多元统计分析(聚类分析)

合集下载

多元统计分析概述

多元统计分析概述

多元统计分析概述多元统计分析是一种统计学方法,用于研究多个变量之间的关系和模式。

它可以帮助我们理解和解释数据中的复杂关系,从而提供有关变量之间相互作用的深入洞察。

在本文中,我们将概述多元统计分析的基本概念、常用方法和应用领域。

一、基本概念1. 变量:在多元统计分析中,我们研究的对象是多个变量。

变量可以是数值型(如年龄、收入)或分类型(如性别、教育程度)。

2. 样本和总体:多元统计分析通常基于样本数据进行推断。

样本是从总体中抽取的一部分观察值。

通过对样本数据进行分析,我们可以推断总体的特征和关系。

3. 相关性和相关系数:多元统计分析可以帮助我们研究变量之间的相关性。

相关性是指两个变量之间的关系程度。

相关系数是衡量相关性强度和方向的统计指标,常用的有皮尔逊相关系数和斯皮尔曼相关系数。

4. 因果关系和回归分析:多元统计分析也可以用于研究变量之间的因果关系。

回归分析是一种常用的方法,用于建立变量之间的数学模型,从而预测一个变量对另一个变量的影响。

二、常用方法1. 主成分分析(PCA):主成分分析是一种降维技术,用于将多个相关变量转化为少数几个无关的主成分。

它可以帮助我们发现数据中的主要模式和结构。

2. 因子分析:因子分析是一种用于探索变量之间潜在关系的方法。

它可以帮助我们理解变量背后的共同因素,并将多个变量归纳为几个潜在因子。

3. 聚类分析:聚类分析是一种将样本分组为相似类别的方法。

它可以帮助我们发现数据中的群组结构,并识别相似的观察值。

4. 判别分析:判别分析是一种用于区分不同组别的方法。

它可以帮助我们确定哪些变量对于区分不同组别最为重要。

5. 多元方差分析(MANOVA):多元方差分析是一种用于比较多个组别之间差异的方法。

它可以同时考虑多个因变量和多个自变量之间的关系。

三、应用领域多元统计分析在各个领域都有广泛的应用,包括社会科学、生物医学、市场研究等。

以下是一些常见的应用领域:1. 社会科学:多元统计分析可以帮助研究人类行为和社会现象。

多元统计分析

多元统计分析

多元统计分析随着社会的发展和科学技术的不断进步,多元统计分析已经成为了现代统计学中非常重要的研究领域。

多元统计分析是使用多个变量进行数据分析的一种统计学技术,可以连接各个领域的研究成果和应用。

多元统计分析技术通常被用于研究多个变量之间的关系或变异性质。

它可以在大量的样本中进行高效的数据采集和信息整合,使研究者可以清晰地理解各变量之间的关系,进而提高研究和实践的效率。

下面我们主要介绍多元统计分析中最常见的五种技术:主成分分析、聚类分析、判别分析、因子分析和结构方程模型。

1. 主成分分析(PCA)PCA通常被用来压缩或降维多变量的数据。

该技术处理原始数据,将其转换为新变量,其数量比原始变量小。

主成分分析的目标是降低数据维度,而不是丢失大部分信息。

通过主成分分析,各变量之间的一个线性组合,可以在一个新的坐标系中描绘出数据的模式和差异,使得研究者可以从各种角度观察数据集的特征。

主成分分析能够帮助研究者快速掌握大量指标之间的关系,然后选择性地提取相关的信息。

2. 聚类分析(CA)聚类分析旨在寻找数据集内部指标之间的相似性或差异。

它使用类似度测量方法将数据分组或聚类,从而确定研究对象之间的类别和关系。

聚类分析将研究对象之间的共同点组合在一起,并将其与其他成组对象区分开来,这有助于识别数据集中有哪些对象或变量比较相关。

聚类分析得出的结果可以提供研究者对不同类别进行描述和探究的机会。

3. 判别分析(DA)判别分析是一种监督学习方法,其目标是在给定的类别下找到更好的判别因子或变量。

在判别分析中,研究者需要指示哪些变量能够最好地将不同组别区分开来。

在分类问题中,判别分析是非常有用的,可以快速判断新观察结果所属的类别。

4. 因子分析(FA)因子分析旨在寻找潜在的因素或变量,以说明数据中的关系和其他类型的变化。

在因子分析中,数据集中的每个变量与若干潜在因素中的一种或多种相关联。

通过因子分析,可以减少数据中某些不必要和重复的因素,从而更好地理解大量数据背后的原理与常见模式。

应用多元统计分析聚类分析

应用多元统计分析聚类分析

应用多元统计分析聚类分析多元统计分析是一种利用多个变量对数据进行综合分析的方法,通过对各个变量之间的关系进行分析,可以帮助我们了解数据的内在规律,揭示变量之间的相互作用,为问题的解决提供依据和参考。

其中,聚类分析是多元统计分析中的一种方法,它通过将样本数据划分为不同的组别,使得组内的样本之间相似度较高,组间的样本相似度较低,从而实现数据的分类和整理。

聚类分析的过程一般可分为以下几个步骤:1.确定聚类的目标与方法:在进行聚类分析之前,需要明确分析的目标,即希望把样本分成多少个组别,以及采用什么样的分析方法。

2.选择合适的变量和数据:聚类分析需要选择一些具有代表性的变量作为分析对象,并准备好相应的数据。

这些变量可以是数值型、名义型或顺序型的,但需要注意的是,不同类型的变量需要采用不同的距离度量。

3.计算样本间的距离:通过选择合适的距离度量方法,可以度量各个样本之间的相似度或距离,常用的距离度量方法有欧氏距离、曼哈顿距离和相关系数等。

4.执行聚类分析:根据选定的聚类方法,进行聚类分析。

常用的聚类方法有层次聚类和非层次聚类两种,其中层次聚类可以进一步分为凝聚聚类和分裂聚类等。

5.判断聚类结果的合理性:根据实际情况和问题要求,对得到的聚类结果进行合理性检验。

可以通过观察不同聚类组别内的样本特征和组间的差异度,评估聚类结果的合理性。

6.解释和应用聚类结果:根据聚类分析得到的结果,可以对分类的样本进行解释和应用。

例如,可以找到各个类别的典型样本,分析其特征和规律,为问题的解决提供参考和支持。

聚类分析在实际应用中具有很广泛的应用价值。

例如,在市场细分方面,可以利用聚类分析将消费者划分为不同的群体,有针对性地开展精准营销;在医药领域中,可以通过聚类分析将疾病患者划分为不同的病种,帮助医生进行诊断和治疗方案的选择;在社会科学研究中,可以利用聚类分析将受访者划分为不同的人群,通过对不同人群的特征分析,了解社会问题背后的机制和原因。

多元统计分析(聚类分析,判别分析,对应分析)

多元统计分析(聚类分析,判别分析,对应分析)

91.500
358.500
95.000
357.000
输出的第一部分对应表是由原始数据学号与科目 分类的列联表,可以看出观测总数n=40,说明原 始数据中没有记录缺失,有效边际为行列数的总 和。
维数 1 2 3 总计
汇总 惯量比例
置信奇异值
奇异值 .075 .052
惯量 .006 .003
解释 .548 .264
2 -.143 -.427 .065 -.013
概述列点a
惯量 .002 .003 .005 .000 .010
点对维惯量
1 .000
2 .099
.022
.880
.975
.021
.003
.001
1.000
1.000
贡献
1 .000 .047 .989 .039
维对点惯量 2 .135 .887 .010 .006
(列)的每一状态对每一维度(公共因子)特
征值的贡献及每一维度对行(列)各个状态的
特征值等贡献。如第一维度中,外语对应的数 值最大,为0.975,说明外语这一状态对第一维 度的贡献最大。
对应分析
由以上两张坐标表可以得出如下的叠加散点图,也是输出 的最后一部分,是学号各状态与科目各状态同时在一张二 维图上的投影。在图上既可以看到每一变量内部各状态之 间的相关关系,又可以同时考察两变量之间的相关关系。
对应分析
结果分析
学号 1 2 3 4
语文 82.000 81.000 83.000 72.000
对Байду номын сангаас表
数学 120.000 119.000 115.000 115.000
科目 外语 71.000 77.000 69.000 75.000

应用多元统计分析

应用多元统计分析

应用多元统计分析多元统计分析是一种应用广泛的统计方法,用于分析多个变量之间的关系和相互影响。

它可以帮助我们揭示数据背后的规律,并为决策提供科学依据。

在本文中,我们将介绍多元统计分析的基本概念、常用方法和实际应用。

多元统计分析的基本概念:多元统计分析是指同时考虑多个变量之间关系的统计方法。

在传统的统计分析中,我们通常只关注一个变量与另一个变量之间的关系,而忽视了其他因素对这种关系的影响。

而多元统计分析则能够考虑多个变量之间的复杂关系,帮助我们全面地理解数据的特征和规律。

常用的多元统计分析方法有:1. 主成分分析(Principal Component Analysis,简称PCA)主成分分析是一种降维技术,用于将高维数据转化为低维表示。

它通过线性变换将原始变量转换为一组互不相关的主成分,从而简化了数据的复杂性。

主成分分析可以帮助我们发现数据中的主要模式,降低变量之间的相关性,提高数据的解释能力。

2. 因子分析(Factor Analysis)因子分析是一种探索性的数据降维方法,用于发现数据隐藏的潜在因子。

它假设观测变量由少数几个潜在因子决定,并通过线性组合表示。

因子分析可以帮助我们理解多个变量之间的共同性,找到隐藏在数据背后的结构。

3. 聚类分析(Cluster Analysis)聚类分析是一种无监督学习方法,用于将观测对象划分为不同的类别。

它通过计算不同对象之间的相似度或距离,将它们分配到同一类别中。

聚类分析可以帮助我们发现数据中的自然分组结构,从而更好地理解和解释数据。

4. 判别分析(Discriminant Analysis)判别分析是一种有监督学习方法,用于确定一组变量的线性组合,可以最好地将不同类别的观测对象区分开来。

它可以帮助我们理解不同类别之间的差异,并通过构建分类模型进行预测。

多元统计分析的实际应用:多元统计分析在各个领域都有着广泛的应用。

以下是其中一些典型的应用场景:1. 社会科学研究:多元统计分析可以用于分析调查数据、人口统计数据等,揭示社会现象的规律和影响因素。

多元统计分析 第5章 聚类分析

多元统计分析 第5章 聚类分析

余弦相似性 Cosine Similarity
A document can be represented by thousands of attributes,
p (such as each recording the frequency of a particular word keywords) or phrase in the document. xi yi
feature mapping, ... Cosine measure: If d1 and d2 are two vectors (e.g., termfrequency vectors), then cos(d1, d2) = (d1 d2) /||d1|| ||d2|| ,
where indicates vector dot product, ||d||: the length of vector d
d1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0) d2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1) d1 d2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25 ||d1||= (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)0.5=(42)0.5 = 6.481 ||d2||= (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)0.5=(17)0.5 = 4.12 cos(d1, d2 ) = 0.94

多元统计分析-聚类分析

多元统计分析-聚类分析

多元统计分析-聚类分析聚类分析是⼀个迭代的过程对于n个p维数据,我们最开始将他们分为n组每次迭代将距离最近的两组合并成⼀组若给出需要聚成k类,则迭代到k类是,停⽌计算初始情况的距离矩阵⼀般⽤马⽒距离或欧式距离个⼈认为考试只考 1,2⽐较有⽤的⽅法是3,4,5,8最喜欢第8种距离的计算 欧式距离 距离的⼆范数 马⽒距离 对于X1, X2均属于N(u, Σ) X1,X2的距离为 (X1 - X2) / sqrt(Σ)那么不同的聚类⽅法其实也就是不同的计算类间距离的⽅法1.最短距离法 计算两组间距离时,将两组间距离最短的元素作为两组间的距离2.最长距离法 将两组间最长的距离作为两组间的距离3.中间距离法 将G p,G q合并成为G r 计算G r与G k的距离时使⽤如下公式 D2kr = 1/2 * D2kp + 1/2 * D2kq + β * D2pq β是提前给定的超参数-0.25<=β<=04.重⼼法 每⼀组都可以看成⼀组多为空间中点的集合,计算组间距离时,可使⽤这两组点的重⼼之间的距离作为类间距离 若使⽤的是欧⽒距离 那么有如下计算公式 D2kr = n p/n r * D2kp + n q/n r * D2kq - (n p*n q / n r*n r ) * D2pq5.类平均法 两组之间的距离 = 组间每两个样本距离平⽅的平均值开根号 表达式为D2kr = n p/n r * D2kp + n q/n r * D2kq6.可变类平均法 可以反映合并的两类的距离的影响 表达式为D2kr = n p/n r *(1- β) * D2kp + n q/n r *(1- β) * D2kq + β*D2pq 0<=β<17.可变法 D2kr = (1- β)/2 * (D2kp + D2kq) + β*D2pq8.离差平⽅和法 这个⽅法⽐较实⽤ 就是计算两类距离的话,就计算,如果将他们两类合在⼀起之后的离差平⽅和 因为若两类本⾝就是⼀类,和本⾝不是⼀类,他们的离差平⽅和相差较⼤ 离差平⽅和:类中每个元素与这⼀类中的均值距离的平⽅之和 若统⼀成之前的公式就是 D2kr = (n k + n p)/(n r + n k) * D2kp + (n k + n q)/(n r + n k) -(n k)/(n r + n k) * * D2pq⼀些性质 除了中间距离法之外,其他的所有聚类⽅法都具有单调性 单调性就是指每次聚类搞掉的距离递增 空间的浓缩和扩张 D(A)>=D(B) 表⽰A矩阵中的每个元素都不⼩于B D(短) <= D(平) <= D(长) D(短,平) <= 0 D(长,平) >= 0 中间距离法⽆法判断。

多元统计分析课件第五章_聚类分析

多元统计分析课件第五章_聚类分析
(3)按(5.12)计算新类与其它类的距离。 (4)重复(2)、(3)两步,直到所有元素。并成一类为
止。如果某一步距离最小的元素不止一个,则对应ቤተ መጻሕፍቲ ባይዱ些
最小元素的类可以同时合并。
【例5.1】设有六个样品,每个只测量一个指标,分别是1, 2,5,7,9,10,试用最短距离法将它们分类。
(1)样品采用绝对值距离,计算样品间的距离阵D(0) ,见 表5.1
一、系统聚类的基本思想
系统聚类的基本思想是:距离相近的样品(或变量)先聚成 类,距离相远的后聚成类,过程一直进行下去,每个样品 (或变量)总能聚到合适的类中。系统聚类过程是:假设总 共有n个样品(或变量),第一步将每个样品(或变量)独 自聚成一类,共有n类;第二步根据所确定的样品(或变量) “距离”公式,把距离较近的两个样品(或变量)聚合为一 类,其它的样品(或变量)仍各自聚为一类,共聚成n 1类; 第三步将“距离”最近的两个类进一步聚成一类,共聚成n 2类;……,以上步骤一直进行下去,最后将所有的样品 (或变量)全聚成一类。为了直观地反映以上的系统聚类过 程,可以把整个分类系统画成一张谱系图。所以有时系统聚 类也称为谱系分析。除系统聚类法外,还有有序聚类法、动 态聚类法、图论聚类法、模糊聚类法等,限于篇幅,我们只 介绍系统聚类方法。
在生物、经济、社会、人口等领域的研究中,存在着大量量 化分类研究。例如:在生物学中,为了研究生物的演变,生 物学家需要根据各种生物不同的特征对生物进行分类。在经 济研究中,为了研究不同地区城镇居民生活中的收入和消费 情况,往往需要划分不同的类型去研究。在地质学中,为了 研究矿物勘探,需要根据各种矿石的化学和物理性质和所含 化学成分把它们归于不同的矿石类。在人口学研究中,需要 构造人口生育分类模式、人口死亡分类状况,以此来研究人 口的生育和死亡规律。

《多元统计分析》第四章 聚类分析

《多元统计分析》第四章  聚类分析
记G1={1},G2={2},G3={6},G4={8},G5={11},样品间采用绝对值 距离。

G1
G2
G3
G4
G5
G1
0
G2
1
0
G3
5
4
0
G4
7
6
2
0
G5
10
9
5
3
0
G6=G1∪G2={1,2}。
6

G6
G3
G4
G5
G6
0
G3
4
0
G4
6
2
0
G5
9
5
3
0
G7=G3∪G4={6,8}。
x1:食品
x5:交通和通讯
x2:衣着
x6:娱乐教育文化服务
x3:家庭设备用品及服务 x7:居住
x4:医疗保健
x8:杂项商品和服务
分别用最短距离法、重心法和Ward方法对各地区作聚类分析。为同等
地对待每一变量,在作聚类前,先对各变量作标准化变换。
18
地区 北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东
类与类之间的距离定义为两类最远样品间的距离,即
DKL

max
iGK , jGL
dij
最长距离法与最短距离法的并类步骤完全相同,只是递推公式不同。
10
最长距离法的递推公式
DMJ maxDKJ , DLJ
11
最长距离法容易被异常值严重地扭曲。
12
3.类平均法
有两种定义。
xi*

xi
xi sii

多元统计分析方法的介绍与应用

多元统计分析方法的介绍与应用

多元统计分析方法的介绍与应用多元统计分析方法是指同时考虑多个变量之间关系的统计分析方法。

在现代科学和社会科学研究中,我们常常需要从多个角度对问题进行分析、探索变量之间的关系。

本文将介绍几种常见的多元统计分析方法以及它们在实际应用中的作用。

一、方差分析(Analysis of Variance, ANOVA)方差分析主要用于比较两个或更多个组别之间的差异。

它基于对观察数据的方差进行分解,通过计算组内方差和组间方差来判断不同组别之间的差异是否显著。

方差分析可用于多个组别的均值比较、因素对结果的影响分析等。

在实际应用中,方差分析广泛用于医学研究、教育研究、工程实验等领域。

例如,我们可以利用方差分析比较不同药物对疾病治疗效果的差异,或者比较不同教学方法对学生考试成绩的影响。

二、回归分析(Regression Analysis)回归分析是一种用于探索和建立变量之间关系的统计分析方法。

它通过建立一个数学模型来描述自变量对因变量的影响,并利用样本数据来估计模型中的参数。

回归分析可用于预测、因果推断和变量影响分析等。

在实际应用中,回归分析被广泛用于经济学、金融学、市场营销等领域。

例如,我们可以利用回归分析建立股票价格与影响因素(如股市指数、公司盈利等)之间的关系模型,以便进行股票价格的预测。

三、主成分分析(Principal Component Analysis, PCA)主成分分析是一种用于数据降维和特征提取的统计分析方法。

它通过将原始数据转换为一组主成分,使得主成分之间相关性较低,从而达到数据压缩和简化的目的。

主成分分析可用于数据可视化、数据预处理和特征选择等。

在实际应用中,主成分分析被广泛用于图像处理、模式识别和生物信息学等领域。

例如,在图像处理中,我们可以利用主成分分析将高维图像数据降低到低维空间,以便进行图像分类和识别。

四、聚类分析(Cluster Analysis)聚类分析是一种用于将对象或样本按照某些相似性准则进行分组的统计分析方法。

《多元统计分析》第四章 聚类分析

《多元统计分析》第四章  聚类分析

类与类之间的距离定义为两类最远样品间的距离,即
DKL

max
iGK , jGL
dij
最长距离法与最短距离法的并类步骤完全相同,只是递推公式不同。
10
最长距离法的递推公式
DMJ maxDKJ , DLJ
11
最长距离法容易被异常值严重地扭曲。
12
3.类平均法
有两种定义。
记G1={1},G2={2},G3={6},G4={8},G5={11},样品间采用绝对值 距离。

G1
G2
G3
G4
G5
G1
0
G2
1
0
G3
5
4
0
G4
7
6
2
0
G5
10
9
5
3
0
G6=G1∪G2={1,2}。
6

G6
G3
G4
G5
G6
0
G3
4
0
G4
6
2
0
G5
9
5
3
0
G7=G3∪G4={6,8}。
xi*

xi
xi sii
,
i 1, 2,, p
其中 xi 和sii分别为xi的样本均值和样本方差。
4
绝对值距离
v
p
d x, y xi yi
i 1
v 常被形象地称作“城市街区”距离,
当我们对某城市(需考虑彼此之间
路程)的位置点进行聚类时,使用
绝对值距离一般是合适的。
5
马氏距离
3
《多元统计分析》
4.2 距离Байду номын сангаас相似系数

多元统计分析聚类分析

多元统计分析聚类分析

[ ( xi xi ) ][ ( xj x j ) ]
2 2
n
n
1
1
相似矩阵
第三节 八种系统聚类方法
(hierarchical clustering method)
系统聚类法是诸聚类分析方法中使用最多 的一种,按下列步骤进行:
将n个样品各作为一类
计算n个样品两两之间的距离,构成距离矩阵 合并距离最近的两类为一新类 计算新类与当前各类的距离。再合并、计算 ,直至只有一类为止
如果在某一步将类Gp与Gq类合并为Gr,任一类Gk和新 Gr的距离公式为:

时,由初等几何知就是上面三角形的中线。
D2(0)
G1={X1}
G1
0
G2
G3
G4
G5
G2={X2}
G3={X3} G4={X4} G5={X5}
1
6.25 36 64
0
2.25 25 49 0 12.25 30.25 0 4 0
(2)相似系数
研究样品间的关系常用距离,研究指标( 变量)间的关系常用相似系数。 相似系数常用的有:夹角余弦与相关系数
2、对指标(变量)分类(R型)
相似系数的定义
夹角余弦(Cosine)
相似矩阵
变量间相似矩阵
相关系数
ij
( x x )( x x )
1 i i j j n
64
49
30.25
4
0
D2(1)
G6
G3 0
G4
G5
G6={X1, X2}
G3={X3}
0
4
={X4}
G5={X5}
30.25
56.25

多元统计分析简介

多元统计分析简介
聚类分析可以分为:Q型(样品分类)分类、 R型(指标分类)分类。这里介绍的是Q型(样 品分类)分类。
1. 聚类分析
聚类分析前的预处理步骤:
1)确定聚类类型:对样品聚类称Q型聚类; 对变量聚类称R型聚类。
2)数据预处理 原因:实际应用所使用的样本资料中,由于不同 的变量具有不同的计量单位(或量纲),并且具 有不同的数量级,为了使具有不同计量单位和数 量级的数据能够放在一起进行比较分析,通常都 要对数据进行变换处理。
2 判别分析
逐步判别法的步骤:
1.计算各总体中各变量的均值和总均值以及似然统 计量,规定引入变量和剔除变量的临界值F进、F出。
2.逐步计算,计算全部变量的判别能力,在已入选 变量中考虑剔除可能存在的最不显著变量。在未选 入变量中选出最大判别能力的变量,对变量作F检验 通过检验则接受,否则剔除变量。直到能剔除又不 能增加新变量,逐步计算结束。
写出判别函数; 4.计算类内协方差矩阵W及总各协方差矩阵T作多个变
量的全体判别效果的检验; 5.各个变量的判别能力的检验; 6.判别新样本应属于的类别。
2 判别分析
逐步判别法
在判别问题中,当判别变量个数较多时,如果 不加选择地一概采用来建立判别函数,不仅计算量 大,还由于变量之间的相关性,可能使求解逆矩阵 的计算精度下降,建立的判别函数不稳定。因此适 当地筛选变量的问题就成为一个很重要的事情。凡 具有筛选变量能力的判别分析方法就统称为逐步判 别法。
2 判别分析
逐步判别法其基本思路类似于逐步回归分析,按 照变量是否重要逐步引入变量,每引入一个“最重要” 的变量进入判别式,同时要考虑较早引入的变量是否 由于其后的新变量的引入使之丧失了重要性变得不再 显著了(例如其作用被后引入地某几个变量的组合所 代替),应及时从判别式中把它剔除,直到判别式中 没有不重要的变量需要剔除,剩下来的变量也没有重 要的变量可引入判别式时,逐步筛选结束。也就是说 每步引入或剔除变量,都作相应的统计检验,使最后 的判别函数仅保留“重要”的变量。

多元统计分析K聚类(方法步骤分析总结)

多元统计分析K聚类(方法步骤分析总结)

K聚类一、实验过程1.将数据5.7导入至SPSS中,分析-分类-K均值聚类分析,将8个行业放到变量中,地区放到label cases中,设定聚类数=3。

2.点击“迭代”,设定最大迭代次数为10,迭代标准为0,点击继续3.点击“保存”,选择“聚类成员”及“与聚类中心的距离”4.点击“选项”,选择如下点击继续5.点击确定后,得到如下实验结果:二、实验结果分析:1. 给出初始的聚类中心2. 给出每次迭代结束后类中心的变动从表中可以看出共经历了4次迭代,即4次迭代后,聚类中心的变化为0,迭代停止。

表中,聚类一列中给出观测量所属的类别,距离列给出了观测量与所属聚类中心的距离。

综合第三个表及第四个表,可以看出将31个地区按8个产业分成3类后,北京,江苏,浙江,山东,广东为第一类。

这一类聚类中心8个产业的产值分别为1165.95,143.78,135.89,263.39,61.36,176.16,152.99,559.62亿元。

第二类包括天津和上海,剩下的24个地区为第三类。

表中给出的是三类聚类中心间的距离6. 进行单因素方差分析结果显示,8个变量在三个类别中均存在显著差异,说明结果有效。

综合上述表格,按照个产业的发展水平将中国31个地区分成3类:第一类为北京,江苏,浙江,山东,广东,属于经济发达地区。

该类中心的产值分别为1165.95,143.78,135.89,263.39,61.36,176.16,152.99,559.62亿元。

第二类为天津和上海,属于较发达地区。

该类中心的产值分别为2064.94,170.58,272.73,445.55,80.96,266.19,251.86,717.59亿元。

第三类为余下的24个地区,属于欠发达地区。

该类中心的产值分别为428.07,82.50,73.91,89.18,26.04,28.29,38.64,185.03亿元。

多元统计分析——聚类分析

多元统计分析——聚类分析

多元统计分析——聚类分析多元统计分析中的聚类分析(Cluster Analysis)是一种将相似的个体或对象归为一类的数据分析方法。

聚类分析的目的是通过寻找数据中的相似性来识别或发现存在的模式和结构,可以帮助我们理解和解释数据中的复杂性。

聚类分析在许多领域中都得到了广泛的应用,例如市场细分、社会学、生物学、医学等。

聚类分析的基本原理是将数据样本根据其相似性归为不同的组或类。

相似性可以通过计算数据之间的距离或相似度来度量。

常用的距离度量方法有欧氏距离、曼哈顿距离、闵可夫斯基距离等,相似度度量方法有相关系数、夹角余弦等。

在聚类分析中,我们通常将相似的样本放在同一类别中,不相似的样本放在不同类别中。

聚类分析可以分为两种类型:层次聚类和划分聚类。

层次聚类是一种将数据样本分层次地组织成树状结构的聚类方法。

划分聚类则是将数据样本划分为预先确定的K个不重叠的类的聚类方法。

其中最常用的层次聚类算法有聚合法和分裂法,最常用的划分聚类算法是K均值算法。

聚类分析的基本步骤包括数据准备、相似度度量、类别划分和结果解释。

在数据准备阶段,需要选择合适的变量和样本。

相似度度量是聚类分析的核心,不同的距离或相似性度量方法可能会导致不同的聚类结构。

类别划分可以根据层次聚类算法或划分聚类算法来进行。

结果解释则是对聚类结果进行分析和解释,常用的方法包括聚类矩阵、平均距离图、树状图等。

聚类分析的优势在于能够帮助我们理解数据中的结构和模式,发现数据中的共性和差异性。

聚类分析可以为我们提供有关样本之间的关系和特征的重要信息。

此外,聚类分析还可以帮助我们进行市场细分和目标市场选择、发现新的疾病群和药物靶点等。

然而,聚类分析也存在一些局限性。

首先,聚类结果可能会受到初始聚类中心选择的影响。

其次,聚类结果的解释需要结合领域知识和专家判断,可能存在主观性。

此外,聚类分析对数据的样本大小和变量数目也有一定的要求,数据的维度增加会导致计算量的增加。

《多元统计分析》第三章聚类分析

《多元统计分析》第三章聚类分析

图像处理
聚类分析可用于图像分割、目 标检测等任务,提高图像处理 的效率和准确性。
社交网络
通过聚类分析,可以发现社交 网络中的社区结构,揭示用户 之间的关联和互动模式。
聚类分析的常用方法
K-均值聚类
一种迭代算法,通过最小化每个簇内对象与簇质 心的距离之和来实现聚类。需要预先指定簇的数 量K。
DBSCAN
感谢聆听
聚类结果的优化方法
层次聚类法
通过不断合并或分裂簇来优化聚类结果,可以灵活处理不同形状 和大小的簇,但计算复杂度较高。
基于密度的聚类法
通过寻找被低密度区域分隔的高密度区域来形成簇,可以发现任意 形状的簇,但对参数敏感。
基于网格的聚类法
将数据空间划分为网格单元,然后在网格单元上进行聚类,处理速 度较快,但聚类精度受网格粒度影响。
一种基于密度的聚类方法,通过寻找被低密度区 域分隔的高密度区域来实现聚类。可以识别任意 形状的簇,且对噪声数据具有较强的鲁棒性。
层次聚类
通过计算对象之间的距离,逐步将数据集构建成 一个层次结构的聚类树。可以分为凝聚法和分裂 法两种。
谱聚类
利用图论中的谱理论进行聚类分析,将数据集中 的对象表示为图中的节点,节点之间的相似度表 示为边的权重。通过求解图的拉普拉斯矩阵的特 征向量来实现聚类。
药物发现
通过对化合物库进行聚类分析,研究人员可以发现具有相 似化学结构和生物活性的化合物,从而加速新药的发现和 开发过程。
生物信息学
在基因表达谱、蛋白质互作网络等生物信息学研究中,聚 类分析可以帮助研究人员发现基因或蛋白质之间的功能模 块和调控网络。
在社交网络中的应用案例
社区发现
聚类分析可用于识别社交网络中的社区结构,即具有相似兴趣、行为或属性的用户群体。 这有助于社交网络运营商为用户提供更加个性化的推荐和服务。

多元统计分析--聚类分析

多元统计分析--聚类分析
为了研究亚洲国家的经济发展水平和文化教育水
平,以便于对亚洲国家进行分类研究,这里我们 进行聚类分析(在World95.sav数据中筛选出亚洲 国家,使用Data→Select Cases→If condition is satisfied中选入region=3)。 详细步骤如下:
(1) 打开数据。使用菜单中File→Open命令,然后 选中要分析的数据World95.sav。
多元统计分析--聚类分析
2021/7/11
多元统计分析
何晓群
中国人民大学出版社
2021/7/11
中国人民大学六西格玛质量管理研究中心
2
第三章 聚类分析
• §3.1 • §3.2 • §3.3 • §3.4 • §3.5 • §3.6 • §3.7 • §3.8
聚类分析的思想 相似性度量 类和类的特征 系统聚类法 模糊聚类分析 K-均值聚类和有序样本聚类 计算步骤与上机实现 社会经济案例研究
38
目录 上页 下页 返回 结束
§3.7.3 计算步骤与上机实践 模糊聚类法
继续使用上面的例子,希望将亚洲国家或地区 分成3类进行分析研究。这里我们使用SPlus2000软件。
(略)
2021/7/11
中国人民大学六西格玛质量管理研究中心
39
目录 上页 下页 返回 结束
§3.8 社会经济案例研究
2021/7/11
2021/7/11
中国人民大学六西格玛质量管理研
§3.7 计算步骤与上机实践
本书以SPSS15.0软件来说明前面讲述的几种 聚类法的实现过程。具体步骤如下:
*分析所需要研究的问题,确定聚类分析所需 要的多元变量;
*选择对样品聚类还是对指标聚类; *选择合适的聚类方法; *选择所需的输出结果。 我们将实现过程用逻辑框图表示为图3.8。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用多元统计分析第五章聚类分析
主讲:孔幸
组员:杨海生
王晶晶
田艳霞
龚禄娃
第五章聚类分析
习题5.8
试使用系统聚类法和K-均值法分别对这些地区进行聚类分析,并对结果进行比较分析。

将数据导入SPSS,分析得到以下结果:
5.8.1 系统聚类分析(类平均法)
1.系统聚类分析树状图
使用平均联接(组间)的树状图
重新调整距离聚类合并
图5.8-1系统聚类法树状图
如图5.8-1所示,选择的聚类方法为类平均法,计算距离的方法(或相似性的度量方法)为欧氏距离平方。

从树状图可见,将16个地区分成4类:第一类:上海,经济相对发达地区,农民每人平均生活消费支出情况的六个经济指标相对于16个地区来说都比较大,说明上海农民的平均生活消费水平在
16个地区中最高的。

第二类:北京和浙江,经济中上等地区,农民每人平均生活消费支出的六个经济指标相对于其他的13个地区(除上海外)都比较高,说明北京和浙江地区农民的平均生活消费水平在16个地区中属于中上等水平。

第三类:天津、江苏、辽宁、福建、江西、安徽、内蒙古、黑龙江和吉林,经济中等地区,这7个地区农民的平均生活消费水平在16个地区中属于中等水平。

第四类:河北、河南、山西和山东,经济中下等地区,这4个地区农民的平均生活消费水平在16个地区中中下等水平,即在16个地区中是相对较低的。

5.8.2 K-均值法
通过上述的系统聚类分析(类平均法)我们发现,16个地区农民的平均生活消费水平可以分成4类,因此,我们运用K-均值法做快速聚类分析时,将16个地区聚成的类数设定为4类。

在SPSS中的运行结果解释具体如下:
1.首先分析方差分析表,见表5.8-1
表5.8-1 方差分析表
聚类误差
F Sig.
均方df 均方df
食品5127.237 3 96.784 12 52.976 0.000
衣着100.666 3 28.916 12 3.481 0.050
燃料24.794 3 11.122 12 2.229 0.137
住房3015.542 3 124.862 12 24.151 0.000 交通和通讯341.567 3 60.105 12 5.683 0.012
娱乐教育文化 4.539 3 2.555 12 1.777 0.205
从表5.8-1中可见,聚成的四类在食品、衣着、燃料、住房、交通和通讯以及娱乐教育文化六个经济指标的均值间无差异的原假设下,出现目前值或更极端值的概率分别为0.000、0.050、0.137、0.000、0.012和0.205,故变量食品、衣着、住房以及交通和通讯在分类过程中均在统计学上有显著性意义(P=0.000、0.050、0.000和0.012都小于或等于0.05),而燃料和娱乐教育文化变量无统计学上的显著性意义(P=0.137和0.205大于0.05),因此,有必要在剔除燃料和娱乐教育文化变量后重新做聚类分析。

剔除燃料和娱乐教育文化后重新做的聚类分析结果解释如下:
2.迭代过程分析
表5.8-2 迭代过程中类中心得变化量
迭代聚类中心内的更改
1 2 3 4
1 15.305 0.000 12.195 22.664
2 0.000 0.000 0.000 0.000
表5.8-2显示了迭代过程的基本情况,它表明迭代到第二次时,类中心点已没有太大变化达到收敛。

3.给出个观测量所属的类及与所属类中心的距离
表5.8-3 各观测量所属类成员表
表5.8-3中聚类列给出了观测量所属的类别,距离列给出了观测量与所属类中心的距离。

4.给出聚类结果形成的中心的各变量值
表5.8-4 最终的类中心表
聚类
1 2 3 4
食品180.13 221.11 106.65 141.78
衣着38.17 38.64 26.23 28.15
住房53.83 115.65 19.98 25.09 交通和通讯41.68 50.82 23.4 26.01 结合表5.8-3和表5.8-4,我们可以看出16个地区被分成4类,第一类包括:北京和浙江,这一类的类中心食品、衣着、住房以及交通和通讯的经济指标值分别为180.13、38.17、53.83和41.68,这类地区农民每人平均生活消费水平在16个地区中属于中上等。

第二类为上海,这一类的类中心食品、衣着、住房以及交通和通讯的经济指标值分别为221.11、38.64、115.65和50.82,上海农民每人平均生活消费水平在16个地区中属于最高的。

第三类包括:河北、山西、黑龙江、
山东和河南,这一类的类中心食品、衣着、住房以及交通和通讯的经济指标值分别为106.65、26.23、19.98和23.4,这类地区农民每人平均生活消费水平在16个地区中属于中等。

第四类包括:天津、内蒙古、辽宁、吉林、江苏、安徽、福建和江西,这一类的类中心食品、衣着、住房以及交通和通讯的经济指标值分别为141.78、28.15、25.09和26.01,这类地区农民每人平均生活消费水平在16个地区中是相对较低的。

5.给出分类变量的方差分析表
表5.8-5 方差分析表
聚类误差
F Sig.
均方df 均方df
食品5127.237 3 96.784 12 52.976 0.000
衣着100.666 3 28.916 12 3.481 0.050
住房3015.542 3 124.862 12 24.151 0.000 交通和通讯341.567 3 60.105 12 5.683 0.012
表5.8-5给出了分类变量的方差分析表,从表中可见用来聚类的4个变量食品、衣着、住房以及交通和通讯在分四类过程中,均有统计学上的显著性意义(P=0.000、0.050、0.000和0.012都小于或等于0.05),表明用这4个变量将16各地区分成四类的快速聚类过程是成功的,聚类效果有统计学意义。

综上所述,将我国16个地区农民支出情况的抽样调查数据通过系统聚类分析和K-均值法聚类分析可以看出,运用这两种方法分析得出的结果基本上一致,但是也有两点不同:
(1)在系统分类法分析的结果中,将黑龙江地区与天津、内蒙古和江西等地区归为一类,而在K-均值法聚类分析结果中,将黑龙江地区与河南、河北、山东和山西等地区归为一类。

(2)在系统分类法分析的结果中,将上海地区分成第一类,北京和浙江地区分成第二类,天津、内蒙古和江西等地区分成第三类,河南、河北、山东和山西等地区分成第四类;而在K-均值法聚类分析结果中,北京和浙江地区分成第一类,上海地区分成第二类,河南、河北、山东和山西等地区分成第三类,天津、内蒙古和江西等地区分成第四类。

习题5.9
试利用两种不同的聚类法对城市进行聚类分析。

将数据导入SPSS,分析得到以下结果:
5.9.1系统聚类分析(类平均法)
1. 系统聚类分析树状图
使用平均联接(组间)的树状图
重新调整距离聚类合并
图5.9-1系统聚类法树状图
如图5.9-1所示,选择的聚类方法为类平均法,计算距离的方法(或相似性的度量方法)为欧氏距离平方。

从树状图可见,将34个我国部分省会城市和计划单列市分成4类:
第一类:深圳,经济较发达城市。

第二类:重庆和成都,经济中等城市
第三类:上海和广州,经济中上等城市
第四类:长春、南昌、哈尔滨、昆明、石家庄、兰州、西宁、南宁、太原、银川、乌鲁木齐、合肥、福州、海口、贵阳、郑州、西安、沈阳、长沙、济南、青岛、武汉、杭州、宁波、南京、天津、大连、北京和厦门。

经济中下等城市。

5.9.2系统聚类分析(中间距离法)
1.系统聚类分析树状图
使用中位数联接的树状图
重新调整距离聚类合并
图5.9-2 系统聚类法树状图
如图5.9-2所示,选择的聚类方法为中间距离法,计算距离的方法(或相似性的度量方法)为欧氏距离平方。

从树状图可见,将34个我国部分省会城市和计划单列市分成4类:
第一类:深圳,经济较发达城市。

第二类:重庆和成都,经济中等城市。

第三类:杭州、宁波、南京、天津、沈阳、长沙、青岛、济南、武汉、大连、北京、厦门、上海和广州。

经济中上等城市。

第四类:长春、南昌、哈尔滨、昆明、石家庄、兰州、西宁、南宁、太原、银川、乌鲁木齐、合肥、福州、海口、贵阳、郑州、和西安。

经济发展相对缓慢城市。

综上所述,通过运用两种不同的系统聚类法(类平均法和中间距离法)对城市进行聚类分析,我们可以看出虽然两种不同的系统聚类法都可以讲城市分成4类,但是分类结果并不是完全相同的。

其中,两种不同的方法分成的第一类和第二类结果是完全一致的,然而,第三类和第四类的差距有点大,类平均法将上海和广州分成第三类,中间距离法分成的第三类不仅包括了上海和广州,而且还包括了杭州、宁波和厦门等12个城市。

总体来看,本题中采用中间距离法聚类分析的结果要优于类平均法聚类分析的结果。

相关文档
最新文档