2016结构动力学(硕)答案.pdf
结构动力学试卷
c 2k
m k
3、 已知线性 MDOF 系统的运动方程为 mu + cu + ku = p(t) ,试导出线性
加速度法的积分递推公式。(14 分)
4、 试列出图示等截面均质梁的运动偏微分方程和边界条件以及振型满足 的正交性条件。(14 分)
v(x,t)
m
p(t)
ρA EI
+
4 7
⎧2⎫
⎪ ⎨
2
⎪ ⎬
⎪⎩− 3⎪⎭
+
5 154
⎪⎨⎧−43⎪⎬⎫⎟⎟⎞Z ⎪⎩ 1 ⎪⎭⎟⎠
cos
Ωt
=
⎪⎪⎪⎩⎪⎪⎪⎨−−31762
⎪ ⎪⎪⎬Z ⎪ ⎪ ⎪⎭
cos
Ωt
=
⎧ 3.33 ⎫ ⎪⎨− 0.833⎪⎬mm ⎪⎩ − 17.5 ⎪⎭
cos
Ωt
7 第 9 页,共 11 页
结构动力学试题
0
3
3
∫ K = L EAψ ′2 (x)dx + kψ 2 (0) + kψ 2 (L) = 4EA + 2k = 6k
0
L
p(t) = P(t)ψ (0) = P(t)
2、 图示 SDOF 系统受到基础运动 z(t)=ZcosΩt 的作用,试求 (1) 列出系统的相对运动 w=u-2z 满足的方程; (2) 确定固有频率和阻尼比; (3) 用复频响应法求相对运动产生的稳态响应。(14 分)
,解出 Δui
=
2( Δui Δti
− ui )
④ Δui
=
(ui
+
1 2
ui Δti
+
2016结构动力学(硕)答案
2016结构动力学(硕)答案D
叠加法只适用于线性体系的动力分析。
若体系为非线性,可采用逐步积分法进行反应分析。
1.什么是结构的动力自由度?动力自由度与静力自由度的区别何在?
答:动力自由度是指结构体系在任意瞬时的一切可能变形中,决定全部质量位置所需的独立参数的数目。
静力自由度是指确定体系在空间中的位置所需的独立参数的数目。
前者是由于系统的弹性变形而引起各质点的位移分量;而后者则是指结构中的刚体由于约束不够而产生的刚体运动。
三、计算(每题13分,共65分)
1. 图1所示两质点动力体系,用D’Alembert原理求运动方程。
图1
2.图2所示,一长为l,弯曲刚度为EI的悬臂
梁自由端有一质量为m的小球,小球又被
支承在刚度为k2的弹簧上,忽略梁的质
量,求系统的固有频率。
图2
3.图3所示,一重mg的圆柱体,其半径为r,在一半径为R的弧表面上作无滑动的滚动,求
在平衡位置(最低点)附近作微振动的固有频率。
图3
4.图4所示三层钢架结构,假定结构无阻尼,计算下述给定初始条件产生的自由振动。
初始条件
y(0)={0.060.050.04}m ẏ(0)= {0.0
0.30.0
}m/s
图
4
5.图5双杆均质,杆OA=21l,质量为1m,杆AB=22l,质量为
m,(OA以光滑铰链固定于O点,AB均2
质以光滑铰链与OA杆相连)。
B点受一水平常力P3向右作用,试求对应于广义坐标θ1和θ2的广义力Q1和Q2
图5。
结构动力学哈工大版课后习题解答
.. .
..
第一章 单自由度系统
1.1 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守 恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力;
(2) 利用牛顿第二定律 m x F ,得到系统的运动微分方程;
0
bi
2 T
T
F (t ) sin(it )dt
0
因为 F (t) H sin 2 (0t) 是偶函数,所以 bi 0 。
于是
F (t )
H 2
H 2
c os (2 0 t )
而
x(t)
H 2k
A s in(2 0 t
a
/
2)
;
式中
H
A
2m
;
( n 2 402 ) 16n202
1 2
K A A2 K B B 2
1 2
K
A
KB
rA 2 rB 2
A2 ;
系统的机械能为
图 1-36
c
)
T
U
1 4
m
A
mB rA2 A2
1 2
K
A
KB
rA 2 rB 2
A2
C;
由 d T U 0 得系统运动微分方程
dt
1 2
m A
mB rA2A
K
A
KB
rA 2 rB 2
48EIl3
;
m
48EI k1l 3 m
(b)此系统相当于两个弹簧并联, 等效刚度为:
结构动力学习题解答(一二章)
结构动力学习题解答(一二章)第一章单自由度系统总结求单自由度系统固有频率的方法和步骤。
单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。
1、牛顿第二定律法适用范围:所有的单自由度系统的振动。
解题步骤:(1)对系统进行受力分析,得到系统所受的合力;(2)利用牛顿第二定律∑xm ,得到系统的运动微分方=F程;(3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
2、动量距定理法适用范围:绕定轴转动的单自由度系统的振动。
解题步骤:(1)对系统进行受力分析和动量距分析;(2)利用动量距定理J∑θ ,得到系统的运动微分方程;=M(3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
3、拉格朗日方程法:适用范围:所有的单自由度系统的振动。
解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ;(2)由格朗日方程θθ??-LL dt )( =0,得到系统的运动微分方程;(3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
4、能量守恒定理法适用范围:所有无阻尼的单自由度保守系统的振动。
解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const(2)将能量守恒定理T+U=Const 对时间求导得零,即0)(=+dtU T d ,进一步得到系统的运动微分方程;(3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
叙述用衰减法求单自由度系统阻尼比的方法和步骤。
用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。
方法一:衰减曲线法。
求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。
(2)由对数衰减率定义 )ln(1+=i iA A δ,进一步推导有 212ζπζδ-=,因为ζ较小,所以有πδζ2=。
结构动力学习题答案
3.4
m2 g k
( m1 + m2 ) u (0) = m2 2 gh
即 u (0) =
i
i
m2 2 gh m1 + m2
动力方程: ( m1 + m2 )( u − ust )′′ + K ( u − ust ) = 0
5 .0 1 = u st 2ξ
(1)
当 w wn = 1 时,发生共振有: Rd 1 =
当 w wn = 1 10 时, Rd 1 =
0 .5 = u st
(1 − 0.1 ) + (2ξ × 0.1)
2 2
1
(2)
2
由式(1),(2)可以解得 ξ = 4.95%
3.6 解:
TR =
[1 − (w w ) ] + [2ξ w w ]
ii
ii
ii
ii
ii
δ Wp = −m2 g sin θ i Lδθ
虚 功原理: δ Ws
+ δ WI + δ W D +δ W p = 0 得:
⎡ m1 + m2 ⎢ mL ⎣ 2
2.6 解:
ii ⎫ ⎧i⎫ m2 L ⎤ ⎧ 0 ⎫ ⎪ u ⎪ ⎡C 0 ⎤ ⎪ u ⎪ ⎡ k 0 ⎤ ⎧ u ⎫ ⎧ +⎢ ⎨ i ⎬+ ⎢ ⎨ ⎬=⎨ ⎬ ⎥ ⎥ 2 ⎥ ⎨ ii ⎬ m2 L ⎦ ⎪ ⎪ ⎣ 0 0 ⎦ ⎪ ⎪ ⎣ 0 0 ⎦ ⎩θ ⎭ ⎩−m2 g sin θ i L ⎭ ⎩θ ⎭ ⎩θ ⎭
结构动力学 (邹经湘 王本利 王世忠 著) 哈尔滨工业大学出版社 课后答案
∑ F ,得到系统的运动微分方程;
(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
kh
2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤: (1) 对系统进行受力分析和动量距分析;
̇̇ = (2) 利用动量距定理 J θ
(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。
w .c
所以:系统的固有频率为
om
kg P
ω0 =
kg P
x
T平动 = T转动 =
1 ̇2; Mx 2
图 1-35
而势能
课 后
答
̇⎞ ̇⎞ 1 ⎛x 1 ⎛ MR ⎞ ⎛ x I⎜ ⎟ = ⎜ ⎟⎜ ⎟ ; 2 ⎝R⎠ 2 ⎝ 2 ⎠⎝ R ⎠
2
2
2
T=
1 1 3 ̇ 2 + Mx ̇ 2 = Mx ̇2 ; Mx 2 4 4 1 Kx 2 ; 2
系统的势能为:
U=
da
r 2 1 1 1 1⎛ K A ϕ A 2 + K Bϕ B 2 = K Aϕ A 2 + K Bϕ B 2 = ⎜ K A + K B A 2 2 2 2 2⎜ rB ⎝
w .c
B
D
(
)
⎞ 2 ⎟ϕ A ; ⎟ ⎠
图 1-36
系统的机械能为
kh
T +U =
r 2 1 1⎛ ̇A2 + ⎜KA + KB A (m A + m B )rA 2ϕ 4 2⎜ rB 2 ⎝
w
图 1-34 0
B
w
结构动力学西南交通大学
第十六章结构动力学【例16-1】不计杆件分布质量和轴向变形,确定图16-6 所示刚架的动力自由度。
图16-6【解】各刚架的自由度确定如图中所示。
这里要注意以下两点:1.在确定刚架的自由度时,引用受弯直杆上任意两点之间的距离保持不变的假定。
根据这个假定并加入最少数量的链杆以限制刚架上所有质量的位置,则刚架的自由度数目即等于所加链杆数目。
2.集中质量的质点数并不一定等于体系的自由度数,而根据自由度的定义及问题的具体情形确定。
【例16-2】 试用柔度法建立图16-7a 所示单自由度体系,受均布动荷载)t (q 作用的运动方程。
【解】本题特点是,动荷载不是作用在质量上的集中荷载。
对于非质量处的集中动荷载的情况,在建立运动方程时,一般采用柔度法较为方便。
设图a 质量任一时刻沿自由度方向的位移为y (向下为正)。
把惯性力I 、阻尼力R 及动荷载)(t P ,均看作是一个静荷载,则在其作用下体系在质量处的位移y ,由叠加原理(见图b 、c 、d 及e ),则)(R I y P D I P +δ+∆=∆+∆+∆=式中,)t (q EI 38454P =∆,EI483=δ。
将它们代入上式,并注意到y m I-=,y c R -=,得)(48)(384534y c y m EIt q EI y --+=图16-7经整理后可得)(t P ky y c y m E =++式中,3EI 481k =δ=,)(85)(t q k t P P E =∆=)(t P E 称为等效动荷载或等效干扰力。
其含义为:)(t P E 直接作用于质量上所产生的位移和实际动荷载引起的位移相等。
图a 的相当体系如图f 所示。
【例16-3】 图16-8a 为刚性外伸梁,C 处为弹性支座,其刚度系数为k ,梁端点A 、D 处分别有m 和3m质量,端点D 处装有阻尼器c ,同时梁BD 段受有均布动荷载)t (q 作用,试建立刚性梁的运动方程。
【解】 因为梁是刚性的,这个体系仅有一个自由度,故它的动力响应可由一个运动方程来表达,方程可以用直接平衡法来建立。
结构动力学1~15
《结构动力学》习题答案1~151. 1简述求多自由度体系时程反应的振型叠加法的主要步骤 答1)建立多自由度体系的运动方程)()()()(t p t kv t v c t vm =++ 2)进行振型和频率分析对无阻尼自由振动,这个矩阵方程能归结为特征问题)(ˆ2t p vm k =-ω 由此确定振型矩阵φ和频率向量ω 3)求广义质量和荷载依次取每一个振型向量n φ,计算每一个振型的广义质量和广义荷载n T n nm Mφφ= )()(t p t p Tn n φ=4)求非耦合运动方程用每个振型的广义质量、广义力、振型频率n ω和给定的振型阻尼比n ξ就能写出每一个振型的运动方程2)(2)(ωωξ++t Y t Y n n n n nn nMt P t Y )()(=5)求对荷载的振型反应根据荷载类型,用适当的方法解这些单自由度方程,每一个振型的一般动力反应表达式用Duhamel 积分给出ττωτωξτωd t t P M t Y Dn n n tn nn n )(sin )](exp[)(1)(0---=⎰写出标准积分形式τττd t h P t Y n tn n )()()(0-=⎰式中)](exp[)(sin 1)(τωξτωωτ---=-t t M t h n n Dn nn n 10<<n ξ6)振型自由振动每一个振型有阻尼自由振动反应的通式为)exp[]sin )0()0(cos )0([)(t t Y Y t Y t Y n n Dn Dnnn n n Dn n n ωξωωωξω-++=7)求在几何坐标中的位移反应通过正规坐标变换求几何坐标表示的位移式)()()()(2211t Y t Y t Y t V n n φφφ+++=显然,它反映了各个振型贡献的叠加。
因此命名为振型叠加法。
8)弹性力反应抵抗结构变形的弹性力)()()(t Y k t kv t f s φ==当频率、振型从柔度形式的特征方程中求出时,可以采用另一种弹性力的表达式。
某大学《结构动力学》课程考试试卷(含答案)
某大学《结构动力学》课程考试试卷适用专业: 考试日期:考试时间:120分钟 考试形式:闭卷 试卷总分:100分1、求解单自由振动位移方程0y 2=+y ω,设初始时刻t =0质点有初始位移y 0和初始速度v 0?(10)2、如图所示为一等截面竖直悬臂杆,长度为l ,截面面积为A ,惯性矩为I , 弹性模量为E ,杆顶有重物,其重量为W 。
设杆件本身质量可忽略不计,试分别求水平振动和竖向振动时的自振周期?(15分)3、如下为简谐荷载作用下单自由度体系的强迫振动位移公式,试分析进入平稳阶段后动力系数随ωθ变化特性?(15))sin (sin 11)(y t t y t stωωθθωθ--= 4、突加荷载作用下求t>0时位移如何计算?(15分)⎭⎬⎫⎩⎨⎧><=000)(0t F t t F p p ,当,当5、有阻尼振动的动力系数β随ωθ变化的公式如下,其中ξ为阻尼系数,求共振动力系数和最大动力系数?分析其之间的关系?(15分) /2122222241-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫⎝⎛-=ωθξωθβ6、6、某结构自由振动经过10个周期后,振幅降为原来的10%。
试求结构的阻尼比ξ和在简谐荷载作用下共振时的动力系数?(15分)7、如图所示为两层钢架,其横梁为无限刚性,设质量集中在楼层上,一二层质量分别为m 1和m 2,层间侧移刚度等别为k 1和k 2,试求刚架水平振动时的自振频率和主振型?(15分)(其中m 1= m 2,k 1= k 2)某大学《结构动力学》课程考试试卷答案适用专业: 考试日期:考试时间:120分钟 考试形式:闭卷 试卷总分:100分1、求解单自由振动位移方程0y 2=+y ω,设初始时刻t =0质点有初始位移y 0和初始速度v 0?(10)答:02=+y y ωmk=ω t C t C t y ωωcos sin )(21+= 0)0(y y =,0)0(yν= C 1=ων0,C 2=y(0) t t y t y ωωνωsin cos )(00+=2、如图所示为一等截面竖直悬臂杆,长度为l ,截面面积为A ,惯性矩为I , 弹性模量为E ,杆顶有重物,其重量为W 。
结构动力学习题解答(三四章)
第三章 多自由度系统3.1试求图3-10所示系统在平衡位置附近作微振动的振动方程。
图3-10解:〔1〕系统自由度、广义坐标图示系统自由度N=2,选x1、x2和x3为广义坐标; 〔2〕系统运动微分方程根据牛顿第二定律,建立系统运动微分方程如下:;)(;)()(;)(34233332625323122222121111x K x x K x m x K x K x x K x x K xm x x K x K xm ---=------=---= 整理如下;0)(;0)(;0)(3432333332653212222212111=++-=-++++-=-++x K K x K xm x K x K K K K x K xm x K x K K xm 写成矩阵形式;000)(0)(0)(00000321433365322221321321⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+++--++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡x x x K K K K K K K K K K K K x x x m m m 〔1〕 〔3〕系统特征方程设)sin(,)sin(,)sin(332211ϕωϕωϕω+=+=+=t A x t A x t A x 代入系统运动微分方程〔1〕得系统特征方程;000)(0)(0)(321234333226532222121⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+++---+A A A m K K K K m K K K K K K m K K ωωω〔2〕 〔4〕系统频率方程系统特征方程〔2〕有非零解的充要条件是其系数行列式等于零, 即;0)(0)(0)(234333226532222121=-+---+++---+ωωωm K K K K m K K K K K K m K K展开得系统频率方程;0))(())(()))(())(()((21212323432223432265322121=-+--+--+-+++-+ωωωωωm K K K m K K K m K K m K K K K m K K进一步计算得;0;0)()())()(()))(())((())()()(()()()()())(()())(())(())()(())(())(()))(()()())((())(())(()))(())(()((02244662123432265324321236532214321231233224316532214332216321231232123232243226321421434322124321243165322165324323653221653243212121232343222343421221265322165322121212323432223432265322121==++++-+-+++++++++++-++-+++++++++++-=++-++--++++++-++++++++-++++-+++++=-+--+--+++-+++-++++=-+--+--+-+++-+a a a a K K K K K K K K K K K K K K m K K K K K K K K K K m m m K m K m m K K K K m m K K m m K K m m m m m K K K K m K K K K m m m m m K K m m K K K K K K m m m K K K K m K K K K K K m K K K K K K K K K K K K K K m K K K m K K K m K K m m K K m K K K K m K K K K K K m K K K m K K K m K K m K K K K m K K ωωωωωωωωωωωωωωωωωωωωωωωωωω (3)其中;3216m m m a -= ;)()()(316532214332214m m K K K K m m K K m m K K a +++++++=;))(())((36532214321231233222m K K K K K K K K K K m m m K m K a ++++-++-+=);()())()((21234322653243210K K K K K K K K K K K K K K a +-+-+++++=求解方程〔3〕得系统固有频率;)3,2,1(),,,,,,,,,(654321321==i K K K K K K m m m f i i ω 〔4〕 〔5〕系统固有振型 将系统固有频率代入系统特征方程〔2〕得系统固有振型, 即各阶振型之比:)3(3)3(1)3(3)3(2)3(1)3(2)2(3)2(1)2(3)2(2)2(1)2(2)1(3)1(1)1(3)1(2)1(1)1(21,1;1,1,1,1A A A A A A A A A A A A ======γγγγγγ 〔5〕 〔6〕系统振动方程)sin()sin()sin()sin()sin()sin(33)3(1)3(3)3(1)3(2)3(122)2(1)2(3)2(1)2(2)2(111)1(1)1(3)1(1)1(2)1(133)3(3)3(2)3(122)2(3)2(2)2(111)1(3)1(2)1(1321ϕωγγϕωγγϕωγγϕωϕωϕω+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧t A A A tA A A tA A A t A A A t A A A t A A A x x x 〔6〕在方程〔6〕中含有6个待定常数:)1(1A 、)2(1A 、)3(1A 、1ϕ、2ϕ和3ϕ。
结构动力学习题答案
结构动力学习题答案结构动力学学习题答案结构动力学是土木工程中的一个重要分支,它研究结构在受到外部荷载作用下的响应和变形规律。
在学习结构动力学的过程中,我们经常会遇到一些复杂的问题和难题。
下面我将为大家提供一些常见结构动力学学习题的答案,希望能够帮助大家更好地理解和掌握这门学科。
1. 什么是结构的固有频率?结构的固有频率是指结构在没有外部激励作用下,自由振动时的频率。
它是结构的固有特性之一,与结构的质量、刚度和几何形状有关。
固有频率越高,结构的振动越快。
2. 如何计算结构的固有频率?计算结构的固有频率需要先求解结构的固有振型和固有频率。
常用的方法有模态分析法和有限元法。
模态分析法是通过求解结构的特征方程得到结构的固有频率和振型;有限元法则是将结构离散化为有限个单元,通过求解单元的振动特征得到整体结构的固有频率和振型。
3. 结构的固有频率对结构有何影响?结构的固有频率与结构的动态特性密切相关。
当外部激励频率接近结构的固有频率时,会引起共振现象,使结构的振幅急剧增大,从而可能导致结构的破坏。
因此,在结构设计和抗震设计中,需要合理选择结构的固有频率,以避免共振现象的发生。
4. 什么是结构的阻尼?结构的阻尼是指结构在振动过程中能量损耗的程度。
阻尼可以分为线性阻尼和非线性阻尼。
线性阻尼是指结构的阻尼与结构的振幅成正比,非线性阻尼则是指结构的阻尼与结构的振幅不成正比。
5. 如何考虑结构的阻尼?在结构动力学分析中,通常会考虑结构的阻尼对结构响应的影响。
常用的阻尼模型有粘滞阻尼模型和柱塞阻尼模型。
粘滞阻尼模型是指结构的阻尼与结构的速度成正比;柱塞阻尼模型是指结构的阻尼与结构的速度平方成正比。
根据结构的实际情况和要求,可以选择适当的阻尼模型进行分析。
6. 结构的地震反应分析中常用的方法有哪些?在结构的地震反应分析中,常用的方法有等效静力法、响应谱法和时程分析法。
等效静力法是一种简化的方法,将地震作用等效为静力作用进行计算;响应谱法是一种基于地震响应谱的方法,通过将地震作用转化为结构的响应谱进行计算;时程分析法是一种基于地震时程的方法,通过模拟地震过程对结构进行动力响应分析。
克拉夫《结构动力学》习题答案汇总
第二章 自由振动分析2-1(a ) 由例22T π=22()W K T gπ= 因此 max ()()D t kT νν= 其中 k=0、1、2……T D =0.64sec 如果ξ 很小,T D =T∴ 222200()49.9/0.64sec 386/sec kipsk kips in in π==⇒ 50/k kips in = (b )211lnln n n v v v v δ+≡=δξ=→=1.2ln 0.3330.86δ==0.0529ξ==0.33320.05302δπξξπ=→==⇒ 5.3%ξ= (a ’)D ω=2T πω=T T =249.950/1k kips in ξ==- (c)2c m ξω=W m g=2T πω=4c T gπωξ=T T =241W c Tg πξξ=- 2240.05292000.64sec386/sec 10.0529kipsc in π=-0.539sec/c kips in =⋅ T=T D0.538sec/c kips in =⋅ ⇒0.54sec/c kips in =⋅2-22k mω=→4.47ω== (1/sec ) (0)(0)()sin (0)cos tD D Dv v t et v t ξωξωνωωω-⎡⎤⎛⎫+⎢⎥ ⎪=+⎢⎥ ⎪⎝⎭⎣⎦∴ (0)(0)()sin (0)(0)(0))cos t D D D v v t e t v v v t ξωξωνξωωξωξωωω-⎛⎫⎡⎤+⎧⎫⎡⎤ ⎪⎢⎥=-++-⎨⎬⎢⎥ ⎪⎢⎥⎣⎦⎩⎭⎣⎦⎝⎭()22(0)(0)()(0)cos sin D t D D Dv v t e v t t ξωξωξωωνωωω-⎛⎫⎡⎤++ ⎪⎣⎦=- ⎪ ⎪⎝⎭D ω=→()(0)cos (0)(0)sin t D D D t e v t v v t ξωωνωξωωω-⎛⎫⎡⎤=-+ ⎪⎢⎥⎣⎦⎝⎭()(0)cos tD D t ev t t ξωνωω-⎛⎫⎪= ⎪⎝⎭0.055922(2)(4.47)c cc m ξω=== (a) c=0→0ξ=→D ωω=∴ 5.6(1)sin 4.470.7cos 4.47 1.384.47v t in ==+=- (1) 5.6cos 4.47 4.47(0.7)sin 4.47 1.69/sec v t in ==-=⇒(1) 1.4v in =-,(1) 1.7/sec v in = (b)c=2.8→0.0559(2.8)0.157ξ==4.41D ω== (1/sec ) (0.157)(4.41)5.60.7(0.157)(4.47)(1)sin 4.410.7cos 4.414.41t e ν-⎡+⎤⎛⎫==+⎪⎢⎥⎝⎭⎣⎦(1)0.764t in ν==-(0.157)(4.41)(1) 5.6cos 4.41 4.41t e ν-⎛⎫== ⎪⎝⎭(1) 1.10/sec t in ν==⇒(1)0.76v in =-,(1) 1.1/sec v in =第三章 谐振荷载反应3-1根据公式有 ()()21sin sin 1R t w t wt ββ⎡⎤=-⎢⎥-⎣⎦0.8wwβ== ()()2.778sin 0.8sin1.25R t wt wt=-将t ω以80°为增量计算)(t R 并绘制曲线如下:80° 160° 240° 320° 400° 480° 560° 640° 720° 800° 00.547 1.71 -0.481 -3.214 0.357 4.33 -0.19 -4.9244.9241.25w w =tω)(t R3-2解:由题意得:22m kips s in =⋅ , 20k kips in = , (0)(0)0v v == ,w w =3.162w rad ===8wt π=(a )0c =()()1sin cos 2R t wt wt wt =-将8wt π=代入上式得:()412.566R t π=-=- (b )0.5c k s =⋅0.50.0395222 3.162c c c c mw ξ====⨯⨯()()(){}1exp 1cos exp sin 2R t wt wt wt wt ξξξξ=--+-⎡⎤⎡⎤⎣⎦⎣⎦将8wt π=代入上式得:()7.967R t =- (c ) 2.0c k s =⋅2.00.1582223.162c c c c mw ξ====⨯⨯()()(){}1exp 1cos exp sin 2R t wt wt wt wt ξξξξ=--+-⎡⎤⎡⎤⎣⎦⎣⎦将8wt π=代入上式得:() 3.105R t =-3-3解:(a ):依据共振条件可知:10.983sec w w rad =====由2L T V w π==得:10.9833662.96022wL V ft s ππ⨯===(b ):()()()122max2221212tgo v v ξββξβ⎡⎤+⎢⎥=⎢⎥-+⎣⎦1w w β==0.4ξ= 1.2go v in =代入公式可得:max 1.921tv in =(c ):2L T V w π=='45min 66V h ft s ==226611.51336V w rad s ec L ππ⨯'===11.5131.04810.983w w β'===0.4ξ=代入数据得 :()()()122max22212=1.85512tgov v in ξββξβ⎡⎤+⎢⎥=⎢⎥-+⎣⎦3-4解:按照实际情况,当设计一个隔振系统时,将使其在高于临界频率比β=在这种情况下,隔振体系可能有小的阻尼。
结构动力学试题
湖北工业大学
2016 年攻读硕士学位课程考试试题
考试(考查)科目结构动力学学位类别
(级)
一、判断图示体系的自由度。
(20分)
二、所示简支梁,将一重为Q=2kN的物体从高h=20cm处自由释放,落到梁的中点处,求梁的最大弯矩。
已知梁的自重为W =20kN,I=36×104cm4,E =34×102kN/cm2。
(20分)
三、图示屋盖系统加一水平力P=9.8kN,测得侧移y0=0.5cm,然后突然卸载使结构发生水平自由振动。
再测得周期T=1.5s 及一个周期后的侧移y1=0.4cm。
求结构的阻尼比ξ和阻尼系数c。
(20分)
四、试分析图示刚架在图示动力荷载作用下,要使得第一层楼面不发生振动,二层的质量和刚度之间应满足有什么关系。
(20分)
五、已知图(a )结构的自振频率为a ω=b )和图
(c )结构的自振频率。
图(c )需考虑二力杆的轴向变形。
(20分)。
结构动力学习题答案
结构动力学习题答案结构动力学学习题答案结构动力学是一门研究结构在外部力作用下的运动和响应的学科。
在学习结构动力学时,学生通常会遇到各种各样的学习题,这些学习题既考验了学生对知识的掌握程度,又帮助他们加深对结构动力学理论的理解。
下面我们就来看一些结构动力学学习题的答案。
1. 什么是结构动力学?结构动力学是研究结构在外部力作用下的振动特性和响应的学科。
它主要研究结构在地震、风载等外部力作用下的动力响应,以及结构的振动特性和控制。
2. 结构的自由振动频率如何计算?结构的自由振动频率可以通过结构的刚度矩阵和质量矩阵来计算。
首先需要求解结构的特征值和特征向量,然后根据特征值来计算结构的自由振动频率。
3. 结构的阻尼比对结构动力学有什么影响?阻尼比是衡量结构在振动过程中能量损失的比例。
阻尼比越大,结构的振动响应越快速衰减;阻尼比越小,结构的振动响应越慢。
因此,阻尼比对结构的振动特性和稳定性有着重要的影响。
4. 结构的地震响应如何进行分析?结构的地震响应可以通过有限元分析、时程分析和频率响应分析等方法进行。
这些方法可以帮助工程师评估结构在地震作用下的受力情况,从而指导结构的设计和加固。
5. 结构的振动控制方法有哪些?结构的振动控制方法包括主动控制、被动控制和半主动控制等。
主动控制是通过外部激励来控制结构的振动;被动控制是通过阻尼器、减震器等被动装置来控制结构的振动;半主动控制则是结合了主动和被动控制的特点,通过智能控制系统来控制结构的振动。
通过以上学习题的答案,我们可以看到结构动力学是一个复杂而又有趣的学科,它涉及到结构的振动特性、动力响应和振动控制等多个方面。
通过对这些学习题的学习和理解,我们可以更好地掌握结构动力学的理论知识,为今后的工程实践打下坚实的基础。
结构动力学参考答案
m u + c u + ku = Pu (t ) 2.13 一根均匀杆,图 P2.13 其单位体积质量密度 ρ ,并具有顶部质量 M,应 用假定法ψ ( x) = x L 来推导该系统轴向自由振动的运动方程。假定 AE = 常数。 解:
.. 1 EA ( ρAL + M ) u + u = P(t ) 3 L
结构动力学习题 参考答案
1
2.3 一根刚梁 AB,用力在弹簧 BC 上去激励它,其 C 点的运动规定为 Z(t),如 图 P2.3. 按 B 点的垂直运动 u 来确定系统的运动方程,假定运动是微小的。 解: 4M u + 3c u + (3k1 + 12k 2 )u = 12k 2 Z (t )
.. .
4
4.17 在振动的结构上一个点,已知其运动为 Ζ = Ζ1 cos(Ω1t ) + Ζ 2 cos(Ω 2 t ) =
0.05 cos ( 60π t ) + 0.02 cos(120π t ) 。
(a)用一加速度计其阻尼因数 ξ = 0.70 和 20 KHz 共振频率来确定振动记录 w p (t ) 。 (b) 加速度计是否会引起有效幅值或相位畸变? 解: (a) w p (t ) = w p1 (t ) + w p 2 (t ) = 6.339 × 10 −11 A1 cos 60π (t − 1.1145 × 10 −5 ) + 6.339 × 10 −11 A2 • cos 120π (t − 1.1146 × 10 −5 ) (b) w p (t ) = C[ A1 cos Ω1 (t − τ ) + A2 cos Ω 2 (t − τ )] A1 , A2 分别表示 Z1 , Z 2 的加速度幅值,所以输出 w p (t ) 与加速度输 入成正比,所以不会发生幅值畸变或相位畸变。 5.2 运送一件仪器设备重 40 1b,是用泡沫包装在一容器内。该容器的有效刚度 k=100 1b/in,有效阻尼因数 ξ = 0.05 ,若整个容器和它的包装以垂直速度 V=150 in/s 碰撞在地面上,求泡沫包装在仪器设备的最大总应力。 (如图 P5.2 所示) 解: f max = 451.739 (1b) 6.5 例 题 4.3 中的 车辆 , 已知 k = 400 × 10 3 , m = 1200kg , ξ = 0.4。 当满 载时以
结构动力学-习题解答
A = yst µ = Pδ 11µ = 15.898 ×10 −4 m
M d max Pl = µ = 5.6178 ×103 N .m 4
习题7 结构的质量上受到突加荷载P=30kN作用,若开始时体系静止, P=30kN作用 7-5 习题7-4结构的质量上受到突加荷载P=30kN作用,若开始时体系静止, 试求梁中最大动位移。 试求梁中最大动位移。 不计阻尼时,动力系数为2 利用上题数据, 解: 不计阻尼时,动力系数为2,利用上题数据,可得
7-1(a)试求图示体系的自振频率与周期。 a)试求图示体系的自振频率与周期。 试求图示体系的自振频率与周期 解
m EI
l
y1 (t )
5 l3 δ 11 = ; 48 EI
l/2
l/2
EI ω = 3.098 ; 3 ml
ml T = 2.027 ; EI
3
l/2 l/4
7-1(b)试求图示体系的自振频率与周期。 b)试求图示体系的自振频率与周期。 试求图示体系的自振频率与周期 求柔度系数: 解: 求柔度系数:用位移法或力矩分配法 求单位力作用引起的弯矩图( 求单位力作用引起的弯矩图(图a); 将其与图b图乘, 将其与图b图乘,得
ml3 T = 3.626 ; EI
7-1(e)试求图示体系的自振频率与周期。 e)试求图示体系的自振频率与周期。 试求图示体系的自振频率与周期 解
1 l 1 δ 11 = + 48 EI 2k
3
m k EI l/2 k l/2
ω2 =
1 = mδ11
1 l3 1 ( + )m 48EI 2k
1 ω = = mδ11
3
µ=
1 1−θ / ω
2 2
2016结构动力学(硕)答案
《结构动力学》试题(硕)一、名词解释:(每题3分,共15分)约束 动力系数 广义力 虚功原理 达朗贝原理二、简答:(每题5分,共20分)1. 为什么说自振周期是结构的固有性质?它与结构哪些固有量有关?2. 阻尼对自由振动有什么影响?减幅系数的物理意义是什么?3. 简述用振型叠加法求解多自由度体系动力响应的基本原理及适用条件分别是什么? 答:振型叠加法的基本原理是利用了振型的正交性,既对于多自由度体系,必有: 0T m n m φφ=,0T m n k φφ=(式中m φ、n φ为结构的第m 、n 阶振型,m 、k 为结构的质量矩阵和刚度矩阵)。
利用正交性和正规坐标,将质量与刚度矩阵有非对角项耦合的N 个联立运动微分方程转换成为N 个独立的正规坐标方程(解耦)。
分别求解每一个正规坐标的反应,然后根据叠加V=ΦY 即得出用原始坐标表示的反应。
由于在计算中应用了叠加原理,所以振型叠加法只适用于线性体系的动力分析。
若体系为非线性,可采用逐步积分法进行反应分析。
4. 什么是结构的动力自由度?动力自由度与静力自由度的区别何在?答:动力自由度是指结构体系在任意瞬时的一切可能变形中,决定全部质量位置所需的独立参数的数目。
静力自由度是指确定体系在空间中的位置所需的独立参数的数目。
前者是由于系统的弹性变形而引起各质点的位移分量;而后者则是指结构中的刚体由于约束不够而产生的刚体运动。
三、计算(每题13分,共65分)1. 图1所示两质点动力体系,用D’Alembert 原理求运动方程。
图12.图2所示,一长为l,弯曲刚度为EI的悬臂梁自由端有一质量为m的小球,小球又被支承在刚度为k2的弹簧上,忽略梁的质量,求系统的固有频率。
图23.图3所示,一重mg的圆柱体,其半径为r,在一半径为R的弧表面上作无滑动的滚动,求在平衡位置(最低点)附近作微振动的固有频率。
图34.图4所示三层钢架结构,假定结构无阻尼,计算下述给定初始条件产生的自由振动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《结构动力学》试题(硕)
一、名词解释:(每题3分,共15分)
约束动力系数广义力虚功原理达朗贝原理
二、简答:(每题5分,共20分)
1.
为什么说自振周期是结构的固有性质?它与结构哪些固有量有关?2.
阻尼对自由振动有什么影响?减幅系数的物理意义是什么?3.简述用振型叠加法求解多自由度体系动力响应的基本原理及适用条件分别是什么?
答:振型叠加法的基本原理是利用了振型的正交性,既对于多自由度体系,必有:
0T
m n m ,
0T m n k (式中m 、n 为结构的第m 、n 阶振型,m 、k 为结构的质量矩阵和刚度矩阵)。
利用正交性和正规坐标,将质量与刚度矩阵有非对角项耦合的
N 个联立运动微分方程转换成为N 个独立的正规坐标方程(解耦)。
分别求解每一个正规坐标的反应,然后根据
叠加V=ΦY 即得出用原始坐标表示的反应。
由于在计算中应用了叠加原理,所以振型叠加法只适用于线性体系的动力分析。
若体系为非线性,可采用逐步积分法进行反应分析。
4.什么是结构的动力自由度?动力自由度与静力自由度的区别何在?
答:动力自由度是指结构体系在任意瞬时的一切可能变形中,决定全部质量位置所需的独立参数的数目。
静力自由度是指确定体系在空间中的位置所需的独立参数的数目。
前者是由于系统的弹性变形而引起各质点的位移分量;
而后者则是指结构中的刚体由于约束不够而产生的刚
体运动。
三、计算(每题13分,共65分)
1.图1所示两质点动力体系,用
D ’Alembert 原理求运动方程。
图1
2.图2所示,一长为l,弯曲刚度为EI的悬臂梁自由端有一质量为m的小球,小球又被支承
在刚度为k2的弹簧上,忽略梁的质量,求系统的固有频率。
图2
3.图3所示,一重mg的圆柱体,其半径为r,在一半径为R的弧表面上作无滑动的滚动,求在平衡位置(最低点)附近作微振动的固有频率。
图3
4.图4所示三层钢架结构,假定结构无阻尼,计算下述给定初始条件产生的自由振动。
初始条件
y(0)=0.06
0.05
0.04
m ?? (0)=
0.0
0.3
0.0
m/s 图4
5.图5双杆均质,杆OA=21l ,质量为1m ,杆AB=22l ,质量为2m ,(OA 以光滑铰链固定
于O 点,AB 均质以光滑铰链与
OA 杆相连)。
B 点受一水平常力P3向右作用,试求对应于广义坐标θ1和θ2的广义力Q 1和Q 2图5。