实验8 数字基带信号的码型变换
数字基带信号及常用的编码
数字基带信号1.1 基带信号的基本概念数字基带信号可以来字计算机、电传机等终端数据的各种数字代码,也可以来自模拟信号经数字化处理后的脉冲编码(PCM)信号等,是未经载波信号调制而直接传输的信号,所占据的频谱从零频或很低频开始。
1.2 几种数字基带信号的基本波形1.2.1 单极性波形这是一种最简单的基带信号波形,用正电平和零电平分别表示对应二进制“1”和“0”,极性单一,易于用TTL 和CMOS 电路产生。
缺点是有直流分量,要求传输线路具有直流传输能力,因而不适用有交流耦合的远距离传输,只适用于计算机内部或者极进距离的传输,信号波形图如图1-1所示。
1 011100+E图1-1 单极性波1.2.2 双极性波形这种波形用正、负电平的脉冲分别表示二进制代码“1”和“0”,其正负电平的幅度相等、极性相反,当“1”和“0”等概率出现时无直流分量,有利于在信道中传输,并且在接受端恢复信号的判决电平为零,因而不熟信道特性的变化的影响,扛干扰能力也叫强,信号波形图如图1-2所示。
1 011100+E-E图1-2 双极性波1.2.3 单极性归零波形这种波形是指它的有电脉冲宽度τ小于码元Ts ,即信号电压在一个码元终止时刻前总要回到零电平,通常归零波使用半占空码,即占空比(τ/Ts )为50%,从单极性波可以直接提取定时信息,是其他码型提取位同步信息时常采用的一种过渡波形。
1 011100+E+E图1-3 单极性归零波1.2.4 双极性归零波形这种波形兼有双极性和归零波形的特点,由于其相邻脉冲之间存在零电位的间隔,是的接受端很容易识别出每个码元的起止时间,从而使收发双方能保持位的同步。
波形如图1-4所示。
1 011100+E-E+E-E图1-4 双极性归零波1.2.5 差分波形这种波形是用相邻码元的电平的跳变和不变来表示消息代码,而与码元本身的点位或极性无关,电平跳变表示“1”,电平的不变表示“0”,当然这种规定也可以反过来,也称为相对码波形,而相应地称前面的单极性或双极性波形为绝对码波形,这种波形传输代码可以消除设备初始状态的影响。
基带信号的常见码型实验代码
基带信号的常见码型实验代码引言随着通信技术的发展和应用的普及,基带信号的处理变得越来越重要。
在通信领域中,基带信号是指未经过调制的信号,是数字数据或模拟信号的直接表达。
基带信号的常见码型是指在数字通信中常用的信号编码方式。
本文将详细探讨基带信号的常见码型实验代码。
1. 基带信号概述基带信号是指信号通过低通滤波器之后的信号。
它是一种携带有用信息的波形信号,可以表示为一个成对的实数或复数函数。
基带信号常用于数字通信系统中的数据传输和调制解调过程。
2. 基带信号的编码方式基带信号的编码方式有很多种,其中常见的包括:2.1 单极性非归零码(Unipolar Non-Return-to-Zero,UNRZ)单极性非归零码是一种简单的基带信号编码方式。
它的特点是使用一个电平表示数据位,0表示低电平,1表示高电平。
UNRZ码的优点是编码简单,缺点是抗干扰能力较差。
2.2 双极性非归零码(Bipolar Non-Return-to-Zero,BNRZ)双极性非归零码是一种使用正负电平表示数据位的基带信号编码方式。
它的特点是0表示低电平,1表示正负两种高电平。
BNRZ码的优点是抗干扰能力较好,缺点是在传输过程中可能产生直流分量。
2.3 单极性归零码(Unipolar Return-to-Zero,URZ)单极性归零码是一种使用正电平和零电平表示数据位的基带信号编码方式。
它的特点是每个数据位的中间位置都有一个归零点,以实现数据位的识别。
URZ码的优点是抗干扰能力较好,缺点是传输速率较低。
2.4 曼彻斯特编码(Manchester Coding)曼彻斯特编码是一种使用电平转变来表示数据位的基带信号编码方式。
它的特点是每个数据位都包含一个电平转变,0表示电平下降,1表示电平上升。
曼彻斯特编码的优点是时钟恢复容易,缺点是带宽利用率较低。
3. 基带信号码型实验代码为了实现基带信号的编码方式,我们可以使用编程语言编写相应的实验代码。
通原实验-码型变换
武汉理工大学信息工程学院专业综合实验中心.
实验 研究 内容
常用数字基带信号码型→基带信号的传输方式→ 传输码型选择 → 码型变换→线路传输码———
AMI及HDB3。
实验
数字基带传输系统中
技术
信道的编/译码技术
目的:是为了保证通信系统的传输可靠性,
克服信道中的噪声和干扰。
2)双极性 RZ 信号的功率谱的带宽同于单极性 RZ 信号,为
RZ( = Ts / 2)基带信号的带宽为BS = 1/ = 2fs
3)
时, 双极性BRZ 信号的功率谱 将含有离散分量,其特点与单
极性 RZ 信号的功率谱相似(请读者自己考虑)
单极性 (P 1/ 2)
实线——NRZ 虚线——RZ
数字信号的特点是:
信号的幅值取值是离散的,且幅值被限制在有限个 数值之内。常见的二进制码就是一种数字信号。
二进制码受噪声的影响小,易于由数字电路进行处 理,所以得到了广泛的应用。
三、实验应知知识
(2) 数字基带信号:
数字基带信号,是消息代码的电波形的表示形式。
即将信源发出的、未经调制或频谱变换、直接在有效频带
3.1 NRZ
NRZ码的全称是单极性不归零码,在这种二元码中用高电平和 低电平由分于别单表极示性二码进存制在信上息述“缺1点”,和尽“管0”它,具其有特构征成是简1单、的0分特别对应 正电平点和,零在电实平际,的在基表带示数码字元信时号,传电输压中不很需少要采回用到这零种.码型,
例如但它适合极1 短距0 离传1 输,0 在0 设备内1 部的1 传输0 多采1用单极
3.简单了解位同步提取的实现方法。
4.通过给定的实验电路,熟悉并掌握本实验电路的组 成和工作过程,学会分析电路方法。
数字基带信号
数字基带信号通信系统2007-09-24 16:40:29 阅读1500 评论3 字号:大中小订阅一,数字基带信号1.数字基带信号所谓数字基带信号,就是消息代码的电波形。
数字基带信号的类型很多,本节以由矩形脉冲构成的基带信号为例,主要研究这些基带信号的时域波形、频谱波形以及功率谱密度波形。
单极性不归零信号:设消息代码由二进制符号0、1组成,则单极性不归零信号的时域波形如图5-2-1所示,其中基带信号的0电位对应于二进制符号0;正电位对应于二进制符号1。
单极性不归零信号在一个码元时间内,不是有电压(或电流),就是无电压(或电流),电脉冲之间没有间隔,不易区分识别,归零码可以改善这种情况。
单极性不归零信号的频域波形和功率谱密度波形分别如图所示。
(1) 时域波形单极性不归零信号的时域波形(2) 频谱波形单极性不归零信号的频谱图(3) 功率谱密度波形单极性不归零信号的功率谱密度单极性归零信号:设消息代码由二进制符号0、1组成,则单极性归零信号的时域波形如图5-2-4所示,发"1"码时对应于正电位,但持续时间短于一个码元的时间宽度,即发出一个窄脉冲,当发"0"码时,仍然完全不发送电流,所以称这种信号为单极性归零信号。
单极性归零信号的频域波形和功率谱密度波形分别如图5-2-5、图5-2-6所示。
(1) 时域波形单极性归零信号的时域波形(2) 频谱波形单极性归零信号的频谱图(3) 功率谱密度波形单极性归零信号的功率谱密度双极性不归零信号:设消息代码由二进制符号0、1组成,则双极性不归零信号的时域波形如图5-2-7所示,其中基带信号的负电位对应于二进制符号0;正电位对应于二进制符号1。
双极性不归零信号的频域波形和功率谱密度波形分别如图所示。
(1) 时域波形双极性不归零信号的时域波形(2) 频谱波形双极性不归零信号的频谱图(3) 功率谱密度波形双极性不归零信号的功率谱密度双极性归零信号:双极性归零信号是双极性波形的归零形式,双极性归零信号的时域波形如图5-2-10所示,其中负的窄脉冲对应于二进制符号0;正的窄脉冲对应于二进制符号1,此时对应每一符号都有零电位的间隙产生,即相邻脉冲之间有零电位的间隔。
实验8 数字基带信号的码型变换
图8-9 码型变换结构组成框图
译码模块:完成码型变换实验。其结构组成框图如下图8-10
四、实验任务
1.当输入8位码为全“0”、全“1”、伪随机码、任意码时,分折各种 变换结果。 2.观测各种码型变换波形,验证你的分析结果。
五、测量点说明
TP301:原始数字基带信号;TP302:编码时钟;TP303:正极性 码型变换; TP304:负极性码型变换;TP305:码型变换输出;TP306:选择 0010-1000时无波形。
六、实验报告要求
1.根据实验结果,画出各种码型变换的测量点波形图。 2.写出各种码型变换的工作过程。
E
1
0
1
0
0
1
1
0
0
E
图 8-6 CMI码
密勒码 密勒码又称延迟调制码,它是曼彻斯特码的一种变形,编码规则: “1”码用码元间隔中心点出现跃变来表示,即用“10”或“01”表示。 “0”码有两种情况:单个“0”码时,在码元间隔内不出现电平跃变, 且相邻码元的边界处也不跃变;连“0”时,在两个“0”码边界处出现 电平跃变,即“00”与“11”交替。 例如: 消息代码:1 1 0 1 0 0 1 0… 密勒码: 10 10 00 01 11 00 01 11… 或: 01 01 11 10 00 11 10 00…
PST码能够提供的定时分量,且无直流成分,编码过程也简单,在接 收识别时需要提供“分组”信息,即需要建立帧同步,在接收识别时, 因为在“分组”编码时不可能出现00、++和—的情况,如果接收识 别时,出现上述的情况,说明帧没有同步,需要重新建立帧同步。
基带信号常用码型转换
通信原理大作业用matlab仿真1.幅频失真S(t)=sint+1/3sin3t,S’(t)=sint+sin3t;相频失真S(t)=sint+1/3sin3t,S’(t)=sin(t+2pi)+1/3sin(3t+3pi).程序:x=0:pi/20:3*pi;y1=sin(x)+(sin(3*x))/3;y2=sin(x)+sin(3*x);y3=sin(x+2*pi)+(sin(3*x+3*pi))/3;figure(1)plot(x,y1);hold onplot(x,y2,'r-');legend('S(t)=sint+1/3sin3t','S(t)=sint+sin3t')figure(2)plot(x,y1);hold onplot(x,y3,'r-');legend('S(t)=sint+1/3sin3t','S(t)=sin(t+2*pi)+1/3sin(3t+3*pi)')幅频失真相频失真2. 将输入的一串0,1编码1) 转换成AMI 码 2) 转换成HDB3码 3) 转换成双相码 4) 转换成Miller 码 5) 转换成CMI 码 总流程开始输入数组依次显示五种码形结束转换成AMI 码转换成CMI码转换成HDB3码转换成双相码转换成Miller码转化成五种码具体流程思路:数组xn 中0保持不变;并统计1个数,当为偶数1保持不变;当为奇数1变换为-1 1) 转换成AMI 码 nono no得到数组xnXn (i )是否=1num=num+1num 是否为偶数 得到数组xn 长度k i=1; num=0yn(i)=xn(i)yn(i)=xn(i)yn(i)= -xn(i)i 是否=k 得到数组yn i=i+12) 转换成HDB3码 思路:在AMI 码基础上1. 当出现第一个四个连0 时v=前一个非0数2. 当出现四个连0,v 和-v 交替出现3. 判断破坏脉冲是否成立,如果不成立四个连0的第一个0做相应变换(即添加B ) 以后的1也要取负得到v(1)是否是得到数组yni=1yn (i )是否=0 num=num+1 num=0num 是否=4v=yn(i-4)否否否 否否得到数组yn i=1 sign=1 num=0yn (i )是否=0num=num+1num 是否=4yh(i)=v(sign)sign 是否为偶数 yh(i)= -v(sign)yh(i)是否=yh(i-4) yh(i-3)=yh(i) yh(i:k)=Yh(i:k )i 是否=k 得到数组yhi=i+13) 转换成双相码思路:1.当出现0转换为01 2.当出现1转换为10;nono得到数组xn得到数组xn 长度kys(2i-1)=0;ys(2i-2)=1Xn(i)是否=0i=1ys(2i-1)=1;ys(2i-2)=0i 是否=k 得到数组ys i=i+14) 转换成密勒码 思路:1.当第一个数出现1时转换成10;否则转换为002.以后当出现1时对应的第一个码不变,第二个变化;当出现一个0对应的两个码元都不变;出现连0对应的两个码元都变化。
(一)码型变换实验
实验一码型变换实验一、实验目的1. 了解几种常用的数字基带信号。
2. 掌握常用数字基带传输码型的编码规则。
3. 掌握常用CPLD实现码型变换的方法。
二、实验内容1. 观察NRZ码、RZ码、AMI码、CMI码、HDB3码、BPH码的波形。
2. 观察全0码或全1码时各码型波形。
3. 观察HDB3码、AMI码的正、负极性波形。
4. .观察NRZ码、RZ码、AMI码、CMI码、HDB3码、BPH码经过码型反变换后的输出波形。
5. 自行设计码型变换电路,下载并观察波形。
三、实验器材1. 信号源模块2. ⑥号模块(码型变换)3. ⑦号模块(载波同步)4. 20M双踪示波器5. 连接线(若干)四、实验原理(一)基本原理1、数字通信中,有些场合可不经过载波调制解调而让基带信号直接进行传输。
例如,市区内利用电传机直接电报通信,或者利用中继长距离直接传输PCM 信号等。
这种不使用载波调制装置而直接传送基带信号的系统,称为基带传输系统。
它的基本结构如图1所示:图1 基带传输系统基本结构结构说明:(1)信道信号合成器:产生适合于信传输的基带信号。
(2)信道可以是允许基带信号通过的媒质,如能通过从直流到高频的有线线路。
(3)接收滤波器:用来接收信号和尽可能排除信道噪声和其他干扰。
(4)抽样判决器:在噪声背景下判定与再产生基带信号。
2、基带调制与解调(1)数字基带调制器:把数字基带信号变换成基带信号传输的基带信号。
(2)基带解调器器:把信道基带信号变换成原始数字基带信号。
(3)对传输用的基带信号的主要要求(4)对代码:将原始信息符号编制成适合于传输用的码型;(5)对码型的电波形:电波形适宜于在信道中传输。
(二)编码规则1、NRZ码NRZ (Noreturn-To-Zero)码,全称是单极性不归零码,在这种二元码中用高电平和低电平(这里为零电平)分别表示二进制信息“1”和“0”,在整个码元期间电平保持不变。
例如图2:图2 NRZ码2、RZ码RZ (Return-To-Zero)码,全称是单极性归零码,与NRZ码不同的是,发送“1”时在整个码元期间高电平只持续一段时间,在码元的其余时间内则返回到零电平。
数字基带信号实验及数字调制与解调实验
硬件实验一一、实验名称数字基带信号实验及数字调制与解调实验二、实验目的(1)了解单极性码,双极性码,归零码,不归零码等基带信号波形特点。
(2)掌握AMI,HDB3的编码规则。
(3)掌握从HDB3码信号中提取位同步信号的方法。
(4)掌握集中插入帧同步码时分复用信号的帧结构特点。
(5)了解HDB3(AMI)编译码集成电路CD22103。
(6)掌握绝对码,相对码概念及他们之间的变换关系。
(7)掌握用键控法产生2ASK,2FSK,2PSK,2DPSK信号的方法。
(8)掌握相对码波形与2PSK信号波形之间的关系,绝对码波形与2DPSK信号波形之间的关系。
(9)了解2ASK,2FSK,2PSK,2DPSK信号的频谱与数字基带信号频谱之间的关系。
(10)掌握2DPSK相干解调原理。
(11)掌握2FSK过零检测解调原理。
三、实验仪器1. 双踪示波器一台2. 通信原理Ⅵ型实验箱一台3. M6信号源模块、M4数字调制模块四、实验内容与实验步骤(一)数字基带信号实验1.熟悉信源模块,AMI&HDB3编译模块(有可编程逻辑器件模块实现)和HDB3编译码模块的工作原理。
2.接通数字信号源模块的电源。
用示波器观察熟悉信源模块上的各种信号波形。
(1)示波器的两个通信探头分别接NRZ-OUT和BS-OUT,对照发光二级管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用K1产生代码*1110010(*为任意代码,1110010为7位帧同步码),K2,K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。
3.关闭数字信号源模块的电源,按照下表连线,打开数字信号源模块和AMI(HDB3)编译码模块电源。
用示波器观察AMI(HDB3)编译单元的各种波形。
(1)示波器的两个探头CH1和CH2分别接NRZ-OUT和(AMI)HDB3,将信源模块K1,K2,K3的每一位都置1,观察并记录全1码对应的AMI码和HDB3码;再将K1,K2,K3置为全0,观察全0码对应的AMI和HDB3码。
码型变换——精选推荐
码型变换内蒙古⼯业⼤学信息⼯程学院实验报告课程名称:通信原理实验名称:码型变换实验类型:验证性■综合性□设计性□实验室名称:通信实验室班级:电⼦10-1班学号:201080203002 姓名:王红霞组别:同组⼈:成绩:实验⽇期: 2013年6⽉4⽇通信原理课程实验实验⼀码型变换⼀、实验⽬的1、了解⼏种常见的数字基带信号。
2、掌握常⽤数字基带传输码型的编码规则。
⼆、实验内容1.观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB3码、BPH码的波形。
2.观察全0码或全1码时各码型波形。
1.观察HDB3码、AMI码、BNRZ码正、负极性波形。
2.观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB3码、BPH码经过码型反变换后的输出波形。
⼆、实验过程a)将信号源模块、码型变换模块⼩⼼地固定在主机箱中,确保电源接触良好。
插上电源线,打开主机箱右侧的交流开关,再分别桉下两个模块中的开关POWER1、POWER2,对应的发光⼆极管LED001、LED002、D900、D901发光,按⼀下信号源模块的复位键,两个模块均开始⼯作。
b)将信号源模块的拨码开关SW101、SW102设置为00000101 00000000,SW103、SW104、SW105设置为01110010 00110000 00101010。
此时分频⽐千位、⼗位、个位均为0,百位为5,因此分频⽐为500,此时位同步信号频率应为4KHz。
观察BS、FS、2BS、NRZ各点波形。
实验数据:BS 2BS(注:2BS与BS的频率不⼀样,为2倍同步频率⽅波信号,此2图的频率不同,如果两次⽤同⼀频率就会形成鲜明的对⽐了,需要改进)FS NRZc)分别将信号源模块和码型变换模块上以下四组输⼊/输出接点⽤连接线连接:BS与BS、FS与FS、2BS与2BS、NRZ与NRZ。
观察码型变换模块上其余各点波形。
实验数据:1、RZ测试点输出的RZ码2、BPH测试点输出的BPH码3、CMI测试点输出的CMI码4、HDB3测试点输出的HDB3码5、BRZ测试点输出的BRZ码6、BNRZ测试点输出的BNRZ码7、AMI测试点输出的AMI码8、AMI—1测试点(AMI编码正极性(帧同步开关控制拨位“有”)信号输出点)输出的码型9、AMI—2测试点(AMI编码负极性10、HDB3—1测试点(HDB3编码正信号输出点)输出的码型极性信号输出点)输出的码型11、HDB3—2测试点(HDB3编码负12、BNRZ—1测试点(BNRZ编码正极性信号输出点)极性信号输出点,与NRZ码反相)13、BNRZ—2测试点(BNRZ编码负14、BRZ—1测试点(BRZ编码单极性信号输出点,与NRZ码同相)极性信号输出点)输出的码型15、ORZ测试点(RZ解码信号输出点,16、OBPH测试点(BPH解码信号输出点,与NRZ码⼀起双踪观察)与NRZ码⼀起双踪观察)输出的码型(滞后⼀个半码元)输出的码型(滞后⼀个码元)17、OCMI测试点(CMI解码信号输出点,18、OBRZ测试点(BRZ解码信号输出点,与NRZ码⼀起双踪观察)与NRZ码⼀起双踪观察)输出的码型(滞后两个码元)输出的码型(滞后半个码元)19、OBNRZ测试点(BNRZ解码信号输20、OAMI测试点(AMI解码信号输出点,与NRZ码⼀起双踪观察)出点,与NRZ码⼀起双踪观察)输出的码型(滞后半个码元)输出的码型(滞后半个码元)21、OHDB3测试点(HDB3解码信号输出点,与NRZ码⼀起双踪观察)输出的码型(滞后七个半码元)d)任意改变信号源模块上的拨码开关SW103、SW104、SW105的设置,以信号源模块的NRZ码为内触发源,⽤双踪⽰波器观察码型变换模块各点波形。
数字基带信号基本码型时频域分析
简明通信原理实验报告四Matlab 实验一数字基带信号基本码型时频域分析一、仿真内容:1、样例程序给出了两种方法求单极性非归零码和单极性归零码的功率谱密度(PSD)的代码,观察时域波形和 PSD 图并保存,指出单极性归零码的占空比,减小和增大占空比再进行仿真,观察时域波形和PSD 图的变化,保存结果并对不同占空比时的实验结果进行比较和分析说明。
2、画出求双极性非归零码和双极性归零码时域波形和 PSD 图的流程图,用两种方法编写程序,绘制时域波形和 PSD 图,取三种不同的占空比,比较不同占空比双极性归零码的时域波形和 PSD 变化,对结果进行分析说明。
3、给出仿真预习与准备中问题的答案,编写用方法三求四种基本码型 PSD 的程序并绘制 PSD 图,与方法一、二的结果进行比较。
二、仿真结果:1、样例程序:求单极性非归零码和单极性归零码的功率谱密度(PSD)的代码clear all; close all;Ts = 1;N_sample = 8;dt = Ts/N_sample;N = 1000;fs = 1/dt;t = 0:dt:(N*N_sample-1)*dt;T = Ts*N*N_sample;gt1 = ones(1,N_sample);gt2 = ones(1,N_sample/2);gt2 = [gt2 zeros(1,N_sample/2)];d = (sign(randn(1,N))+1)/2;data = upsample(d,N_sample);st1 = conv(data,gt1);st2 = conv(data,gt2);data = upsample(d,N_sample);%%方法一求PSD。
au_st1 = conv(st1,fliplr(st1))./length(st1); au_st2 = conv(st2,fliplr(st2))./length(st2); [f1,st1f] = myt2f(au_st1,fs);[f2,st2f] = myt2f(au_st2,fs);figuresubplot(221)plot(t,[st1(1:length(t))]);gridaxis([0 20 -1.5 1.5])xlabel('单极性NRZ波形');subplot(222)plot(f1,10*log10(abs(st1f)))xlabel('单极性NRZ功率谱密度(dB/Hz)');subplot(223)plot(t,[st2(1:length(t))]);gridaxis([0 20 -1.5 1.5])xlabel('单极性RZ波形');subplot(224)plot(f2,10*log10(abs(st2f)))xlabel('单极性RZ功率谱密度(dB/Hz)');%%方法二求PSD。
通信原理实验1:数字基带信号的码型变换实验
一、实验目的及要求(1)知道JH5001A型通信原理综合实验系统的基本功能原理及使用方法;(2)知道数字示波器的使用方法等;(3)掌握二进制码变换为AMI/HDB3码的编码规则及基本特征;(4)理解HDB3码编译码器的工作原理和硬件实现方法;(5)通过测试关键点波形图,进行验证。
二、实验设备(1)JH5001A型通信原理综合实验系统;(2)数字、模拟双踪示波器。
三、实验原理(一) AMI/HDB3两种码型的编译码规则及优缺点1、AMI码的全称是传号交替反转码,这种码型实际上把二进制脉冲序列变为三电平的符号序列,代码0仍变换为传输码的0,而把代码中的1交替的变换为传输码的+1、-1。
其优点如下:(1)在“1”、“0”码不等概率情况下,也无直流成分,对具有变压器或其它交流隅合的传输信道来说,不易受隔直特性的影响;(2)若接收端收到的码元极性与发送端的完全相反,也能正确判决;(3)全波整流后就能得到单极性码。
AMI码有一个重要缺点,即它可能出现长的连0串,会造成提取位定时信息的困难。
2、HDB3码(三阶高密度双极性码)HDB3码的编码规则为:(1)当没有≥4个连零时,HDB3码同AMI码;(2)当出现≥4个以上连零时,则将每四个连0化为一个小段,将用取代节B00V或000V取代4连零。
其中V称为破坏点,它是一个传号,破坏点极性交替;(3)当破坏点与其前一传号极性相同时,用000V代替四连零;当破坏点与其前一传号极性相异时,用B00V代替四连零,其中B与破坏点V同极性;(4)V与其后相邻的传号极性交替。
B码和V码各自都应始终保持极性交替变化的规律,以确保编好的码中没有直流成分;例如:(a)代码: 0 1 0000 1 1000 0 0 1 0 1(b)AMI码: 0 +1 0000 -1 +1000 0 0 -1 0 +1(c)加补信码 0 +1 000V+-1 +100V- 0 +1 0 -1(d)HDB3: 0 +1 000+1 -1 +1-100-1 0+10 –1HDB3码的译码却比较简单,同时它对定时信号的恢复是极为有利的。
通信原理报告 数字基带信号HDB3码型编码转换实现
通信原理课程设计报告题目:数字基带信号HDB3码型编码转换实现专业班级:姓名:学号:指导教师:设计任务要求:仿真实现数字基带通信系统信源输入24位二进制序列产生HDB3码,通过高斯白噪声信道,接收端滤波、解码的时域图及频谱图。
以矩形波为例,要求实现输入24位二进制序列产生AMI码,HDB3码,接收端滤波、解码上述码型。
摘要HDB3码全称三阶高密度双极性码(英语:High Density Bipolar of Order 3,简称:HDB3码)是一种适用于基带传输的编码方式,它是为了克服AMI码的缺点而出现的,具有能量分散,抗破坏性强等特点。
HDB3码实行转换一般分为三个步骤,先将消息码转换AMI码然后加“V”,接着加“B”,这几部我们可以使用C语言进行编程实现。
为了实现HDB3码的编码与转换,同时加深对通信系统工作原理的了解,我们采用了MATLAB软件进行编码仿真,同时学习掌握MATLAB软件的基础使用。
关键词:AMI码;HDB3码;编码;解码;MATLAB;仿真目录1. 设计原理 (4)1.1 HDB3码的介绍 (4)1.2 HDB3码的编码转换规则 (5)1.3 HDB3码的解码转换规则 (5)1.4 HDB3码的软件程序设计 (6)2. MATLAB软件仿真结果及其分析 (10)2.1MATLAB软件的介绍 (10)2.2 仿真结果图示 (12)2.3 仿真结果分析 (15)3. 设计总结及心得体会 (22)4. 参考文献 (22)5. 致谢 (23)正文1.设计原理1.1 HDB3码的介绍HDB3码即三阶高密度双极性码(英语:High Density Bipolar of Order 3,简称:HDB3码)是一种适用于基带传输的编码方式,“三阶”通俗讲就是最多3个连0码元,“高密度双极性”就是没有直流分量,不会连续出现+1或-1,它是为了克服AMI码的缺点而出现的,具有能量分散,抗破坏性强等特点。
(一)码型变换实验
实验一码型变换实验一、实验目的1. 了解几种常用的数字基带信号。
2. 掌握常用数字基带传输码型的编码规则。
3. 掌握常用CPLD实现码型变换的方法。
二、实验内容1. 观察NRZ码、RZ码、AMI码、CMI码、HDB3码、BPH码的波形。
2. 观察全0码或全1码时各码型波形。
3. 观察HDB3码、AMI码的正、负极性波形。
4. .观察NRZ码、RZ码、AMI码、CMI码、HDB3码、BPH码经过码型反变换后的输出波形。
5. 自行设计码型变换电路,下载并观察波形。
三、实验器材1. 信号源模块2. ⑥号模块(码型变换)3. ⑦号模块(载波同步)4. 20M双踪示波器5. 连接线(若干)四、实验原理(一)基本原理1、数字通信中,有些场合可不经过载波调制解调而让基带信号直接进行传输。
例如,市区内利用电传机直接电报通信,或者利用中继长距离直接传输PCM 信号等。
这种不使用载波调制装置而直接传送基带信号的系统,称为基带传输系统。
它的基本结构如图1所示:图1 基带传输系统基本结构结构说明:(1)信道信号合成器:产生适合于信传输的基带信号。
(2)信道可以是允许基带信号通过的媒质,如能通过从直流到高频的有线线路。
(3)接收滤波器:用来接收信号和尽可能排除信道噪声和其他干扰。
(4)抽样判决器:在噪声背景下判定与再产生基带信号。
2、基带调制与解调(1)数字基带调制器:把数字基带信号变换成基带信号传输的基带信号。
(2)基带解调器器:把信道基带信号变换成原始数字基带信号。
(3)对传输用的基带信号的主要要求(4)对代码:将原始信息符号编制成适合于传输用的码型;(5)对码型的电波形:电波形适宜于在信道中传输。
(二)编码规则1、NRZ码NRZ (Noreturn-To-Zero)码,全称是单极性不归零码,在这种二元码中用高电平和低电平(这里为零电平)分别表示二进制信息“1”和“0”,在整个码元期间电平保持不变。
例如图2:图2 NRZ码2、RZ码RZ (Return-To-Zero)码,全称是单极性归零码,与NRZ码不同的是,发送“1”时在整个码元期间高电平只持续一段时间,在码元的其余时间内则返回到零电平。
通信原理实验八 PSK DPSK 调制、解调原理实训
实验八 PSK/DPSK 调制、解调原理实训一、实验目的1、掌握二相 BPSK(DPSK)调制解调的工作原理及电路组成;2、了解载频信号的产生方法;3、掌握二相绝对码与相对码的码变换方法。
图 8-1 PSK/DPSK 调制解调实验模块二、实验电路工作原理(一)调制实验:在本实验中,绝对移相键控(PSK)是采用直接调相法来实现的,也就是用输入的基带信号直接控制已输入载波相位的变化来实现相移键控。
本实验中PSK 调制二相PSK(DPSK)的载波为1.024MHz,数字基带信号有32Kbit/s 伪随机码、2KHz 方波、CVSD 编码信号等。
模拟信号1.024MHz 载波输入到载波倒相器的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。
调节电位器VR801 和VR802 可使0 相载波与π相载波的幅度相等。
对载波的相移键控是用模拟开关电路实现的。
0 相载波与π相载波分别加到两个模拟开关的输入端,在数字基带信号的信码中,它的正极性加到模拟开关1 的输入控制端,它反极性加到模拟开关2 的输入控制端,用来控制两个同频反相载波的通断。
当信码为“1”码时,模拟开关1 的输入控制端为高电平,开关1 导通,输出0 相载波;而模拟开关2 的输入控制端为低电平,开关2 截止。
反之,当信码为“0”码时,模拟开关1 的输入控制端为低电平,开关1 截止;而模拟开关2 的输入控制端却为高电平,开关2 导通,输出π相载波。
两个模拟开关的输出通过载波输出开关J801 合路叠加后输出为二相PSK 调制信号。
DPSK 是利用前后相邻码元对应的载波相对相移来表示数字信息的一种相移键控方式。
绝对码是以基带信号码元的电平直接表示数字信息的,如规定高电平代表“1”,低电平代表“0”。
相对码是用基带信号码元的电平与前一码元的电平有无变化来表示数字信息的,如规定:相对码中有跳变表示1,无跳变表示0。
(二)解调实验:该解调器由三部分组成:载波提取电路、位定时恢复电路与信码再生整形电路。
通信原理概论实验 数字基带传输系统-数字基带信号的码型(一)
《通信原理概论实验》实验报告班级:学号:姓名:日期:2013年5月7日实验名称:数字基带传输系统—数字基带信号的码型(一)实验目的:(1)使用MATLAB产生各种简单的数字基带信号码型。
(2)通过实验进一步熟悉和掌握各种码型的编码规则。
实验要求:请按照本实验说明的实验内容部分的信息独立完成本实验,并提交实验报告,实验报告请参照实验报告模板的格式。
实验内容:1、编制以下函数,实现将输入的一段二进制代码编为相应的单极性不归零码输出。
参考程序如下:%snrz.mfunction y=snrz(x)%输入x为二进制码,输出y为编好的码t0=200; %每个码元200个点t=0:1/t0:length(x); %时间序列for i=1:length(x) %计算机码元的值if x(i)==1for j=1:t0%如果输入信息为1,码元对应的点值取1y((i-1)*t0+j)=1;end;elsefor j=1:t0%如果输入信息为0,码元对应的点值取0y((i-1)*t0+j)=0;endendendN=length(y);temp=y(N);y=[y,temp];plot(t,y);axis([0,i,-0.1,1.1]);title('单极性不归零码');说明:该函数编制好后,在MATLAB的命令窗口输入:x=[1 1 1 0 1 0 0 1 0 0 0 1 1 0]; %这个二进制序列可以任意修改snrz(x) %执行函数,输出显示对应的码型结果如图所示:2.编制另一个函数,用于产生双极性不归零码。
双极性不归零码的实现同单极性基本一样,只需将snrz.m中判断得到0信息后的语句“y((i-1)*t0+j)=0;”改为“y((i-1)*t0+j)=-1;”。
此外,双极性波形显示的时候,需要将“axis([0,i,-0.1,1.1]);”改为“axis([0,i,-1.1,1.1]);”3.编制以下函数,用于产生单极性归零码。
实验八 码型变换实验
实验八码型变换实验一、实验目的了解二进制单极性码变换为AMI/HDB3码的编码规则;熟悉HDB3码的基本特征;熟悉HDB3码的编译码器工作原理和实现方法;根据测量和分析结果,画出电路关键部位的波形;掌握CMI码的编码规则熟悉CMI编译码系统的特性二、实验仪器JH5001通信原理综合实验系统一台20MHz双踪示波器一台函数信号发生器一台三、实验原理和电路说明在实际的基带传输系统中,并不是所有码字都能在信道中传输。
例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变。
同时,一般基带传输系统都从接收到的基带信号流中提取收定时信号,而收定时信号却又依赖于传输的码型,如果码型出现长时间的连“0”或连“1”符号,则基带信号可能会长时间的出现0电位,从而使收定时恢复系统难以保证收定时信号的准确性。
实际的基带传输系统还可能提出其他要求,因而对基带信号也存在各种可能的要求。
归纳起来,对传输用的基带信号的主要要求有两点:1、对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型;2、对所选码型的电波波形要求,期望电波波形适宜于在信道中传输。
前一问题称为传输码型的选择;后一问题称为基带脉冲的选择。
这是两个既有独立性又有互相联系的问题,也是基带传输原理中十分重要的两个问题。
传输码(传输码又称为线路码)的结构将取决于实际信道特性和系统工作的条件。
在较为复杂的基带传输系统中,传输码的结构应具有下列主要特性:1、能从其相应的基带信号中获取定时信息;2、相应的基带信号无直流成分和只有很小的低频成分;3、不受信息源统计特性的影响,即能适应于信息源的变化;4、尽可能地提高传输码型的传输效率;5、具有内在的检错能力,等等。
满足或部分满足以上特性的传输码型种类繁多,主要有:CMI码、AMI、HDB3等等。
1)AMI/HDB3码AMI码的全称是传号交替反转码。
这是一种将消息代码0(空号)和1(传号)按如下规则进行编码的码:代码的0仍变换为传输码的0,而把代码中的1交替地变换为传输码的+1、–1、+1、–1…由于AMI码的传号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0电位保持不变的规律。
数字基带信号的码型
3.单极性归零码
归零波形:电脉冲宽度小于码元宽度,每个电脉冲在小
于码元长度内总要回到零电平。 编码规则:发送“1”时在整个码元期间高电平只持续一 段时间,在码元的其余时间内返回到零电平。 特点:可以直接提取定时信息。
上述三种二元码的小结:
1、频率谱中含有丰富的低频乃至直流分量;
2、当信息中出现连“0”或连“1”的时候,由于 信号中不出现跳变,因而无法提取定时信息;
特点:
1、最大连“0”或连“1”长度为5; 2、相邻码元跳变的概率为0.5915; 3、误码增殖系数最大值为5,平均值为1.281; 4、可以在正常工作状态下进行误码检测; 5、可以建立分组同步,平均经过3次移位即可建立正 确的分组同步。 如果输入:00000,00000,00000,00000„ 则输出:110010,110010,110010,110010„ 如果输入:00001,00001,00001,00001,„ 则输出:110011,100001,110011,100001,„ 如果输入:00001,00010,00001,00010,„ 则输出:110011,100010,110011,100010,„
HDB3码的编码虽然比较复杂,但译码却比较简单。 从收到的符号序列中可以容易地找到破坏点V,于是也断 定V符号及其前面的3个符号必是连0符号,从而恢复4个连 0码,再将所有-1变成+1后便得到原消息代码。 代码: 1 000 0 1 AMI码: -1 0 0 0 0 +1 -1 0 0 0 -V +1 HDB3码:-1 0 0 0 -V +1 000 0 1 0 0 0 0 -l 0 0 0 +V -1 0 0 0 +V -1 1 000 0 1 1 +l 0 0 0 0 -1 +1 +l 0 0 0+V -1 +1 +l -B 0 0-V +1 -1
实验8数字基带信号的码型变换
PST码能够提供旳定时分量,且无直流成份,编码过程也简朴,在接 受辨认时需要提供“分组”信息,即需要建立帧同步,在接受辨认时, 因为在“分组”编码时不可能出现00、++和—旳情况,假如接受辨 认时,出现上述旳情况,阐明帧没有同步,需要重新建立帧同步。
例如: 消息代码:01 00 11 10 10 11 00… PST码: 0+ -+ +- -0 +0 +- -+… 或:: 0- -+ +- +0 -0 +- -+…
01 0 0 1 1 1 0 1 0 1 1 0 0
图8- 8 PST码
三、试验阐明
SW301、SW302使用阐明: 1.SW501为8比特基带信号设置开关,每位拨上为1,拨下为0,速
2.观察多种码型变换波形,验证你旳分析成果。
五、测点阐明
TP301:原始数字基带信号;TP302:编码时钟;TP303:正极性 码型变换;
TP304:负极性码型变换;TP305:码型变换输出;TP306:选择 0010-1000时无波形。
六、试验报告要求
1.根据试验成果,画出多种码型变换旳测量点波形图。 2.写出多种码型变换旳工作过程。
左端第二位到第五位编码方式选择为:第五位为低位,第二位为高位, 编码方式选择如下表:
编码部分:完毕码型变换试验。其构造构成框图如下图8-9
图8-9 码型变换构造构成框图
译码模块:完毕码型变换试验。其构造构成框图如下图8-10