最新量子力学期末考试题解答题
量子力学期末考试题解答题
![量子力学期末考试题解答题](https://img.taocdn.com/s3/m/1cf117bdf78a6529647d53c5.png)
量子力学期末考试题解答题Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】1. 你认为Bohr 的量子理论有哪些成功之处有哪些不成功的地方试举一例说明。
(简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的)答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。
首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。
2. 什么是光电效应光电效应有什么规律爱因斯坦是如何解释光电效应的答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子。
爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完成的。
(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。
量子力学期末考试试卷及答案集
![量子力学期末考试试卷及答案集](https://img.taocdn.com/s3/m/d5673af9bb68a98270fefa8a.png)
量子力学试题集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论.2.关于波函数Ψ的含义,正确的是:BA。
Ψ代表微观粒子的几率密度;B. Ψ归一化后,ψψ*代表微观粒子出现的几率密度;C。
Ψ一定是实数;D. Ψ一定不连续。
3.对于偏振光通过偏振片,量子论的解释是:DA。
偏振光子的一部分通过偏振片;B。
偏振光子先改变偏振方向,再通过偏振片;C。
偏振光子通过偏振片的几率是不可知的;D。
每个光子以一定的几率通过偏振片.4.对于一维的薛定谔方程,如果Ψ是该方程的一个解,则:AA.*ψ一定也是该方程的一个解;B.*ψ一定不是该方程的解;C. Ψ与*ψ一定等价;D.无任何结论。
5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A。
粒子在势垒中有确定的轨迹;B。
粒子在势垒中有负的动能;C。
粒子以一定的几率穿过势垒;D粒子不能穿过势垒。
6.如果以∧l表示角动量算符,则对易运算],[yxll为:BA. ih∧z lB. ih∧z lC 。
i ∧xlD.h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA.ψ 一定不是∧B 的本征态; B 。
ψ一定是 ∧B 的本征态;C 。
*ψ一定是∧B 的本征态;D 。
∣Ψ∣一定是∧B 的本征态。
8.如果一个力学量∧A 与H∧对易,则意味着∧A :CA. 一定处于其本征态; B 。
一定不处于本征态; C 。
一定守恒;D.其本征值出现的几率会变化。
9.与空间平移对称性相对应的是:B A 。
能量守恒; B 。
动量守恒; C 。
角动量守恒; D.宇称守恒。
10.如果已知氢原子的 n=2能级的能量值为—3。
4ev ,则 n=5能级能量为:D A 。
-1。
51ev ; B 。
量子力学试题含答案
![量子力学试题含答案](https://img.taocdn.com/s3/m/caa3e6df7f1922791688e8ba.png)
一、填空题:(每题 4 分,共 40 分)1. 微观粒子具有 波粒 二象性。
2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为:E=h ν, p=/h λ 。
3.根据波函数的统计解释,dx t x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 。
4.量子力学中力学量用 厄米 算符表示。
5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i = 。
6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符Fˆ的 本征值 。
7.定态波函数的形式为: t E in n ex t x-=)(),(ϕψ。
8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。
9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。
10.每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值为: 2± 。
二、证明题:(每题10分,共20分)1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系:证明:zy x L i L L ˆ]ˆ,ˆ[ =]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度 证明:考虑 Schr ödinger 方程及其共轭式:2|),(|),(),(),(t r t r t r t rψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂0=∙∇+∂∂J tω][2ψ∇ψ-ψ∇ψ=**μi J ]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)( +-=]ˆˆ[x y p y px i -= zL i ˆ =在空间闭区域τ中将上式积分,则有:三、计算题:(共40分)1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r 求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率。
量子力学期末试题及答案
![量子力学期末试题及答案](https://img.taocdn.com/s3/m/32e048e2551810a6f52486f3.png)
(11)
⎛−i⎞
1⎜ ⎟
ψ1
=
2
⎜ ⎜
⎝
2 ⎟;
i
⎟ ⎠
ψ2 =
⎛1⎞
1
⎜⎟ ⎜ 0 ⎟;
2
⎜ ⎝
1
⎟ ⎠
⎛i⎞
1⎜ ⎟
ψ3
=
2
⎜ ⎜
⎝
2⎟
−
i
⎟ ⎠
(12)
Lˆ x 满足的本征方程为
相应的久期方程为 将其化为
ℏ 2
⎛ ⎜
⎜ ⎜⎝
0 1 0
1 0 1
0 ⎞ ⎛ c1 ⎞
⎛ c1 ⎞
1
⎟ ⎟
⎜ ⎜
c2
c1
⎞ ⎟
⎛ ⎜
c1
⎞ ⎟
0 − i⎟ ⎜ c2 ⎟ = λ ⎜ c2 ⎟
i
0
⎟ ⎠
⎜ ⎝
c3
⎟ ⎠
⎜ ⎝
c3
⎟ ⎠
iℏ
−λ −
0
2
iℏ
−λ
− iℏ = 0
2
2
0
iℏ
−λ
2
(8) (9)
λ3 − ℏ 2λ = 0
(10)
得到三个本征值分别为 λ1 = ℏ; λ 2 = 0; λ 3 = −ℏ
将它们分别代回本征方程,得到相应的本征矢为
Wˆ ψ 0
显然,求和号中不为零的矩阵元只有
ψ 0 Wˆ ψ 23
= ψ 23 Wˆ ψ 0
λ =−
2α 2
于是得到基态能量的二级修正为
E0(2)
=
E00
1 − E20
λ2 4α 4
λ2ℏ =−
8µ 2ω 3
量子力学期末考试试卷及答案集
![量子力学期末考试试卷及答案集](https://img.taocdn.com/s3/m/e2f426523d1ec5da50e2524de518964bce84d253.png)
量子力学试题集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C。
经典电磁场理论不适用于黑体辐射公式;D。
黑体辐射在紫外线部分才适用于经典电磁场理论。
2.关于波函数Ψ的含义,正确的是:BA. Ψ代表微观粒子的几率密度;B。
Ψ归一化后,代表微观粒子出现的几率密度;C。
Ψ一定是实数;D. Ψ一定不连续。
3.对于偏振光通过偏振片,量子论的解释是:DA。
偏振光子的一部分通过偏振片;B。
偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片。
4.对于一维的薛定谔方程,如果Ψ是该方程的一个解,则:A A。
一定也是该方程的一个解;B. 一定不是该方程的解;C. Ψ与一定等价;D.无任何结论。
5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A。
粒子在势垒中有确定的轨迹;B.粒子在势垒中有负的动能;C.粒子以一定的几率穿过势垒;D粒子不能穿过势垒。
6.如果以表示角动量算符,则对易运算为:BA。
ihB。
ihC.iD。
h7.如果算符、对易,且=A,则:BA。
一定不是的本征态;B. 一定是的本征态;C。
一定是的本征态;D。
∣Ψ∣一定是的本征态。
8.如果一个力学量与对易,则意味着:CA。
一定处于其本征态;B.一定不处于本征态;C。
一定守恒;D。
其本征值出现的几率会变化。
9.与空间平移对称性相对应的是:BA。
能量守恒;B。
动量守恒;C。
角动量守恒;D。
宇称守恒。
10.如果已知氢原子的n=2能级的能量值为-3。
4ev,则n=5能级能量为:DA. -1。
51ev;B。
—0。
85ev;C。
-0。
378ev;D。
—0。
544ev11.三维各向同性谐振子,其波函数可以写为,且l=N—2n,则在一确定的能量(N+)h下,简并度为:BA. ;B。
;C。
N(N+1);D。
量子力学期末考试题库含答案22套
![量子力学期末考试题库含答案22套](https://img.taocdn.com/s3/m/5fdc47d4c9d376eeaeaad1f34693daef5ff71343.png)
量子力学期末考试题库含答案22套量子力学自测题(1)一、简答与证明:(共25分)1、什么是德布罗意波?并写出德布罗意波的表达式。
(4分)2、什么样的状态是定态,其性质是什么?(6分)3、全同费米子的波函数有什么特点?并写出两个费米子组成的全同粒子体系的波函数。
(4分)4、证明)??(22x x p x x p i -是厄密算符(5分) 5、简述测不准关系的主要内容,并写出坐标x 和动量x p之间的测不准关系。
(6分)二、(15分)已知厄密算符B A ?,?,满足1??22==B A,且0=+A B B A ,求 1、在A 表象中算符A、B ?的矩阵表示; 2、在B 表象中算符A的本征值和本征函数; 3、从A 表象到B 表象的幺正变换矩阵S 。
三、(15分)设氢原子在0=t 时处于状态),()(21),()(21),()(21)0,(112110311021?θ?θ?θψ-+-=Y r R Y r R Y r R r ,求1、0=t 时氢原子的E 、2L和z L ?的取值几率和平均值;2、0>t 时体系的波函数,并给出此时体系的E 、2L ?和z L ?的取值几率和平均值。
四、(15分)考虑一个三维状态空间的问题,在取定的一组正交基下哈密顿算符由下面的矩阵给出+????? ??-=C C C H000000200030001? 这里,H H H'+=)0(,C 是一个常数,1<<="">五、(10分)令y x iS S S +=+,y x iS S S -=-,分别求+S 和-S 作用于z S 的本征态???? ??=+0121和=-1021的结果,并根据所得的结果说明+S 和-S 的重要性是什么?量子力学自测题(1)参考答案一、1、描写自由粒子的平面波称为德布罗意波;其表达式:)(Et r p i Ae -?=ρρηψ2、定态:定态是能量取确定值的状态。
量子力学期末试题
![量子力学期末试题](https://img.taocdn.com/s3/m/58642648e45c3b3567ec8b0b.png)
量子力学期末试题1一. 填空(3分×5=15分)1.2)2,(h vr ψ的含义是 2.在非定态下,力学量的平均值一定随时间变化吗?3.211ˆ(,)________L Y θϕ=;2,1ˆ(,)________z L Y θϕ−= 4.坐标y 在动量表象中的矩阵元为__________________________.5.2ˆ[,]y z σσ=____ 二.证明(10分×2=20分)1.(10分)设ˆA v ,ˆB v 是与σˆv 对易的任何矢量算符, 证明:)ˆˆ(ˆˆˆ)ˆˆ)(ˆˆ(B A i B A B A v v v v v v v v v ו+•=••σσσ。
2.(10分)设力学量A 不显含时间t ,H 为体系的Hamilton 量,试证明]],,[[222H H A A dt d =−h三.计算(65分),1. (15分)求一维谐振子的坐标,x 动量ˆp及Hamilton 量ˆH 在能量表象中的矩阵表示。
(已知:1111)n n n n n x ψ+−−+=+− 2.(15分)在ˆz σ表象中,求01ˆ10x σ⎛⎞=⎜⎟⎝⎠和0ˆ0y i i σ−⎛⎞=⎜⎟⎝⎠的本征值和所属的本征函数。
3.(15分)设粒子在势场 ⎩⎨⎧><∞<<=.,0,;0,0)(a x x a x x u 中运动, 求:粒子的能量本征值和本征函数。
(15分)4.(20分)考虑耦合谐振子,H H H ′+=0,其中)(21)(22221222221220x x x x H ++∂∂+∂∂−=μωμh ;21x x H λ−=′(λ为实常数,刻画耦合强度)(1).求出0H 的本征值及能级的简并度;(2).以第一激发态为例用简并微扰论计算H ′对能级的影响(一级近似)试卷1参考答案一. 填空(每题3分,共15分)1. 电子自旋向上位置在r v处的几率密度, 2. 不一定,3. ),(2112ϕθY h ;),(1,2ϕθ−−Y h , 4. )(p p p i y p p ′′−′′∂∂=′′′δh5. 0二.证明(每题10分,共20分) 1 证明原式左端)(z z y y x x A A A σσσ++=)(z z y y x x B B B σσσ++ (5分)z z z y y y x x x B A B A B A 222σσσ++=x y x y y x y x z x z x x z x z y z y z z y z y B A B A B A B A B A B A σσσσσσσσσσσσ++++++又因为1222===z y x σσσ,z x y y x i σσσσσ=−=,x y z z y i σσσσσ=−=,y z x x z i σσσσσ=−= (3分)整理得)(B A i B A vv v v v ו+•σ (2分)问题得证 2 证明对于不显含时间t 的力学量A 有hi A dt d 1=],[H A (5分) 上式两边对t 求导,则有 h h i H A i dt d A dt d 1],[122==]],,[1[H H A i h ]],,[[12H H A h−= (5分)即]],,[[222H H A A dt d =−h三.计算题 1.解:取占有数表象,由已知可得:(2分)1) 坐标x 的矩阵表示为,1,n n n n n n x ′′′+⎞=+⎟⎟⎠(3分)0000100x α⎛⎞⎜⎟⎟⎟⎟⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠L L L L L L L L L L L L L L (2分) 2) 由于ˆdpi dx=−h ,所以,1,n n n n n n p ′′′−⎤=−⎥⎦(2分)故有0000000p i α⎛⎞⎜⎟⎟⎟⎟⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠L L h L L L L L L L L L L L (2分) 3) 能量ˆ(H=1ˆ2N ω+h ,所以 ,1()2n n n n H n ωδ′′=+h (2分)故有 1000230002ˆ50002100002H n ⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟+⎜⎟⎝⎠L L L L L L L L (2分)2.解:解:(1) 先求x σ的本征值和本征函数在z σ表象中,x σ=⎟⎟⎠⎞⎜⎜⎝⎛0110,设x σ本征值为λ,本征态为⎟⎟⎠⎞⎜⎜⎝⎛b a , 则本征方程为:⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛b a b a λ1001 (3分) 解得: 1±=λ (2分)x σ∴的归一化的本征态为:⎪⎪⎩⎪⎪⎨⎧−=⎟⎟⎠⎞⎜⎜⎝⎛−==⎟⎟⎠⎞⎜⎜⎝⎛=1112111121λσλσx x (4分)(2) 同理可求y σ的本征值为1±=′λ (2分)相应于y σ的归一化本征态为:⎪⎪⎩⎪⎪⎨⎧−=⎟⎟⎠⎞⎜⎜⎝⎛−==⎟⎟⎠⎞⎜⎜⎝⎛=11211121λσλσi i y y (4分)3.1 解:一维定态薛定鄂方程为222()2d u x E m dxψψψ−+=h (2分) 1) 在0x a ≤≤范围:22202d E m dxψ+=h (2分) 故 sin cos A x B x ψαα=+,1222mE α⎛⎞=⎜⎟⎝⎠h (2分) 2) 根据波函数的连续性条件:()(0)0a ψψ==,可得 sin cos 0,0A a B a B αα+==故有 sin A x ψα= (3分)由sin 0a α=可得,(1,2,3)n n aπα==L (1分)3) 由归一化条件:2||1dx ψ+∞−∞=∫,可得2220sin 1aA xdx α=∫故有A =(2分) 4) 结合1222mE α⎛⎞=⎜⎟⎝⎠h 和(1,2,3)n n a πα==L 可得 2222222222n n n E m a ma ππ==h h (2分)所以()n x x aπψ= 1,2,3n =L (1分) 4.解:)(21)(22221222221220x x x x H ++∂∂+∂∂−=μωμh )212(2122122x x μωμ+∂∂−=h )212(2222222x x μωμ+∂∂−+h 表示两个独立的谐振子,它们的共同本征态为:21n n21n n =)()(212x x n n n ψψ0201)21()21(21ωωh h +++=∴n n E n nL L h 3,2,1,)1(0=+=N N ω (4分) 当N 给定时, N n L L ,2,1,01= 0,2,1,2L L −−=N N N nN+1种组合因此,能级的简并度为N+1 (4分) (2)第一激发态为N=1 能级简并度为二重00)0(12)1(ωωh h =+=N E相应的波函数为:⎩⎨⎧==),()()(),()()(21220112112110x x x x x x x x φψψφψψ (1分) ⎟⎟⎠⎞⎜⎜⎝⎛′′′′=′∴22122111φφφφφφφφνμH H H H H (2分) 01111=′=′∴φφH H , 02222=′=′∴φφH H (2分) 221122αλ−=′=′∴H H (4分) ′⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−−=′∴022022αλαλνμH00220)1(22)1(=′⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−−−−∴E E αλαλ2)1(2αλ±=∴E (2分) 0020)1(1)0(112222μωλωαλωhh h ±=±=+=∴E E E (1分)量子力学期末试题2一.填空(3分×5=15分)1 粒子处于力学量B v 的本征态)(r n vψ的迭加态,)()(41)(21)(321r C r r r n v v v v ψψψψ++=则粒子处于)(1r vψ的概率是 ,C = (取实数)2 若ˆ,FG GF ik−=,则算符F 和G 之间满足测不准关系________________ 3 在粒子数表象中,产生算符和湮灭算符满足关系式:ˆ4an ++= ;ˆ1a n += 4.一个正电子和一个负电子同时在空间运动在两粒子相遇区域是否可以将其分辨?______5 中心力场中的粒子处于定态,则角动量取确定值,对吗? 二.证明(10分×2=20分)1.(10分)设λ为常数,z σ为泡利算符,证明:cos sin zi z ei λσλσλ=+2.(10分)证明:Hermite 算符的属于不同本征值的本征函数彼此正交(假定本征值是离散的)。
(完整版)量子力学期末考试题及解答
![(完整版)量子力学期末考试题及解答](https://img.taocdn.com/s3/m/9468b77f102de2bd960588f4.png)
一、 波函数及薛定谔方程1.推导概率(粒子数)守恒的微分表达式;()(),,w r t J r t o t∂+∇•=∂解答:由波函数的概率波解释可知,当(),r t ψ已经归一化时,坐标的取值概率密度为()()()()2,,,,w r t r t r t r t ψψψ*== (1) 将上式的两端分别对时间t 求偏微商,得到()()()()(),,,,,w r t r t r t r t r t t t tψψψψ**∂∂∂=+∂∂∂ (2) 若位势为实数,即()()V r V r *=,则薛定谔方程及其复共轭方程可以分别改写如下形式()()()()2,,,2r t ih ir t V r r t t m h ψψψ∂=∇-∂ (3)()()()()2,,,2r t ih ir t V r r t t m hψψψ***∂=-∇+∂ (4) 将上述两式代入(2)式,得到()()()()()22,,,,,2r t ih r t r t r t r t t mψψψψψ**∂⎡⎤=∇-∇⎣⎦∂ ()()()(),,,,2ihr t r t r t r t mψψψψ**⎡⎤=∇•∇-∇⎣⎦ (5) 若令()()()()(),,,,,2ih J r t r t r t r t r t mψψψψ**⎡⎤=∇-∇⎣⎦ (6) 有()(),,0w r t J r t t∂+∇•=∂ (7) 此即概率(粒子数)守恒的微分表达式。
2.若线性谐振子处于第一激发态()2211exp 2x C x α⎛⎫ψ=- ⎪⎝⎭求其坐标取值概率密度最大的位置,其中实常数0α>。
解答:欲求取值概率必须先将波函数归一化,由波函数的归一化条件可知()()222221exp 1x dx Cx x dx ψα∞∞-∞-∞=-=⎰⎰(1)利用积分公示())2221121!!exp 2n n n n x x dx αα∞++--=⎰ (2) 可以得到归一化常数为C = (3)坐标的取值概率密度为 ()()()322221exp w x x x x ψα==- (4)由坐标概率密度取极值的条件())()3232222exp 0d w x x x x dx αα=--= (5) 知()w x 有五个极值点,它们分别是 10,,x α=±±∞(6)为了确定极大值,需要计算()w x 的二阶导数()()()232222322226222exp d w x x x x x x dx αααα⎤=----⎦)()32244222104exp x x x ααα=-+- (7)于是有()23200x d w x dx ==> 取极小值 (8)()220x d w x dx =±∞= 取极小值 (9)()23120x d w x dx α=±=< 取极大值 (10)最后得到坐标概率密度的最大值为2111w x x ψαα⎛⎫⎛⎫=±==±= ⎪ ⎪⎝⎭⎝⎭(11)3.半壁无限高势垒的位势为()()()()000x v x x a v x a ∞<⎧⎪=≤≤⎨⎪>⎩求粒子能量E 在00E v <<范围内的解。
量子力学试题及答案
![量子力学试题及答案](https://img.taocdn.com/s3/m/3682e67ffe00bed5b9f3f90f76c66137ee064fef.png)
量子力学试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中的波函数描述了粒子的哪种属性?A. 位置B. 动量C. 能量D. 概率密度答案:D2. 哪个原理表明一个粒子的波函数可以展开成一组完备的本征函数?A. 泡利不相容原理B. 薛定谔方程C. 玻恩规则D. 量子态叠加原理答案:D3. 量子力学中,哪个算符代表粒子的位置?A. 动量算符B. 能量算符C. 位置算符D. 角动量算符答案:C4. 量子力学中,哪个原理描述了测量过程对系统状态的影响?A. 海森堡不确定性原理B. 量子纠缠C. 量子退相干D. 量子测量原理答案:D5. 哪个方程是量子力学中描述粒子时间演化的基本方程?A. 薛定谔方程B. 狄拉克方程C. 克莱因-戈登方程D. 麦克斯韦方程答案:A二、填空题(每题2分,共10分)1. 量子力学中,粒子的状态由______描述,而粒子的物理量由______表示。
答案:波函数;算符2. 根据量子力学,粒子的位置和动量不能同时被精确测量,这被称为______。
答案:海森堡不确定性原理3. 在量子力学中,粒子的波函数在空间中的变化遵循______方程。
答案:薛定谔4. 量子力学中的______原理指出,一个量子系统在任何时刻的状态都可以表示为该系统可能状态的线性组合。
答案:态叠加5. 量子力学中,粒子的波函数必须满足______条件,以保证物理量的概率解释是合理的。
答案:归一化三、计算题(每题10分,共20分)1. 假设一个粒子处于一维无限深势阱中,势阱宽度为L。
求该粒子在基态时的能量和波函数。
答案:粒子在基态时的能量E1 = (π^2ħ^2) / (2mL^2),波函数ψ1(x) = sqrt(2/L) * sin(πx/L),其中x的范围是0 ≤ x ≤ L。
2. 考虑一个粒子在一维谐振子势能中运动,其势能表达式为V(x) = (1/2)kx^2。
求该粒子的能级和相应的波函数。
答案:粒子的能级En = (n + 1/2)ħω,其中n = 0, 1, 2, ...,波函数ψn(x) = (1/sqrt(2^n n!)) * (mω/πħ)^(1/4) * e^(-mωx^2/(2ħ)) * Hn(x),其中Hn(x)是厄米多项式。
量子力学试题含答案
![量子力学试题含答案](https://img.taocdn.com/s3/m/af90433cf56527d3240c844769eae009581ba297.png)
量子力学试题含答案1. 选择题a) 以下哪个说法正确?A. 量子力学只适用于微观领域B. 量子力学只适用于宏观领域C. 量子力学适用于微观和宏观领域D. 量子力学不适用于任何领域答案:A. 量子力学只适用于微观领域b) 以下哪个量不是量子力学的基本量?A. 质量B. 电荷C. 动量D. 能量答案:D. 能量c) 下面哪个原理是量子力学的基础?A. 相对论B. Newton力学定律C. 不确定性原理D. 统计力学答案:C. 不确定性原理2. 填空题a) 波粒二象性指的是在特定条件下,微观粒子既可表现出波动性,又可以表现出粒子性。
这种相互转化的现象称为________。
答案:波粒二象性的相互转化b) ____________________是描述微观粒子运动的方程。
答案:薛定谔方程c) Ψ(x, t)代表粒子的波函数,那么|Ψ(x, t)|^2表示__________________。
答案:粒子在坐标x处被测量到的概率密度3. 简答题a) 请简要说明波粒二象性的原理和实验观察。
答案:波粒二象性原理指出,微观粒子既可表现出波动性,又可以表现出粒子性。
这意味着微观粒子的行为既可以用波动的方式来描述(例如干涉和衍射现象),也可以用粒子的方式来描述(例如在特定的位置进行观测)。
实验观察可以通过使用干涉仪和双缝实验等经典实验来验证波动性质。
当光或电子通过干涉仪或双缝实验时,会出现干涉和衍射现象,这表明了粒子具有波动性。
同时,通过探测器对光或电子的位置进行测量,可以观察到粒子的粒子性。
b) 请解释量子力学中的不确定性原理及其意义。
答案:不确定性原理是由德国物理学家海森伯提出的,它指出在测量某个粒子的某个物理量的同时,不可避免地会对另一个物理量的测量结果带来不确定性。
不确定性原理的意义在于限制了我们对微观世界的认知。
它告诉我们,粒子的位置和动量无法同时被精确地确定。
这是由于测量过程中的不可避免的干扰和相互关联性导致的。
量子力学期末考试试卷及答案集
![量子力学期末考试试卷及答案集](https://img.taocdn.com/s3/m/b69c0c546f1aff00bfd51e18.png)
量子力学期末考试试卷及答案集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论。
2.关于波函数Ψ 的含义,正确的是:B A. Ψ 代表微观粒子的几率密度;B. Ψ归一化后,ψψ* 代表微观粒子出现的几率密度;C. Ψ一定是实数;D. Ψ一定不连续。
3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片。
4.对于一维的薛定谔方程,如果 Ψ是该方程的一个解,则:AA. *ψ 一定也是该方程的一个解;B. *ψ一定不是该方程的解;C. Ψ 与*ψ 一定等价;D.无任何结论。
5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D 粒子不能穿过势垒。
6.如果以∧l 表示角动量算符,则对易运算],[y x l l 为:BA. ih ∧zlB. ih∧z lC.i∧xl D.h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA. ψ 一定不是∧B 的本征态;B. ψ一定是 ∧B 的本征态;C.*ψ一定是∧B 的本征态;D. ∣Ψ∣一定是∧B 的本征态。
8.如果一个力学量 ∧A 与H∧对易,则意味着∧A :C A. 一定处于其本征态; B.一定不处于本征态; C.一定守恒;D.其本征值出现的几率会变化。
9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒。
10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n ,则在一确定的能量 (N+23)h ω下,简并度为:BA. )1(21+N N ; B. )2)(1(21++N N ;C.N(N+1);D.(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 是什么性质:CA. 自旋单态;B.自旋反对称态;C.自旋三态;D. z σ本征值为1.二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV n E n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————。
量子期末试题及答案
![量子期末试题及答案](https://img.taocdn.com/s3/m/cc382665ae45b307e87101f69e3143323968f5c4.png)
量子期末试题及答案第一部分:选择题1.下列哪项是描述量子力学的准确说法?a) 量子力学是一种经典物理学理论;b) 量子力学描述了微观粒子的行为;c) 量子力学只适用于宏观物体;d) 量子力学只适用于电磁学领域。
答案:b) 量子力学描述了微观粒子的行为。
2.下列哪个选项是量子力学的基本假设之一?a) 波粒二象性;b) 相对论;c) 牛顿定律;d) 热力学定律。
答案:a) 波粒二象性。
3.对于一个量子系统,其波函数的平方表示什么?a) 粒子的位置;b) 粒子的动量;c) 粒子的波动性;d) 粒子的能量。
答案:c) 粒子的波动性。
4.下列哪项是量子纠缠的特点?a) 粒子之间的状态不相关;b) 粒子之间的状态不确定;c) 粒子之间的状态相关;d) 粒子之间的状态独立。
答案:c) 粒子之间的状态相关。
5.量子力学中的观测算子对应于什么?a) 粒子的位置;b) 粒子的动量;c) 粒子的能量;d) 物理量的测量结果。
答案:d) 物理量的测量结果。
第二部分:简答题1.量子隧穿现象是什么?请简要解释。
答:量子隧穿现象是指在经典物理学中,粒子在能量不足以越过势垒时不可通行,而在量子力学中,粒子可以通过隧穿效应越过势垒。
这是由于波粒二象性的特性,波函数在势垒区域内会有一定的概率分布,因此粒子以概率的形式通过势垒,即使其能量低于势垒高度。
2.什么是量子比特?请简要解释。
答:量子比特(qubit)是量子计算的最小信息单位,类似于经典计算机中的比特(bit)。
而不同之处在于,量子比特允许同时处于多个状态的叠加态,而比特只能处于0或1状态。
量子比特的叠加态可以通过量子叠加原理进行并行计算,从而在某些计算问题上具有优势。
第三部分:计算题1.一粒子处于基态和第一激发态的叠加态上,其波函数可以表示为|ψ⟩=a|0⟩+b|1⟩,其中a和b为复数,且|a|^2+|b|^2=1。
若进行测量得到粒子处于基态的概率为1/3,则计算a和b的值。
量子力学期末考试试卷及答案集
![量子力学期末考试试卷及答案集](https://img.taocdn.com/s3/m/c4b07ac8be23482fb4da4cff.png)
量子力学试题集量子力学期末试题及答案(A) 选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA、黑体在紫外线部分辐射无限大的能量;B、黑体在紫外线部分不辐射能量;C、经典电磁场理论不适用于黑体辐射公式;D、黑体辐射在紫外线部分才适用于经典电磁场理论。
2.关于波函数Ψ的含义,正确的就是:BA、Ψ代表微观粒子的几率密度;B、Ψ归一化后,ψψ*代表微观粒子出现的几率密度;C、Ψ一定就是实数;D、Ψ一定不连续。
3.对于偏振光通过偏振片,量子论的解释就是:DA、偏振光子的一部分通过偏振片;B、偏振光子先改变偏振方向,再通过偏振片;C、偏振光子通过偏振片的几率就是不可知的;D、每个光子以一定的几率通过偏振片。
4.对于一维的薛定谔方程,如果Ψ就是该方程的一个解,则:AA、*ψ一定也就是该方程的一个解;B、*ψ一定不就是该方程的解;C、Ψ与*ψ一定等价;D、无任何结论。
5.对于一维方势垒的穿透问题,关于粒子的运动,正确的就是:CA、粒子在势垒中有确定的轨迹;B、粒子在势垒中有负的动能;C、粒子以一定的几率穿过势垒;D粒子不能穿过势垒。
6.如果以∧l表示角动量算符,则对易运算],[yxll为:BA、ih∧z lB 、 ih ∧zlC 、i∧x l D 、h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA 、ψ 一定不就是∧B 的本征态; B 、ψ一定就是 ∧B 的本征态;C 、*ψ一定就是∧B 的本征态;D 、 ∣Ψ∣一定就是∧B 的本征态。
8.如果一个力学量∧A 与H∧对易,则意味着∧A :CA 、 一定处于其本征态;B 、一定不处于本征态;C 、一定守恒;D 、其本征值出现的几率会变化。
9.与空间平移对称性相对应的就是:B A 、 能量守恒; B 、动量守恒; C 、角动量守恒; D 、宇称守恒。
10.如果已知氢原子的 n=2能级的能量值为-3、4ev,则 n=5能级能量为:D A 、 -1、51ev; B 、-0、85ev; C 、-0、378ev; D 、 -0、544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n,则在一确定的能量 (N+23)h ω下,简并度为:BA 、)1(21+N N ;B 、)2)(1(21++N N ;C 、N(N+1);D 、(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 就是什么性质:CA 、 自旋单态;B 、自旋反对称态;C 、自旋三态;D 、z σ本征值为1、二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV nE n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————。
量子力学考试题库及答案
![量子力学考试题库及答案](https://img.taocdn.com/s3/m/b629c150effdc8d376eeaeaad1f34693daef1020.png)
量子力学考试题库及答案一、选择题1. 量子力学中,波函数的平方代表粒子在空间某点出现的概率密度。
下列关于波函数的描述中,哪一项是正确的?A. 波函数的绝对值平方代表粒子在空间某点出现的概率密度B. 波函数的绝对值代表粒子在空间某点出现的概率密度C. 波函数的平方代表粒子在空间某点出现的概率D. 波函数的绝对值平方代表粒子在空间某点出现的概率答案:A2. 海森堡不确定性原理表明,粒子的位置和动量不能同时被精确测量。
以下哪项是海森堡不确定性原理的数学表达式?A. ΔxΔp ≥ ħ/2B. ΔxΔp ≤ ħ/2C. ΔxΔp = ħ/2D. ΔxΔp = ħ答案:A二、填空题3. 在量子力学中,粒子的波函数ψ(x,t)满足________方程,该方程由薛定谔提出,是量子力学的基本方程之一。
答案:薛定谔方程4. 根据泡利不相容原理,一个原子中的两个电子不能具有相同的一组量子数,即不能同时具有相同的________、________、________和________。
答案:主量子数、角量子数、磁量子数、自旋量子数三、简答题5. 简述量子力学中的隧道效应,并给出一个实际应用的例子。
答案:量子隧道效应是指粒子通过一个势垒的概率不为零,即使其能量低于势垒的高度。
这一现象在经典物理学中是不可能发生的。
一个实际应用的例子是扫描隧道显微镜(STM),它利用量子隧道效应来探测物质表面的原子结构。
6. 描述量子力学中的波粒二象性,并解释为什么这一概念是重要的。
答案:波粒二象性是指微观粒子如电子和光子等,既表现出波动性也表现出粒子性。
这一概念重要,因为它揭示了物质在微观尺度上的基本行为,是量子力学的核心概念之一,对理解原子和分子结构、化学反应以及材料的电子性质等方面都有深远的影响。
四、计算题7. 假设一个粒子被限制在一个宽度为L的一维无限深势阱中,求该粒子的基态能量。
答案:基态能量E1 = (π²ħ²)/(2mL²),其中ħ是约化普朗克常数,m是粒子的质量,L是势阱的宽度。
量子力学试题含答案
![量子力学试题含答案](https://img.taocdn.com/s3/m/caa3e6df7f1922791688e8ba.png)
一、填空题:(每题 4 分,共 40 分)1. 微观粒子具有 波粒 二象性。
2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为:E=h ν, p=/h λ 。
3.根据波函数的统计解释,dx t x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 。
4.量子力学中力学量用 厄米 算符表示。
5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i = 。
6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符Fˆ的 本征值 。
7.定态波函数的形式为: t E in n ex t x-=)(),(ϕψ。
8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。
9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。
10.每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值为: 2± 。
二、证明题:(每题10分,共20分)1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系:证明:zy x L i L L ˆ]ˆ,ˆ[ =]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度 证明:考虑 Schr ödinger 方程及其共轭式:2|),(|),(),(),(t r t r t r t rψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂0=∙∇+∂∂J tω][2ψ∇ψ-ψ∇ψ=**μi J ]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)( +-=]ˆˆ[x y p y px i -= zL i ˆ =在空间闭区域τ中将上式积分,则有:三、计算题:(共40分)1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r 求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率。
量子力学期末考试试卷及答案
![量子力学期末考试试卷及答案](https://img.taocdn.com/s3/m/2ee9f943ee06eff9aef807a6.png)
量子力学期末考试试卷及答案红色为我认为可能考的题目一、填空题:1、波函数的标准条件:单值、连续性、有限性。
2、|Ψ(r,t)|^2的物理意义:t时刻粒子出现在r处的概率密度。
3、一个量的本征值对应多个本征态;这样的态称为简并。
4、两个力学量对应的算符对易;它们具有共同的确定值。
二、简答题:1、简述力学量对应的算符必须是线性厄米的。
答:力学量的观测值应为实数;力学量在任何状态下的观测值就是在该状态下的平均值;量子力学中;可观测的力学量所对应的算符必须为厄米算符;量子力学中还必须满足态叠加原理;而要满足态叠加原理;算符必须是线性算符。
综上所述;在量子力学中;能和可观测的力学量相对应的算符必然是线性厄米算符。
2、一个量子态分为本征态和非本征态;这种说法确切吗?答:不确切。
针对某个特定的力学量;对应算符为A;它的本征态对另一个力学量(对应算符为B)就不是它的本征态;它们有各自的本征值;只有两个算符彼此对易;它们才有共同的本征态。
3、辐射谱线的位置和谱线的强度各决定于什么因素?答:某一单色光辐射的话可能吸收;也可能受激跃迁。
谱线的位置决定于跃迁的频率和跃迁的速度;谱线强度取决于始末态的能量差。
三、证明题。
2、证明概率流密度J不显含时间。
四、计算题。
、1第二题: 如果类氢原子的核不是点电荷;而是半径为0r 、电荷均匀分布的小球;计算这种效应对类氢原子基态能量的一级修正。
解:这种分布只对0r r <的区域有影响;对0r r ≥的区域无影响。
据题意知)()(ˆ0r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布;即 2004ze U r rπε=-())(r U 为考虑这种效应后的势能分布;在0r r ≥区域; rZe r U 024)(πε-=在0r r <区域;)(r U 可由下式得出; ⎰∞-=r Edr e r U )(⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,4344102003003303420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rEdr e Edr e r U⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(82203020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r rZe r r r Ze r U r U H πεπε 由于0r 很小;所以)(2ˆˆ022)0(r U H H +∇-=<<'μη;可视为一种微扰;由它引起 一级修正为(基态03(0)1/210030()Zra Z ea ψπ-=) ⎰∞'=τψψd H E )0(1*)0(1)1(1ˆ ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ ∵0a r <<;故102≈-r a Z e 。
量子力学考试题讲解及答案
![量子力学考试题讲解及答案](https://img.taocdn.com/s3/m/52da974f4531b90d6c85ec3a87c24028905f854e.png)
量子力学考试题讲解及答案一、单项选择题(每题2分,共10分)1. 量子力学中,波函数的平方代表的是:A. 粒子的位置B. 粒子的动量C. 粒子出现的概率密度D. 粒子的能量答案:C2. 根据海森堡不确定性原理,下列说法正确的是:A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的能量和时间可以同时精确测量D. 粒子的能量和时间不能同时精确测量答案:B3. 薛定谔方程是用来描述:A. 经典力学系统B. 热力学系统C. 量子力学系统D. 电磁学系统答案:C4. 量子力学中的波粒二象性是指:A. 粒子有时表现为波动性,有时表现为粒子性B. 粒子总是同时具有波动性和粒子性C. 粒子只具有波动性D. 粒子只具有粒子性答案:B5. 量子力学中,哪个假设是关于测量的?A. 叠加原理B. 波函数坍缩C. 泡利不相容原理D. 量子纠缠答案:B二、填空题(每题2分,共10分)1. 量子力学中的波函数通常用希腊字母________表示。
答案:Ψ2. 量子力学中的德布罗意波长公式为λ = ________。
答案:h/p3. 在量子力学中,一个粒子的总能量可以表示为E = ________ + V。
答案:K.E.4. 费米子遵循的统计规律是________统计。
答案:费米-狄拉克5. 量子力学中的测不准原理是由海森堡提出的,其数学表述为ΔxΔp ≥ ________。
答案:h/4π三、简答题(每题5分,共20分)1. 简述量子力学中的波函数坍缩概念。
答案:波函数坍缩是指在量子力学中,当一个量子系统的状态被测量时,系统的波函数会从多个可能的状态中“选择”一个确定的状态,这个过程称为波函数坍缩。
2. 解释量子力学中的叠加原理。
答案:叠加原理是指在量子力学中,一个量子系统可以同时处于多个状态的叠加,即系统的波函数可以是多个不同状态波函数的线性组合。
3. 描述量子力学中的泡利不相容原理。
答案:泡利不相容原理指出,两个相同的费米子(如电子)不能处于同一个量子态,即它们不能具有相同的一组量子数。
(完整版)量子力学期末考试题及解答
![(完整版)量子力学期末考试题及解答](https://img.taocdn.com/s3/m/9468b77f102de2bd960588f4.png)
一、 波函数及薛定谔方程1.推导概率(粒子数)守恒的微分表达式;()(),,w r t J r t o t∂+∇•=∂解答:由波函数的概率波解释可知,当(),r t ψ已经归一化时,坐标的取值概率密度为()()()()2,,,,w r t r t r t r t ψψψ*== (1) 将上式的两端分别对时间t 求偏微商,得到()()()()(),,,,,w r t r t r t r t r t t t tψψψψ**∂∂∂=+∂∂∂ (2) 若位势为实数,即()()V r V r *=,则薛定谔方程及其复共轭方程可以分别改写如下形式()()()()2,,,2r t ih ir t V r r t t m h ψψψ∂=∇-∂ (3)()()()()2,,,2r t ih ir t V r r t t m hψψψ***∂=-∇+∂ (4) 将上述两式代入(2)式,得到()()()()()22,,,,,2r t ih r t r t r t r t t mψψψψψ**∂⎡⎤=∇-∇⎣⎦∂ ()()()(),,,,2ihr t r t r t r t mψψψψ**⎡⎤=∇•∇-∇⎣⎦ (5) 若令()()()()(),,,,,2ih J r t r t r t r t r t mψψψψ**⎡⎤=∇-∇⎣⎦ (6) 有()(),,0w r t J r t t∂+∇•=∂ (7) 此即概率(粒子数)守恒的微分表达式。
2.若线性谐振子处于第一激发态()2211exp 2x C x α⎛⎫ψ=- ⎪⎝⎭求其坐标取值概率密度最大的位置,其中实常数0α>。
解答:欲求取值概率必须先将波函数归一化,由波函数的归一化条件可知()()222221exp 1x dx Cx x dx ψα∞∞-∞-∞=-=⎰⎰(1)利用积分公示())2221121!!exp 2n n n n x x dx αα∞++--=⎰ (2) 可以得到归一化常数为C = (3)坐标的取值概率密度为 ()()()322221exp w x x x x ψα==- (4)由坐标概率密度取极值的条件())()3232222exp 0d w x x x x dx αα=--= (5) 知()w x 有五个极值点,它们分别是 10,,x α=±±∞(6)为了确定极大值,需要计算()w x 的二阶导数()()()232222322226222exp d w x x x x x x dx αααα⎤=----⎦)()32244222104exp x x x ααα=-+- (7)于是有()23200x d w x dx ==> 取极小值 (8)()220x d w x dx =±∞= 取极小值 (9)()23120x d w x dx α=±=< 取极大值 (10)最后得到坐标概率密度的最大值为2111w x x ψαα⎛⎫⎛⎫=±==±= ⎪ ⎪⎝⎭⎝⎭(11)3.半壁无限高势垒的位势为()()()()000x v x x a v x a ∞<⎧⎪=≤≤⎨⎪>⎩求粒子能量E 在00E v <<范围内的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新量子力学期末考试题解答题(简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?)答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件.首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质.2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的?答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子.爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的.(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比.(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子.3.简述量子力学中的态叠加原理,它反映了什么?答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态.这就是量子力学中的态叠加原理.态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ.它反映了微观粒子的波粒二象性矛盾的统一.量子力学中这种态的叠加导致在叠加态下观测结果的不确定性.4. 什么是定态?定态有什么性质?答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值.这种状态称为定态.定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化.5. 简述力学量与力学量算符的关系?答:算符是指作用在一个波函数上得出另一个函数的运算符号.量子力学中采用算符来表示微观粒子的力学量.如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符ˆF 由经典表示式F (r,p )中将p 换为算符ˆp而得出的,即:ˆˆˆˆˆF F F =∇(r,p )=(r,-i ).量子力学中的一个基本假定:如果算符ˆF表示力学量F ,那么当体系处于ˆF的本征态φ时,力学量F 有确定值,这个值就是ˆF 在φ中的本征值. 6.经典波和量子力学中的几率波有什么本质区别?答:1)经典波描述某物理量在空间分布的周期性变化,而几率波描述微观粒子某力学量的几率分布;(2)经典波的波幅增大一倍,相应波动能量为原来的四倍,变成另一状态,而微观粒子在空间出现的几率只决定于波函数在空间各点的相对强度,几率波的波幅增大一倍不影响粒子在空间出现的几率,即将波函数乘上一个常数,所描述的粒子状态并不改变;7. 能量的本征态的叠加一定还是能量本征态.答:不一定,如果1ψ,2ψ对应的能量本征值相等,则2211ψψψc c +=还是能量的本征态,否则,如果1ψ,2ψ对应的能量本征值不相等,则2211ψψψc c +=不是能量的本征态8.什么是表象?不同表象之间的变换是一种什么变换?在不同表象中不变的量有哪些?答:量子力学中态和力学量的具体表示方式称为表象.不同表象之间的变换是一种幺正变换.在不同表象中不变的量有:算符的本征值,矩阵的迹即矩阵对角元素的和.9. 简述量子力学的五个基本假设.答:(1)微观体系的状态被一个波函数完全描述,从这个波函数可以得出体系的所有性质.波函数一般应满足连续性、有限性和单值性三个条件;(2)力学量用厄密算符表示.如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量的算符,由经典表示中的将动量p 换为算符i -∇得出.表示力学量的算符具有组成完全系的本征函数.(3)将体系的状态波函数ψ用算符ˆF 的本征函数展开ˆˆm m m F F λλϕλϕϕλϕ==(,):m m mc cd λλψϕϕλ=+∑⎰,则在ψ态中测量力学量F 得到结果为m λ的几率为2m c ,得到结果在d λλλ+范围内的几率是2c d λλ;(4)体系的状态波函数满足薛定谔方程:ˆi H t ψψ∂=∂,ˆH 是体系的哈密顿算符.(5)在全同粒子组成的体系中,两全同粒子相互调换不改变体系的状态(全同性原理).10.波函数归一化的含义是什么?归一化随时间变化吗?答:粒子既不产生也不湮灭.根据波函数的统计解释,在任何时刻,粒子一定在空间出现,所以在整个空间中发现粒子是必然事件,概率论中认为必然事件的概率等于1.因而粒子在整个空间中出现的概率即2ψ对整个空间的积分应该等于1.即()2,,,1x y z t d ψτ=⎰式中积分表示对整个空间积分.这个条件我们称为归一化条件.满足归一化条件的波函数称为归一化波函数.波函数一旦归一化,归一化常数将不随时间变化.11.量子化是不是量子力学特有的效应?经典物理中是否有量子化现象?答: 所谓量子化,就是指某个力学量可取数值具有离散谱.一般来说,这不是量子力学的特有效应.经典物理中,例如声音中的泛音,无线电中的谐波都是频率具有离散谱.经典波在束缚态形成驻波时,频率也是量子化的,但经典波的频率量子化并不对应能量量子化.有时量子化用了专指能量量子化,在这种意义上它就是量子力学特有的效应.12.什么是算符的本征值和本征函数?它们有什么物理意义?答:含有算符ˆF 的方程ˆm m m F F ϕϕ=称为ˆF 的本质方程,m F 为ˆF 的一个本质值.而mϕ则为ˆF 的属于本征值m F 的本征函数. 如果算符多代表一个力学量,上述概念的物理意义如下:当体系处于ˆF 的本征态m ϕ时,测量F 的数值时确定的,恒等于mF .当体系处于任意态时,单次测量F 的值必等于它的本征值之一.13.算符运算与一般代数运算有什么异同之处?答:(1)相同点:都满足加法运算中的加法交换律和加法结合律.(2)不同点:a.算符乘积一般不满足代数乘法运算的交换律,即ˆˆˆˆFGGF ≠;b.算符乘积定义()()ˆˆˆˆˆˆFGE F G E ψψ⎡⎤=⎣⎦,运算次序由后至前,不能随意变换. 14.什么是束缚态和定态?束缚态是否必为定态?定态是否必为束缚态?答:定态是概率密度和概率流密度不随时间变化的状态.若势场恒定0U t∂=∂,则体系可以处于定态.当粒子被外力(势场)束缚于特定的空间区域内,及在无穷处波函数等于零的态叫做束缚态.束缚态是离散的.例如一维谐振子就属于束缚定态,具有量子化能级.但束缚态不一定是定态.例如限制在一维箱子中的粒子,最一般的可能态是以一系列分立的定态叠加而成的波包.这种叠加是没有确定值的非定态.虽然一般情况下定态多属束缚态,当定态也可能有非束缚态.15.(1)在量子力学中,能不能同时用粒子坐标和动量的确定值来描写粒子的量子状态?(2)将描写的体系量子状态波函数乘上一个常数后,所描写的体系量子状态是否改变?(3)归一化波函数是否可以含有任意相因子i e δ(δ是实常数)?(4)已知F 为一个算符,当F 满足如下的两式时,a. F F +=,b. 1F F -+=,问何为厄米算符,何为幺正算符?(5)证明厄米算符的本征值为实数.量子力学中表示力学量的算符是不是都是厄米算符?答:(1)不能;因为在量子力学中,粒子具有波粒二象性,粒子的坐标和动量不可能同时具有确定值.(2)不改变;根据Born 对波函数的统计解释,描写体系量子状态的波函数是概率波,由于粒子必定要在空间中的某一点出现,所以粒子在空间各点出现的概率总和等于1,因而粒子在空间各点出现概率只决定于波函数在空间各点的相对强度.(3)可以;因为21i e δ=,如果2ψ对整个空间积分等于1,则2i e δψ对整个空间积分也等于1.即用任意相因子i e δ(δ是实常数)去乘以波函数,既不影响体系的量子状态,也不影响波函数的归一化.(4)满足关系式a 的为厄密算符,满足关系式b 的为幺正算符;(5)证明:以λ表示F 的本征值,ψ表示所属的本征函数,则ˆFψλψ=因为F 是厄密算符,于是有dx dx λψψλψψ***=⎰⎰,由此可得λλ*=,即λ为实数.16.薛定谔方程应该满足哪些条件? 答:(1)它必须是波函数应满足的含有对时间微商的微分方程;(2)方程是线性的,即如果1ψ和2ψ都是方程的姐,那么1ψ和2ψ的线性叠加1122c c ψψψ=+也是方程的解,这是因为根据态叠加原理,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态;(3)这个方程的系数不应该包含状态的参量,如动量、能量等,因为方程的系数如含有状态的参量,则方程只能被粒子的部分状态所满足,而不能被各种的状态所满足.17. 量子力学中的力学量用什么算符表示?为什么?力学量算符在自身表象中的矩阵是什么形式?答:量子力学中表示力学量的算符都是厄密算符.因为所有力学量的数值都是实数,既然表示力学量的算符的本征值是这个力学量的可能值,因而表示力学量的算符,它的本征值必须是实数.力学量算符在自身表象中的矩阵是一个对角矩阵.18.简述力学量算符的性质?答:(1)实数性:厄密算符的本征值和平均值皆为实数;(2)正交性:属于不同本征值的本征态彼此正交.即m n mn d ϕϕτδ*=⎰;(3)完备性:力学量算符的本征态的全体构成一完备集,即()()n n n x c x ψϕ=∑.19.在什么情况下两个算符相互对易?答:如果两个算符ˆF 和ˆG 有一组共同本征函数m ϕ,而且mϕ组成完全系,则算符ˆF 和ˆG 对易. 20.请写出测不准关系?答:设算符ˆF 和ˆG 的对易关系为:ˆˆˆi F G k ⎡⎤=⎣⎦,,则测不准关系式为:()()222ˆˆ4k F G ∆∆≥,如果k 不为零,则ˆF和ˆG 的均方偏差不会同时为零,它们的乘积要大于一正数. 21.量子力学中的守恒量是如何定义的?守恒量有什么性质?量子力学中的守恒量和经典力学的守恒量定义有什么不同,并举例说明?答:量子力学中不显含时间,且其算符与体系的哈密顿算符对易的力学量称为守恒量;量子体系的守恒量,无论在什么态下,平均值和概率分布都不随时间改变;量子力学中的守恒量与经典力学中的守恒量概念不相同,实质上是不确定度关系的反映.a.量子体系的守恒量并不一定取确定值,及体系的状态并不一定就是某个守恒量的本征态.如对于自由粒子,动量是守恒量,但自由粒子的状态并不一定是动量的本征态(平面波),在一般情况下是一个波包;b.量子体系的各守恒量并不一定都可以同时取确定值.例如中心力场中的粒子,l 的三个分量都守恒,但由于x y z l l l 、、不对易,一般说来它们并不能同时取确定值(角动量0l =的态除外).22.定态微扰理论的适用范围和适用条件是什么?答:适用范围:求分立能级及所属波函数的修正;适用条件是:(0)(0)(0)(0)1nmm n m n H εεεε'≠-,式中.23.什么是自发跃迁?什么是受激跃迁?答:在不受外界影响的情况下,体系由高能级跃迁到低能级,这种跃迁称为自发跃迁;体系在外界(如辐射场)作用下,由低能级跃迁到高能级,这种跃迁称为受激跃迁.24.什么是严格禁戒跃迁?角量子数和磁量子数的选择定则是什么?答:如果在任何级近似中跃迁几率均为零,这这种跃迁称为严格禁戒跃迁.角量子数和磁量子数的选择定则是:101l m ∆=±∆=±;,.25. 谁提出了电子自旋的假设?表明电子有自旋的实验事实有哪些?自旋有什么特征?答:乌伦贝克和高斯密特提出了电子自旋的假设.他们主要根据的两个实验事实是:碱金属光谱的双线结构和反常的Zeeman 效应.他们假设的主要内容为:a.每个电子具有自旋角动量ˆS,它在空间任何方向上的投影只能是两个数值:12zs =±;b.每个电子具有自旋磁矩S M ,它和它的自旋角动量S 的关系式是:S eM S μ=-,式中e -是电子的电荷,μ是电子的质量.表明电子有自旋的实验事实:斯特恩-盖拉赫实验.其现象:K 射出的处于S 态的氢原子束通过狭缝BB 和不均匀磁场,最后射到照相片PP 上,实验结果是照片上出现两条分立线.解释:氢原子具有磁矩,设沿Z 方向:;如在空间可取任何方向, 应连续变化,照片上应是一连续带,但实验结果只有两条, 说明是空间量子化的,只有两个取向,对S 态 , ,没轨道角动量,所以原子所具有的磁矩是电子固有磁矩,即自旋磁矩. 自旋的特点:(1)电子具有自旋角动量这一特点纯粹是量子特性,它不可能用经典力学来解释.它是电子的本身的内禀属性,标志了电子还有一个新自由度.(2)电子自旋与其它力学量的根本区别为,一般力学量可表示为坐标和动量的函数,自旋角动量与电子坐标和动量无关,不能表示为 ,它是电子内部状态的表征,是一个新的自由度.(3)电子自旋值是, 而不是的整数倍.(4), 而两者在差一倍.自旋角动量也具有其它角动量的共性,即满足同样的对易关系:. ① 它是个内禀的物理量,不能用坐标、动量、时间等变量表示;② 它完全是一种量子效应,没有经典对应量.也就是说,当0→时,自旋效应消失.③ 它是角动量,满足角动量最一般的对应关系.而且电子自旋在空间任何方向上的投影只取2±两个值.26. 什么是斯塔克效应?答:当原子置于外电场中,它发射的光谱线将发生分裂,这称为Stark 效应.27. 什么是光谱的精细结构?产生精细结构的原因是什么?考虑精细结构后能级的简并度是多少?答:由于电子自旋与轨道角动量耦合,是原来简并的能级分裂成几条差别很小的能级,称为光谱的精细结构;当n 和l 给定后,j 可以取10)2j l l =±=,(除外,即具有相同的量子数n ,l 的能级有两个,它们的差别很小,这就是产生精细结构的原因.考虑精细结构后能级的简并度为(2j+1)28. 什么是塞曼效应?什么是反常的塞曼效应?对简单塞曼效应,没有外磁场时的一条谱线在外磁场中分裂为几条?答:把原子(光源)置于强磁场中,原子发出的每条光谱线都分裂为三条,我们把这称为正常的塞曼效应.而反常的塞曼效应是指在弱磁场中原子光谱线的复杂分裂(分裂成偶条数).对简单塞曼效应,没有外磁场时的一条谱线在外磁场中分裂为三条.29.什么是全同性原理和泡利不相容原理?答:全同性原理:由全同粒子所组成的体系中,两全同粒子相互代换不引起物理状态的改变.描写全同粒子体系状态的波函数只能是对称的或反对称的,它们的对称性不随时间改变.泡利不相容原理:不能有两个或两个以上的费米子处于同一状态.30.写出泡利矩阵的形式及其对易关系.请用泡利矩阵定义电子的自旋算符,并验证它们满足角动量对易关系. 答:泡利矩阵:01ˆ10x σ⎛⎫= ⎪⎝⎭ ;0ˆ0y i i σ-⎛⎫= ⎪⎝⎭ ;ˆ01z σ⎛⎫= ⎪-⎝⎭1 0 ;对易关系为:ˆˆˆ2i σσσ⨯=;自旋算符ˆˆ2S σ=;对易关系为ˆˆˆS S i S ⨯=.验证过程如下:ˆˆˆˆˆˆx y x y y x S S S S S S ⎡⎤=-⎣⎦,即:2222010001ˆˆ10001044ˆ2010142x y z i i S S i i i i iS --⎛⎫⎛⎫⎛⎫⎛⎫⎡⎤=- ⎪⎪ ⎪⎪⎣⎦⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫=== ⎪ ⎪--⎝⎭⎝⎭, 1 0 1 0 31.请写出两个电子体系的波函数.答:按空间态和自旋态组合可有四种反对称态:⎭⎬⎫⎩⎨⎧∙∙自旋态对称空间态反对称自旋态反对称空间态对称()()()()[]()()()()⎥⎦⎤⎢⎣⎡-+--12212121212121211221χχχχϕϕϕϕr r r r m n m n ;()()()()[]()()()()()()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡+-----12212121212121212121212121211221χχχχχχχχϕϕϕϕr r r r m n m n ; 其中()()111ˆr E r H n n n ϕϕ=;()()222ˆr E r H m m m ϕϕ=.32.请简述微扰论的基本思想.答:将复杂的体系的哈密顿量分成与两部分.是可求出精确解的,而可看成的微扰.只需将精确解加上由微扰引起的各级修正量,逐级迭代,逐级逼近,就可得到接近问题真实的近似解.确定时,先确定,再用确定. 33. 什么是玻色子和费米子?答:由电子,质子,中子这些自旋为的粒子以及自旋为的奇数倍的粒子组成的全同粒子体系的波函数是反对称的,这类粒子服从费米(Fermi)-狄拉克 (Dirac) 统计,称为费米子,由光子(自旋为1)以及其它自旋为零,或整数倍的粒子所组成的全同粒子体系的波函数是对称的,这类粒子服从玻色(Bose)-爱因斯坦统计,称为玻色子.34.什么是隧道效应?请举例说明隧道效应的应用.答:粒子在其能量E 小于势垒高度0U 时,仍然会有部分粒子穿过势垒的现象叫隧道效应,又叫隧穿效应.隧道效应的应用:1.扫描隧道显微镜(STM )是电子隧道效应的重要应用之一.扫描隧道显微镜可以显示表面原子台阶和原子排布的表面三维图案.在表面物理、材料科学和生命科学等诸多领域中,扫描隧道显微镜都能提供十分有价值的信息.2.隧道二极管是一种利用隧道效应的半导体器件,也是隧道效应的重要应用之一.由于隧道效应而使其伏安特性曲线出现负阳区,因而隧道二级管具有高频、低噪声的特点.隧道二级管是低频放大器、低频噪声振荡器和超高速开关电路中的重要器件.35. 厄米算符具有哪些性质?厄米算符的平均值、本征值、本征函数具有哪些性质?答:厄米算符具有下列性质:a.两厄米算符之和仍为厄米算符;b.当且仅当两厄米算符 ˆA和 ˆB 对易时,它们之积才为厄米算符.因为()†††ˆˆˆˆˆˆAB B A BA ==.只有在ˆˆ,0A B ⎡⎤=⎣⎦时,ˆˆˆˆBAAB =,才有,()†ˆˆˆˆAB AB =,即ˆˆAB 仍为厄米算符;c.无论厄米算符ˆA 、ˆB 是否对易,算符()1ˆˆˆˆ2AB BA +及 ()1ˆˆˆˆ2AB BA i -必为厄米算符,因为 ()()()*††††††††11111ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ22222AB BA B A A B A B B A AB BA i i i i i ⎡⎤-=-+=-=-⎢⎥⎣⎦; d.任何算符总可分解为ˆˆˆi οοο+-=+.令 ()†1ˆˆˆ2οοο+=+、()†1ˆˆˆ2iοοο-=-,则ˆο+和ˆο-均为厄米算符. 厄米算符的平均值、本征值、本征函数具有下列性质:①厄米算符的平均值是实数;②在任何状态下平均值均为实数的算符必为厄米算符; ③厄米算符的本征值为实数.厄米算符在本征态中的平均值就是本征值.④厄米算符属于不同本征值的本征函数正交;⑤厄米算符的简并的本征函数可以经过重新组合后使它正交归一化;⑥厄米算符的本征函数系具有完备性;⑦厄米算符的本征函数系具有封闭型.36. 简单讨论一下相对论情形和非相对论情形下的德布洛意关系式. 答:对于非相对论情形:22k p m ε=,02k p m ε=; 相对论情形:022224E p c m c =+; ()002222422400112k k k p E m c m c m c m c cc εεε⎛⎫=-=+-=+ ⎪⎝⎭; 所以当k c ε时,即得到非相对论情形下的公式:0022242222200240111......22p c m c m c E p c p m c h h h m c h m υ⎡⎤+⎛⎫⎛⎫===++=++⎢⎥ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 由于能量只有相对变化E ∆才有意义(即能量的绝对值在物理上是没有意义的,它依赖于“零能量值”的选取),21h E E E υ=∆=-可将常数项20m c 抵消,此时相对论形式的关系退化为非相对论情形:kh ευ=,k ε就是非相对论粒子的动能.德布洛意频率本身不是一个可观测量,因此只有德布洛意波长具有物理意义.37. 为什么物质的波动性在宏观尺度不显现?答:由于h p λ=,原因是普朗克常数太小(346.610.h J s -=⨯),而宏观尺度的运动动量太大,导致波长太小,难以引起可以观察的物理效应.因为2p mE =,要减小宏观尺度运动的动量,必须减小动能E ,但从物理上考虑E 不可能减小到比热运动能量kBT 更小,所以必须减小质量.质量的减小对应于尺度的减小.只有把物体尺度减小到微观尺度,才可能出现较大的物质波波长λ.从而引起可以观察到的物理效应.38.相对论粒子德布洛意波对应的相速度,群速度分别是多少?(相速度pdx v dt k ω==,代表相位传播的速度.波包是指波动在有限空间中分布.群速度g d v dkω=对应波包运动的速度) 答:由德布洛意关系:()201h v c h p m v λ-==,所以:波矢()02221m vk h v c ππλ==-; ()22021m c E mc h h h v c υ===-,所以()20221m c h v c πω=-, 则相速度:()()2220201221p h v c m c c v k m v vh v c πωπ-==∙=-. 又因为:()()032221m vd dv h v c πω=-,()()032221m dk dv h v c π=-所以,群速度:g d d dv v v dk dk dvωω===,即在相对论情形下粒子运动速度也对应于波包的群速度.39. 自由粒子非相对论情形的相速度和群速度分别为多少?答:()22k m ω=,22k m ω=,则群速度:g d k v dk m ω==(对应的才是粒子运动的速度).而相速度:2p k v k mω==(不是粒子运动速度). 40.什么是希尔伯特空间?波函数与希尔伯特空间的关系?答:希尔伯特空间是定义在复数域上的一个有限维或无限维的完备矢量空间.波函数对应于希尔伯特空间中的态矢.41.试举例有哪些实验揭示了光的粒子性质?哪些实验揭示了粒子的波动性质?答:黑体辐射、光电效应、康普顿散射实验给出了能量分立、光场量子化的概念,从实验上揭示了光的粒子性质.电子杨氏双缝实验、电子在晶体表面的衍射实验、中子在晶体上的衍射实验从实验上揭示了微粒的波动性质.。