磁电感应式传感器应用举例.

合集下载

电磁感应原理的应用实例有哪些

电磁感应原理的应用实例有哪些

电磁感应原理的应用实例有哪些1. 家用电器•电磁炉:电磁感应原理用于将电能转化为热能,以加热锅底。

•电动牙刷:电磁感应原理用于转化电能为机械能,以让刷头旋转。

•电饭煲:电磁感应原理用于加热内胆,将电能转化为热能。

•电磁风扇:电磁感应原理用于转动电机,以产生气流。

2. 汽车•车载充电器:通过电磁感应原理将电能传递到电动汽车的电池中。

•倒车雷达:采用电磁感应原理,通过检测后方物体的电磁信号变化,提醒驾驶员注意。

•磁悬浮列车:利用电磁感应原理,通过磁力使列车悬浮在轨道上,减小了摩擦阻力,提高了速度和稳定性。

3. 通信领域•双螺旋天线:电磁感应原理在天线中用于接收和发送无线信号,实现通信。

•RFID技术:利用电磁感应原理,读取被动式射频标签中的信息。

•电子支付:通过感应式无线充电原理,实现手机对于POS机或其他接收电子支付的设备进行感应式充电。

4. 工业自动化•电磁阀:利用电磁感应原理,控制气体或液体的流动,常用于自动化控制系统中。

•传感器:许多传感器利用电磁感应原理,如磁性传感器、霍尔传感器等。

•电磁铁:通过电磁感应原理,使铁芯磁化或去磁,用于机械设备的控制。

5. 医疗设备•MRI扫描仪:利用电磁感应原理生成磁场,并通过探测系统来生成人体内部的图像。

•心脏起搏器:采用电磁感应原理的导线和磁铁,通过电磁感应来维持心脏的正常节律。

•高频电疗:通过电磁感应原理,将电能转化为高频电疗信号,用于治疗。

6. 航天航空领域•风速仪:通过电磁感应原理,测量飞机周围的空气流速。

•磁流体陀螺仪:通过电磁感应原理,测量和控制飞行器的姿态和导航。

•电磁推进器:利用电磁感应原理,将电能转化为推力,以推动航天器或飞机。

以上只是电磁感应原理在各个领域的一些应用实例,随着科技的不断发展,电磁感应原理的应用将继续扩大和深化,为人们的生活和工作带来更多的便利和创新。

传感器原理及其应用 第6章 磁电式传感器

传感器原理及其应用 第6章 磁电式传感器

材料(单晶) N型锗(Ge) N型硅(Si) 锑化铟(InSb)
1/ 2
4000 1840 4200
砷化铟(InAs)
磷砷铟(InAsP) 砷化镓(GaAs)
0.36
0.63 1.47
0.0035
0.08 0.2
25000
10500 8500
100
850 1700
1530
3000 3800
哪种材料制作的霍尔元件灵敏度高
1、8—圆形弹簧片;2—圆环形阻尼器;3—永久磁铁;4—铝架; 5—心轴;6—工作线圈;7—壳体;9—引线 工作频率 固有频率 灵敏度 10~500 Hz 12 Hz 最大可测加速度 5g 可测振幅范围 精度 ≤10% 45mm×160 mm 0.7 kg
0.1~1000 m 外形尺寸 1.9 k 质量
d E N dt
武汉理工大学机电工程学院
第6章 磁电式传感器
磁通量的变化可以通过很多办法来实现,如磁铁与线圈之间作 相对运动;磁路中磁阻的变化;恒定磁场中线圈面积的变化等, 一般可将磁电感应式传感器分为恒磁通式和变磁通式两类。 6.1.1 恒磁通式磁电感应传感器结构与工作原理 恒磁通式磁电感应传感器结构中,工作气隙中的磁通恒定,感 应电动势是由于永久磁铁与线圈之间有相对运动——线圈切割 磁力线而产生。这类结构有动圈式和动铁式两种,如图所示。
武汉理工大学机电工程学院
第6章 磁电式传感器 磁铁与线圈相对运动使线圈切割磁力线,产生与运动速度dx/dt 成正比的感应电动势E,其大小为
dx E NBl dt
式中:N为线圈在工作气隙磁场中的匝数;B为工作气隙磁感应 强度;l为每匝线圈平均长度。 当传感器结构参数确定后,N、B和l均为恒定值,E与dx/dt成正 比,根据感应电动势E的大小就可以知道被测速度的大小。 由理论推导可得,当振动频率低于传感器的固有频率时,这种传 感器的灵敏度(E/v)是随振动频率而变化的;当振动频率远大于 固有频率时,传感器的灵敏度基本上不随振动频率而变化,而近 似为常数;当振动频率更高时,线圈阻抗增大,传感器灵敏度随 振动频率增加而下降。 不同结构的恒磁通磁电感应式传感器的频率响应特性是有差异的, 但一般频响范围为几十赫至几百赫。低的可到10 Hz左右,高的可 达2 kHz左右。

磁电式速度传感器课件

磁电式速度传感器课件

VS
集成化
集成化是未来传感器的一个重要发展趋势 ,通过将多个传感器元件集成在一个芯片 上,实现传感器的小型化、轻量化、低功 耗等特点,提高传感器的应用范围和性能 。
在新兴领域的应用前景
新能源汽车
随着新能源汽车的快速发展,磁电式速度传 感器在新能源汽车中的应用前景广阔,如用 于电机转速的检测、车辆速度的检测等。
机械结构设计
总结词
机械结构设计是磁电式速度传感器制造中的重要环节,它决定了传感器的精度、稳定性和使用寿命。
详细描述
在机械结构设计中,需要考虑到传感器的尺寸、重量、安装方式等因素,以确保传感器在实际应用中 的可靠性和稳定性。同时,还需要对传感器的材料、热处理等进行优化,以提高其机械性能和耐久性 。
磁路设计
智能交通
智能交通系统是未来交通发展的重要方向, 磁电式速度传感器可以用于智能交通系统中 的车辆速度检测、交通流量统计等方面,提 高交通管理的智能化水平。
THANKS
感谢观看
新型绝缘材料
绝缘材料在磁电式速度传感器的制造 中起着重要作用,新型绝缘材料如氮 化硅、碳化硅等具有高绝缘性、低介 电损耗等特点,能够提高传感器的绝 缘性能和稳定性。
智能化与集成化的发展趋势
智能化
随着人工智能和物联网技术的发展,磁 电式速度传感器将逐渐实现智能化,具 备自适应、自学习、自诊断等功能,提 高传感器的工作效率和可靠性。
应用领域
汽车领域
用于发动机转速、车速、ABS 系统等速度检测。
航空领域
用于飞机轮速、滑行速度等速 度检测。
工业自动化领域
用于电机转速、机械传动速度 等速度检测。
其他领域
如医疗器械、环保设备等需要 进行速度检测的领域。

电感式传感器的典型应用

电感式传感器的典型应用
固定
3)型号说明
A BC D E RS—93□□□□- □□□- □□ - □□□ -□□ RS:厂标 A:93□□□□ 螺纹壳体探头代号选择 B:□□□ 无螺纹长选择 公制螺纹探头 最小无螺纹长2mm 0 2 最大无螺纹长
250mm 2 5 0 加长递增量1mm 0 1
英制螺纹探头 最小无螺纹长0.1inches 0 1 最大无螺纹长
2)技术指标 I. 频响范围:0.5Hz~200Hz(-3dB) II. 灵敏度:8mV/μm±5%、 5mV/μm±5%、
4mV/μm±5% (或根据用户要求调整) III. 量程:±1mm(±2mm、±3mm 等) IV. 线性度:<2% V. 最大输出电压:8V(单峰) VI. 使用温度范围,-30℃~-80℃ VII. 工作方向:H 水平型 V 垂直型 VIII. 工作电源:±12VDC Ⅸ.安装方式: 在Φ56的圆周角上用2个M5螺钉
1.2.1 RS9300低频振动速度传感器
其外形如右图,它是利用磁电感 应原理把振动信号变换成电信号。主 要由磁路系统、惯性质量、弹簧阻尼 等部分组成。在传感器壳体中刚性地 固定着磁铁,惯性质量(线圈组件) 用弹簧元件悬挂于壳体上。
工作时,将传感器安装在机器上,在机器振动时, 线圈与磁铁相对运动、切割磁力线,产生感应电压, 该信号正比于被测物体的振动速度值,对该信号进行 积分放大处理即可得到位移信号。
1)特点:
I. 传感器有很低的使用频率,可以适用于低转速的 转动机器。
II. 相对于其它类型的振动传感器而言,RS9300传 感器有较低的输出阻抗,较好的信噪比。它同一般 通用交流电压表或示波器配合就能工作。对输出插 头和传输电缆也无特殊要求,使用方便。
III. 传感器设计中取消了有摩擦的活动元件,因此 使用寿命相对很长。传感器有一定抗横向振动能力 (不大于10g)。

电磁感应现象的实际应用举例

电磁感应现象的实际应用举例

电磁感应现象的实际应用举例电磁感应是指当磁场发生变化时,在磁场中的导体中将产生感应电动势和电流的现象。

这一现象给人类的生活和科技发展带来了巨大的变革。

本文将介绍一些电磁感应现象的实际应用举例,旨在展示电磁感应的重要性以及其在日常生活和科技领域的广泛应用。

1. 发电机电磁感应最主要的应用之一就是发电机。

根据法拉第电磁感应定律,当导体在磁场中运动时,磁通量的变化将导致感应电动势的产生。

发电机利用这一原理将机械能转化为电能。

例如,水力发电站中的涡轮通过流动水的动力带动发电机转动,产生电能。

通过这种方式,电磁感应实现了能源的转化和利用,为人类的工业生产和生活提供了便利。

2. 变压器变压器是另一个重要的电磁感应应用。

变压器利用电磁感应原理将输入端的交流电压通过互感作用转化为具有不同电压的输出端。

变压器的工作原理是基于法拉第电磁感应定律和电感耦合的效应。

通过变压器,电能可以在不同的电压间进行高效率的转换和传输,广泛应用于电力系统中的输配电、电动机起动以及各种电子设备。

3. 感应加热电磁感应还被广泛应用于感应加热技术。

感应加热是通过将高频交流电流引入导体中,利用电流在导体内产生的电阻加热原理来加热物体。

感应加热具有快速、高效、环保等优点,被广泛应用于金属熔化、金属焊接、热处理、石油开采等领域。

例如,感应加热技术被用于工业中的铁炉和钢铁生产过程中,通过感应加热加热金属到所需温度,实现高效、精确的加热。

4. 电磁感应传感器电磁感应现象也被广泛应用于传感技术。

电磁感应传感器利用电磁感应的原理来检测和测量各种物理量,例如磁场、位移、速度、温度等。

这些传感器在工业自动化、车辆导航、医学诊断、安全监测等领域发挥着重要的作用。

例如,磁电感应传感器可以用于测量行车速度,位移传感器用于测量机械设备的位移和形变。

5. 磁共振成像在医学领域,磁共振成像(MRI)是一种基于电磁感应原理的重要技术,可以对人体内部进行无创性的三维成像。

电磁感应的应用举例

电磁感应的应用举例

电磁感应的应用举例电磁感应是电磁学重要的基础概念之一,它描述了通过改变磁场来产生电流的现象。

它的应用广泛,不仅在电子设备中起到重要作用,还在日常生活中有许多实际应用。

一、电磁感应在发电中的应用电磁感应在发电中起着非常重要的作用。

发电机就是利用电磁感应原理实现电能的转换。

当导体穿过磁场,或者磁场经过导体时,导体中会产生感应电动势。

在发电机中,通过旋转磁场,产生的感应电动势会驱动电流产生,最终将机械能转化为电能。

这种转化过程广泛应用于发电厂、风力发电以及太阳能发电等领域。

二、电磁感应在变压器中的应用变压器也是电磁感应的重要应用之一。

变压器通过将交流电输入线圈中,利用线圈之间的磁感应效应,将输入的电能按照一定的比例传输到输出线圈中,以实现电压的变换。

变压器的应用非常广泛,比如用于电力传输系统中承担电能传输任务的高压变压器,以及手机充电器中常见的小型变压器。

三、电磁感应在感应炉中的应用感应炉是一种利用电磁感应原理进行加热的设备。

感应炉通过将高频交流电通过线圈产生的磁场作用于金属物体上,激发金属中的涡流而产生热量,从而将金属材料加热到所需温度。

感应炉不仅能够实现快速加热,而且加热效率高,尤其适合金属熔融、退火和热处理等工艺。

四、电磁感应在电磁铁中的应用电磁铁是利用电磁感应现象制作而成的装置,通过控制电流而使其具有磁性。

电磁铁在许多领域有广泛的应用,比如电梯中的升降机铁块,吸附乌托邦用的磁性材料等。

电磁铁通过在线圈中通电产生磁场,从而吸引或排斥邻近的铁磁物体,实现相应的动作。

五、电磁感应在传感器中的应用电磁感应也广泛运用于传感器技术中。

传感器利用电磁感应的原理来检测、测量和控制信息,将无形的物理量转化为电信号,以用于科学研究、工业控制、医疗设备等。

例如,温度传感器、光电传感器和压力传感器等都是基于电磁感应原理工作的。

综上所述,电磁感应作为一个重要的物理概念,其应用远远不止于以上举例。

从电力工业到家庭生活,从交通工具到通信设备,都有电磁感应的身影。

磁电式传感器的工作原理与应用

磁电式传感器的工作原理与应用

磁电式传感器的工作原理与应用磁电式传感器是基于电磁感应原理,通过磁电相互作用将被测量(如振动、位移、转速等)转换成感应电动势的传感器,它也被称为感应式传感器、电动式传感器。

根据电磁感应定律,N匝线圈中的感应电动势。

感应电动势的大小由磁通的变化率决定。

磁通量协的变化可以通过很多办法来实现:如磁铁与线圈之间作相对运动;磁路中磁阻变化;恒定磁场中线圈面积变化等。

因此可以制造出不同类型的磁电式传感器。

磁电式传感器是一种机一电能量变换型传感器,不需要供电电源,电路简单,性能稳定,输出信号强,输出阻抗小,具有一定的频率响应范围,适合于振动、转速、扭矩等测量。

但这种传感器的尺寸和重量都较大。

恒定磁通磁电式传感器由永久磁铁(磁钢)、线圈、弹簧、金属骨架和壳体等组成。

系统产生恒定直流磁场,磁路中工作气隙是固定不变的,因而气隙中的磁通也是恒定不变的。

它们的运动部件可以是线圈,又可分为圈式或动铁式两种结构类型。

恒磁通磁电式传感器结构原理图磁铁与传感器壳体固定,线圈和金属骨架(合称线圈组件)用柔软弹簧支承。

线圈组件与壳体固定,永久磁铁用柔软弹簧支承。

两者的阻尼都是由金属骨架和磁场发生相对运动而产生的电磁阻尼。

动圈式和动铁式的工作原理是完全相同的,当壳体随被测振动体一起振动时,由于弹簧较软,运动部件质量相对较大,因此振动频率足够高(远高于传感器的固有频率)时,运动部件的惯性很大,来不及跟随振动体一起振动,近于静止不动,振动能量几乎全被弹簧吸收,永久磁铁与线圈之间的相对运动速度接近于振动体振动速度。

线圈与磁铁间相对运动使线圈切割磁力线,产生与运动速度成正比的感应电动势,线圈处于工作气隙磁场中的匝数,称为工作匝数;工作气隙中磁感应强度;每匝线圈的平均长度。

这类传感器的基型是速度传感器,能直接测量线速度。

因为速度与位移和加速度之间有内在的联系,即它们之间存在着积分或微分关系。

因此,如果在感应电动势的测量电路中接入一积分电路,则它的输出就与位移成正比;如果在测量电路中接人一微分电路,则它的输出就与运动的加速度成正比。

传感器原理及应用第六章 磁电式传感器

传感器原理及应用第六章 磁电式传感器

两者工作原理是完全相同的。 当壳体随被测振动体一起 振动时, 由于弹簧较软, 运动部件质量相对较大。当振动频率 足够高(远大于传感器固有频率)时, 运动部件惯性很大, 来 不及随振动体一起振动, 近乎静止不动, 振动能量几乎全被弹 簧吸收, 永久磁铁与线圈之间的相对运动速度接近于振动体振 动速度, 磁铁与线圈的相对运动切割磁力线, 从而产生感应电 势为
(一)磁电感应式传感器的工作原理
电磁式传感器工作原理
当一个W匝线圈相对静止地处于随时间变化的磁场中时,设穿 过线圈的磁通为Ф,则整个线圈中所产生的感应电动势e为
e W d dt
(二)磁电感应式传感器的结构及特点
1、磁电感应式传感器的结构
磁电式传感器基本上由以下三部分组成: ①磁路系统:它产生一个恒定的直流磁场,为了减小传感器 体积,一般都采用永久磁铁; ②线圈:它与磁铁中的磁通相交产生感应电动势; ③运动机构:它感受被测体的运动使线圈磁通发生变化。
式(7 - 7)可得近似值:
γt ≈(-4.5%)/10 ℃
(Hale Waihona Puke - 8)这一数值是很可观的, 所以需要进行温度补偿。 补偿通常采
用热磁分流器。热磁分流器由具有很大负温度系数的特殊磁
性材料做成。它在正常工作温度下已将空气隙磁通分路掉一
小部分。当温度升高时, 热磁分流器的磁导率显著下降, 经它
分流掉的磁通占总磁通的比例较正常工作温度下显著降低, 从
而保持空气隙的工作磁通不随温度变化, 维持传感器灵敏度为
常数。
(三)磁电感应式传感器的转换电路
磁电式传感器直接输出感应电势, 且传感器通常具有较高 的灵敏度, 所以一般不需要高增益放大器。但磁电式传感器是 速度传感器, 若要获取被测位移或加速度信号, 则需要配用积 分或微分电路。 图为一般测量电路方框图

常见磁传感器及原理和应用

常见磁传感器及原理和应用
磁电效应 将磁场加在半导体、磁性体等固体上,固体的电性质就会发生变化,这种现象称为电(流)磁效应。基于这种物性变化制成的固体磁传感器,可以精确地检测从静磁场到交变磁场的强度,并转换成电信号输出。 固体磁传感器(或称物性磁传感器)具有体积小、功耗低、便于集成化等许多优点 。 霍尔效应 磁电阻效应 磁阻抗效应
基本补偿电路 霍尔元件的不等位电势补偿电路有很多形式。 图a是在造成电桥不平衡的电阻值较大的一个桥臂上并联RP,通过调节 RP 使电桥达到平衡状态,称为不对称补偿电路 图b相当于在两个电桥臂上并联调用电阻,称为对称补偿电路。
(a) 不对称补偿 (b) 对称电路
霍尔器件要点: 1、额定激励电流:霍尔元件温升10度时所施加的电流为额定激励电流IH; 2、零位电势:在额定控制电流下,无外加磁场时,霍尔器件电极之间的存在电势,或称为零位电位,主要原因霍尔电极的位置不在同一个等位面上,以及制作过程中引入应力, 3、温度特性:霍尔器件的电阻率和载流子的迁移率都是温度的函数。AlGaAs/InGaAs/GaAs和InAlAs/InGaAs/GaAs异质结构,灵敏度高温度系数低零位电势和温度变化一般通过电阻补偿方法解决
霍尔效应 霍尔效应最早是霍尔(Edvin Hall)于1879年发现的,但直到20世纪50年代,随着微电子技术的发展,霍尔效应才被重视和使用,并开发出多种霍尔效应器件。
洛仑兹力FM :
霍尔电场EH :
注:对无限长霍尔元件
对于实际有限长霍尔元件,需增加一个形状效应系数
基本概念
磁学量的单位
CGSE,又称静电单位制(electrostatic units)简称ESU 基本量为长度、质量和时间。基本单位为cm、g和s。 通过库仑定律,并令k=1确定电荷单位,库仑。电场强度E、极化强度P和电位移D量纲都相同。 安培环路定律和法拉第电磁感应定律分别确定磁感应强度B和磁场强度H,量纲不同,真空中也不相等,真空磁导率μ0=1/c2。 CGSM,又称电磁单位制(electromagnetic units)简称EMU ,CGSM 制的基本量和基本单位与CGSM制的一样,但是确定电磁量单位的物理公式不同。它是通过安培-毕奥-萨伐尔定律 并令K=1确定电流单位, D和E具有不同的量纲,真空介电常数ε0=1/c2。 但B和H的单位相同,但通常B的单位称为高斯,H的单位称为奥斯特。磁导率μ是无量纲的。

【课件】传感器与检测技术 磁电式传感器原理及应用

【课件】传感器与检测技术    磁电式传感器原理及应用

第 5章
磁电式传感器
传感器原理及应用
测量转速时,传感器的转轴1 与被测物转轴相连接,因而带动转 子2转动。当转子2的齿与定子5的 齿相对时,气隙最小,磁路系统的 磁通最大。而齿与槽相对时,气隙 最大,磁通最小。
(2)磁电感应式转速传感器
因此当定子5不动而转子2转动 时,磁通就周期性地变化,从而在 线圈4中感应出近似正弦波的电压 信号,其频率与转速成正比关系。
第 5章
磁电式传感器
传感器原理及应用
5.1 磁电感应式传感器 5.1.1 工作原理 当线圈与磁铁间有相对运动时,线圈中产生的感 应电势e为
式中 B :工作气隙磁感应强度; N:线圈处于工作气隙磁场中的匝数,称为工作匝数;
l :每匝线圈的平均长度; v :线圈与磁铁沿轴线方向的相对运动速度(ms-1)。
第 5章
磁电式传感器
传感器原理及应用
由理论推导可得,当振动频率低于传感器的固有频率时, 这种传感器的灵敏度(e/v)是随振动频率而变化;当振动频
率远大于固有频率时,传感器的灵敏度基本上不随振动频率 而变化,而近似为常数;当振动频率更高时,线圈阻抗增大, 传感器灵敏度随振动频率增加而下降。
不同结构的恒定磁通磁电感应式传感器的频率响应特性 是有差异的,但一般频响范围为几十赫至几百赫。
它属于动圈式恒定磁通型。其结构原理图如图5-3所示,永 久磁铁3通过铝架4和圆筒形导磁材料制成的壳体7固定在一起, 形成磁路系统,壳体还起屏蔽作用。磁路中有两个环形气隙, 右气隙中放有工作线圈6,左气隙中放有用铜或铝制成的圆环形 阻尼器2。工作线圈和圆环形阻尼器用心轴5连在一起组成质量 块,用圆形弹簧片1和8支承在壳体上。
将传感器固定在被测振动体上永久磁铁铝架和壳体将传感器固定在被测振动体上永久磁铁铝架和壳体一起随被测体振动由于质量块有一定的质量产生惯性力而一起随被测体振动由于质量块有一定的质量产生惯性力而弹簧片又非常柔软因此当振动频率远大于传感器固有频率时弹簧片又非常柔软因此当振动频率远大于传感器固有频率时线圈在磁路系统的环形气隙中相对永久磁铁运动以振动体的振线圈在磁路系统的环形气隙中相对永久磁铁运动以振动体的振动速度切割磁力线产生感应电动势通过引线动速度切割磁力线产生感

磁电式传感器(霍尔)原理及工程应用

磁电式传感器(霍尔)原理及工程应用

会产生感应电动势,这种现
象称霍尔效应。
7.2 霍尔式传感器
7.2.1 霍尔效应及霍尔元件
1.霍尔效应
工作原理:假设在N型半导体薄片上通以电流I,
则半导体中的自由电荷沿着和电流相反的方向运
动,由于在垂直于半导体薄片平面的方向施加磁
场B,所以电子受到洛仑兹力
FL的作用向一边偏转,并使该 边形成电子积累,而另一边则
的大,且μn>μp,所以霍尔元件一般采用N型半导体材料。 2) 霍尔电压UH与元件的尺寸有关。 根据公式d 愈小,霍尔灵敏度愈高,所以霍尔元件的厚
度都比较薄。
3)霍尔电压UH与控制电流及磁场强度有关。根据公式 UH正比于I及B。当控制电流I恒定时B愈大UH愈大。当磁 场改变方向时, UH也改变方向。同样,当霍尔灵敏度及 磁感应强度B恒定时,增加控制电流I,也可以提高霍尔电
7.2 霍尔式传感器 7.2.1 霍尔效应及霍尔元件 3.不等位电势补偿
磁电式传感器
传感器原理及工程应用
7.2 霍尔式传感器 7.2.1 霍尔效应及霍尔元件 4.霍尔元件温度补偿 温度误差产生原因:
➢ 霍尔元件的基片是半导体材料,因而对温度的变化
很敏感。其载流子浓度和载流子迁移率、电阻率和霍尔
系数都是温度的函数。
压UH的输出。
7.2 霍尔式传感器 7.2.2 霍尔传感器基本电路
2.霍尔元件基本结构Fra bibliotek➢ 霍尔晶体外形矩形薄片有 四根引线,两端加激励两端为 输出;电源E产生控制电流I; 负载RL,R可调,调节控制电流, B磁场与元件面垂直(向里)。 ➢ .实测中可把I*B作输入, 也可把I或B单独做输入。 而霍尔电势输出测量信号U0 与I或B成正比关系。
向时,霍尔电动势极性不变。

磁电感应式传感器

磁电感应式传感器

V
(
)
arg
tg
2 ( / n ) 1 ( / n )2
ω—被测振动的角频率;
ω0—传感器运动系统的固有角频率,ω0= K / m ; ξ—传感器运动系统的阻尼比, c /(2 。mK )
磁电感应式速度传感器的幅频响应特性曲线
Av(ω) 10
欠阻尼
中频灵敏度
1.0
最佳阻尼 过阻尼
高频下降 二次谐振
传感检测技术基础
磁电感应式传感器
简称感应式传感器,也称电动式传感器。 将被测物理量的变化转变为感应电动势,是一 种机-电能量变换型传感器。
优点:输出功率大,性能稳定,且不需要工作 电源。调理电路简单,性能稳定,输出阻抗小, 具有一定频率响应(一般10~1000Hz),灵敏 度较高,一般不需要高增益放大器。
e=-Ndφ/dt
当线圈垂直于磁场方向运动以速度 v切割磁 力线时,感应电动势为:
e=-NBlv
式中l代表每匝线圈的平均长度; B为线圈所在磁 场的磁感应强度。若线圈以角速度转动, S为每 匝线圈的平均截面积,则上式可写成:
e=-NBS
1.2 磁电感应式传感器的类型
按照磁场感应方式分类,可分为: 1、变磁通式传感器:
缺点:传感器的尺寸和重量都较大。
应用:适用于振动、转速、扭矩等测量。
1.1 工作原理:
当运动导体在磁场中切割磁力线时,闭合导
体回路中的磁通量φ发生变化,在导体中产生感 应电动势e,当导体形成闭合回路就会出现感应 电流。导体中感应电动势e的大小与回路所包围
的磁通量的变化率成正比,那么N匝线圈在变化 析
磁电感应式传感器是机-电能量变换型传感器,其 等效机械系统如图所示,为二阶系统。

磁电式传感器原理及应用

磁电式传感器原理及应用
扭转0角 与感应电动势相位差的关
系为
式中:z为传感0 器z定子、转子的齿
数。
2 霍尔式传感器
霍尔式传感器是基于霍尔效应而将被测量转换成电动势输出的一 种传感器。霍尔器件是一种磁传感器,用它们可以检测磁场及其 变化,可在各种与磁场有关的场合中使用。
霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿 命长,安装方便,功耗小,频率高(可达1 MHz),耐振动,不怕 灰尘、油污、水汽及盐雾等的污染或腐蚀。
f Zn/ 60
式中:Z为齿轮齿数;n为被测轴转速(v/min);f为感应电 动势频率(Hz)。这样当已知Z,测得f就知道n了。
开磁路式转速传感器结构比较简单,但输出信号小,另外当被 测轴振动比较大时,传感器输出波形失真较大。在振动强的场 合往往采用闭磁路式转速传感器。
被测转轴带动椭圆形测量轮5在磁场气隙中等速转动,使气隙 平均长度周期性地变化,因而磁路磁阻和磁通也同样周期性地 变化,则在线圈3中产生感应电动势,其频率f与测量轮5的转 速n(r/min)成正比,即f = n/30。在这种结构中,也可以用齿轮 代替椭圆形测量轮5,软铁(极掌)制成内齿轮形式,这时输出 信号频率f 同前式。
1.霍尔效应
半导体薄片置于磁感应强度为B 的磁场中,磁场方向垂直于薄 片,当有电流I 流过薄片时,在垂直于电流和磁场的方向上将 产生电动势EH,这种现象称为霍尔效应。
B
C
D
A
磁感应强度B为零时的情况
作用在半导体薄片上的磁场强度B越强,霍尔电势也就越高。 霍尔电势EH可用下式表示:
EH=KH IB
当有图示方向磁场B作用时
数料R中H=的1电/(n子q)浓,度由。材料为物磁理场性和质薄所片决
式中:N为线圈在工作气隙磁场中的匝数;B为工作气隙磁感应 强度;l为每匝线圈平均长度。

磁敏式传感器中的磁电式和霍尔式原理及应用

磁敏式传感器中的磁电式和霍尔式原理及应用

磁敏式传感器中的磁电式和霍尔式原理及应用磁敏式传感器在许多电子设备中发挥着关键作用,其中磁电式和霍尔式是两种常见的类型。

这两种传感器利用磁感应原理,将磁场强度转换为电信号,从而实现对各种物理量的测量。

本篇文章将详细介绍磁电式传感器和霍尔传感器的原理、应用以及注意事项。

一、磁电式传感器原理及应用磁电式传感器基于磁感应原理,即磁场的变化能够产生电压。

当磁场穿过金属片时,金属片会发生相应的电位差,即电磁感应。

这种传感器通常用于测量速度、长度、位移等物理量。

其工作原理如下:1.结构:磁电式传感器通常由永久磁铁和金属感应片组成。

金属感应片固定在壳体上,通过连接线连接到测量电路。

2.工作原理:当磁场穿过金属感应片时,会产生电动势,其大小与磁场强度成正比。

因此,通过测量电动势,可以确定磁场强度或相应的物理量。

3.应用:磁电式传感器广泛应用于流量计、测速仪、转速表等领域,用于测量流体的流量和速度。

此外,在汽车电子控制系统如ABS防抱死系统、TCS牵引力控制系统等中也发挥着重要作用。

二、霍尔传感器原理及应用霍尔传感器是基于霍尔效应制成的传感器。

当电流通过一个置于磁场中的半导体时,会在电子层面上产生电压,即霍尔电压。

这种传感器能够将磁场强度转换为电信号,从而实现对各种物理量的测量。

1.结构:霍尔传感器通常由半导体、固定磁场和连接线组成。

半导体通常被夹在两个导电片之间,形成一个霍尔电场。

2.工作原理:当电流通过霍尔传感器时,会在霍尔电场上产生电压,即霍尔输出。

霍尔输出的大小与磁场强度成正比,因此通过测量霍尔输出,可以确定磁场强度或相应的物理量。

3.应用:霍尔传感器在各种电子设备中广泛应用,如电流检测、位置测量、转速表、安全气囊控制等。

此外,霍尔传感器还被用于汽车电子控制系统如发动机控制、ABS防抱死系统等。

三、注意事项使用磁敏式传感器时,需要注意以下几点:1.磁场强度:确保磁敏元件工作在适当的磁场强度范围内,以免损坏传感器。

磁敏传感器应用举例及原理

磁敏传感器应用举例及原理

磁敏传感器应用举例及原理磁敏传感器,简称磁传感器,是一种常用的磁性测量设备。

它可以测量磁场、磁铁、电机转速、位置、方位、温度等一系列参数,具有响应速度快、精度高、稳定性好等优点。

本文将从磁传感器的应用举例及原理两个方面进行详细介绍。

一、磁传感器的应用举例1. 磁传感器在汽车领域的应用磁传感器在汽车领域中有着广泛的应用。

例如,在发动机控制系统中,磁传感器能够感知发动机传动轴的旋转速度,并将这一信息反馈给电控单元,从而实现发动机控制、点火、燃烧等功能;在刹车系统中,磁传感器能够感知刹车踏板的行程,并将这一信息传输给ABS系统,实现刹车压力的控制和调节等多个功能。

2. 磁传感器在工业领域的应用在工业领域中,磁传感器同样有着广泛的应用。

例如,在机器人的调节和控制中,磁传感器能够感知各个机械部件的位置、速度和方向等信息,从而实现机器人的动作调节、定位和导航等功能;在电机控制领域中,磁传感器能够感知电机的转速和位置等信息,并将这些信息反馈给电控单元,实现电机运转的控制和调整。

3. 磁传感器在安防领域的应用磁传感器在安防领域中同样有着广泛的应用。

例如,在门禁系统中,磁传感器能够检测门体是否关闭,从而实现门禁的控制和管理;在反盗系统中,磁传感器能够感知物品是否被移动或者被拆下,从而实现对物品的监控和保护。

二、磁传感器的原理磁传感器的本质原理是利用霍尔效应或者安培效应检测磁场的强度和方向等参数。

下面我们分别介绍这两种检测方法的原理。

1. 霍尔效应检测磁场霍尔效应是指在材料内注入电流时,当该材料与磁场相交时,磁场会使材料内的自由电子沿磁力线运动,并在材料内产生电压差。

这种电压差称为霍尔电压,具有与磁场强度和方向等相关的特性。

因此,通过测量材料内的霍尔电压,可以确定磁场的强度和方向。

2. 安培效应检测磁场安培效应是指在传导物质中流过电流时,当该物质与磁场相交时,磁场会使该物质内的电荷载流子发生偏转或者旋转,产生感应电势。

第5章 磁电式传感器 3

第5章 磁电式传感器 3
26
3、磁电式测扭矩传感器 ■扭矩
扭矩是使物体发生转动的力 扭矩是指旋转装置旋转时,所需要的力矩,单位是牛顿· 米。 (旋转装置旋转时,正常工作范围内可以加载的最小力矩)
发动机的扭矩就是指发动机从曲轴端输出的力矩 扭矩是汽车发动机的主要技术指标之一,它反映在汽车性能上, 包括加速度、爬坡以及悬挂能力等。 它的定义是:活塞在汽缸里的往复运动,往复一次做用一定的功, 它的单位是牛顿;在每个单位距离所做的功就是扭矩。 扭矩是衡量一个汽车发动机好坏的重要标准,一辆车扭矩的大小与 发动机的功率成正比。 在排量相同的情况下,扭矩越大说明发动机越好。
当传感器线圈相对运动的速度 和方向改变时,由 i 产生的附 加磁场的作用也随之改变 , 从而使传感器的输出有谐波失 真。线圈中的电流越大,这种 非线性就越严重。
v Φ N
i
Φi
e
S
采用补偿线圈,可使其产生的 传感器线圈电流 i 的磁场效应 交变磁通与线圈本身产生的交 变磁通相互抵消。 气隙磁场不均匀也是造成传感器非线性误差的原因之一。
磁电式传感器是通过磁电作用将被测量(如振动、位移、转速) 转换成电信号的一种传感器。
磁电式传感器不需要辅助电源,就可把被测对象的机械能转换成 有用的电信号,是一种无源传感器。也称为电动式传感器。 本章介绍磁电式传感器有:
●磁电感应式传感器
●霍尔式传感器
3
第一节 磁电感应式传感器
一、工作原理及结构
二、磁电感应式传感器的误差分析 三、磁电感应式传感器的应用
ld
N
永久磁铁
v
弹簧
支架 线圈 软铁 磁路
式中: B 工作气隙磁感应强度 l 每匝线圈的平均长度 v 线圈相对于磁场的运动速度 W 线圈处于工作气隙磁场中的线圈匝数,工作匝数

简述电感式传感器的原理及应用

简述电感式传感器的原理及应用

简述电感式传感器的原理及应用1. 什么是电感式传感器电感式传感器是一种基于电感现象的传感器,通过测量电感的变化来获取目标物理量的信息。

它使用了感应电流与磁场之间的相互作用,从而实现对目标物理量的测量。

2. 电感式传感器的原理电感式传感器的原理基于法拉第电磁感应定律。

当一个变化的电流通过线圈时,会在线圈周围产生可测量的磁场。

而当有一个磁场通过线圈时,它会引起线圈中的感应电流。

根据这个原理,电感式传感器通过测量线圈中的电感变化来判断目标物理量的变化情况。

3. 电感式传感器的应用电感式传感器具有广泛的应用领域,下面列举几个常见的应用:3.1 位移测量电感式传感器可以用于测量物体的位移。

当位移发生时,与位移相关的物理量(如位置、角度等)会引起感应电感的变化,通过测量电感的变化可以间接得知位移的大小。

3.2 流量测量电感式传感器在流量测量中也有着广泛应用。

传感器中的线圈与流体的流动有关,当流体通过线圈时,会引起线圈中的感应电感的变化,通过测量电感的变化可以判断流体的流量大小。

3.3 接近开关电感式传感器常用于接近开关的应用。

当有物体靠近传感器时,物体的磁场会影响传感器线圈的电感,从而引起感应电流的变化。

通过检测感应电流的变化,可以实现物体的接近检测。

3.4 温度测量电感式传感器也可以用于温度测量。

传感器的线圈会随温度的变化而发生电感的变化,通过测量电感的变化可以间接得知温度的变化情况。

3.5 金属检测由于金属具有较高的导电性,金属物体会对传感器的感应电感产生较大的影响。

因此,电感式传感器可以用于金属检测应用。

通过测量感应电感的变化,可以判断目标物体是否为金属。

4. 电感式传感器的优势和局限性4.1 优势•精度高:电感式传感器可以实现高精度的测量,对于一些要求精确度较高的应用领域非常适用。

•反应速度快:电感式传感器的测量响应速度快,可以用于需要快速响应的实时监测。

•结构简单:电感式传感器的结构相对简单,制造成本较低。

速度及加速度检测—磁电式速度传感器

速度及加速度检测—磁电式速度传感器

自动检测技术
2)温度误差 当温度变化时,式(5-7)中右边三项都不为零,
对铜线而言每摄氏度变
化量为dL/L≈0.157×10-4,
dR/R≈0.43×10-2,dB/B每摄氏度的变化量取决于永久磁铁的
磁性材料。对铝镍钴永久磁合金,dB/B≈-0.02×10-2,这样由
式(5-7)可得近似值:
这一数值是很可观的,所以需要进行温度补偿。补偿通常采 用热磁分流器。热磁分流器由具有很大负温度系数的特殊磁性材 料做成。它在正常工作温度下已将空气隙磁通分路掉一小部分。
自动检测技术
磁电式传感器的工作原理是基于法拉第电磁感应 原理。当匝数为N的线圈在磁场中运动而切割磁力 线,或通过闭合线圈的磁通量ф发生变化时,线 圈中将产生感应电势e
e N d
dt
磁电式传感器的分类
按工作原理不同,磁电感应式传感器可分为恒定磁通式 和变磁通式,即动圈式传感器和磁阻式传感器。
变磁通 式
三、 磁电感应式传感器测量电路
自动检测技术
图5-4 磁电感应式传感器测量电路方框图 磁电式传感器直接输出感应电动势,且传感器通常具有
较高的灵敏度,不需要高增益放大器。但磁电式传感器是速 度传感器,若要获取被测位移或加速度信号,则需要配用积 分或微分电路。图5-4为一般测量电路方框图。
自动检测技术Leabharlann 产生磁场的永久磁铁和线圈都固定
不动,通过磁通Φ的变化产生感应 电动势e。常用于角速度的测量。
恒磁通 式
工作气隙中的磁通保持不变,线圈 相对永久磁铁运动,并切割磁力线 而产生感应电势。
自动检测技术
动圈式磁电感应式传感器可以分为线速度型 和角速度型
自动检测技术
磁电式转速传感器根据磁路的不同,分成开磁路 式和闭磁路式两种。

磁电感应式传感器

磁电感应式传感器

a)磁电式车速传感器
b) 测速电机
5.2 磁电感应式传感器旳类型
按磁场方式分类,磁电感应式传感器分为变磁通式 和恒定磁通式两大类,每类还有不同型式。
1.变磁通式
变磁通式传感器又称为变磁阻磁电感应式传感器或 变气隙磁电感应式传感器。此类传感器旳线圈和磁 铁固定,利用铁磁性物质制成齿轮(或凸轮)与被 测物体相连而运动。在运动中,齿轮(或凸轮)不 断变化磁路旳磁阻,从而变化线圈旳磁通,在线圈 中产生感应电动势。此类传感器在构造上有开磁路 和闭磁路两种,一般用来测量旋转物体旳角速度, 产生感应电动势旳频率作为输出。
I0
R
e Rf
B0lNv R Rf
B0:工作气隙磁感应强度;
I0 e~
N:在工作气隙磁场中旳线圈匝数;
R
Rf
Rf:测量电路输入电阻;
磁电感应式传感器测量电路
R:线圈等效电阻; v:线圈垂直于磁场方向运动旳速度。
(2)电流敏捷度
Ki
dI 0 dv
B0lN R Rf
(3)输出电压
U0
I0Rf
这种传感器构造简朴,但需在被测对象上加装齿轮, 使用不以便,且因高速轴上加装齿轮会带来不平衡而 不宜测高转速。
(2)闭磁路变磁通式传感器
如测图量,轮被2在测磁旋场转气体隙1带中动档速椭圆转形动,1.被测物体 使气隙平均长度周期性地变化,
2.测量轮 3.线圈
因而磁路磁阻也周期性地变化,
4.软铁
磁通一样周期性地变化,则在线
e N d dt
当线圈垂直于磁场方向运动以速度 v 切割磁力线时,
感应电动势为: e NBlv
式中,l:每匝线圈的平均长度;
B:线圈所在磁场旳磁感应强度(T)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档