用matlab编BP神经网络预测程序加一个优秀程序

合集下载

(完整版)BP神经网络matlab实例(简单而经典).doc

(完整版)BP神经网络matlab实例(简单而经典).doc

p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); % 原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx'); %设置网络,建立相应的BP 网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM 算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn);anew=postmnmx(anewn,mint,maxt); %对 BP 网络进行仿真%还原数据y=anew';1、 BP 网络构建(1)生成 BP 网络net newff ( PR,[ S1 S2...SNl],{ TF1 TF 2...TFNl }, BTF , BLF , PF ) PR :由R 维的输入样本最小最大值构成的R 2 维矩阵。

[ S1 S2...SNl] :各层的神经元个数。

{TF 1 TF 2...TFNl } :各层的神经元传递函数。

BTF :训练用函数的名称。

(2)网络训练[ net,tr ,Y, E, Pf , Af ] train (net, P, T , Pi , Ai ,VV , TV )(3)网络仿真[Y, Pf , Af , E, perf ] sim(net, P, Pi , Ai ,T ){'tansig','purelin'},'trainrp'BP 网络的训练函数训练方法梯度下降法有动量的梯度下降法自适应 lr 梯度下降法自适应 lr 动量梯度下降法弹性梯度下降法训练函数traingd traingdm traingda traingdx trainrpFletcher-Reeves 共轭梯度法traincgf Ploak-Ribiere 共轭梯度法traincgpPowell-Beale 共轭梯度法traincgb 量化共轭梯度法trainscg 拟牛顿算法trainbfg 一步正割算法trainoss Levenberg-Marquardt trainlmBP 网络训练参数训练参数net.trainParam.epochsnet.trainParam.goal net.trainParam.lrnet.trainParam.max_fail net.trainParam.min_grad net.trainParam.show net.trainParam.timenet.trainParam.mc net.trainParam.lr_inc 参数介绍最大训练次数(缺省为10)训练要求精度(缺省为0)学习率(缺省为0.01 )最大失败次数(缺省为5)最小梯度要求(缺省为1e-10)显示训练迭代过程( NaN 表示不显示,缺省为 25)最大训练时间(缺省为inf )动量因子(缺省0.9)学习率lr增长比(缺省为1.05)训练函数traingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingdm 、 traingdx traingda 、traingdxnet.trainParam.lr_dec 学习率 lr 下降比(缺省为 0.7) traingda 、 traingdxnet.trainParam.max_perf_inc 表现函数增加最大比(缺省traingda 、 traingdx为 1.04)net.trainParam.delt_inc 权值变化增加量(缺省为trainrp1.2)net.trainParam.delt_dec 权值变化减小量(缺省为trainrp0.5)net.trainParam.delt0 初始权值变化(缺省为 0.07) trainrpnet.trainParam.deltamax 权值变化最大值(缺省为trainrp50.0)net.trainParam.searchFcn 一维线性搜索方法(缺省为traincgf 、traincgp 、traincgb 、srchcha)trainbfg 、 trainossnet.trainParam.sigma 因为二次求导对权值调整的trainscg影响参数(缺省值 5.0e-5)mbda Hessian 矩阵不确定性调节trainscg参数(缺省为 5.0e-7)net.trainParam.men_reduc 控制计算机内存/ 速度的参trainlm量,内存较大设为1,否则设为 2(缺省为 1)net.trainParam.mu 的初始值(缺省为0.001) trainlmnet.trainParam.mu_dec 的减小率(缺省为0.1)trainlmnet.trainParam.mu_inc 的增长率(缺省为10)trainlmnet.trainParam.mu_max 的最大值(缺省为1e10)trainlm2、 BP 网络举例举例 1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用 minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)BP 神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。

BP神经网络的MATLAB实现总结

BP神经网络的MATLAB实现总结

作者:陈克忠本文章数据来自于网络概述:本篇文章主要总结了运用MATLAB工具实现BP神经网络的预测功能的步骤,然后结合算例写出MATLAB程序。

1,步骤总结BP神经网络可以用来做时间序列的预测,下面给出用MATLAB实现预测的步骤。

1,整理原始数据2,将原始数据分为训练数据和测试数据两类3,分别对训练数据和测试数据进行归一化处理(关于为什么要归一化网上有很多解释)4,确定隐含成神经元个数,用MATLAB函数建立网络5,设置训练参数进行训练6,测试网络,即用训练好的网络来对一组数据进行预测7,将第6步得到的预测结果反归一化,得到与原始数据同一数量级的数据8,误差分析二,算例分析下面将结合算例运用MATLAB实现BP神经网络的预测。

1. 问题的描述公路运量主要包括公路的客运量和公路货运量两个方面。

公路运量主要包括公路的客运量和公路货运量两个方面。

据研究,某地区的公路运量主要与该地区的人数、研究,某地区的公路运量主要与该地区的人数、机动车数量和公路面积有关,下图给出了某县1990-2009年20年的数据结合数据运用MATLAB工具建立BP神经网络对该县今后公路客运量和货运量进行预测。

程序如下:clearclc%%1,整理原始数据sqrts=[20.55 22.44 25.37 27.13 29.45 30.10 30.96 34.06 36.42 38.09 39.13 39.99 41.93 44.59 47.30 52.89 55.73 56.76 59.17 60.63];%人口数量sqjdcs=[0.6 0.75 0.85 0.91 1.05 1.35 1.45 1.6 1.7 1.85 2.15 2.2 2.25 2.35 2.5 2.6 2.7 2.85 2.95 3.1];%机动车数量sqglmj=[0.09 0.11 0.11 0.14 0.20 0.23 0.23 0.32 0.32 0.34 0.36 0.36 0.38 0.49 0.56 0.59 0.59 0.67 0.69 0.79];%公路面积glkyl=[5126 6217 7730 9145 10460 11387 12353 15750 18304 19836 21024 19490 20433 22598 25107 33442 36836 40548 42927 43462];%公路客运量glhyl=[1237 1379 1385 1399 1663 1714 1834 4322 8132 8936 11099 11203 10524 11115 13320 16762 18673 20724 20803 21804];%公路货运量p=[sqrts;sqjdcs;sqglmj];%输入t=[glkyl;glhyl];%输出%%2,将原始数据分类为训练数据和测试数据p_train = p(:,1:19);t_train = t(:,1:19);p_test = p(:,20);t_test = t(:,20);%%3,归一化训练数据和测试数据[pn_train,minp,maxp,tn_train,mint,maxt]=premnmx(p_train,t_train);%将输入数据归一化pn_test=tramnmx(p_test,minp,maxp);%将测试数据归一化%4确定隐含层神经元个数,并建立网络n = 6;net = newff(pn_train,tn_train,n);%5设置网络参数%该案例运用默认参数%6训练网络net = train(net,pn_train,tn_train);%6运用测试数据仿真results=sim(net,pn_test);%对预测数据进行反归一化results=postmnmx(results,mint,maxt);%误差分析err = t_test – results %预测数据与真实数据之间的差值err2 = err./t_test %误差率plot(t_test,'b');hold onplot(results,'r');如图红线为预测值,蓝线为真实值年份 2004 2005 2006 2007 2008 2009 人口数量 47.30 52.89 55.73 56.76 59.17 60.63 机动车数量 2.50 2.60 2.702.85 2.953.10 公路面积 0.56 0.59 0.59 0.67 0.69 0.79 公路客运量 25107 33442 36836 40548 42927 43462 公路货运量 13320 16762 18673 20724 20803 21804。

用matlab编程实现的基于BP神经网络的预测仿真

用matlab编程实现的基于BP神经网络的预测仿真
B2 =
0.7753
网络训练过程中的误差记录:
网络实际输出与期望输出的模拟对比:
y(i,j)=1/(1+exp(-net)); %隐含层输出
end
Y(i,:)=[y(i,:),1]; %带阈值隐含层输出
for j=1:outputNums
net=Y(i,:)*W2(:,j); %输出层神经元的输入
legend('T1 is desired output ','O1 is Network real output');
程序运行结果:
网络调整后的权值和阈值:
w1 =
-1.8970 -0.3536 -0.7324 -0.2796 -0.8915 -2.5360
zl(k)=z(k+2); %给样本矩阵ZL赋值
end
HL=(hl-min(min(hl)))/(max(max(hl))-min(min(hl))); %数据归一化
ZL=(zl-min(zl))/(max(zl)-min(zl)); %数据归一化
xlabel('k');ylabel('error');
figure(2);
k=1:H;
plot(k,T1,k,O1,'*'); %期望输出值和BP网络实际输出值
xlabel('k');ylabel('T1andO1');title('BP simulation');
W1(m,n)=W1(m,n)+lc*DW1(m,n)*P(i,m); %隐含层权值阈值的调整
end

BP神经网络预测的matlab代码

BP神经网络预测的matlab代码

BP神经网络预测的matlab代码附录5:BP神经网络预测的matlab代码: P=[ 00.13860.21970.27730.32190.35840.38920.41590.43940.46050.47960.49700.52780.55450.59910.60890.61820.62710.63560.64380.65160.65920.66640.67350.72220.72750.73270.73780.74270.74750.75220.75680.76130.76570.7700]T=[0.4455 0.323 0.4116 0.3255 0.4486 0.2999 0.4926 0.2249 0.48930.2357 0.4866 0.22490.4819 0.2217 0.4997 0.2269 0.5027 0.217 0.5155 0.1918 0.5058 0.2395 0.4541 0.2408 0.4054 0.2701 0.3942 0.3316 0.2197 0.2963 0.5576 0.1061 0.4956 0.267 0.5126 0.2238 0.5314 0.2083 0.5191 0.208 0.5133 0.18480.5089 0.242 0.4812 0.2129 0.4927 0.287 0.4832 0.2742 0.5969 0.24030.5056 0.2173 0.5364 0.1994 0.5278 0.2015 0.5164 0.2239 0.4489 0.2404 0.4869 0.2963 0.4898 0.1987 0.5075 0.2917 0.4943 0.2902 ]threshold=[0 1]net=newff(threshold,[11,2],{'tansig','logsig'},'trainlm');net.trainParam.epochs=6000net.trainParam.goal=0.01LP.lr=0.1;net=train(net,P',T')P_test=[ 0.77420.77840.78240.78640.79020.7941 ] out=sim(net,P_test')友情提示:以上面0.7742为例0.7742=ln(47+1)/5因为网络输入有一个元素,对应的是测试时间,所以P只有一列,Pi=log(t+1)/10,这样做的目的是使得这些数据的范围处在[0 1]区间之内,但是事实上对于logsin命令而言输入参数是正负区间的任意值,而将输出值限定于0到1之间。

BP神经网络预测的MATLAB实现

BP神经网络预测的MATLAB实现
i = n +m + a 其中 i为隐含层神经元的个数 , n为输入层神经元的 个数 , m为输出层神经元的个数 , a为常数且 1 < a < 10 (参 见图 1) 。 由此 ,可以设定隐含层的神经元数为 12。 三 、BP神经网络预测的 MATLAB实现 (一 )数据样本的预处理 本文的数据样本来源于《中国旅游统计年鉴 》。为了 保证数据为同一数量级 ,首先需要对神经网络的输入和输 出数据进行一定的预处理 : 将原数据乘以 10 - 5。同时 ,将 样本分为训练集和测试集 , 1993 - 1998年外国人入境旅游 人数的处理结果作为训练集 ,即 1993 - 1997年外国人入境 旅游人数的处理结果作为训练输入 ; 1998年外国人入境旅 游人数的处理结果作为训练输出 ; 1994 - 1999年外国人入 境旅游人数的处理结果作为测试集 ,即 1994 - 1998年外国 人入境旅游人数的处理结果作为测试输入 , 1999年外国人 入境旅游人数的处理结果作为测试输出 。 (二 ) 确定激活函数 根据处理后的数据范围 ,本文选取 tansig和 purelin作 为激活函数 。 (三 )设定网络的最大学习迭代次数为 6 000次 。 (四 )设定网络的学习精度为 0. 005 (五 )创建和训练 BP神经网络的 MATLAB程序 %旅游需求预测 lyyc
> > net. trainParam. show = 500; > > net = train ( net, P, T)
显示的数据与所设计的网络模型相符 ,且如图显见网 络学习迭代到 411次时 ,就达到了学习精度 0. 004 996 74, 其学习速度较快 。
(六 )测试 BP神经网络 将测试的输出数据还原 ,与实际人数比较 (见表 1) ,说 明 BP神经网络预测的 MATLAB实现是可行的 。

matlab神经网络预测程序(自己编的可用)

matlab神经网络预测程序(自己编的可用)

Matlab自身带有神经网络的工具包,这个程序是我在实战中运行通过的,通过对原始数据的学习,预测未来一段时间的数据。

大家只要修改一下原始数据,预测时间即可。

下面是源程序:clcclear all%原始数据%p=load('shuru.txt');%p=p';p=[1994:2010];%t=load('shuchu.txt');%t=t';t=[124.175 117.0666667 108.3333333 102.8083333 99.225 98.6 100.35 100.725 99.41666667 101.1666667 103.9 101.8166667 101.4666667104.7666667 105.9 99.29166667 103.32255];% plot(p,t)%数据归一化[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);dx=[-1,1];%BP网络训练net=newff(dx,[5,1],{'tansig','tansig','purelin'},'traingdx'); net.trainParam.show=1000; %每1000轮回显示一次结果net.trainParam.Lr=0.05; %学习速率为0.05net.trainParam.epochs=3000; %循环10000次net.trainParam.goal=1e-5; %均方误差net=train(net,pn,tn);%对原数据进行仿真an=sim(net,pn);a=postmnmx(an,mint,maxt); %还原仿真得到的数据%与实际数据对比x=1994:2010;newk=a(1,:);figure;plot(x,newk,'r-o',x,t,'b--+');legend('预测值','实际值');xlabel('时间');ylabel('cpi的值');%对新数据进行预测pnew=[2012:2025];%预测2012年到2015年数据pnewn=tramnmx(pnew,minp,maxp);%新数据归一化anewn=sim(net,pnewn);anew=postmnmx(anewn,mint,maxt)%还原得到预测值。

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。

在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。

首先,需要准备一个数据集来训练和测试BP神经网络。

数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。

一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。

在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。

假设数据集的前几列是输入特征,最后一列是输出。

可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。

可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。

该函数的输入参数为每个隐藏层的神经元数量。

下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。

可以使用`train`函数来训练模型。

该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。

下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。

可以使用`net`模型的`sim`函数来进行预测。

下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。

求用matlab编BP神经网络预测程序

求用matlab编BP神经网络预测程序

求用编神经网络预测程序求一用编的程序[。

];输入[。

];输出创建一个新的前向神经网络((),[],{'',''},'')当前输入层权值和阈值{}{}当前网络层权值和阈值{}{}设置训练参数;;;;;调用算法训练网络[]();对网络进行仿真();计算仿真误差;()[。

]'测试()不可能啊我对初学神经网络者的小提示第二步:掌握如下算法:.最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第章的第十节:“最小二乘法”。

.在第步的基础上看学习算法、和近邻算法,上述算法都是在最小均方误差基础上的改进算法,参考书籍是《神经网络原理》(机械工业出版社,著,中英文都有)、《人工神经网络与模拟进化计算》(清华大学出版社,阎平凡,张长水著)、《模式分类》(机械工业出版社, . 等著,中英文都有)、《神经网络设计》(机械工业出版社, . 等著,中英文都有)。

(自适应谐振理论),该算法的最通俗易懂的读物就是《神经网络设计》(机械工业出版社, . 等著,中英文都有)的第和章。

若看理论分析较费劲可直接编程实现一下节的算法小节中的算法.算法,初学者若对误差反传的分析过程理解吃力可先跳过理论分析和证明的内容,直接利用最后的学习规则编个小程序并测试,建议看《机器学习》(机械工业出版社, . 著,中英文都有)的第章和《神经网络设计》(机械工业出版社, . 等著,中英文都有)的第章。

神经网络实例()分类:实例采用工具箱函数建立神经网络,对一些基本的神经网络参数进行了说明,深入了解参考帮助文档。

例采用动量梯度下降算法训练网络。

训练样本定义如下:输入矢量为[]目标矢量为[ ]——生成一个新的前向神经网络,函数格式:(,[ ],{ }) ,(对于维输入,是一个的矩阵,每一行是相应输入的边界值)第层的维数第层的传递函数, ''反向传播网络的训练函数, ''反向传播网络的权值阈值学习函数, ''性能函数, ''——对神经网络进行训练,函数格式:(),输入参数:所建立的网络网络的输入网络的目标值,初始输入延迟,初始网络层延迟,验证向量的结构, []测试向量的结构, []返回值:训练之后的网络训练记录(训练次数及每次训练的误差)网络输出网络误差最终输入延迟最终网络层延迟——对神经网络进行仿真,函数格式:[] ()参数与前同。

BP神经网络MATLAB实例

BP神经网络MATLAB实例
clc
% NEWFF——生成一个新的前向神经网络
% TRAIN——对 BP 神经网络进行训练
% SIM——对 BP 神经网络进行仿真
pause
% 敲任意键开始
clc
% 定义训练样本
% P 为输入矢量
P=[-1, -2, 3, 1; -1, 1, 5, -3];
inputbias=net.b{1}
% 当前网络层权值和阈值
layerWeights=net.LW{2,1}
layerbias=net.b{2}
pause
clc
% 设置训练参数
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
pause;
clc
echo off
下面给出了网络的某次训练结果,可见,当训练至第 136 步时,训练提前停止,此时的网络误差为 0.0102565。给出了训练后的仿真数据拟合曲线,效果是相当满意的。
[net,tr]=train(net,P,T,[],[],val);
clc
elseif(choice==2)
echo on
clc
% 采用贝叶斯正则化算法 TRAINBR
net.trainFcn='trainbr';
pause
clc
% 对 BP 网络进行仿真
A = sim(net,P)
% 计算仿真误差
E = T - A
MSE=mse(E)
pause
clc
echo off
例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。其中,样本数据可以采用如下MATLAB 语句生成:

BP神经网络matlab实现和matlab工具箱使用实例

BP神经网络matlab实现和matlab工具箱使用实例
w=rand(hideNums,outputNums); %10*3;同V deltw=zeros(hideNums,outputNums);%10*3 dw=zeros(hideNums,outputNums); %10*3
samplelist=[0.1323,0.323,-0.132;0.321,0.2434,0.456;-0.6546,-0.3242,0.3255]; %3*3;上设输输作3*3(实作3和网网) expectlist=[0.5435,0.422,-0.642;0.1,0.562,0.5675;-0.6464,-0.756,0.11]; %3*3;星也输也作3*3(实作3和网网),如输有的有有学
num1=5; %设隐设稍 num2=10000; %最也迭迭迭稍 a1=0.02; %星也显显 a2=0.05; %学学学
test=randn(1,5)*0.5; %网网网稍5和个个作 in=-1:.1:1; %训训作 expout=[-.9602 -.5770 -.0729 .3771 .6405 .6600 .4609 .1336 -.2013 -.4344 -.5000 -.3930 -.1647 .0988 .3072 .3960 .3449 .1816
%p,t作作我我训训输输,pp作作训训虚的我我输输网网,最然的ww作作pp神经训训虚的BP训 训然的输也
function ww=bpnet(p,t,ynum,maxnum,ex,lr,pp) plot(p,t,"+"); title("训训网网"); xlabel("P"); ylabel("t"); [w1,b1,w2,b2]=initff(p,ynum,"tansig",t,"purelin"); %我我我初稍和设设的BP我我 zhen=25; %每迭迭每每迭每稍显显 biglr=1.1; %学学学使学学学(和也用也用用用) litlr=0.7; %学学学使学学学(梯梯然梯经学使) a=0.7 %动网动a也也(△W(t)=lr*X*ん+a*△W(t-1)) tp=[zhen maxnum ex lr biglr litlr a 1.04]; %trainbpx [w1,b1,w2,b2,ep,tr]=trainbpx(w1,b1,"tansig",w2,b2,"purelin",p,t,tp);

(完整版)BP神经网络matlab实例(简单而经典)

(完整版)BP神经网络matlab实例(简单而经典)

p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。

S S SNl:各层的神经元个数。

[ 1 2...]{ 1 2...}TF TF TFNl:各层的神经元传递函数。

BTF:训练用函数的名称。

(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。

BP神经网络的设计实例(MATLAB编程)

BP神经网络的设计实例(MATLAB编程)

神经网络的设计实例(MATLAB编程)例1 采用动量梯度下降算法训练BP 网络。

训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为t = [-1 -1 1 1]解:本例的MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本P=[-1, -2, 3, 1; -1, 1, 5, -3]; % P 为输入矢量T=[-1, -1, 1, 1]; % T 为目标矢量pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用TRAINGDM 算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高BP 网络的推广能力。

在本例中,我们采用两种训练方法,即L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。

BP神经网络逼近(matlab程序)

BP神经网络逼近(matlab程序)

BP神经网络逼近y=1/x,MATLAB程序%BP神经网络逼近y=1/x;%----------------定义必要的变量方便调试--------------------clear;clc;q=8; %神经元个数max_epoch=100000; %最大训练次数err_goal=0.01; %期望误差最小值alpha =0.01; %学习率X = 1:0.5:10; %样本D=1./X; %期望值[m,n] = size(X); %m为输入个数,n为样本数量l=1; %单输出wjk = rand(l,q); %隐层到输出层的初始权值vij = rand(q,m); %输入层到隐层的初始权值for epoch=1:max_epoch%-------------------------前向传播求输入--------------------NETj=vij*X; %隐层净输入Yj=1./(1+exp(-NETj)); %计算隐层输出NETk=wjk*Yj; %输出层净输入Ok=1./(1+exp(-NETk));%计算输出层输出e=((D-Ok)*(D-Ok)')/2; %计算误差函数E(epoch)=e;if(e<err_goal)char='达到输出误差要求学习结束'break;end%-------------------反向传播调权值-------------------------------%调整输出层权值deltak=Ok.*(1-Ok).*(D-Ok);wjk=wjk+alpha*deltak*Yj';%调整隐含层权值deltai=Yj.*(1-Yj).*(deltak'*wjk)';vij=vij+alpha*deltai*X';end%-----------------取样本测试---------------------------------Xx = 1:3:66;D1 = 1./Xx; %期望输出[m1,n1] = size(Xx);NETj1=vij*Xx; %隐层净输入Yj1=1./(1+exp(-NETj1)); %计算隐层输出NETk1=wjk*Yj1; %输出层净输入Ok1=1./(1+exp(-NETk1));%计算输出层输出%-----------------------显示与绘图---------------------------------epoch %显示样本集计算次数Ok %显示训练集输出层输出Ok1 %显示测试集输出层输出subplot(2,2,1);plot(X,D,'b-o'); %样本与期望值title('训练集网络样本')subplot(2,2,2);plot(X,Ok,'b-o',X,D,'r-x');%训练集网络输出与期望值title('训练集网络输出与期望值')subplot(2,2,3);plot(1:1:epoch,E,'k*'); %显示误差title('训练集输出误差')subplot(2,2,4);plot(Xx,Ok1,'b-o',Xx,D1,'r-x'); %绘制样本及网络输出title('测试集网络输出与期望值')运行结果当隐层神经元个数q=8时char =达到输出误差要求学习结束epoch =86197Ok =Columns 1 through 100.8717 0.7039 0.5349 0.4121 0.3313 0.2775 0.2398 0.2120 0.1908 0.1741Columns 11 through 190.1608 0.1499 0.1410 0.1337 0.1276 0.1225 0.1183 0.1147 0.1117Ok1 =Columns 1 through 100.8717 0.2398 0.1410 0.1117 0.1013 0.0972 0.0956 0.0950 0.0947 0.0946Columns 11 through 200.0945 0.0945 0.0945 0.0945 0.0945 0.0945 0.0945 0.0945 0.0945 0.0945Columns 21 through 220.0945 0.0945当隐层神经元个数q=2时epoch =100000Ok =Columns 1 through 100.3222 0.3112 0.3007 0.2910 0.2821 0.2741 0.2668 0.2603 0.2546 0.2495Columns 11 through 190.2451 0.2413 0.2379 0.2351 0.2326 0.2305 0.2287 0.2271 0.2258Ok1 =Columns 1 through 100.3222 0.2668 0.2379 0.2258 0.2211 0.2194 0.2187 0.2185 0.2184 0.2184Columns 11 through 200.2184 0.2184 0.2184 0.2184 0.2184 0.2184 0.2184 0.2184 0.2184 0.2184Columns 21 through 220.2184 0.2184结果分析由运行结果和图形可以看出隐层神经元个数q=8时,网络训练86197次就能使误差达到0.01q=2时,网络训练次数达到最大值100000次还没有达到误差允许的范围。

用matlab编BP神经网络预测程序加一个优秀程序

用matlab编BP神经网络预测程序加一个优秀程序

求用matlab编BP神经网络预测程序求一用matlab编的程序P=[。

];输入T=[。

];输出% 创建一个新的前向神经网络net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights=net_1.IW{1,1}inputbias=net_1.b{1}% 当前网络层权值和阈值layerWeights=net_1.LW{2,1}layerbias=net_1.b{2}% 设置训练参数net_1.trainParam.show = 50;net_1.trainParam.lr = 0.05;net_1.trainParam.mc = 0.9;net_1.trainParam.epochs = 10000;net_1.trainParam.goal = 1e-3;% 调用TRAINGDM 算法训练BP 网络[net_1,tr]=train(net_1,P,T);% 对BP 网络进行仿真A = sim(net_1,P);% 计算仿真误差E = T - A;MSE=mse(E)x=[。

]';%测试sim(net_1,x) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%不可能啊我200928对初学神经网络者的小提示第二步:掌握如下算法:2.最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第8章的第十节:“最小二乘法”。

3.在第2步的基础上看Hebb学习算法、SOM和K-近邻算法,上述算法都是在最小均方误差基础上的改进算法,参考书籍是《神经网络原理》(机械工业出版社,Simon Haykin著,中英文都有)、《人工神经网络与模拟进化计算》(清华大学出版社,阎平凡,张长水著)、《模式分类》(机械工业出版社,Richard O. Duda等著,中英文都有)、《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)。

数据预测之BP神经网络具体应用以及matlab代码

数据预测之BP神经网络具体应用以及matlab代码

数据预测之BP神经网络具体应用以及matlab代码2013-12-25 17:17 2467人阅读评论(0) 收藏举报1.具体应用实例。

根据表2,预测序号15的跳高成绩。

表2 国内男子跳高运动员各项素质指标4.4 (序号15)跳高成绩预测4.4.1 数据整理1)我们将前14组国内男子跳高运动员各项素质指标作为输入,即(30m行进跑,立定三级跳远,助跑摸高,助跑4-6步跳高,负重深蹲杠铃,杠铃半蹲系数,100m,抓举),将对应的跳高成绩作为输出。

并用matlab自带的premnmx()函数将这些数据归一化处理。

数据集:(注意:每一列是一组输入训练集,行数代表输入层神经元个数,列数输入训练集组数)P=[3.2 3.2 3 3.2 3.2 3.4 3.2 3 3.2 3.2 3.2 3.9 3.1 3.2;9.6 10.3 9 10.3 10.1 10 9.6 9 9.6 9.2 9.5 9 9.5 9.7;3.45 3.75 3.5 3.65 3.5 3.4 3.55 3.5 3.55 3.5 3.4 3.1 3.6 3.45;2.15 2.2 2.2 2.2 2 2.15 2.14 2.1 2.1 2.1 2.15 2 2.1 2.15;140 120 140 150 80 130 130 100 130 140 115 80 90 130;2.83.4 3.5 2.8 1.5 3.2 3.5 1.8 3.5 2.5 2.8 2.2 2.74.6;11 10.9 11.4 10.8 11.3 11.5 11.8 11.3 11.8 11 11.9 13 11.1 10.85;50 70 50 80 50 60 65 40 65 50 50 50 70 70];T=[2.24 2.33 2.24 2.32 2.2 2.27 2.2 2.26 2.2 2.24 2.24 2.2 2.2 2.35];4.4.2 模型建立4.4.2.1 BP网络模型BP网络(Back-ProPagation Network)又称反向传播神经网络,通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。

运用Matlab创建BP神经网络(R2021b)

运用Matlab创建BP神经网络(R2021b)

运用Matlab创建BP神经网络(R2021b)运用Matlab创建BP神经网络(R2021b)BP神经网络属于前向网络以下为创建BP神经网络的方法及参数意义(1)net=newff(P,T,S)或者net = newff(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF) P:输入参数矩阵。

(RxQ1) T:目标参数矩阵。

(SNxQ2)S:N-1个隐含层的数目(S(i)到S(N-1)),输出层的单元数目取决于T,默认为空矩阵。

TF:相关层的传递函数,默认隐含层为tansig函数,输出层为purelin函数。

BTF:BP神经网络学习训练函数,默认值为trainlm函数。

BLF:权重学习函数,默认值为learngdm。

PF:性能函数,默认值为mse。

IPF,OPF,DDF均为默认值即可。

(2)传递函数 purelin 线性传递函数 tansig 正切 S 型传递函数 logsig 对数 S 型传递函数隐含层和输出层函数的选择对BP神经网络预测精度有较大影响,一般隐含层节点转移函数选用 tansig函数或logsig函数,输出层节点转移函数选用tansig函数或purelin函数。

(3)学习训练函数神经网络的学习分为有导师学习和无导师学习。

最速下降BP算法:traingd 动量BP算法:traingdm学习率可变的BP算法:trainda(学习率可变的最速下降BP算法);traindx(学习率可变的动量BP算法)弹性算法:trainrp变梯度算法:traincgf(Fletcher-Reeves修正算法) traincgp(Polak_Ribiere修正算法) traincgb(Powell-Beale复位算法)trainbfg(BFGS 拟牛顿算法) trainoss(OSS算法) trainlm(LM算法)参数说明:通过net.trainParam可以查看参数Show Training Window Feedback showWindow: true Show Command LineFeedback showCommandLine: falseCommand Line Frequency show: 两次显示之间的训练次数 MaximumEpochs epochs: 训练次数Maximum Training Time time: 最长训练时间(秒)Performance Goal goal: 网络性能目标 Minimum Gradientmin_grad: 性能函数最小梯度 Maximum Validation Checks max_fail: 最大验证失败次数 Learning Rate lr: 学习速率Learning Rate Increase lr_inc: 学习速率增长值 Learning Rate lr_dec: 学习速率下降值 Maximum Performance Increase max_perf_inc:Momentum Constant mc: 动量因子(4)BP神经网络预测函数SimOut = sim('model', Parameters) & y=sim(net,x) 函数功能:用训练好的BP神经网络预测函数输出net:训练好的网络 x:输入数据 y:网络预测数据 (5)训练函数[net,tr] = train(Net,P,T,Pi,Ai) 其中,Net 待训练的网络 P 输入数据矩阵T 输出数据矩阵 (default = zeros) Pi 初始化输入层条件 (default = zeros)Ai 初始化输出层条件 (default = zeros) net 训练好的网络 tr 训练过程记录注意:P Ni-by-TS cell array Each element P{i,j,ts} is an Ni-by-Qmatrix. T Nl-by-TS cell array Each element T{i,ts} is a Ui-by-Q matrix.BP网络的常用函数表函数类型前向网络创建函数 Newff logsig 传递函数 tansig purelin learngd 学习函数 learngdm 性能函数 mse 梯度下降动量学习函数均方误差函数创建前向BP网络S型的对数函数 S型的正切函数纯线性函数基于梯度下降法的学习函数函数名称newcf 函数用途创建级联前向网络 msereg plotperf plotes 显示函数 plotep errsurf范例(网上搜寻的,谢谢原作者)均方误差规范化函数绘制网络的性能绘制一个单独神经元的误差曲面绘制权值和阈值在误差曲面上的位置计算单个神经元的误差曲面现给出一药品商店一年当中12个月的药品销售量(单位:箱)如下: 2056 2395 2600 2298 1634 1600 1873 1487 19001500 2046 1556 训练一个BP网络,用当前的所有数据预测下一个月的药品销售量。

用遗传算法优化BP神经网络的Matlab编程实例

用遗传算法优化BP神经网络的Matlab编程实例

用遗传算法优化BP神经网络的Matlab编程实例程序一:GA训练BP权值的主函数function net=GABPNET(XX,YY)%--------------------------------------------------------------------------% GABPNET.m% 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络%--------------------------------------------------------------------------%数据归一化预处理nntwarn offXX=premnmx(XX);YY=premnmx(YY);%创建网络net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm');%下面使用遗传算法对网络进行优化P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度aa=ones(S,1)*[-1,1];popu=50;%种群规模initPpp=initializega(popu,aa,'gabpEval');%初始化种群gen=100;%遗传代数%下面调用gaot工具箱,其中目标函数定义为gabpEval[x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,... 'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);%绘收敛曲线图figure(1)plot(trace(:,1),1./trace(:,3),'r-');hold onplot(trace(:,1),1./trace(:,2),'b-');xlabel('Generation');ylabel('Sum-Squared Error');figure(2)plot(trace(:,1),trace(:,3),'r-');hold onplot(trace(:,1),trace(:,2),'b-');xlabel('Generation');ylabel('Fittness');%下面将初步得到的权值矩阵赋给尚未开始训练的BP网络[W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x);{3,2}=W2;net.b{2,1}=B1;net.b{3,1}=B2;XX=P;YY=T;%设置训练参数=1;=1;s=50;=0.001;%训练网络net=train(net,XX,YY);程序二:适应值函数function [sol, val] = gabpEval(sol,options)% val - the fittness of this individual% sol - the individual, returned to allow for Lamarckian evolution % options - [current_generation]load data2nntwarn offXX=premnmx(XX);YY=premnmx(YY);P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度for i=1:S,x(i)=sol(i);end;[W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);程序三:编解码函数function [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x) load data2nntwarn offXX=premnmx(XX);YY=premnmx(YY);P=XX;T=YY;R=size(P,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度% 前R*S1个编码为W1for i=1:S1,for k=1:R,W1(i,k)=x(R*(i-1)+k);endend% 接着的S1*S2个编码(即第R*S1个后的编码)为W2for i=1:S2,for k=1:S1,W2(i,k)=x(S1*(i-1)+k+R*S1);endend% 接着的S1个编码(即第R*S1+S1*S2个后的编码)为B1for i=1:S1,B1(i,1)=x((R*S1+S1*S2)+i);end% 接着的S2个编码(即第R*S1+S1*S2+S1个后的编码)为B2 for i=1:S2,B2(i,1)=x((R*S1+S1*S2+S1)+i);end% 计算S1与S2层的输出A1=tansig(W1*P,B1);A2=purelin(W2*A1,B2);% 计算误差平方和SE=sumsqr(T-A2);val=1/SE; % 遗传算法的适应值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求用matlab编BP神经网络预测程序求一用matlab编的程序P=[。

];输入T=[。

];输出% 创建一个新的前向神经网络net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights=net_1.IW{1,1}inputbias=net_1.b{1}% 当前网络层权值和阈值layerWeights=net_1.LW{2,1}layerbias=net_1.b{2}% 设置训练参数net_1.trainParam.show = 50;net_1.trainParam.lr = 0.05;net_1.trainParam.mc = 0.9;net_1.trainParam.epochs = 10000;net_1.trainParam.goal = 1e-3;% 调用TRAINGDM 算法训练BP 网络[net_1,tr]=train(net_1,P,T);% 对BP 网络进行仿真A = sim(net_1,P);% 计算仿真误差E = T - A;MSE=mse(E)x=[。

]';%测试sim(net_1,x) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%不可能啊我200928对初学神经网络者的小提示第二步:掌握如下算法:2.最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第8章的第十节:“最小二乘法”。

3.在第2步的基础上看Hebb学习算法、SOM和K-近邻算法,上述算法都是在最小均方误差基础上的改进算法,参考书籍是《神经网络原理》(机械工业出版社,Simon Haykin著,中英文都有)、《人工神经网络与模拟进化计算》(清华大学出版社,阎平凡,张长水著)、《模式分类》(机械工业出版社,Richard O. Duda等著,中英文都有)、《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)。

4.ART(自适应谐振理论),该算法的最通俗易懂的读物就是《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)的第15和16章。

若看理论分析较费劲可直接编程实现一下16.2.7节的ART1算法小节中的算法.4.BP算法,初学者若对误差反传的分析过程理解吃力可先跳过理论分析和证明的内容,直接利用最后的学习规则编个小程序并测试,建议看《机器学习》(机械工业出版社,Tom M. Mitchell著,中英文都有)的第4章和《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)的第11章。

BP神经网络Matlab实例(1)分类:Matlab实例采用Matlab工具箱函数建立神经网络,对一些基本的神经网络参数进行了说明,深入了解参考Matlab帮助文档。

% 例1 采用动量梯度下降算法训练BP 网络。

% 训练样本定义如下:% 输入矢量为% p =[-1 -2 3 1% -1 1 5 -3]% 目标矢量为t = [-1 -1 1 1]close allclearclc% --------------------------------------------------------------- % NEWFF——生成一个新的前向神经网络,函数格式:% net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,% PR -- R x 2 matrix of min and max values for R input elements% (对于R维输入,PR是一个R x 2 的矩阵,每一行是相应输入的边界值)% Si -- 第i层的维数% TFi -- 第i层的传递函数, default = 'tansig'% BTF -- 反向传播网络的训练函数, default = 'traingdx'% BLF -- 反向传播网络的权值/阈值学习函数, default = 'learngdm'% PF -- 性能函数, default = 'mse'% --------------------------------------------------------------- % TRAIN——对BP 神经网络进行训练,函数格式:% train(NET,P,T,Pi,Ai,VV,TV),输入参数:% net -- 所建立的网络% P -- 网络的输入% T -- 网络的目标值, default = zeros% Pi -- 初始输入延迟, default = zeros% Ai -- 初始网络层延迟, default = zeros% VV -- 验证向量的结构, default = []% TV -- 测试向量的结构, default = []% 返回值:% net -- 训练之后的网络% TR -- 训练记录(训练次数及每次训练的误差)% Y -- 网络输出% E -- 网络误差% Pf -- 最终输入延迟% Af -- 最终网络层延迟% --------------------------------------------------------------- % SIM——对BP 神经网络进行仿真,函数格式:% [Y,Pf,Af,E,perf] = sim(net,P,PiAi,T)% 参数与前同。

% --------------------------------------------------------------- %% 定义训练样本% P 为输入矢量echo onP=[-1, -2, 3, 1;-1, 1, 5, -3];% T 为目标矢量T=[-1, -1, 1, 1];% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % --------------------------------------------------------------- % 训练函数:traingdm,功能:以动量BP算法修正神经网络的权值和阈值。

% 它的相关特性包括:% epochs:训练的次数,默认:100% goal:误差性能目标值,默认:0% lr:学习率,默认:0.01% max_fail:确认样本进行仿真时,最大的失败次数,默认:5% mc:动量因子,默认:0.9% min_grad:最小梯度值,默认:1e-10% show:显示的间隔次数,默认:25% time:训练的最长时间,默认:inf% --------------------------------------------------------------- % 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}% 设置网络的训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;% 调用TRAINGDM 算法训练BP 网络[net,tr]=train(net,P,T);% 对BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)echo offfigure;plot((1:4),T,'-*',(1:4),A,'-o')1 B P神经网络的原理及算法的基本步骤理论上已证明,一个3层的 B P网络能够实现任意的连续映射,可以任意精度逼近任何给定的连续函数。

1. 1 B P神经网络的原理B P (B ack P rop aga tion)神经网络通常由具有多个节点的输入层( inp u t laye r) 、隐含层( h idden laye r) 和多个或一个输出节点的输出层( ou tp u t laye r)组成,其学习过程分为信息的正向传播过程和误差的反向传播过程两个阶段。

外部输入的信号经输入层、隐含层为止。

的神经元逐层处理,向前传播到输出层,给出结果。

如果在输出层得不到期望输出,则转入逆向传播过程,将实际值与网络输出之间的误差沿原连接通路返回,通过修改各层神经元的连接权重,减少误差,然后再转入正向传播过程,反复迭代,直到误差小于给定的值人口152769 153026 1531852.1 利用Matlab Script节点实现在此以对一个非线性函数的逼近作为例子来说明实现流程,其中输入矢量p=[-1∶0.05∶1];目标矢量t=sin(2*pi*p)+0.1randn(size(p))。

利用Mat-lab Script节点实现BP算法的过程如下:(1)新建一个LabVIEW vi,在框图程序中添加Matlab Script节点。

(2)在节点内添加Matlab的动量BP算法实现代码,并分别在节点左右边框分别添加对应的输入/输出参数,如图1所示。

(3)在vi的前面板添加相应的控件,设置输入参数,连接输出控件。

执行程序,结果如图2、图3所示。

下面的代码将重建我们以前的网络,然后用批处理最速下降法训(注意用批处理方式训练的话所有的输入要设置为矩阵方式)练网络。

net=newff([-1 2; 05],[3,1],{'tansig','purelin'},'traingd');net.trainParam.lr = 0.05;net.trainParam.epochs = 300;net.trainParam.goal = 1e-5;p = [-1 -1 2 2;0 5 0 5]; t =[-1 -1 1 1];net=train(net,p,t);TRAINGD, Epoch 0/300, MSE 1.59423/1e-05, Gradient 2.76799/ 1e-10TRAINGD, Epoch 50/300, MSE 0.00236382/1e-05, Gradient 0.0495292/1e-10TRAINGD, Epoch 100/300, MSE 0.000435947/1e-05, Gradient 0.0161202/1e-10TRAINGD, Epoch 150/300, MSE 8.68462e-05/1e-05, Gradient 0.00769588/1e-10TRAINGD, Epoch 200/300, MSE 1.45042e-05/1e-05, Gradient 0.00325667/1e-10TRAINGD, Epoch 211/300, MSE 9.64816e-06/1e-05, Gradient 0.00266775/1e-10TRAINGD, Performance goal met.a = sim(net,p)a =-1.0010 -0.9989 1.0018 0.9985用nnd12sd1 来演示批处理最速下降法的性能。

相关文档
最新文档