c ≥和01c <<,利用导数判断函数()M x 的单调性,并计算最值比较,可得结果. 【详解】(1)由()()()cos sin h x f x g x x x x =-=- 所以()'cos sin cos sin h x x x x x x x =--=-. 又0,2x π⎡⎤∈⎢⎥⎣⎦,()'sin 0h x x x =-≤,所以()h x 在区间上0,2π⎡⎤⎢⎥⎣⎦单调递减.从而()()00h x h ≤=,()()f x g x ≤. (2)当0x >时,“()ax g x <”等价于“sin 0x ax ->” “()g x bx <”等价于“sin 0x bx -<”.令()sin M x x cx =-,则()'cos M x x c =-,当0c ≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当1c ≥时,因为对任意0,2x π⎛⎫∈ ⎪⎝⎭,()'cos 0M x x c =-<,所以()M x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减.从而()()00M x M <=对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当01c <<时,存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,使得()'cos 0M x x c =-=.()M x 与()'M x 在区间0,2π⎛⎫⎪⎝⎭上的情况如下:因为M x 在区间00,x 上是增函数, 所以()()000M x M >=.进一步,“()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立”当且仅当1022M c ππ⎛⎫=-≥ ⎪⎝⎭,即20c π<≤,综上所述: 当且仅当2c π≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立; 当且仅当1c ≥时,()0M x <对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.所以,若()ax g x bx <<对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立,则a 最大值为2π,b 的最小值为1. 【点睛】本题考查导数的综合应用,关键在于构建函数,化繁为简,同时掌握分类讨论的思想,考验分析问题的能力以及计算能力,属中档题.24.(1)a =(2)15,36⎡⎫⎪⎢⎣⎭【解析】 【分析】(1)利用降次公式、辅助角公式化简()f x 表达式,利用(0)f =a 的值. (2)令()0f x ω=,结合x 的取值范围以及三角函数的零点列不等式,解不等式求得ω的取值范围. 【详解】(1)2()2sin cos f x x x x a =-++sin 2x x a =+2sin 23x a π⎛⎫=++- ⎪⎝⎭(0)f =(0)2sin3f a π∴=+=即a =(2)令()0f x ω=,则sin 203x πω⎛⎫+= ⎪⎝⎭,[0,]x π∈,2,2333πππωπω⎡⎤∴+∈+⎢⎥⎣⎦,()f x 在[0,]π上有且只有一个零点,223πππωπ∴+<,1536ω∴<, ω∴的取值范围为15,36⎡⎫⎪⎢⎣⎭. 【点睛】本小题主要考查三角恒等变换,考查三角函数零点问题,考查化归与转化的数学思想方法,属于基础题.25.(1)证明见解析;(2)(1,2) 【解析】 【分析】(1)由22b c ac =+,联立2222cos b a c ac B =+-⋅,得2cos a c c B =+⋅,然后边角转化,利用和差公式化简,即可得到本题答案; (2)利用正弦定理和2B C =,得2cos 21aC c=+,再确定角C 的范围,即可得到本题答案. 【详解】解:(1)锐角ABC ∆中,22b c ac =+,故由余弦定理可得:2222cos b a c ac B =+-⋅,2222cos c ac a c ac B ∴+=+-⋅,22cos a ac ac B ∴=+⋅,即2cos a c c B =+⋅,∴利用正弦定理可得:sin sin 2sin cos A C C B =+,即sin()sin cos sin cos sin 2sin cos B C B C C B C C B +=+=+,sin cos sin sin cos B C C C B ∴=+,可得:sin()sin B C C -=,∴可得:B C C -=,或B C C π-+=(舍去),2B C ∴=.(2)2sin sin()sin(2)2cos cos22cos21sin sin sin a A B C C C C C C c C C C++====+=+A B C π++=,,,A B C 均为锐角,由于:3C A π+=, 022C π∴<<,04C π<<.再根据32C π<,可得6C π<,64C ππ∴<<,(1,2)ac∴∈ 【点睛】本题主要考查正余弦定理的综合应用,其中涉及到利用三角函数求取值范围的问题. 26.(1)1-;(2)存在,且2a =. 【解析】 【分析】(1)将1a =代入函数()y f x =的解析式,得出()()2cos 11f x x =---,由1cos 1x -≤≤结合二次函数的基本性质可得出该函数的最大值;(2)换元[]cos 0,1t x =∈,将问题转化为二次函数()222t at g t -+-=在区间[]0,1上的最大值为1,然后分0a ≤、01a <<和1a ≥三种情况讨论,利用二次函数的基本性质求出函数()222t at g t -+-=在区间[]0,1上最大值,进而求得实数a 的值.【详解】(1)当1a =时,()()22sin 2cos 3cos 11f x x x x =+-=---,1cos 1x -≤≤,当cos 1x =时,该函数取得最大值,即()max 1f x =-;(2)()22sin 2cos 3cos 2cos 2x a x x a x f x =+-=-+-,当0,2x π⎡⎤∈⎢⎥⎣⎦时,设[]cos 0,1t x =∈,设()222t at g t -+-=,[]0,1t ∈,二次函数()y g t =的图象开口向下,对称轴为直线t a =.当0a ≤时,函数()y g t =在[]0,1上单调递减,所以0=t 时,()()max 021g t g ==-≠,0a ∴≤不符合题意;当1a ≥时,函数()y g t =在[]0,1上单调递增,所以1t =时,()()max 1231g t g a ==-=,2a ∴=满足1a ≥;当01a <<时,函数()y g t =在[]0,a 上单调递增,在(],1a 上单调递减, ∴当t a =时,()()2max 21g t g a a ==-=,a ∴=01a <<.综上,存在2a =符合题意. 【点睛】本题考查二次型余弦函数的最值,将问题转化为二次函数的最值来求解是解题的关键,第二问要对二次函数图象的对称轴与区间的位置关系进行分类讨论,结合二次函数的单调性求解,考查分类讨论思想的应用,属于中等题. 27.(1)不是.见解析(2)最小值为7. 【解析】(1)不是,假设()f x 为M 类函数,得到2b a k π=+或者2b a k ππ+=+,代入验证不成立.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,得到函数的单调区间,根据题意得到326480b b b ---=,得到()6,7b ∈,得到答案.【详解】 (1)不是.假设()f x 为M 类函数,则存在0b a >>,使得sin sin a b =, 则2b a k π=+,k Z ∈或者2b a k ππ+=+,k Z ∈, 由sin 2sin2a ba +=, 当2b a k π=+,k Z ∈时,有()sin 2sin a a k π=+,k Z ∈, 所以sin 2sin a a =±,可得sin 0a =,不成立;当2b a k ππ+=+,k Z ∈时,有sin 2sin()2a k ππ=+,k Z ∈,所以sin 2a =±,不成立, 所以()f x 不为M 类函数.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,则()f x 在()0,2单调递减,在()2,+∞单调递增,又因为()f x 是M 类函数,所以存在02a b <<<,满足2221log log 12|log 1|2a ba b +-=-=-, 由等式可得:()2log 2ab =,则4ab =,所以()22142(4)0222a a b a a a-+-=+-=>, 则2log 102a b +->,所以得22log 12log 12a b b +⎛⎫-=- ⎪⎝⎭, 从而有222log 1log 2a b b +⎛⎫+= ⎪⎝⎭,则有()224a b b +=,即248b b b ⎛⎫+= ⎪⎝⎭,所以43288160b b b -++=,则()()3226480b b b b ----=,由2b >,则326480b b b ---=,令()32648g x x x x =---,当26x <<时,()()26480g x x x x =---<,且()6320g =-<,()7130g =>,且()g x 连续不断,由零点存在性定理可得存在()6,7b ∈, 使得()0g b =,此时()0,2a ∈,因此n 的最小值为7. 【点睛】本题考查了函数的新定义问题,意在考查学生对于函数的理解能力和应用能力.28.(1)⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭;(2)23π或π;(3)3T =或4,3T =时,23n a n π=,S ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭;4T =时,2n a n π=,{}0,1,1S =-【解析】 【分析】(1)根据等差数列的通项公式写出n a ,进而求出n b ,再根据周期性求解;(2)由集合S 的元素个数,分析数列{}n b 的周期,进而可求得答案;(3)分别令1T =,2,3,4,5进行验证,判断T 的可能取值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S 【详解】(1)等差数列{}n a 的公差(0d ∈,]π,数列{}n b 满足sin()n n b a =, 集合{}*|,n S x x b n N ==∈. ∴当120,3a d π==,所以集合{S =0. (2)12a π=,数列{}n b 满足sin()n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=, ②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合1{S b =,2b ,3}b ,符合题意. 与之相应的一个等差数列{}n a 的通项公式为23n a n π=,此时33,,022S ⎧⎫⎪⎪=-⎨⎬⎪⎪⎩⎭. ②当4T =时,4n n b b +=,sin(4)sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0d ∈,]π,故42n n a d a k π+=+,2k d π=,又1k ∴=,2 当1k =时满足条件,此时{0S =,1,1}-. 与之相应的一个等差数列{}n a 的通项公式为2n a n π=,此时{}0,1,1S =-【点睛】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,是一道综合题. 29.(Ⅰ)证明见解析;(Ⅱ)23 【解析】 【分析】(Ⅰ)将正切化弦,结合两角和差正弦公式可求得()sin sin C B C =+,根据三角形内角和可整理为sin sin C A =,则由正弦定理可得到结论;(Ⅱ)利用三角形面积公式可求得1sin 2B =;根据三角形为钝角三角形且(Ⅰ)中的c a =,可知B 为钝角,求得cos B ;利用余弦定理可构造方程求得,a b 之间关系,从而得到所求结果. 【详解】(Ⅰ)由sin tan 1cos B C B =-得:sin sin cos 1cos C BC B=-则:()sin sin cos cos sin sin C B C B C B C =+=+A B C π++= ()()sin sin sin B C A A π∴+=-= sin sin C A ∴=由正弦定理可知:c a =ABC ∆∴为等腰三角形(Ⅱ)由题意得:2211sin sin 224a S ac B a B ===,解得:1sin 2B =ABC ∆为钝角三角形,且a c = B ∴为钝角 cos B ∴=由余弦定理得:(2222222cos 22b a c ac B a a =+-==+2222b b ac a ∴==【点睛】本题考查三角形形状的求解、利用余弦定理、三角形面积公式求解三角形边之间的关系问题,涉及到两角和差正弦公式、三角形内角和、诱导公式、同角三角函数值的求解等知识.30.(I )1-;(II ;(III )10,3⎛⎤ ⎥⎝⎦【解析】 【分析】将()f x 整理为2sin 26x π⎛⎫+ ⎪⎝⎭;(I )利用x 的范围求得26x π+的范围,结合sin x 的图象可求得最值;(II )利用()85f x =-可求得sin 26x ;结合角的范围和同角三角函数关系可求得cos 26x π⎛⎫+ ⎪⎝⎭;根据cos 2cos 266x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,利用两角和差余弦公式可求得结果;(III )利用x 的范围求得26x πω+的范围,从而根据sin x 单调递增区间构造出关于ω的不等式组,解不等式组再结合0>ω即可得到结果. 【详解】()2cos 2cos 12cos 22sin 26f x x x x x x x π⎛⎫=+-=+=+ ⎪⎝⎭(I )0,2x π⎡⎤∈⎢⎥⎣⎦ 72,666x πππ⎡⎤∴+∈⎢⎥⎣⎦[]2sin 21,26x π⎛⎫∴+∈- ⎪⎝⎭()f x ∴在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为:1-(II )由题意得:82sin 265x π⎛⎫+=- ⎪⎝⎭ 4sin 265x π⎛⎫∴+=- ⎪⎝⎭2,3x ππ⎡⎤∈⎢⎥⎣⎦ 3132,626x πππ⎡⎤∴+∈⎢⎥⎣⎦ 3cos 265x π⎛⎫∴+= ⎪⎝⎭ cos 2cos 2cos 2cos sin 2sin 666666x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫∴=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦341552=⨯(III )()2sin 26f x x πωω⎛⎫=+ ⎪⎝⎭,62x ππ⎡⎤∈⎢⎥⎣⎦时,2,6366x πωπππωωπ⎡⎤+∈++⎢⎥⎣⎦2622362k k ππωππωππππ⎧+≤+⎪⎪∴⎨⎪+≥-⎪⎩,k Z ∈,解得:12362k k ωω⎧≤+⎪⎨⎪≥-⎩,k Z ∈ 0ω>,可知当0k =时满足题意,即103ω<≤ω∴的取值范围为:10,3⎛⎤ ⎥⎝⎦【点睛】本题考查正弦型函数的值域求解、单调性应用、三角恒等变换公式应用、同角三角函数关系等问题.关键是能够利用二倍角公式和辅助角公式将函数化为()sin A x ωϕ+的形式,从而通过整体对应的方式来研究函数的值域和性质.。
三角函数专项题型练习
三角函数专项题型练习题型一:三角函数求值1.已知2tan()3πα-=-,且(,)2παπ∈--,则cos()3sin()cos()9sin απαπαα-++-+=________. 2.已知 ,则________.3.设⎪⎭⎫⎝⎛∈⎪⎭⎫ ⎝⎛∈ππβπα,2,2,0,若()97sin ,31cos =+-=βαβ,则αsin =________.4.若3cos()45πα-=,则sin2α=________.题型二:求三角函数的单调区间1.已知函数13cos 2sin 222y x x=--,则函数函数的单调递增区间为______;单调递减区间为______.2.将函数()()2sin 03f x x πωω⎛⎫=-> ⎪⎝⎭的图像向左平移3πω个单位,得到函数()y g x =的图像.若()y g x =在0,4π⎡⎤⎢⎥⎣⎦上为增函数,则ω的最大值为______.3.已知函数),0)(62sin()(>+=ωπωx x f 直线21,x x x x ==是)(x f y =图像的任意两条对称轴,且21x x -的最小值为2π.则函数)(x f 的单调增区间为______.4.函数()2cos tan xf x xsinx =的单调增区间为______.5.函数()()2f x sin x ϕ=+,其中2tan()3πα-=-为实数,若()6f x f π⎛⎫≤ ⎪⎝⎭对x R ∈ 恒成立,且2tan()3πα-=-,则()f x 的单调递增区间是______.题型三:由sin()y A x ωϕ=+的图象求其函数式 1.已知函数sin()y A x ωϕ=+),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的图象如图所示,则该函数的解析式是________.2.函数f(x)=ωx(ω>0)图像的相邻两支截直线y=π4所得线段长为π4,则a 的值是( )A. 0B. 1C. -D. 33.如图所示,是函数sin()y A x k ωϕ=++(0A >,0ω>,||2πϕ<)的图象的一部分,则函数解析式是________.4.要得到y=(2x-π3)的图象,只需将函数y=(2x+π3)的图象( )A. 向右平移π12个单位B. 向左平移π12个单位C. 向右平移π6个单位D. 向左平移π6个单位5.函数y=x+sinx -tanx -sinx 在区间(π23π2)内的图象是( )A. B. C. D.6.如图,一个水轮的半径为4m ,水轮圆心O 距离水面2m ,已知水轮每分钟转动5圈,如果当水轮上点P 从水中浮现时(图中点p0开始计算时间. (1)将点p 距离水面的高度z(m)表示为时间t(s)的函数; (2)点p 第一次到达最高点大约需要多少时间?题型四:求三角函数的周期1.设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上单调,且⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛6322πππf f f ,则)(x f 的最小正周期为________.2.函数2tan()3πα-=-的最小正周期__________. 3.函数()2sin sin cos 1f x x x x =++的最小正周期是 .4.函数x x f 2sin 31)(-=的最小正周期为__________.5.已知函数()2sin 23sin 2xf x x =-.则()f x 的最小正周期为 .题型五:三角函数的最值 1.函数2tan()3πα-=-的最小值为__________.2.已知函数()22sin cos 44f x x x x ππ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭,则()f x 在02x π⎡⎤∈⎢⎥⎣⎦,上的最大值与最小值之差为__________.3.设当x θ=时,函数()2sin cos f x x x =-取得最大值,则cos θ=__________.4.已知函数()sin cos f x x a x =+图象的一条对称轴是4x π=,且当x θ=时,函数()sin ()g x x f x =+取得最大值,则cos θ= .5.已知的定义域为[].则 的最小值为__________.6.函数sin 52sin x y x +=-的最大值为__________.题型六:三角函数的对称性1.已知函数y =A sin(2x +φ)的对称轴为x =,则φ的值为__________.2.将函数f (x )=2sin(2x -)的图象向左平移m 个单位(m >0),若所得的图象关于直线x =对称,则m 的最小值为__________.3.已知函数f (x )=3sin(ωx -)(ω>0)和g (x )=3cos(2x +φ)的图象的对称中心完全相同,若x ∈[0,],则f (x )的取值范围是________.泉州一中高二数学三角函数专题复习题型一:三角函数求值1.已知2tan()3πα-=-,且(,)2παπ∈--,则cos()3sin()cos()9sin απαπαα-++-+=________.15-2.已知 ,则________.3.设⎪⎭⎫⎝⎛∈⎪⎭⎫ ⎝⎛∈ππβπα,2,2,0,若()97sin ,31cos =+-=βαβ,则αsin =________.314.若3cos()45πα-=,则sin2α=________.725-题型二:求三角函数的单调区间1.已知函数13cos 2sin 222y x x=--,则函数函数的单调递增区间为______;单调递减区间为______.2,,63k k k z ππππ⎡⎤++∈⎢⎥⎣⎦27,,36k k k z ππππ⎡⎤++∈⎢⎥⎣⎦2.将函数()()2sin 03f x x πωω⎛⎫=-> ⎪⎝⎭的图像向左平移3πω个单位,得到函数()y g x =的图像.若()y g x =在0,4π⎡⎤⎢⎥⎣⎦上为增函数,则ω的最大值为______.23.已知函数),0)(62sin()(>+=ωπωx x f 直线21,x x x x ==是)(x f y =图像的任意两条对称轴,且21x x -的最小值为2π.则函数)(x f 的单调增区间为______.Z k k k ∈++-],6,3[ππππ4.函数()2cos tan x f x x sinx =的单调增区间为______.(),2k k k z πππ⎛⎫+∈ ⎪⎝⎭5.函数()()2f x sin x ϕ=+,其中2tan()3πα-=-为实数,若()6f x f π⎛⎫≤ ⎪⎝⎭对x R ∈ 恒成立,且,则()f x 的单调递增区间是______.()263k ,k k Z ππππ⎡⎤++∈⎢⎥⎣⎦题型三:由sin()y A x ωϕ=+的图象求其函数式 1.已知函数sin()y A x ωϕ=+),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的图象如图所示,则该函数的解析式是________.)48sin(4π+π-=x y 2.函数f(x)=ωx(ω>0)图像的相邻两支截直线y=π4所得线段长为π4,则a 的值是( A )A. 0B. 1C. -D. 3 3.如图所示,是函数sin()y A x k ωϕ=++(0A >,0ω>,||2πϕ<)的图象的一部分,则函数解析式是________.2sin(2)16y x π=++4.要得到y=(2x-π3)的图象,只需将函数y=(2x+π3)的图象( A )A. 向右平移π12个单位B. 向左平移π12个单位C. 向右平移π6个单位D. 向左平移π6个单位 解:∵cos(2x-π3)=sin(2x-π3+π2)=sin(2x+π6)=sin[2(x-π12)+π3],∴要得到y=(2x-π3)的图象,只需将函数y=(2x+π3)的图象向右平移π12个单位. 5.函数y=x+sinx -tanx -sinx 在区间(π23π2)内的图象是( D )A.B. C. D.6.解:函数分段画出函数图象如D 图示,故选D .6.如图,一个水轮的半径为4m ,水轮圆心O 距离水面2m ,已知水轮每分钟转动5圈,如果当水轮上点P 从水中浮现时(图中点p0开始计算时间. (1)将点p 距离水面的高度z(m)表示为时间t(s)的函数; (2)点p 第一次到达最高点大约需要多少时间?解:(1)依题意可知z 的最大值为6,最小为-,∴--2A+B=6⇒B=2A=4; ∵每秒钟内所转过的角为(52π60)=π6t ,得z=4(π6t+φ)+2,当t=0时,z=0,得sin-12,即φ=π6,故所求的函数关系式为z=4(π6t-π6)+2 (2)令z=4(π6t-π6)+2=6,得sin π6t-π6)=1,取π6-π6=π2,得t=4,故点P 第一次到达最高点大约需要4S .题型四:求三角函数的周期1.设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上单调,且⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛6322πππf f f ,则)(x f 的最小正周期为________.π2.函数2tan()3πα-=-的最小正周期__________.π 3.函数()2sin sin cos 1f x x x x =++的最小正周期是 .π4.函数x x f 2sin 31)(-=的最小正周期为.π5.已知函数()2sin 23sin 2xf x x =-.则()f x 的最小正周期为.2π 题型五:三角函数的最值 1.函数 的最小值为.3-2.已知函数()3sin 22sin cos 44f x x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()f x 在02x π⎡⎤∈⎢⎥⎣⎦,上的最大值与最小值之差为__________.33.设当x θ=时,函数()2sin cos f x x x =-取得最大值,则cos θ=__________.55-4.已知函数()sin cos f x x a x =+图象的一条对称轴是4x π=,且当x θ=时,函数()sin ()g x x f x =+取得最大值,则cos θ= .555.已知的定义域为[].则的最小值为.6.函数sin52sinxyx+=-的最大值为.6题型六:三角函数的对称性1.已知函数y=A sin(2x+φ)的对称轴为x=,则φ的值为.kπ+(k∈Z)2.将函数f(x)=2sin(2x-)的图象向左平移m个单位(m>0),若所得的图象关于直线x=对称,则m的最小值为.3.已知函数f(x)=3sin(ωx-)(ω>0)和g(x)=3cos(2x+φ)的图象的对称中心完全相同,若x∈[0,],则f(x)的取值范围是________.[-,3]。
高中数学三角函数测试卷(答案解析版)
高中数学三角函数测试卷(答案解析版)高中数学三角函数测试卷(答案解析版)一、选择题1. 假设α是锐角,sinα=0.6,那么sin(90°-α)的值是多少?解析:根据三角函数的互余关系,sin(90°-α) = cosα = √(1 - sin²α) = √(1 - 0.6²) = 0.8。
答案:0.82. 已知tanα = 3/4,sinα的值为多少?解析:由tanα = sinα/cosα可得sinα = tanα × cosα = 3/4 × 4/5 = 3/5。
答案:3/53. 已知sinα = 1/2,cosβ = 3/5,α和β都是锐角,则sin(α+β)的值是多少?解析:根据两角和的公式,sin(α+β) = sinα × cosβ + cosα × sinβ = (1/2) × (3/5) + √(1 - (1/2)²) × √(1 - (3/5)²) = 3/10 + √(3/10 × 7/10) = 3/10 + √(21/100) = 3/10 + 3√21/10√10 = (3 + 3√21)/10。
答案:(3 + 3√21)/10二、填空题4. 在锐角三角形ABC中,已知∠A=30°,BC=6,AC=10,则AB 等于多少?解析:根据正弦定理,AB/AC = sin∠B/sin∠A,代入已知条件得到AB/10 = sin∠B/sin30°,即AB = 10×sin∠B/sin30°。
由∠B + ∠C = 90°可得∠B = 90° - ∠A - ∠C = 90° - 30° - 60° = 0°。
因此,AB =10×sin0°/sin30° = 0/0 = 0。
三角函数值练习题
三角函数值练习题1. 计算以下各三角函数的值:a) sin 30°b) cos 45°c) tan 60°d) sec 75°e) csc 120°f) cot 150°解答:a) sin 30°:根据三角函数定义,sin 30° = 1/2b) cos 45°:根据三角函数定义,cos 45° = √2/2 = 1/√2c) tan 60°:根据三角函数定义,tan 60° = √3d) sec 75°:根据三角函数定义,sec 75° = 1/cos 75°因此,我们需要先计算 cos 75°的值。
使用半角公式,cos 75° = cos (45° + 30°) = cos 45° cos 30° - sin 45°sin 30°= (1/√2) * (√3/2) - (1/√2) * (1/2)= (√3 - 1) / 2√2然后,sec 75° = 1 / ((√3 - 1) / 2√2) = 2√2 / (√3 - 1)e) csc 120°:根据三角函数定义,csc 120° = 1 / sin 120°sin 120° = sin (90° + 30°) = sin 90° cos 30° + cos 90° sin 30°= 1 * (1/2) + 0 * (1/2)= 1/2因此,csc 120° = 1 / (1/2) = 2f) cot 150°:根据三角函数定义,cot 150° = 1 / tan 150°tan 150° = tan (180° - 30°) = -tan 30° = -1/√3因此,cot 150° = 1 / (-1/√3) = -√32. 求解以下方程:a) sin x = 1/2b) cos x = -1/2c) tan x = √3d) sec x = 2e) csc x = -1f) cot x = -√3解答:a) sin x = 1/2:根据三角函数值的定义,sin x = 1/2 的解为 x = 30° + 360°n 或 x = 150° + 360°n,其中 n 为整数。
高二数学三角函数练习题及答案
高二数学三角函数练习题及答案一、选择题1. 在一个单位圆上,角A与角B的弧长之比为3:5,则角A与角B的度数之比是多少?A) 18°:30°B) 30°:18°C) 54°:90°D) 90°:54°答案:B) 30°:18°2. 给定角θ∈[0,π/2],若sinθ的值为3/5,则cosθ+sinθ的值为多少?A) 1B) 8/5C) 5/4D) 34/25答案:C) 5/43. 已知tanθ = 4,且θ∈[0,π/2],求sinθ的值。
A) 3/5B) 4/5D) 4/3答案:A) 3/54. 若sin(x+30°) = cosx,求角x的度数。
A) 15°B) 30°C) 45°D) 60°答案:C) 45°二、填空题1. 若sinθ = cos2θ,求θ的度数(0 ≤ θ ≤ 180°)。
答案:45°2. 已知tanθ = 1/3,且θ为第四象限角,求sinθ的值。
答案:-3/√103. 若tanx = √5,求cosx的值。
答案:1/34. 已知sinα = 3/5,sinβ = 4/5,且α和β都是锐角,则tan(α+β)的值等于多少。
三、解答题1. 求证:tan(90°-θ) = cotθ。
证明:首先,我们知道tanθ = sinθ/cosθ,cotθ = cosθ/sinθ。
根据三角恒等式sin(90°-θ) = cosθ和cos(90°-θ) = sinθ,则tan(90°-θ) = sin(90°-θ)/cos(90°-θ) = cosθ/sinθ = cotθ。
2. 已知三角形ABC,其中∠B = 90°,∠C = 30°,BC = 3cm。
高二数学三角函数试题答案及解析
高二数学三角函数试题答案及解析1.函数的图像可由函数的图像()A.向左平移个单位得到B.向右平移个单位得到C.向左平移个单位得到D.向左平移个单位得到【答案】A【解析】因为可化为.所以将向左平移.可得到.故选A.本小题关键是考查的三角函数的平移,将时的的值,与是对比.即可知道是向左还是向右,同时也可以知道移了多少单位.【考点】1.三角函数的平移.2.类比的思想.2.设函数f (x) =.(1)求f(x)的最小正周期及其图象的对称轴方程;(2)将函数f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求g (x)在区间上的值域.【答案】(1),(2)【解析】解:(1)由得对称轴为(2)从而的值域为【考点】三角函数的性质点评:主要是考查了三角函数的性质的运用,属于基础题。
3.若角的终边上有一点,则的值是【答案】【解析】因为,所以.【考点】三角函数的定义点评:本题考查三角函数的定义,解决本题的关键是能熟练套用公式,属基础题.4.函数的最小值是,在一个周期内图象最高点与最低点横坐标差是,又:图象过点,求(1)函数解析式,(2)函数的最大值、以及达到最大值时的集合;(3)该函数图象可由的图象经过怎样的平移和伸缩得到?(4)当时,函数的值域.【答案】(1)(2)2 (3)向左平移个单位,横坐标伸长到原来的3倍,纵坐标变为原来的2倍(4)【解析】(1)易知:A =" 2" 半周期∴T = 6p 即()从而:设:令x = 0 有又:∴∴所求函数解析式为 .(2)令,即时,有最大值2,故当时,取最大值2 .(3)因为,所以向左平移个单位得到,横坐标伸长到原来的3倍得到,纵坐标伸长到原来的2倍得到.(4)因为,所以,所以,所以.【考点】由的部分图象确定其解析式.点评:本题考查由的部分图象确定其解析式,确定A,ω,φ的值是关键,φ的确定是难点,属于中档题.5.函数的图象上一点处的切线的斜率为A.1B.C.D.【答案】D【解析】根据题意可知,函数的导数为,在图象上一点处切线的斜率为,故选D.【考点】导数的几何意义点评:解决的关键是利用导数的几何意义来求解曲线的切线方程,属于基础题。
专题1.2 特殊角的三角函数值(专项训练)(解析版)
专题1.2 特殊角的三角函数值(专项训练)1.(2022•宁远县模拟)cos60°的倒数是( )A.B.C.2D.【解答】解:cos60°=,则cos60°的倒数是2.故选:C2.(2021秋•双阳区期末)已知∠α为锐角,且sinα=,则∠α=( )A.30°B.45°C.60°D.90°【解答】解:∵∠α为锐角,且sinα=,∴∠α=60°,故选:C.3.(2022•东丽区一模)2tan30°的值等于( )A.B.C.D.【解答】解:2tan30°=2×=.故选:D.4.(2022•和平区三模)已知∠A为锐角,且sin A=,那么∠A等于( )A.15°B.30°C.45°D.60°【解答】解:∵sin A=,∴∠A=60°.故选:D.5.(2021秋•正定县期末)在Rt△ABC中,∠B=90°,cos A=,则sin A=( )A.B.C.D.【解答】解:在Rt△ABC中,∠B=90°,cos A=,∴设AB=12k,AC=13k,∴BC===5k,∴sin A===,故选:A.6.(2021秋•邵东市期末)在△ABC中,∠C=90°,已知tan A=,则cos A=( )A.B.C.D.【解答】解:在△ABC中,∠C=90°,∵tan A=,∴=,设BC=3k,则AC=4k,∴AB===5k,∴cos A===,故选:B.7.(2021秋•呼兰区校级月考)在Rt△ABC中,∠A=90°,tan∠B=,则sin∠B的值为( )A.B.C.D.【解答】解:如图,在Rt△ABC中,∵tan B=,∴,设AC=4x,AB=3x,根据勾股定理得BC===5x,∴sin B=.故选:C.8.(2021秋•瑶海区校级月考)在Rt△ABC中,∠C=90°,sin A=,则tan A=( )A.B.C.D.【解答】解:∵∠C=90°,sin2A+cos2A=1;∴cos A===,∴tan A===.故选:D9.(2020秋•东昌府区校级期中)在Rt△ABC中,∠C=90°,sin B=,则tan A的值为( )A.B.C.D.【解答】解:∵sin B==,∴设AC=12x,AB=13x,由勾股定理得:BC===5x,∴tan A===,故选:D.10.(2021秋•乳山市期中)在Rt△ABC中,∠C=90°,,则cos B的值为 .【解答】解:在Rt△ABC中,∠C=90°,tan A==,∴设BC=a,则AC=3a,∴AB===a,∴cos B===,故答案为:.11.(2020秋•肥东县期末)已知α为锐角,则sinα﹣cos(90°﹣α)= .【解答】解:∵α为锐角,∴sinα=cos(90°﹣α),∴sinα﹣cos(90°﹣α)=0.故答案为0.12.(2020秋•岳阳期末)在△ABC中,∠C=90°,若sin B=,则cos A= .【解答】解:在直角△ABC中,∠C=90°,sin B===cos A,所以cos A=,故答案为:.13.(2021•张家川县模拟)Rt△ABC中,∠C=90°,,则sin B= .【解答】解:∵在△ABC中,∠C=90°,tan A=,设BC=x,则AC=2x,∴AB==x.∴sin B==.14.(2022•拱墅区校级开学)求下列各式的值:(1)tan30°•sin30°﹣3cos60°;(2)cos245°+2sin30﹣tan60°.【解答】解:(1)原式=×﹣3×=﹣;(2)原式=()2+2×﹣=+1﹣=﹣.15.(2022•北京一模)计算:3tan30°﹣tan245°+2sin60°.【解答】解:3tan30°﹣tan245°+2sin60°=3×﹣1+2×==2.16.(2022•淮安区模拟)计算:(1)2cos30°+4sin30°﹣tan60°;(2)3tan30°+tan45°﹣2sin60°.【解答】解:(1)原式=2×+4×﹣=+2﹣=2;(2)原式=3×+1﹣2×==1.。
高二数学三角函数练习题及答案
高二数学三角函数练习题及答案一、选择题(每题5分,共50分)1.集合中角表示的范围(用阴影表示)是图中的()A.B.C.D.2.已知,且,则()A.B.C.-1D.13.已知,则的值为()A.B.C.6D.-64.已知函数图象恰好关于y轴对称,则下列说法正确的是()A.的最小正周期为πB.关于点对称C.在上单调递增D.若在区间上存在最大值,则实数a的取值范围为5.将函数的图象向左平移个单位长度后,所得函数图象如图所示,则的最小值为()A.B.C.D.6.已知,,则()A.B.C.-1D.7.等于()A.B.C.D.8.已知在非中,,,且,则△ABC的面积为()A.1B.C.2D.39.在四边形ABCD中,,,则的最大值为()A.25B.C.D.10.已知,,,则()A.B.C.D.二、填空题(每题10分,共50分)11.已知,,则_________.12.函数的值域为__________.13.已知,则_________14.已知则_______________.的最小值为____________三、解答题(每题10分,共50分)16.已知,求的值.17.已知函数.(1)求的最小正周期;(2)求的最大值及取得最大值时x的集合.18.已知函数,,(1)求的单调递减区间;(2)求在闭区间上的最大值和最小值;(3)将函数的图象向左平移个单位得到函数的图象,求函数在上所有零点之和.(1)求角A的值;(2)若,求的值以及.20.在△ABC中,角A,B,C的对边分别为a,b,c,且.(1)若,D为AC边的中点,,求a;(2)若,求△ABC面积的最大值.参考答案一、选择题第1题第2题第3题第4题第5题B B B A C第6题第7题第8题第9题第10题A D CB B二、填空题第11题:;第12题:第13题:第14题:2;第15题三、解答题第16题=-cosa= ö逷−3 逷− 逷+ ö 逷=1−3 逷 逷−tana+1所以=1−3 3−3+1=4第17题=2 (2x +π4)+1=π即x=π8+k πk ∈z时,f(x)xmn=第18题(1)(2)由于x∈[-π4,π4],所以2x-π3∈[-5π6,π6]所以sin(2x-π3)∈[-1,12]故f(x)∈[-12,14]当x=-π12时,函数f(x)的取最小值。
高二数学三角函数阶段测试(解析版)
三角函数 测试一、选择题(4*5=20,共4个小题,满分20分)1.sin 47°-sin 17°cos 30°cos 17°等于( ) A .-32 B .-12C.12D.32 2.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12B.π3C.π4D.π63.若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( ) A .x =k π2-π6(k ∈Z ) B .x =k π2+π6(k ∈Z ) C .x =k π2-π12(k ∈Z ) D .x =k π2+π12(k ∈Z ) 4.在△ABC 中,若AB =13,BC =3,∠C =120°,则AC 等于( )A .1B .2C .3D .4二、填空题(2*5=10,共2个小题,满分10分)5.已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.6.函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f (π3)的值为________.三、解答题(20+20+30=70分,共3个小题,满分70分)7.已知函数f (x )=32·sin 2x -cos 2x -12,x ∈R . (1)若x ∈[524π,34π],求函数f (x )的最大值和最小值,并写出相应的x 的值; (2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足c =3,f (C )=0且sin B =2sin A ,求a ,b 的值.8.已知函数f (x )=3sin ωx ·cos ωx -cos 2ωx (ω>0)的最小正周期为2π3. (1)求ω的值;(2)在△ABC 中,sin B ,sin A ,sin C 成等比数列,求此时f (A )的值域.9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,b ≠c ,且sin 2C -sin 2B =3sin B cos B -3sin C cosC .(1)求角A 的大小;(2)若a =3,sin C =34,求△ABC 的面积.阶段测试答案答案 1C. 2.C答案 3.B答案 4.A答案 5.-1答案6.17.解 (1)f (x )=32sin 2x -1+cos 2x 2-12=sin(2x -π6)-1.∵x ∈[524π,34π],∴2x -π6∈[π4,4π3].∴当2x -π6=π2,即x =π3时,f (x )max =0;∴当2x -π6=4π3,即x =3π4时,f (x )min =-32-1.(2)∵f (C )=sin(2C -π6)-1=0,∴sin(2C -π6)=1.∵C ∈(0,π),∴2C -π6∈(-π6,11π6),∴2C -π6=π2,即C =π3.∵sin B =2sin A ,∴b =2a .∵c 2=a 2+b 2-2ab cos C ,∴⎩⎪⎨⎪⎧ b =2a ,a 2+b 2-2ab cos π3=3,解得⎩⎪⎨⎪⎧ a =1,b =2.8.解 (1)f (x )=32sin 2ωx -12(cos 2ωx +1)=sin(2ωx -π6)-12,因为函数f (x )的周期为T =2π2ω=2π3,所以ω=32.(2)由(1)知f (x )=sin(3x -π6)-12,易得f (A )=sin(3A -π6)-12.因为sin B ,sin A ,sin C 成等比数列, 所以sin 2A =sin B sin C ,所以a 2=bc ,所以cos A =b 2+c 2-a 22bc =b 2+c 2-bc2bc≥2bc -bc2bc =12(当且仅当b =c 时取等号),因为0<A <π,所以0<A ≤π3,所以-π6<3A -π6≤5π6,所以-12<sin(3A -π6)≤1,所以-1<sin(3A -π6)-12≤12,所以函数f (A )的值域为(-1,12].9解 (1)由题意得1-cos 2C 2-1-cos 2B 2 =32sin 2B -32sin 2C , 整理得32sin 2B -12cos 2B =32sin 2C -12cos 2C ,即sin(2B -π6)=sin ⎝⎛⎭⎫2C -π6,由b ≠c ,得B ≠C ,又B +C ∈(0,π), 得2B -π6+2C -π6=π,即B +C =23π,所以A =π3.(2)因为a =3,sin C =34,由正弦定理asin A =csin C ,得c =32.由c <a ,得C <A ,从而cos C =74,故sin B =sin(A +C )=sin A cos C +cos A sin C =32×74+12×34=3+218. 所以△ABC 的面积为S =12ac sin B =12×32×3×3+218=932(3+7).。
高二数学《三角函数》同步测试
高二数学《三角函数》同步测试【小编寄语】查词典数学网小编给大家整理了高二数学《三角函数》同步测试,希望能给大家带来帮助!一、选择题 (每题 5 分,共 60 分,请将所选答案填在括号内 )1.已知的正弦线与余弦线相等,且符号同样,那么的值为()A.B.C.D.2.若为第二象限角,那么的值为()A.正当B.负值C.零D. 不可以确立3.已知的值为()A.-2B.2C.D.-4.函数的值域是( )A.{-1 ,1, 3}B.{-1 , 1,-3}C.{-1 , 3}D.{-3 , 1}5.已知锐角终边上一点的坐标为(则A.B.3C.3-D.-36.已知角的终边在函数的图象上,则的值为()A.B.-C.或-D.7.若那么 2的终边所在象限为( )A.第一象限B.第二象限C.第三象限D. 第四象限8.的大小关系为( )A.B.C.D.9.已知是三角形的一个内角,且,那么这个三角形的形状为( )A.锐角三角形B.钝角三角形C.不等腰的直角三角形D.等腰直角三角形10.若是第一象限角,则中能确立为正当的有( )A.0 个B.1 个C.2 个D.2 个以上11.化简是第三象限角 )的值等于( )A.0B.-1C.2D.-212.已知,那么的值为()A.B.-C.或-D.以上全错二、填空题 (每题 4 分,共 16 分,请将答案填在横线上)13.已知则14.函数的定义域是 _________.15.已知,则=______.16.化简三、解答题 (本大题共 74 分, 17—21 题每题 12 分, 22 题14分)17.已知求证:18.若, 求角的取值范围 .19.角的终边上的点 P 和点 A( )对于轴对称 ()角的终边上的点Q 与 A 对于直线对称. 求的值 .20.已知是恒等式 . 求 a、 b、 c 的值 .21已知是方程的两根,且终边相互垂直 . 求的值 .22.已知为第三象限角,问能否存在这样的实数 m,使得是对于的方程的两个根,若存在,求出实数 m,若不存在,请说明原因 .参照答案一、 1.C 2.D 3.D 4.D 5.C 6.C 7.C 8.C 9.B 10.C 11.A 12.C二、 13.14.15.16.1三、 17.由已知故18.左=右,19.由已知 P(, 故原式 =-1-20.故21.设则由解知22.假定存在这样的实数m, .则又,解之 m=2 或 m=而 2 和要练说,先练胆。
高二数学三角函数试题
高二数学三角函数试题1.已知,且是钝角,则等于A.B.C.D.【答案】C【解析】由题设可得,故应选答案C。
2.若,且为锐角,则的值等于( )A.B.C.D.【答案】A【解析】由题意得,因为,且为锐角,所以根据三角函数的基本关系式可得,所以,故选A.【考点】三角函数的基本关系式的应用.3.函数f(x)=A sin(ωx+φ)的图象如图所示,则f(0)=______.【答案】【解析】由已知可得.4.已知角的终边经过点,则 ( )A.B.-C.D.-【答案】B【解析】,故选B.5.已知函数,若,则函数的单调递增区间为()A.B.C.D.【答案】D【解析】由可知,所以,所以,所以,由可得,由可得,所以函数的单调递增区间是,故应选D.【考点】三角函数的图象和性质.6.已知函数,则函数满足()A.最小正周期为B.图象关于点对称C.在区间上为减函数D.图象关于直线对称【答案】D【解析】∵函数f(x)=cos(x+)sinx=(cosx﹣sinx)•sinx=sin2x﹣•=(sin2x+cos2x)﹣=sin(2x+)+,故它的最小正周期为,故A不正确;令x=,求得f(x)=+=,为函数f(x)的最大值,故函数f(x)的图象关于直线x=对称,且f(x)的图象不关于点(,)对称,故B不正确、D正确;在区间(0,)上,2x+∈(,),f(x)=sin(2x+)+为增函数,故C不正确,故选:D.7.已知全集,则集合()A.B.C.D.【答案】D【解析】,所以.故选D.【考点】集合的运算.8.设函数,若存在实数,使函数的图像关于直线对称且不等式成立,则的取值范围是()A.B.C.D.【答案】D【解析】函数的对称轴为:,所以,得成立,而的最小值为,k=0或k=-1,所以所以,故选择D【考点】1.正弦函数的图象与性质;2.不等式的解法9.为了得到函数的图像,可将函数的图像向左平移个单位长度或向右平移个单位长度(均为正数),则的最小值是()A.B.C.D.【答案】B【解析】由函数的图象得到函数的图象可向左平移个单位长度,也可向右平移个单位长度,则得最小值为.故选B.【考点】函数的图象.10.已知,其中,,.(1)求的单调递减区间;(2)在中,角,,所对的边分别为,,,,,且向量与共线,求边长和的值。
高二数学三角函数综合试题
高二数学三角函数综合试题1.已知,求的值【答案】18【解析】利用诱导公式,由得,而原式化简为,约分整理,即可得出结果.试题解析:由得,==【考点】诱导公式.2.函数的最大值为()A.2B.C.D.1【答案】C【解析】因为,所以当即时,f(x)的最大值为.故选C.【考点】1.三角函数的化一公式.2.三角函数的最值问题.3.已知函数(1)求的单调递增区间;(2)在中,内角A,B,C的对边分别为,已知,成等差数列,且,求边的值.【答案】(1);(2).【解析】(1)求三角函数的单调区间等问题,我们的目标很明确,就是要把函数化为的形式,然后根据正弦函数的性质得出结论,本题中首先把用两角差的正弦公式展开,再把降幂把角化为,即化为同角的问题,再利用两角和或差的正弦公式,转化为一个三角函数;(2)已知,由(1)的结论应该很容易求出角A,成等差数列得一个关系,可以转化为,从而,这是第二个关系,但其中有三个未知数,还需找一个关系式,,这里我们联想到余弦定理,正好找到第三个关系,从而联立方程组求出边.试题解析:解:(1)令的单调递增区间为(2)由,得∵,∴,∴由b,a,c成等差数列得2a=b+c∵,∴,∴由余弦定理,得∴,∴【考点】(1)三角函数的单调性;(2)等差数列,向量的数量积定义,余弦定理.4.已知函数.求函数的最小正周期和值域;若是第二象限角,且,试求的值.【答案】(1),值域为[-2,2].(2)=。
【解析】(1)∵= 2分= 4分∴函数的最小正周期,值域为[-2,2]. 6分(2)由得,, 7分∵是第二象限角∴ 8分∴, 9分, 10分∴= 12分【考点】本题主要考查三角函数诱导公式,和差倍半的三角函数公式,三角函数的性质,三角函数同角公式。
点评:典型题,属于常见题型为研究三角函数的图象和性质,往往需要灵活运用三角公式“化一”,三角函数的辅助角公式,不容忽视。
三角函数式的求值问题,利用同角公式变换求值,涉及平方关系,要注意焦点终边所在象限。
高二数学三角函数练习题精选
高二数学三角函数练习题优选数学是学习和研究现代科学技术必不可以少的基本工具。
以下是查词典数学网为大家整理的高二数学三角函数练习题,希望能够解决您所碰到的有关问题,加油,查词典数学网向来陪同您。
1.以下命题中正确的选项是()A. 终边在 x 轴负半轴上的角是零角B.第二象限角必定是钝角C.第四象限角必定是负角D.若 =+k360(kZ) ,则与终边同样分析易知A、B、C均错,D正确.答案D2.若为第一象限角,则k180+(kZ) 的终边所在的象限是()A. 第一象限B.第一、二象限C.第一、三象限D.第一、四象限分析取特别值考证.当 k=0 时,知终边在第一象限 ;当 k=1 , =30 时,知终边在第三象限 .答案C3.以下各角中,与角330 的终边同样的是()A.150B.-390C.510D.-150分析330=360-30 ,而 -390=-360-30 ,330 与 -390 终边同样 .答案B4.假如第四象限角,则180-是 ()A. 第一象限角B.第二象限角C.第三象限角D. 第四象限角分析方法一由270+k360360+k360,kZ得:-90-k360180--180-k360 ,终边在 (-180, -90)之间,即180-角的终边在第三象限,应选 C.方法二数形联合,先画出角的终边,由对称得-角的终边,再把 -角的终边对于原点对称得180-角的终边,如图知180-角的终边在第三象限,应选 C.答案C5.把-1125 化成 k360+(0360 , kZ) 的形式是 ()A.-3360+45B.-3360-315C.-9180-45D.-4360+315分析-1125=-4360+315.答案D6.设会合 A={x|x=k180+(-1)k90 ,kZ} ,B={x|x=k360+90 ,kZ} ,则会合 A , B 的关系是 ()A.A?BB.A?BC.A=BD.AB=分析会合A表示终边在y 轴非负半轴上的角,会合 B 也表示终边在y 轴非负半轴上的角.A=B.答案C7.如图,射线 OA 绕极点 O 逆时针旋转 45 到 OB 地点,并在此基础上顺时针旋转 120 抵达 OC 地点,则 AOC 的度数为________.分析解法一依据角的定义,只看终边相对于始边的地点,顺时针方向,大小为75,故 AOC=-75.解法二由角的定义知,AOB=45 , BOC=-120 ,所以AOC=AOB+BOC=45-120=-75.答案-758.在(-720, 720)内与 100 终边同样的角的会合是________.分析与100终边同样的角的会合为{|=k360+100 ,kZ}令 k=-2 , -1,0,1,得=-620 , -260, 100,460.答案{-620 ,-260,100, 460}9.若时针走过 2 小时 40 分,则分针转过的角度是________.分析∵2小时40分=223小时,-360223=-960.答案-96010.若 2 与 20 角的终边同样,则全部这样的角的会合是__________.分析2=k360+20 ,所以 =k180+10 , kZ.答案{|k180+10 , kZ}11.角知足 180360,角 5 与的始边同样,且又有同样的终边,求角 .解由题意得 5=k360+(kZ) ,=k90(kZ).∵180360, 1802=390=270.12.如下图,角的终边在图中暗影部分,试指出角的范围.解∵与 30 角的终边所在直线同样的角的会合为:{|=30+k180 ,kZ}.与 180-65=115 角的终边所在直线同样的角的会合为:{|=115+k180 ,kZ}.所以,图中暗影部分的角的范围为:{|30+k180115+k180 ,kZ}.13.在角的会合 {|=k90+45 ,kZ} 中,(1)有几种终边不一样的角?(2)写出区间 (-180 , 180)内的角 ?(3)写出第二象限的角的一般表示法.解 (1)在 =k90+45 中,令 k=0,1,2,3 知,=45, 135, 225, 315.在给定的角的会合中,终边不一样的角共有 4 种 .(2)由 -180单靠“死”记还不可以 ,还得“活”用 ,临时称之为“先死后活”吧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2.1 任意角的三角函数
第二课时诱导公式一三角函数线
编者:梁军【学习目标、细解考纲】
灵活利用利用公式一;掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。
【知识梳理、双基再现】
1、由三角函数的定义:的角的同一三角函数的值。
由此得诱导公式一
,
,
,
其中。
2、叫做有向线段。
3、
角α的终边与单位圆交于点P ,过点P 作x 轴的垂线,垂足为M ;
过点A(1,0)作单位圆的切线,设它与α的终边(当α为第 象限角时)或其反向延长线(当α为第
象限角时)相交于点T 。
根据三角函数的定义:
sin α=y = ;
cos α=x = ;
tan α=x
y = 。
【小试身手、轻松过关】 4
、= 2205sin ( )
A .21
B .21
- C .22 D .2
2-
5、⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-341cos 647tan ππ的值为
( ) A .21
B .21
- C .23 D .6
3 6、若π
4 <θ < π2 ,则下列不等式中成立的是 ( )
A .sin θ>cos θ>tan θ
B .cos θ>tan θ>sin θ
C . tan θ>sin θ>cos θ
D .sin θ>tan θ>cos θ
7、sin (-1770°)·cos1500°+cos (-690°)·sin780°+tan405°
= .
【基础训练、锋芒初显】
8、角α(0<α<2π)的正、余弦线的长度相等,且正、余弦符号相
异.那么α的值为( )
A .π4
B .3π4
C .7π4
D .3π4 或 7π4
9、若0<α<2π,且sin α<2
3 , cos α> 12 .利用三角函数线,得到α的取值范围是( )
A .(-π3 ,π3 )
B .(0,π3 )
C .(5π3 ,2π)
D .(0,π3
)∪(5π3
,2π) 10、依据三角函数线,作出如下四个判断:
①sin π6 =sin 7π6 ;②cos (-π4 )=cos π4 ;③tan π8 >tan 3π8 ;
④sin 3π5 >sin 4π5 .
其中判断正确的有 ( )
A .1个
B .2个
C .3个
D .4个
11、425sin 2)311tan()4
15(cos 42πππ+--的值为 ( )
A .1
B .13-
C .12-
D .()122- 12、化简:22
222425
13c o s 3t 93362c o s 4m n n m
ππππ
+--= . 13、若-2π3
≤θ≤π6 ,利用三角函数线,可得sin θ的取值范围是 .
14、若∣cos α∣<∣sin α∣,则
∈α .
15、试作出角α= 7π6 正弦线、余弦线、正切线.
【举一反三、能力拓展】
16、利用三角函数线,写出满足下列条件的角x 的集合.
⑴ sin x ≥
2
2;⑵ cos x ≤ 12 ;⑶ tan x ≥-1 ;(4)21sin ->x 且21cos >x .
【名师小结、感悟反思】
1、用三角函数线可以解三角不等式、求函数定义域以及比较三角函
数值的大小, 三角函数线也是利用数形结合思想解决有关问题的
重要工具;
2、熟记特殊角的三角函数值。
§1.2.1 任意角的三角函数
第二课时 诱导公式一 三角函数线
【小试身手、轻松过关】
4、C
5、D
6、C
7、2;
【基础训练、锋芒初显】
8、D 9、D 10、B
11、B
12、2125m ; 13、⎥⎦⎤⎢⎣⎡-21,1; 14、Z k k k ∈⎪⎭
⎫ ⎝⎛++,43,4ππππ。
【举一反三、能力拓展】
15、略。
16、(1)()Z k k k ∈⎥⎦
⎤⎢⎣⎡++-ππππ
243,24; (2)()Z k k k ∈⎥⎦
⎤⎢⎣⎡++ππππ235,23; (3)()Z k k ∈⎪⎭⎫⎢⎣⎡∞++-,4ππ
; (4)()Z k k k ∈⎪⎭
⎫ ⎝⎛++-ππππ23,26。