氧化还原酶PPT课件
合集下载
《NADH氧化酶》课件
详细描述
NADH氧化酶是生物体内能量代谢的关键酶之一,它参与了 多种能量代谢过程,如糖酵解、三羧酸循环等。此外, NADH氧化酶还参与了细胞信号转导过程,可以通过调节其 活性来影响细胞的生长、分化等生物学过程。
NADH氧化酶的分类
要点一
总结词
NADH氧化酶可以分为两大类,即线粒体NADH氧化酶和 细胞质NADH氧化酶。
新催化机制的发现
01
随着对NADH氧化酶研究的深入,未来可能会发现新的催化机
制和调控方式。
药物设计与发现
02
NADH氧化酶作为生物体内重要的代谢酶,未来可能在药物设
计与发现方面发挥重要作用。
生物工程应用
03
利用NADH氧化酶在生物能源、生物材料等方面的应用,开发
出更加高效、环保的生物工程技术。
THANKS
关重要。
NADH氧化酶在抗氧化应激中的作用
总结词
NADH氧化酶具有抗氧化应激的作用,能够 清除活性氧自由基,保护细胞免受氧化损伤 。
详细描述
NADH氧化酶能够催化NADH的氧化,生成 NAD+,同时产生大量的活性氧自由基。这 些自由基能够清除细胞内的有害物质,如超 氧阴离子和氢氧根离子等,从而保护细胞免 受氧化损伤。
详细描述
NADH氧化酶是一种生物酶,其主要功能是将NADH氧化成NAD+。在生物体 的能量代谢过程中,NADH是重要的中间产物,而NADH氧化酶则负责将 NADH进行氧化,使其参与到其他代谢过程中。
NADH氧化酶的生物学功能
总结词
NADH氧化酶在生物体的能量代谢、细胞信号转导等方面具 有重要作用。
《NADH氧化酶》PPT课件
• NADH氧化酶的概述 • NADH氧化酶的结构与性质 • NADH氧化酶的生物合成与调控 • NADH氧化酶在生物体内的应用 • NADH氧化酶的研究进展与展望
NADH氧化酶是生物体内能量代谢的关键酶之一,它参与了 多种能量代谢过程,如糖酵解、三羧酸循环等。此外, NADH氧化酶还参与了细胞信号转导过程,可以通过调节其 活性来影响细胞的生长、分化等生物学过程。
NADH氧化酶的分类
要点一
总结词
NADH氧化酶可以分为两大类,即线粒体NADH氧化酶和 细胞质NADH氧化酶。
新催化机制的发现
01
随着对NADH氧化酶研究的深入,未来可能会发现新的催化机
制和调控方式。
药物设计与发现
02
NADH氧化酶作为生物体内重要的代谢酶,未来可能在药物设
计与发现方面发挥重要作用。
生物工程应用
03
利用NADH氧化酶在生物能源、生物材料等方面的应用,开发
出更加高效、环保的生物工程技术。
THANKS
关重要。
NADH氧化酶在抗氧化应激中的作用
总结词
NADH氧化酶具有抗氧化应激的作用,能够 清除活性氧自由基,保护细胞免受氧化损伤 。
详细描述
NADH氧化酶能够催化NADH的氧化,生成 NAD+,同时产生大量的活性氧自由基。这 些自由基能够清除细胞内的有害物质,如超 氧阴离子和氢氧根离子等,从而保护细胞免 受氧化损伤。
详细描述
NADH氧化酶是一种生物酶,其主要功能是将NADH氧化成NAD+。在生物体 的能量代谢过程中,NADH是重要的中间产物,而NADH氧化酶则负责将 NADH进行氧化,使其参与到其他代谢过程中。
NADH氧化酶的生物学功能
总结词
NADH氧化酶在生物体的能量代谢、细胞信号转导等方面具 有重要作用。
《NADH氧化酶》PPT课件
• NADH氧化酶的概述 • NADH氧化酶的结构与性质 • NADH氧化酶的生物合成与调控 • NADH氧化酶在生物体内的应用 • NADH氧化酶的研究进展与展望
氧化还原酶(过氧化物酶 过氧化物酶)汇总
①正 铁血红 素 过氧化 物 酶 :含有正铁血红素 Ⅲ (羟高铁血红素)为辅基,存在于高等植物、 动物和微生物中。 ②绿过氧化物酶:绿过氧化物酶的辅基也含有一 个铁原卟啉基团,这类酶存在于动物器官和乳 中(乳过氧化氢酶)。 ( 2 )黄蛋白过氧化物酶:含有黄素腺嘌呤二核苷酸
作为辅基,这类酶存在于微生物和动物组织中。
第7章 氧化还原酶
主要内容:
一、过氧化物酶
二、多酚氧化酶
一、过氧化物酶(POD peroxidase)
过氧化物酶是由单一肽链与一个铁卟啉辅基结合构 成的血红蛋白。多数植物过氧化物酶与碳水化合物结 合成为糖基化蛋白。糖蛋白有避免蛋白酶降解和稳定 蛋白构象的作用。
过氧化物酶是存在于各种动物、植物和微生物体内 的一类氧化酶。催化由过氧化氢参与的各种还原剂的 氧化反应。
240单位/g组织)。
2 过氧化物酶在食品加工中的应用
(1) 过氧化物酶是果蔬成熟和衰老的指标:如 苹果气调贮藏中,过氧化物酶出现两个峰值,
一个在呼吸转折(成熟),一个在衰老开始。
(2) 过氧化物酶的活力与果蔬产品,特别是非
酸性蔬菜在保藏期间形成的不良风味有关。
( 3 )过氧化氢酶属于最耐热的酶类,在果蔬加
4.2. 过氧化物酶冷冻增活效应
果蔬热烫后,有多少残余活力或再生活力
被允许留在被保藏的产品中,残余酶活力在冰
冻保藏后,质量比酶完全失活时要高。
速冻蔬菜能否永久保藏?
4.3. 非脂肪氧合酶用
在热失活中过氧化物酶分子聚集成寡聚体, 分子量增加一倍,这个过程包括酶分子展开和 展开的酶分子进一步堆积,血红素基暴露,增 加了血红素蛋白非酶催化脂肪氧化的能力,导 致不良风味的产生,这一过程非脂肪氧合酶作 用(热烫钝化)。
氧化还原酶类知识
CH2OH O OH OH +O2 HO HO CH2OH O
葡萄糖 OH 氧化酶 HO
HO
O
+H2O2
-D-葡萄糖
-葡萄糖酸内酯
CH2OH OH HO COOH HO OH
葡萄糖酸
6.2.2 来源:霉菌 6.2.3 性质
1、pH值:4.5~7.0; 底物对酶起稳定作用。
2、温度: 低温下具有良好的稳定性; 适温范围较宽(30℃~60℃)。 3、抑制剂:金属离子
多酚氧化酶的分布及存在形态
6.1.2.1 分布
整体水平: 大量的植物(如水果、蔬菜)
亚细胞水平:叶绿体、线粒体
结合态 无活性状态
6.1.2.2
存在形态
可溶态 活性状态
杏子
13
水 果 种 类 桃 甜樱桃 可溶态多酚氧化酶 占总的酶活力(%) 20~30 15~17
苹果
8~15
为什么受伤的组织表面才会褐变?
第6章
氧化还原酶类
(oxido-reductases)
氧化还原酶的作用
• 催化H、O原子或电子从一底物向另一底 物转移的反应。 • 作用:氧化产能、 解毒、形成生理活性物 质。 • 在食品生产实践中,应用仅次于水解酶
分类
• 系统分类中,亚类的 分类是按照作用的底 物的基团来分类:如 1.1作用于CHOH 1.2作用于C=O 1.3作用于HC=CH • 生物学研究中常用的 氧化还原酶如 脱氢酶类 氧化酶类 过氧化物酶类 氧合酶类
3、对-苯二胺和醌醇氧化酶
漆酶 (EC 1.10.3.2)
OH HO O OH OH OH HO | | O CO CH CH OH | OH OH 儿茶素 HO CH2 OH
葡萄糖 OH 氧化酶 HO
HO
O
+H2O2
-D-葡萄糖
-葡萄糖酸内酯
CH2OH OH HO COOH HO OH
葡萄糖酸
6.2.2 来源:霉菌 6.2.3 性质
1、pH值:4.5~7.0; 底物对酶起稳定作用。
2、温度: 低温下具有良好的稳定性; 适温范围较宽(30℃~60℃)。 3、抑制剂:金属离子
多酚氧化酶的分布及存在形态
6.1.2.1 分布
整体水平: 大量的植物(如水果、蔬菜)
亚细胞水平:叶绿体、线粒体
结合态 无活性状态
6.1.2.2
存在形态
可溶态 活性状态
杏子
13
水 果 种 类 桃 甜樱桃 可溶态多酚氧化酶 占总的酶活力(%) 20~30 15~17
苹果
8~15
为什么受伤的组织表面才会褐变?
第6章
氧化还原酶类
(oxido-reductases)
氧化还原酶的作用
• 催化H、O原子或电子从一底物向另一底 物转移的反应。 • 作用:氧化产能、 解毒、形成生理活性物 质。 • 在食品生产实践中,应用仅次于水解酶
分类
• 系统分类中,亚类的 分类是按照作用的底 物的基团来分类:如 1.1作用于CHOH 1.2作用于C=O 1.3作用于HC=CH • 生物学研究中常用的 氧化还原酶如 脱氢酶类 氧化酶类 过氧化物酶类 氧合酶类
3、对-苯二胺和醌醇氧化酶
漆酶 (EC 1.10.3.2)
OH HO O OH OH OH HO | | O CO CH CH OH | OH OH 儿茶素 HO CH2 OH
大学无机化学课件氧化-还原
大学无机化学课件氧化-还原
目录
CONTENTS
• 氧化-还原反应的基本概念 • 氧化-还原反应的原理 • 氧化-还原反应的实例 • 氧化-还原反应的应用 • 氧化-还原反应的实验操作
01 氧化-还原反应的基本概念
CHAPTER
定义与分类
定义
氧化-还原反应是电子在两个不同原 子间转移的反应,其中氧化是指电子 损失的过程,还原则是电子获得的过 程。
ABCD
还原剂是能够提供电子的 物质,通常是具有较低氧 化数的元素或化合物。
常见的氧化剂包括氧气、 高锰酸钾、硝酸等,常见 的还原剂包括氢气、金属、 碳等。
氧化数的变化与电子转移的关系
氧化数表示元素或化合物在氧化-还原状态下的电荷数, 可以用来描述电子转移的过程。
当电子从还原剂转移到氧化剂时,还原剂的氧化数升高, 而氧化剂的氧化数降低。
通过双线桥法或单线桥法表示电子转移的方向和数量,清晰地展示出氧化剂、还 原剂以及电子转移的过程。
电极反应式表示法
将氧化-还原反应拆分为两个半反应,分别表示为阳极和阴极反应式,有助于理 解和分析反应机理。
02 氧化-还原反应的原理
CHAPTER
电子转移过程
01 02 03 04
电子转移是氧化-还原反应的核心,它决定了反应的进行方向和速率 。
金属与酸反应
金属与酸反应,通常会生 成氢气和对应的金属盐, 同时金属被氧化。
非金属的氧化
非金属氧化物生成
非金属与氧气反应,生成非金属氧化物,如二氧化碳 的生成。
非金属燃烧
非金属在氧气中燃烧,如硫在空气中燃烧生成二氧化 硫。
非金属与碱反应
非金属与碱反应,通常会生成盐和水,同时非金属被 氧化。
目录
CONTENTS
• 氧化-还原反应的基本概念 • 氧化-还原反应的原理 • 氧化-还原反应的实例 • 氧化-还原反应的应用 • 氧化-还原反应的实验操作
01 氧化-还原反应的基本概念
CHAPTER
定义与分类
定义
氧化-还原反应是电子在两个不同原 子间转移的反应,其中氧化是指电子 损失的过程,还原则是电子获得的过 程。
ABCD
还原剂是能够提供电子的 物质,通常是具有较低氧 化数的元素或化合物。
常见的氧化剂包括氧气、 高锰酸钾、硝酸等,常见 的还原剂包括氢气、金属、 碳等。
氧化数的变化与电子转移的关系
氧化数表示元素或化合物在氧化-还原状态下的电荷数, 可以用来描述电子转移的过程。
当电子从还原剂转移到氧化剂时,还原剂的氧化数升高, 而氧化剂的氧化数降低。
通过双线桥法或单线桥法表示电子转移的方向和数量,清晰地展示出氧化剂、还 原剂以及电子转移的过程。
电极反应式表示法
将氧化-还原反应拆分为两个半反应,分别表示为阳极和阴极反应式,有助于理 解和分析反应机理。
02 氧化-还原反应的原理
CHAPTER
电子转移过程
01 02 03 04
电子转移是氧化-还原反应的核心,它决定了反应的进行方向和速率 。
金属与酸反应
金属与酸反应,通常会生 成氢气和对应的金属盐, 同时金属被氧化。
非金属的氧化
非金属氧化物生成
非金属与氧气反应,生成非金属氧化物,如二氧化碳 的生成。
非金属燃烧
非金属在氧气中燃烧,如硫在空气中燃烧生成二氧化 硫。
非金属与碱反应
非金属与碱反应,通常会生成盐和水,同时非金属被 氧化。
《氧化还原酶》PPT课件
漂白面粉
• 在面粉中加入1%含脂肪氧化酶活力的大豆 粉,可改善面粉的颜色和焙烤质量。
• 脂肪氧合酶可通过偶合反应导致胡萝卜色 素被漂白。
强化面筋蛋白
• 大豆粉脂肪氧合酶在漂白面粉的同时还具有氧化 面筋蛋白质的功能,从而对面团和烘焙食品产生 有益的影响。
• 在面粉中加入脂肪和大豆粉后,脂肪经脂肪氧合 酶作用所生成的氢过氧化物起着氧化剂的作用。 在后者作用下,面筋蛋白质的巯基(-SH)被氧化 成-S-S-,这对于强化面团中的蛋白质,即面 筋蛋白质的三维网状结构是必要的。
改进面包的体积和软度
• 脂肪氧合酶还具有另外一个重要功能就是通过 面筋蛋白质的氧化,防止脂肪的结合增加面团 中游离脂肪的数量,这就保证了外加起酥脂肪 能有效地改进面包的体积和软度。在游离脂肪 释出时所伴随的面筋蛋白质的氧化,对于改进 面团的流变性质是很重要的。在促使面筋蛋白 质氧化的过程中,氧化脂肪中间物也起重要的 作用。
1.3 脂肪氧合酶催化反应的底物
• 脂肪氧合酶对于它作用的底物具有特异性的要求, 含有顺,顺-1,4-戊二烯的直链脂肪酸、脂肪 酸酯和醇都有可能作为脂肪氧合酶的底物。
图7-1脂肪氧合酶底物脂肪酸的部分结构
亚油酸 :CH3(CH2)4CH=CHCH2CH=CH(CH2)7COOH 亚麻酸:CH3(CH2CH=CH)3(CH2)7COOH 花生四烯酸:CH3(CH2)4(CH=CH-CH2)4(CH2)2COOH
• 除了上述六种途径外,氢过氧化亚油酸还能与 食品中非脂肪成分作用,从而进一步影响食品 的质量。
3 pH对脂肪氧合酶作用的影响
• 脂肪氧合酶的最适pH一般在7.0~8.0,曲线 呈钟形,曲线的最高点相当于pH7.0~8.0。
• 然而,在pH低于7时,酶活力下降的部分原因 是脂肪氧合酶的底物亚油酸的溶解度下降的 结果,在酸性pH范围内亚油酸实际上是不溶 解的,图7-2指出了表面活性剂吐温20对大豆 脂肪氧合酶活力-pH曲线的影响。
酶(生物化学)PPT课件
详细描述
酶的活性中心是酶分子中具有特定空间结构的区域,能够与底物特异结合,并 通过催化反应将其转化为产物。活性中心的氨基酸残基通常是高度保守的,对 酶的催化活性至关重要。
酶的专一性
总结词
酶的专一性是指一种酶只能催化一种或一类化学反应的性质 。
详细描述
酶的专一性是酶的重要特性之一,它决定了酶在生物体内的 功能。一种酶通常只能催化一种或一类化学反应,这是因为 酶的活性中心具有特定的空间结构和化学环境,只能够与特 定的底物结合并催化相应的反应。
食品保鲜
酶可用于食品保鲜,如抑制果蔬 中酶的活性,延缓成熟和腐烂过 程;也可用于食品中农药残留的
降解。
功能性食品开发
酶可用于开发功能性食品,如通 过酶促反应生产低糖、低脂或高
纤维食品。
酶在环保领域的应用
有毒有害物质降解
酶可用于降解有毒有害物质,如重金属离子、有机溶剂和农药等, 降低其对环境和生物体的危害。
的诊断。
药物生产
酶可用于药物的生产和制造过程中, 如抗生素、激素和蛋白质药物等, 通过酶促反应提高生产效率和纯度。
生物治疗
酶在某些生物治疗过程中起到关键 作用,如基因疗法和细胞疗法中, 酶可促进特定基因的表达或改变细 胞代谢。
酶在食品工业中的应用
食品加工
酶在食品加工过程中起到重要作 用,如淀粉的改性、蛋白质的水 解和油脂的加工等,可改善食品 的口感、营养价值和加工性能。
计算机辅助设计
计算机辅助设计是一种利用计算 机模拟技术来预测和优化酶性能
的方法。
通过计算机模拟,可以预测酶的 催化机制、反应路径和动力学行
为,从而指导酶的优化设计。
计算机辅助设计与其他技术结合, 如量子化学计算和分子动力学模 拟,可进一步提高酶优化效率。
酶的活性中心是酶分子中具有特定空间结构的区域,能够与底物特异结合,并 通过催化反应将其转化为产物。活性中心的氨基酸残基通常是高度保守的,对 酶的催化活性至关重要。
酶的专一性
总结词
酶的专一性是指一种酶只能催化一种或一类化学反应的性质 。
详细描述
酶的专一性是酶的重要特性之一,它决定了酶在生物体内的 功能。一种酶通常只能催化一种或一类化学反应,这是因为 酶的活性中心具有特定的空间结构和化学环境,只能够与特 定的底物结合并催化相应的反应。
食品保鲜
酶可用于食品保鲜,如抑制果蔬 中酶的活性,延缓成熟和腐烂过 程;也可用于食品中农药残留的
降解。
功能性食品开发
酶可用于开发功能性食品,如通 过酶促反应生产低糖、低脂或高
纤维食品。
酶在环保领域的应用
有毒有害物质降解
酶可用于降解有毒有害物质,如重金属离子、有机溶剂和农药等, 降低其对环境和生物体的危害。
的诊断。
药物生产
酶可用于药物的生产和制造过程中, 如抗生素、激素和蛋白质药物等, 通过酶促反应提高生产效率和纯度。
生物治疗
酶在某些生物治疗过程中起到关键 作用,如基因疗法和细胞疗法中, 酶可促进特定基因的表达或改变细 胞代谢。
酶在食品工业中的应用
食品加工
酶在食品加工过程中起到重要作 用,如淀粉的改性、蛋白质的水 解和油脂的加工等,可改善食品 的口感、营养价值和加工性能。
计算机辅助设计
计算机辅助设计是一种利用计算 机模拟技术来预测和优化酶性能
的方法。
通过计算机模拟,可以预测酶的 催化机制、反应路径和动力学行
为,从而指导酶的优化设计。
计算机辅助设计与其他技术结合, 如量子化学计算和分子动力学模 拟,可进一步提高酶优化效率。
《氧化还原酶》课件
废气处理
在废气处理中,氧化还原酶可以用于催化氧化或还原反应,将有毒有害气体转 化为无害或低害物质,例如将氮氧化物转化为氮气,减少空气污染。
氧化还原酶在制药领域的应用
药物合成
氧化还原酶可以用于药物合成中的关键反应,如手性合成、环氧化物水解等,提高药物合成的效率和纯度。
药物筛选
利用氧化还原酶的催化活性,可以筛选具有药效的化合物,为新药研发提供候选药物。
氧化还原酶
目录 CONTENT
• 氧化还原酶的定义和分类 • 氧化还原酶的作用机制 • 氧化还原酶在生物体内的应用 • 氧化还原酶的工业应用 • 氧化还原酶的研究进展
01
氧化还原酶的定义和分类
氧化还原酶的定义
氧化还原酶是一种生物催化剂,能够催化氧化还原反应的进行。它们通过在反应 中转移电子来发挥催化作用,对于生物体内正常的能量代谢和信号转导等过程具 有重要意义。
活性氧介导的信号转导
在某些情况下,氧化还原酶可以催化活性氧的产生,这些活 性氧可以作为信号分子,参与细胞内的信号转导过程。
04
氧化还原酶的工业应用
氧化还原酶在环保领域的应用
废水处理
氧化还原酶可以用于处理含有重金属、有机污染物等有毒物质的废水,通过催 化氧化或还原反应,将有毒物质转化为无毒或低毒物质,降低对环境的危害。
此外,根据来源的不同,氧化还原酶还可以分为植物酶、 动物酶和微生物酶等类型。这些酶在生物体内的分布和作 用机制也有所不同。
02
氧化还原酶的作用机制
氧化还原酶的催化机制
氧化还原酶通过催化氧化还原反应,将底物氧化或还原,从而完成电子转移过程。
酶的催转移是关键 步骤。
详细描述
揭示了氧化还原酶的分子结构和催化机制
在废气处理中,氧化还原酶可以用于催化氧化或还原反应,将有毒有害气体转 化为无害或低害物质,例如将氮氧化物转化为氮气,减少空气污染。
氧化还原酶在制药领域的应用
药物合成
氧化还原酶可以用于药物合成中的关键反应,如手性合成、环氧化物水解等,提高药物合成的效率和纯度。
药物筛选
利用氧化还原酶的催化活性,可以筛选具有药效的化合物,为新药研发提供候选药物。
氧化还原酶
目录 CONTENT
• 氧化还原酶的定义和分类 • 氧化还原酶的作用机制 • 氧化还原酶在生物体内的应用 • 氧化还原酶的工业应用 • 氧化还原酶的研究进展
01
氧化还原酶的定义和分类
氧化还原酶的定义
氧化还原酶是一种生物催化剂,能够催化氧化还原反应的进行。它们通过在反应 中转移电子来发挥催化作用,对于生物体内正常的能量代谢和信号转导等过程具 有重要意义。
活性氧介导的信号转导
在某些情况下,氧化还原酶可以催化活性氧的产生,这些活 性氧可以作为信号分子,参与细胞内的信号转导过程。
04
氧化还原酶的工业应用
氧化还原酶在环保领域的应用
废水处理
氧化还原酶可以用于处理含有重金属、有机污染物等有毒物质的废水,通过催 化氧化或还原反应,将有毒物质转化为无毒或低毒物质,降低对环境的危害。
此外,根据来源的不同,氧化还原酶还可以分为植物酶、 动物酶和微生物酶等类型。这些酶在生物体内的分布和作 用机制也有所不同。
02
氧化还原酶的作用机制
氧化还原酶的催化机制
氧化还原酶通过催化氧化还原反应,将底物氧化或还原,从而完成电子转移过程。
酶的催转移是关键 步骤。
详细描述
揭示了氧化还原酶的分子结构和催化机制
---酶----生物化学ppt课件
四氢叶酸。
H
N NH
H2N
H
N
N
CH2 NH H
OH H
COOH
CH2
O
CH2
C NH CH COOH
四氢叶酸的主要作用是作为一碳基团,如-CH3, -CH2-, -CHO 等的载体,参与多种生物合成过程。
维生素B12和B12辅酶 维生素B12又称为钴胺素。维生素B12分子中与
Co+相连的CN基被5’-脱氧腺苷所取代,形成 维生素B12辅酶。 维生素B12辅酶的主要功能是作为变位酶的辅酶, 催化底物分子内基团(主要为甲基)的变位反应。
立体异构专一性:这类酶不能辨别底物不同的立体异构体,只对其中的某一种 构型起作用,而不催化其他异构体。包括旋光异构专一性和几何异构专一性。
易变敏感性:易受各种因素的影响,在活细胞内受到精密严格的调节控制。
二、酶的化学本质及结构功能特点
1.发展史
(1)酶是蛋白质: 1926年,James Summer由刀豆制出脲酶结晶确立酶是蛋白质的观
(2) 转移酶 Transferase
转移酶催化基团转移反应,即将一个底物分子的 基团或原子转移到另一个底物的分子上。 例如, 谷丙转氨酶催化的氨基转移反应。
CH3CHCOOH HOOCCH2CH2CCOOH
NH2
O
CH3CCOOH HOOCCH2CH2CHCOOH
O
NH2
3) 水解酶 Hydrolase
2.酶的组成
单成份酶:脲酶、蛋白酶、淀粉酶、核糖核酸
(简单蛋白质)
酶等。
酶
酶蛋白
(apoenzyme)
双成份酶
辅酶
(结合蛋白质) 辅因子 (coenzyme)
H
N NH
H2N
H
N
N
CH2 NH H
OH H
COOH
CH2
O
CH2
C NH CH COOH
四氢叶酸的主要作用是作为一碳基团,如-CH3, -CH2-, -CHO 等的载体,参与多种生物合成过程。
维生素B12和B12辅酶 维生素B12又称为钴胺素。维生素B12分子中与
Co+相连的CN基被5’-脱氧腺苷所取代,形成 维生素B12辅酶。 维生素B12辅酶的主要功能是作为变位酶的辅酶, 催化底物分子内基团(主要为甲基)的变位反应。
立体异构专一性:这类酶不能辨别底物不同的立体异构体,只对其中的某一种 构型起作用,而不催化其他异构体。包括旋光异构专一性和几何异构专一性。
易变敏感性:易受各种因素的影响,在活细胞内受到精密严格的调节控制。
二、酶的化学本质及结构功能特点
1.发展史
(1)酶是蛋白质: 1926年,James Summer由刀豆制出脲酶结晶确立酶是蛋白质的观
(2) 转移酶 Transferase
转移酶催化基团转移反应,即将一个底物分子的 基团或原子转移到另一个底物的分子上。 例如, 谷丙转氨酶催化的氨基转移反应。
CH3CHCOOH HOOCCH2CH2CCOOH
NH2
O
CH3CCOOH HOOCCH2CH2CHCOOH
O
NH2
3) 水解酶 Hydrolase
2.酶的组成
单成份酶:脲酶、蛋白酶、淀粉酶、核糖核酸
(简单蛋白质)
酶等。
酶
酶蛋白
(apoenzyme)
双成份酶
辅酶
(结合蛋白质) 辅因子 (coenzyme)
生物化学第七章生物氧化.ppt课件
四、线粒体呼吸链的组成
(一)呼吸链的组成成分
NADH
NADH-Q 还原酶
琥珀酸-Q 还原酶
FADH2
FMN、Fe-S
血红素a 血红素a3 CuA和 CuB
辅酶Q
细胞色素还原酶 细胞色素c
细胞色素氧化酶 O2
FAD、Fe-S
细胞色素 b-562 细胞色素b-566 细胞色素c1
Fe-S
1. 复合体Ⅰ: NADH-泛醌还原酶
功能: 将电子从NADH传递给泛醌 (ubiquinone)
复合体Ⅰ
FMN; Fe-SN-1a,b; Fe-SN-4; Fe-SN-3; Fe-SN-2
NADH→
→CoQ
NAD+和NADP+的结构 R=H: NAD+; R=H2PO3:NADP+
NAD+(NADP+)和NADH(NADPH)相互转变 氧化还原反应时变化发生在五价氮和三价氮之间。
FMN结构中含核黄素,发挥功能的部位是 异咯嗪环,氧化还原反应时不稳定中间产物是 FMN• 。
铁硫蛋白中辅基铁硫簇(Fe-S)含有等量铁原 子和硫原子,其中铁原子可进行Fe2+ Fe3++e 反应传递电子。
Ⓢ 表示无机硫
泛醌(辅酶Q, CoQ, Q)由多个异戊二烯连接 形成较长的疏水侧链(人CoQ10),氧化还原反应 时可生成中间产物半醌型泛醌。
(二)呼吸链成分的排列顺序
由以下实验确定 ① 标准氧化还原电位 ② 拆开和重组 ③ 特异抑制剂阻断 ④ 还原状态呼吸链缓慢给氧
1. NADH氧化呼吸链
NADH →复合体Ⅰ→Q →复合体Ⅲ→Cyt c → 复合体Ⅳ→O2
2. 琥珀酸氧化呼吸链
氧化还原体系2(ppt整理)
主要内容
一、供氢体与递氢体概念 二、供氢体与递氢体物质的作用机理介绍 三、局部复原性物质的实用功能介绍
供氢体〔hydrogen donor 〕
供氢体指氧化复原反响中脱去氢被氧化的那个 物质。 其本身具有复原性,是复原剂。
由于脱氢实际上是脱下一个质子和一个电子 (H=H++e-),故也可统称为供电子体(electron donor)。
在线粒体内膜电子传递链中,那么同一物质既是 受电子体又是供电子体,顺序地起传递电子或电 子和质子的作用。〔生物氧化内容〕
目前的学习中常见的供氢体
一、谷胱甘肽 二、维生素C 三、维生素E
谷胱甘肽(glutathione, GSH)是体内重要的复原肽
谷胱甘肽的分子中有一个特殊的γ肽键,是由 谷氨酸的γ羧基与半胱氨酸的α氨基缩合而成。 由于GSH中含有一个活泼的巯基很容易氧化, 二分子GSH脱氢以二硫键相连成氧化型的谷胱 甘肽〔GSSG〕。
维生素E生理作用 〔1〕抗不育 〔2〕保护肌肉 〔3〕维持红细胞的正常形态和功能 〔4〕减少组织细胞内脂褐素产生, 从而延缓衰老过程。 〔5〕与维生素C复合具有一定的防 癌作用。
缺乏症 〔1〕缺乏时引起不育或流产。
递氢体
递氢体是电子呼吸链的组成局部,辅 酶1、黄素酶和FP、辅酶Q
传递链酶和辅酶在线粒体内膜上按一 定的顺序排列组成的递氢和递电子体系
细胞色素是一类含血红素的电子传递蛋白, 细胞色素体系中各辅基的铁可以得失电子 进行可逆的氧化复原反响,因此起到传递 电子的作用,为单电子递体。
谢谢
黄素脱氢酶类是以黄素单核苷酸(FMN) 或黄素 腺嘌呤二核苷酸(FAD )作为辅基。这些酶所催 化的反响是将底物脱下的一对氢原子直接传递 给FMN或FAD 而形成FMNH2 或FADH2。
一、供氢体与递氢体概念 二、供氢体与递氢体物质的作用机理介绍 三、局部复原性物质的实用功能介绍
供氢体〔hydrogen donor 〕
供氢体指氧化复原反响中脱去氢被氧化的那个 物质。 其本身具有复原性,是复原剂。
由于脱氢实际上是脱下一个质子和一个电子 (H=H++e-),故也可统称为供电子体(electron donor)。
在线粒体内膜电子传递链中,那么同一物质既是 受电子体又是供电子体,顺序地起传递电子或电 子和质子的作用。〔生物氧化内容〕
目前的学习中常见的供氢体
一、谷胱甘肽 二、维生素C 三、维生素E
谷胱甘肽(glutathione, GSH)是体内重要的复原肽
谷胱甘肽的分子中有一个特殊的γ肽键,是由 谷氨酸的γ羧基与半胱氨酸的α氨基缩合而成。 由于GSH中含有一个活泼的巯基很容易氧化, 二分子GSH脱氢以二硫键相连成氧化型的谷胱 甘肽〔GSSG〕。
维生素E生理作用 〔1〕抗不育 〔2〕保护肌肉 〔3〕维持红细胞的正常形态和功能 〔4〕减少组织细胞内脂褐素产生, 从而延缓衰老过程。 〔5〕与维生素C复合具有一定的防 癌作用。
缺乏症 〔1〕缺乏时引起不育或流产。
递氢体
递氢体是电子呼吸链的组成局部,辅 酶1、黄素酶和FP、辅酶Q
传递链酶和辅酶在线粒体内膜上按一 定的顺序排列组成的递氢和递电子体系
细胞色素是一类含血红素的电子传递蛋白, 细胞色素体系中各辅基的铁可以得失电子 进行可逆的氧化复原反响,因此起到传递 电子的作用,为单电子递体。
谢谢
黄素脱氢酶类是以黄素单核苷酸(FMN) 或黄素 腺嘌呤二核苷酸(FAD )作为辅基。这些酶所催 化的反响是将底物脱下的一对氢原子直接传递 给FMN或FAD 而形成FMNH2 或FADH2。
氧化还原酶类知识
食品中常用的氧化还原酶
• 脱氢酶类 • 氧化酶类 • 过氧化物酶 • 氧合酶类 如乳酸脱氢酶(E.C.1.1.1.27) 如多酚氧化酶(E.C.1.10.3.1) 葡萄糖氧化酶(E.C.1.1.3.4) 如过氧化氢酶(E.C.1.11.1.6) 辣根过氧化物酶(E.C.1.11.1.7) 如脂肪氧合酶(E.C.1.13.1.13)
6.1.3.1 一元酚羟基化,生成相应的 邻---二羟基化合物
OH OH O
OH
O
OH
Hale Waihona Puke OH+CH3
+O
2
+
CH3
+ H2O
6.1.3.2
OH
邻-二酚氧化,生成邻-醌
O OH O
2
+ O2
+ 2H2O
氧化产物邻-醌 (1)或相互作用生成高分子量聚合物; (2)或与氨基酸或蛋白质反应形成高分子络合物. 这两个反应均导致褐色素的生成,色素的分子
酪氨酸酶
CH2 CHCOOH HO 酪氨酸 NH2
+O 慢
HO HO 多巴
CH2 CHCOOH NH2
+O 快
O O 多巴醌 +O
CH2 CHCOOH NH2 快
HO + CO2 HO N H 5,6- 二羟基吲哚 快 +O O N H 5,6-吲哚醌 慢
O COOH O 多巴色素 H N +O N H
3、对-苯二胺和醌醇氧化酶
漆酶 (EC 1.10.3.2)
OH HO O OH OH OH HO | | O CO CH CH OH | OH OH 儿茶素 HO CH2 OH
NH2 CH COOH
第六讲 典型生物催化的反应-氧化还原反应
• HLADH由两个几乎相同,各含有两个锌原
子的亚基组成的二聚体 X衍射对其三维结构研究表明,HLADH的一 级结构虽然和YADH相差很大,但是它们的 三维结构很相似 主要用于对中间单环酮(4-9个C)和双环 酮的还原。大于10个C的环酮不易作为底 物,无环酮还原时,对映体选择性较低
HLADH拆分双、多环酮
COO -ketoglutarate
-
OOC L-glutamate
COO-
NH3 NAD(P)H NAD(P)+ H2 O
丙酮酸和乳酸脱氢酶 (Lactate dehydrogenase)
• 再生NAD+ • 优点:1、LDH价格便宜
2、比活较高,比GluDH高 • 缺点:氧化还原势能较低, 无法再生NADP+
O Prelog's Rule Dehydrogenase S L NAD(P)H NAD(P)
+
OH
S
L
S=small, L=large
脱氢酶种类 Yeast-ADH Horse liver-ADH
选择性
辅酶
商品酶 是 是 是
是 否 否 否 否
Prelog NADH Prelog NADH Thermoanaerobium Prelog(长链) NADPH brockii-ADH Anti-(短链酮) Hydroxysteroid-DH Prelog NADH C. falcata-ADH Prelog NADPH Mucor javanicus-ADH Anti- Prelog NADPH Lactobacillus kefir-ADH Anti- Prelog NADPH Pseudomonas ADH Anti- Prelog NADH
氧化-还原酶催化氧化-还原反应
• 磷酸吡哆素主要包括磷酸吡哆醛 和磷酸吡哆胺。
CHO O
HO
CH2 O P OH HO
H3C
N
OH H3C
磷酸吡哆醛
2004年10月3日10时33分
CH2NH2
O
CH2 O P OH OH
N
磷酸吡哆胺
●生物素
生物素的功能:是作为CO2的递体,在生物合成中起传递
和固定CO2的作用。
• 生物素是羧
O
O
• 在体内参
C
与氧化还
原反应, HO C 羟化反应。 HO C
O
人体不能 H C 合成。
HO C H
CH2OH
2004年10月3日10时33分
O C
OC OC O
HC
HO C H
CH2OH
●辅酶在酶促反应中的作用特点
• 辅酶在催化反应过程中,直接参加了反应。 • 每一种辅酶都具有特殊的功能,可以特定地催
●金属激酶中的金属离子
• 激酶是一种磷酸化酶类,在ATP存在下催化葡 萄糖,甘油等磷酸化。
• 其中的金属离子与酶的结合一般较松散。在溶 液中,酶与这类离子结合而被激活。
• 如Na+ 、K+、 Mg2+、 Ca2+ 等。金属离子对酶 有一定的选择性,某种金属只对某一种或几种 酶有激活作用。
2004年10月3日10时33分
OHOHOH
O
CH3 CH3
2004年10月3日10时33分
CH2CHCHCHCH2OPOH
NN
OH
CO
NH NC
O
●核黄素和 FAD和FMN
功能:在脱氢酶催化的氧化-还原反应中,起着电子和质子 的传递体作用。
CHO O
HO
CH2 O P OH HO
H3C
N
OH H3C
磷酸吡哆醛
2004年10月3日10时33分
CH2NH2
O
CH2 O P OH OH
N
磷酸吡哆胺
●生物素
生物素的功能:是作为CO2的递体,在生物合成中起传递
和固定CO2的作用。
• 生物素是羧
O
O
• 在体内参
C
与氧化还
原反应, HO C 羟化反应。 HO C
O
人体不能 H C 合成。
HO C H
CH2OH
2004年10月3日10时33分
O C
OC OC O
HC
HO C H
CH2OH
●辅酶在酶促反应中的作用特点
• 辅酶在催化反应过程中,直接参加了反应。 • 每一种辅酶都具有特殊的功能,可以特定地催
●金属激酶中的金属离子
• 激酶是一种磷酸化酶类,在ATP存在下催化葡 萄糖,甘油等磷酸化。
• 其中的金属离子与酶的结合一般较松散。在溶 液中,酶与这类离子结合而被激活。
• 如Na+ 、K+、 Mg2+、 Ca2+ 等。金属离子对酶 有一定的选择性,某种金属只对某一种或几种 酶有激活作用。
2004年10月3日10时33分
OHOHOH
O
CH3 CH3
2004年10月3日10时33分
CH2CHCHCHCH2OPOH
NN
OH
CO
NH NC
O
●核黄素和 FAD和FMN
功能:在脱氢酶催化的氧化-还原反应中,起着电子和质子 的传递体作用。
生物催化氧化反应 PPT
Sub= 底物
单加氧酶(mono-oxygenase)催化得加氧反 应就是将分子氧中得一个氧原子偶合到底 物分子中,另一个氧原子被还原,一般被 NADH ( 尼 克 酰 胺 腺 嘌 呤 二 核 苷 酸 ) 或 NADPH(尼克酰胺腺嘌呤二核苷酸磷酸)还 原形成水;
双加氧酶(dioxygenase)催化得加氧反应就 是将O2得两个氧原子连续地偶合进底物分 子中;
酮得还原反应主要内容
1、马肝醇脱氢酶催化酮还原 2、酵母细胞催化酮还原 3、其她微生物细胞催化酮还原
1、马肝醇脱氢酶催化酮还原
马肝醇脱氢酶(HLADH)就是常用得脱氢酶, 其最大用途就是还原中等大小得单环酮(四 到九元环)和双环酮,无环酮被还原时得立体 选择性低,具有空间位阻和分子结构大于萘 烷得酮不宜作为该酶得底物。
1、烷烃得羟化反应
有机化学合成中几乎不能将碳氢化合物中 得非活泼C-H键羟化,而生物转化反应则可 以直接进行羟化反应。例如,甾体分子中许 多位置得选择性羟化反应能用适当得微生 物来催化:
O
11α
11β
CH2OH
CO OH
O
O
(10.11)
CH2OH
黄HO体酮
CO OH
16α
F
HO
(10.12)
(10.15)
芽孢杆菌属 O2 , 30℃ , 17h
OH
Ph
+ Ph
OH
R 型 31%
69%
l 区域选择性
e、e、 91%
l 对映异构体选择性
微生物芽孢杆菌属Bacillus megaterium对烃 (10、15)生物转化能形成不对称羟基化产物, 而且其羟基化反应具有区域选择性(69%)和 对映体选择性,该反应得收率为31%,对映体过 量(e、e、)为91%,反应没有得到芳基氧化或 过氧化产物。
单加氧酶(mono-oxygenase)催化得加氧反 应就是将分子氧中得一个氧原子偶合到底 物分子中,另一个氧原子被还原,一般被 NADH ( 尼 克 酰 胺 腺 嘌 呤 二 核 苷 酸 ) 或 NADPH(尼克酰胺腺嘌呤二核苷酸磷酸)还 原形成水;
双加氧酶(dioxygenase)催化得加氧反应就 是将O2得两个氧原子连续地偶合进底物分 子中;
酮得还原反应主要内容
1、马肝醇脱氢酶催化酮还原 2、酵母细胞催化酮还原 3、其她微生物细胞催化酮还原
1、马肝醇脱氢酶催化酮还原
马肝醇脱氢酶(HLADH)就是常用得脱氢酶, 其最大用途就是还原中等大小得单环酮(四 到九元环)和双环酮,无环酮被还原时得立体 选择性低,具有空间位阻和分子结构大于萘 烷得酮不宜作为该酶得底物。
1、烷烃得羟化反应
有机化学合成中几乎不能将碳氢化合物中 得非活泼C-H键羟化,而生物转化反应则可 以直接进行羟化反应。例如,甾体分子中许 多位置得选择性羟化反应能用适当得微生 物来催化:
O
11α
11β
CH2OH
CO OH
O
O
(10.11)
CH2OH
黄HO体酮
CO OH
16α
F
HO
(10.12)
(10.15)
芽孢杆菌属 O2 , 30℃ , 17h
OH
Ph
+ Ph
OH
R 型 31%
69%
l 区域选择性
e、e、 91%
l 对映异构体选择性
微生物芽孢杆菌属Bacillus megaterium对烃 (10、15)生物转化能形成不对称羟基化产物, 而且其羟基化反应具有区域选择性(69%)和 对映体选择性,该反应得收率为31%,对映体过 量(e、e、)为91%,反应没有得到芳基氧化或 过氧化产物。
第五章 生物氧化
1、酶促氧化过程、反应条件温和 2、质子和电子由载体传递到氧生成水 3、分步进行:有利于提高能量利用率 4、氧化磷酸化,形成ATP 5、CO2的生成方式——脱羧作用
第二节
氧化还原酶类
1、脱氢酶 使代谢物的氢活化、脱落 Nhomakorabea 传递给受氢体或中间传递体 显著特点:体外实验中以甲烯蓝为受氢体 氧化型甲烯蓝:兰色 还原型甲烯蓝:无色
高能基团的传递
高能化合物的种类
烯醇式磷酸化合物 △Go Kcal/mol (-C=C-O~P(O)) -14.8 酰基磷酸化合物 (-C-O~P(O)) -10.1 O 焦磷酸化合物 ((O)P-O~P(O)) -7.3
磷氧型 -O~P 磷酸化合物
磷氮型 HN =C-N~P(O)
O
-10.3 -7.5
磷酸烯醇式丙酮酸 (PEP)
CH2OH
2-磷酸甘油酸
二、呼吸链生成水
(1)代谢脱下的氢原子通过多种酶和辅酶所催化的 连锁反应逐步传递,最终与氧结合生成水; (2)酶和辅酶有序排列在线粒体内膜; 传递氢的酶和辅酶——递氢体 传递电子的酶和辅酶——递电子体 (3)与细胞呼吸有关,此传递链称为呼吸链。 递氢体、递电子体都起传递电子的作用,称 电子传递链。
乙酰CoA
共同中间物进入 三羧酸循环,氧化 脱下的氢由电子 传递链传递生成 H2O,释放出大 量能量-ATP。
磷酸化
电子传递 (氧化)
+Pi
e-
三羧酸 循环
• 生物氧化主要的内容 • (1) CO2如何生成?脱羧反应
• (2) H2O如何生成?电子传递链 • (3)能量如何生成?ATP的生成
生物氧化的特点
O R C O~ P O O
CH2
第二节
氧化还原酶类
1、脱氢酶 使代谢物的氢活化、脱落 Nhomakorabea 传递给受氢体或中间传递体 显著特点:体外实验中以甲烯蓝为受氢体 氧化型甲烯蓝:兰色 还原型甲烯蓝:无色
高能基团的传递
高能化合物的种类
烯醇式磷酸化合物 △Go Kcal/mol (-C=C-O~P(O)) -14.8 酰基磷酸化合物 (-C-O~P(O)) -10.1 O 焦磷酸化合物 ((O)P-O~P(O)) -7.3
磷氧型 -O~P 磷酸化合物
磷氮型 HN =C-N~P(O)
O
-10.3 -7.5
磷酸烯醇式丙酮酸 (PEP)
CH2OH
2-磷酸甘油酸
二、呼吸链生成水
(1)代谢脱下的氢原子通过多种酶和辅酶所催化的 连锁反应逐步传递,最终与氧结合生成水; (2)酶和辅酶有序排列在线粒体内膜; 传递氢的酶和辅酶——递氢体 传递电子的酶和辅酶——递电子体 (3)与细胞呼吸有关,此传递链称为呼吸链。 递氢体、递电子体都起传递电子的作用,称 电子传递链。
乙酰CoA
共同中间物进入 三羧酸循环,氧化 脱下的氢由电子 传递链传递生成 H2O,释放出大 量能量-ATP。
磷酸化
电子传递 (氧化)
+Pi
e-
三羧酸 循环
• 生物氧化主要的内容 • (1) CO2如何生成?脱羧反应
• (2) H2O如何生成?电子传递链 • (3)能量如何生成?ATP的生成
生物氧化的特点
O R C O~ P O O
CH2
第8章氧化还原酶
(3)清除酶作用的底物
与酚类底物作用的化合物: PVPP(聚乙烯吡咯烷酮)与酚强烈缔合, 消去底物。 隔氧
(4) 热烫处理(灭酶)
2019/10/10
34
4光照强度与多酚氧化酶活性
多酚氧化酶属于植物体内的末端氧化酶系
统,光照明显促进了此酶的活性。
不同光照条件下海带体内酚类化合物含量
2019/10/10
4
1.3分布:
过氧化物酶在植物细胞中以两种形式存在: ①以可溶形式存在于细胞浆中 ②以结合形式在细胞中与细胞壁或细胞器 相结合
2019/10/10
5
2 过氧化物酶在食品加工中的应用
(1) 过氧化物酶是果蔬成熟和衰老的指标:如 苹果气调贮藏中,过氧化物酶出现两个峰值, 一个在呼吸转折(成熟),一个在衰老开始。
(3)PPO在果蔬的不同部分含量存在很大差异。 大多数水果中PPO以结合状态存在。葡萄皮中 PPO活力高,葡萄成熟时PPO活力下降幅度最 大。
2019/10/10
28
2多酚氧化酶催化的反应及其作用底物
2.1.催化反应:两类反应都需要有分子氧参加。 (1) 一元酚羟基化:
OH
OH OH
+
+ O2
2
1过氧化物酶作用方式及分布
1.1过氧化物酶作用方式 过氧化物酶(供体:过氧化氢 氧化还原酶)
催化过氧化氢分解时,同时有氢供体参加。
H2O2+ AH2
2H2O+A
POD
酚类、胺类化合物、某些杂环化合物和一些无机离子等 都可以作为过氧化物酶的供氢体。
2019/10/10
3
1.2过氧化物酶分类
物,如抗坏血酸、柠檬酸、EDTA、果 胶、氰化物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 过氧化物酶的活力与果蔬产品,特别是非 酸性蔬菜在保藏期间形成的不良风味有关。
(3)过氧化物酶属于最耐热的酶类,在果蔬加 工中常被当作热处理是否充分的指标。
2020/12/29
6
POD的测定方法:
方法:将已热处理的原料中抽取样品,横切,随 即放入愈创木酚或联苯胺溶液中,然后取出, 在切面上滴0.3%H2O2,数分钟后,用愈创 木酚处理的样品变为褐色,联苯胺变为深蓝 色,说明过氧化物酶未被破坏,热处理时间 不够,如果均不变色,则表示热处理效果良 好。
第8章 氧化还原酶
2020/12/29
主要内容: 一、过氧化物酶 二、多酚氧化酶 三、 脂肪氧合酶 四、葡萄糖氧化酶 五、超氧化物歧化酶 1
一、过氧化物酶(POD peroxidase)
过氧化物酶是存在于各种动物、植物和微生物体 内的一类氧化酶。催化由过氧化氢参与的各种还 原剂的氧化反应。
2020/12/29
在pH7时酶热失活的速度最低,在pH 4.0和 pH10 时 酶 热 失 活 的 速 度 分 别 提 高 到 8 倍 和 2 倍 。
酶失活的初速度正比于NaCl的浓度(pH7.0、 NaCl浓度低于0.6mo1/L),
糖能提高苹果和梨中过氧化物酶的热稳定性。
2020/12/29
18
5.4. 加热方式:pH确定,T确定,T变长,导 致酶失活后可能性变大,HTST易导致酶再生。
2
1过氧化物酶作用方式及分布
1.1过氧化物酶作用方式 过氧化物酶(供体:过氧化氢 氧化还原酶)
催化过氧化氢分解时,同时有氢供体参加。
H2O2+ AH2
2H2O+A
POD
酚类、胺类化合物、某些杂环化合物和一些无机离子等 都可以作为过氧化物酶的供氢体。
2020/12/29
3
1.2过氧化物酶分类
(1) 含铁过氧化物酶 ①正铁血红素过氧化物酶:含有正铁血红素Ⅲ为 辅基,存在于高等植物、动物和微生物中。 ②绿过氧化物酶:绿过氧化物酶的辅基也含有一 个铁原卟啉基团,这类酶存在于动物器官和乳 中(乳过氧化氢酶)。
5 影响过氧化物酶热失活的因素
5.1. 不同来源的POD具有不同的耐热性。
一般来说,植物的过氧化物酶活力越高,它的耐 热性也越高。 比如马铃薯和花菜匀浆中的过氧化物酶在 95℃ 加 热 10min 就 完 全 而 不 可 逆 地 失 活 。 而 甘 蓝 中 的 过 氧 化 物 酶 在 120℃ 加 热 10min仍然有0.3%活力保存下来。
4.1. 热失活概念 ①双向性:POD中含有不同的耐热性质 部分,不耐热部分在热处理时很快地 失活,而耐热部分在同样的温度缓慢 地失活。
2020/12/29
11
在88℃热处理时甜玉米中过氧化物酶的失活
(用邻-苯二胺作为氢体底物测定酶活力)
2020/12/29
12
②可逆性:经热处理后的酶液在室温或较低温 度下保藏,它的活力部分可以再生。
(2)黄蛋白过氧化物酶:含有黄素腺嘌呤二核苷酸 作为辅基,这类酶存在于微生物和动物组织中。
2020/12/29
4
1.3分布:
过氧化物酶在植物细胞中以两种形式存在: ①以可溶形式存在于细胞浆中 ②以结合形式在细胞中与细胞壁或细胞器 相结合
2020/12/29
5
2 过氧化物酶在食品加工中的应用
(1) 过氧化物酶是果蔬成熟和衰老的指标:如 苹果气调贮藏中,过氧化物酶出现两个峰值, 一个在呼吸转折(成熟),一个在衰老开始。
2020/12/29
14
4.3. 非脂肪氧合酶作用
在热失活中过氧化物酶分子聚集成寡聚体, 分子量增加一倍,这个过程包括酶分子展开和 展开的酶分子进一步堆积,血红素基暴露,增 加了血红素蛋白非酶催化脂肪氧化的能力,导 致不良风味的产生,这一过程非脂肪氧合酶作 用(热烫钝化)。
2020/12/29
15
2020/12/29
16
5.2. 低水分含量,POD耐热性增加: 例如:水分含量低于40%时,谷类中过氧 化物酶的热稳定性与水分含量成反比。 对于加工脱水果蔬有重要参考价值。
2020/12/29
17
5.3. 外加因素:降低pH,增加NaCl浓度。 以辣根中过氧化物酶为例,加入羟高铁血红素能 降低酶的热失活速度(pH 7.0、76℃) 而升高温度能提高酶的热失活速度。
2020/12/29
19
5.5. 结合处理:
微波和离子照射能降低在热烫过程中使酶失活 所需的热处理强度。
马铃薯过氧化物酶的微波处理完全失活所需的时间
微波处理 沸水处理
1.5min
3min
2min
2min
1min
5min
2020/12/29
例如:辣根过氧化物酶在70 ℃加热1小时后, 在30 ℃下再生的酶活力可达到处理前的 30-40%,而在50 ℃下不能再生,如再降 低到40 ℃时,酶活力又开始提高。
2020/12/29
13
4.2. 过氧化物酶冷冻增活效应 果蔬热烫后,有多少残余活力或再生活力
被允许留在被保藏的产品中,残余酶活力在冰 冻保藏后,质量比酶完全失活时要高。
2020/12/29
8
表8-1一些果蔬中的过氧化物酶的最适pH
果蔬 最适pH
说明
葡萄 香蕉
5.4 4.0~5.0 5.0~6.0 4.5~5.0 4.5
菠萝 青刀豆 马铃薯
4.2 5.0~5.4 5.0
2020/12/29
柠檬酸磷酸缓冲液 硼酸缓冲液0.2mol/L 醋酸缓冲液0.1mol/L 阴离子部分 阳离子部分
2020/12/29
7பைடு நூலகம்
3过氧化物酶最适pH和最适温度
3.1最适pH 过氧化物酶一般都含有多种同功酶,因此最适pH
范围较宽。 酸性状态,过氧化物酶血红素和蛋白质部分分离,
酶蛋白从天然状态转变到可逆变性状态,活力下降, 且热稳定性低;
在中型和碱性状态,酶处于天然状态,蛋白质结 构含α-螺旋结构,稳定,酸化后α-螺旋结构破坏, 产生β-结构。
缓冲液浓度(0.1~0.2mol/L) 可溶态、离子结合态和共价结合态 匀浆
9
3.2最适温度 差异较大:35-60℃。 不同来源的过氧化物酶在最适作用温 度上存在着很大的差别。例如,马铃 薯和花菜(均浆)中过氧化物酶的最 适温度分别为55℃和35~40℃。
2020/12/29
10
4过氧化物酶的热稳定性
(3)过氧化物酶属于最耐热的酶类,在果蔬加 工中常被当作热处理是否充分的指标。
2020/12/29
6
POD的测定方法:
方法:将已热处理的原料中抽取样品,横切,随 即放入愈创木酚或联苯胺溶液中,然后取出, 在切面上滴0.3%H2O2,数分钟后,用愈创 木酚处理的样品变为褐色,联苯胺变为深蓝 色,说明过氧化物酶未被破坏,热处理时间 不够,如果均不变色,则表示热处理效果良 好。
第8章 氧化还原酶
2020/12/29
主要内容: 一、过氧化物酶 二、多酚氧化酶 三、 脂肪氧合酶 四、葡萄糖氧化酶 五、超氧化物歧化酶 1
一、过氧化物酶(POD peroxidase)
过氧化物酶是存在于各种动物、植物和微生物体 内的一类氧化酶。催化由过氧化氢参与的各种还 原剂的氧化反应。
2020/12/29
在pH7时酶热失活的速度最低,在pH 4.0和 pH10 时 酶 热 失 活 的 速 度 分 别 提 高 到 8 倍 和 2 倍 。
酶失活的初速度正比于NaCl的浓度(pH7.0、 NaCl浓度低于0.6mo1/L),
糖能提高苹果和梨中过氧化物酶的热稳定性。
2020/12/29
18
5.4. 加热方式:pH确定,T确定,T变长,导 致酶失活后可能性变大,HTST易导致酶再生。
2
1过氧化物酶作用方式及分布
1.1过氧化物酶作用方式 过氧化物酶(供体:过氧化氢 氧化还原酶)
催化过氧化氢分解时,同时有氢供体参加。
H2O2+ AH2
2H2O+A
POD
酚类、胺类化合物、某些杂环化合物和一些无机离子等 都可以作为过氧化物酶的供氢体。
2020/12/29
3
1.2过氧化物酶分类
(1) 含铁过氧化物酶 ①正铁血红素过氧化物酶:含有正铁血红素Ⅲ为 辅基,存在于高等植物、动物和微生物中。 ②绿过氧化物酶:绿过氧化物酶的辅基也含有一 个铁原卟啉基团,这类酶存在于动物器官和乳 中(乳过氧化氢酶)。
5 影响过氧化物酶热失活的因素
5.1. 不同来源的POD具有不同的耐热性。
一般来说,植物的过氧化物酶活力越高,它的耐 热性也越高。 比如马铃薯和花菜匀浆中的过氧化物酶在 95℃ 加 热 10min 就 完 全 而 不 可 逆 地 失 活 。 而 甘 蓝 中 的 过 氧 化 物 酶 在 120℃ 加 热 10min仍然有0.3%活力保存下来。
4.1. 热失活概念 ①双向性:POD中含有不同的耐热性质 部分,不耐热部分在热处理时很快地 失活,而耐热部分在同样的温度缓慢 地失活。
2020/12/29
11
在88℃热处理时甜玉米中过氧化物酶的失活
(用邻-苯二胺作为氢体底物测定酶活力)
2020/12/29
12
②可逆性:经热处理后的酶液在室温或较低温 度下保藏,它的活力部分可以再生。
(2)黄蛋白过氧化物酶:含有黄素腺嘌呤二核苷酸 作为辅基,这类酶存在于微生物和动物组织中。
2020/12/29
4
1.3分布:
过氧化物酶在植物细胞中以两种形式存在: ①以可溶形式存在于细胞浆中 ②以结合形式在细胞中与细胞壁或细胞器 相结合
2020/12/29
5
2 过氧化物酶在食品加工中的应用
(1) 过氧化物酶是果蔬成熟和衰老的指标:如 苹果气调贮藏中,过氧化物酶出现两个峰值, 一个在呼吸转折(成熟),一个在衰老开始。
2020/12/29
14
4.3. 非脂肪氧合酶作用
在热失活中过氧化物酶分子聚集成寡聚体, 分子量增加一倍,这个过程包括酶分子展开和 展开的酶分子进一步堆积,血红素基暴露,增 加了血红素蛋白非酶催化脂肪氧化的能力,导 致不良风味的产生,这一过程非脂肪氧合酶作 用(热烫钝化)。
2020/12/29
15
2020/12/29
16
5.2. 低水分含量,POD耐热性增加: 例如:水分含量低于40%时,谷类中过氧 化物酶的热稳定性与水分含量成反比。 对于加工脱水果蔬有重要参考价值。
2020/12/29
17
5.3. 外加因素:降低pH,增加NaCl浓度。 以辣根中过氧化物酶为例,加入羟高铁血红素能 降低酶的热失活速度(pH 7.0、76℃) 而升高温度能提高酶的热失活速度。
2020/12/29
19
5.5. 结合处理:
微波和离子照射能降低在热烫过程中使酶失活 所需的热处理强度。
马铃薯过氧化物酶的微波处理完全失活所需的时间
微波处理 沸水处理
1.5min
3min
2min
2min
1min
5min
2020/12/29
例如:辣根过氧化物酶在70 ℃加热1小时后, 在30 ℃下再生的酶活力可达到处理前的 30-40%,而在50 ℃下不能再生,如再降 低到40 ℃时,酶活力又开始提高。
2020/12/29
13
4.2. 过氧化物酶冷冻增活效应 果蔬热烫后,有多少残余活力或再生活力
被允许留在被保藏的产品中,残余酶活力在冰 冻保藏后,质量比酶完全失活时要高。
2020/12/29
8
表8-1一些果蔬中的过氧化物酶的最适pH
果蔬 最适pH
说明
葡萄 香蕉
5.4 4.0~5.0 5.0~6.0 4.5~5.0 4.5
菠萝 青刀豆 马铃薯
4.2 5.0~5.4 5.0
2020/12/29
柠檬酸磷酸缓冲液 硼酸缓冲液0.2mol/L 醋酸缓冲液0.1mol/L 阴离子部分 阳离子部分
2020/12/29
7பைடு நூலகம்
3过氧化物酶最适pH和最适温度
3.1最适pH 过氧化物酶一般都含有多种同功酶,因此最适pH
范围较宽。 酸性状态,过氧化物酶血红素和蛋白质部分分离,
酶蛋白从天然状态转变到可逆变性状态,活力下降, 且热稳定性低;
在中型和碱性状态,酶处于天然状态,蛋白质结 构含α-螺旋结构,稳定,酸化后α-螺旋结构破坏, 产生β-结构。
缓冲液浓度(0.1~0.2mol/L) 可溶态、离子结合态和共价结合态 匀浆
9
3.2最适温度 差异较大:35-60℃。 不同来源的过氧化物酶在最适作用温 度上存在着很大的差别。例如,马铃 薯和花菜(均浆)中过氧化物酶的最 适温度分别为55℃和35~40℃。
2020/12/29
10
4过氧化物酶的热稳定性