毕业设计说明书(减速器)
rv减速器毕业设计
rv减速器毕业设计RV减速器毕业设计一、引言随着科技的不断发展,机械工程领域的研究和应用也在不断推进。
在机械传动领域,减速器是一种非常重要的装置,它可以将高速旋转的输入轴转换为低速高扭矩的输出轴。
在众多减速器中,RV减速器因其结构紧凑、传动效率高等优点而备受关注。
因此,本文将探讨RV减速器的毕业设计。
二、RV减速器的原理与结构RV减速器是一种由行星齿轮传动和柔性齿轮传动组成的减速器。
其工作原理是通过输入轴和行星齿轮传动实现输入和输出轴之间的转速变换。
行星齿轮传动是通过行星齿轮与太阳齿轮和内齿轮之间的啮合来实现传动的。
而柔性齿轮传动则是通过柔性齿轮的弹性来实现传动。
RV减速器的结构紧凑,传动效率高,因此在工业机械和机器人等领域得到广泛应用。
三、RV减速器的设计要点1. 齿轮的选材与设计在RV减速器的设计中,齿轮是一个关键的部件。
齿轮的选材和设计直接影响着减速器的性能和寿命。
一般来说,齿轮应选择高强度、高硬度的材料,并进行合理的热处理。
同时,齿轮的设计应考虑到齿面接触应力、齿面强度等因素,以保证减速器的可靠性和稳定性。
2. 轴承的选择与布局RV减速器中的轴承起着支撑和定位的作用。
轴承的选择应考虑到承载能力、刚度和摩擦损失等因素。
同时,轴承的布局应合理,以减小传动过程中的振动和噪音。
3. 传动效率的提高RV减速器的传动效率直接影响着整个系统的能量损失和工作效率。
为了提高传动效率,可以采用优化的齿轮几何参数、减小齿轮啮合间隙、提高齿轮表面质量等方法。
四、RV减速器的应用领域由于RV减速器具有结构紧凑、传动效率高等优点,因此在众多领域得到广泛应用。
1. 工业机械在工业机械中,RV减速器可以用于各种传动装置,如输送带、机床、起重机等。
其结构紧凑的特点使得机械设备更加灵活,同时传动效率的提高也使得机械设备的工作效率更高。
2. 机器人在机器人领域,RV减速器被广泛应用于各种关节传动装置。
其结构紧凑、传动效率高的特点使得机器人具有更高的精度和稳定性。
一级减速器毕业设计说明书
武汉生物工程学院高等教育自学考试毕业论文论文题目: 一级直齿圆柱齿轮减速器指导老师:专业:准考证号:作者姓名:答辩时间:2014年 7 月 3 日目录一、引言 (3)二、摘要及关键字 3四未定义书签。
五、电机的选择 (5)1、电动机类型和结构型式 52、电动机容量 5P 5 3、电动机额定功率m4、电动机的转速 55、计算传动装置的总传动5六、计算传动装置的运动和动力参数 (6)1、各轴转速 (6)2、各轴输入功率为(kW) (6)3、各轴输入转矩(N m) (6)七、传动件的设计计算 (7)1、齿轮传动设计 (7)八、轴的设计计算 (10)1、高速轴的设计 (10)2、低速轴的设计 (11)九、轴的疲劳强度校核 (12)1、低速轴的校核 (12)十、轴承的选择及计算 (14)1、高速轴轴承的选择及计算 (14)2、低速轴的轴承选取及计算 (15)十一、键连接的选择及校核 (16)1、高速轴的键连接 (16)2、低速轴键的选取 (16)十二、铸件减速器机体结构尺寸计算表及附件的选择 (17)1、铸件减速器机体结构尺寸计算表 (17)2、减速器附件的选择 (17)十三、总结18 参考文献致谢引言本论文主要内容是进行一级圆柱直齿轮的设计计算,设计计算中运用到了《机械设计基础》、《机械制图》《工程力学》、《公差与互换性》等多门课程知识,并运用《AUTOCAD》软件进行绘图,因此是一个非常重要的综合实践环节,也是一次全面的、规范的实践训练。
通过这次训练,使我们在众多方面得到了锻炼和培养。
主要体现在如下几个方面:(1)培养了我们理论联系实际的设计思想,训练了综合运用械设计课程和其他相关课程的基础理论并结合生产实际进行分析和解决工程实际问题的能力,巩固、深和扩展了相关机械设计方面的知识。
(2)通过对通用机械零件、常用机械传动或简单机械的设计,使我们掌握了一般机械设计的程序和方法,树立正确的工程设计思想,培养独立、全面、科学的工程设计力和创新能力。
毕业设计:减速器设计说明书(终稿)-精品
宁波职业技术学院课程设计说明书课程:机械零件设计题目:减速器设计说明书班级:模具3102学生:李佳奇指导教师:李会玲目录第一章减速器简介 (4)1.1 减速器概论 (4)1.2减速器的作用 (4)1.3减速器的种类 (5)1.4常用的减速器 (5)1.5我国减速器发展趋势 (5)第二章机械传送装置的总体设计 (6)2.1确定传动方案 (6)2.2电机的选择 (7)2.2.1选择电动机类型 (7)2.2.2选择电动机容量 (7)2.2.3确定电动机转速 (8)2.3算传动装置的总传动比并分配各级传动比 (8)2.4算传动装置的运动参数和动力参数 (9)第三章带传动设计 (10)3.1带传动的设计计算 (10)3.2 V带轮的设计 (12)第四章齿轮的设计 (13)4.1、选择材料和热处理方法,并确定材料的许用接触应力 (13)4.2、根据设计准则,按齿面接触疲劳强度进行设计 (14)4.3确定齿轮的主要参数 (15)4.4、齿轮其他尺寸计算 (15)第五章轴的设计 (17)5.1、从动轴设计 (17)主动轴如图 (20)第六章键联接的选择 (20)6.2、螺栓、螺母、螺钉的选择 (21)6.3 轴承的寿命计算的校核 (21)6.5联轴器的选择 (22)第七章减速器的润滑与密封 (22)7.1、减速器的润滑 (22)7.2、减速器的密封 (23)第八章参考文献 (24)第一章减速器简介1.1 减速器概论减速器是一种动力传达机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。
1.2减速器的作用1)降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比,但要注意不能超出减速机额定扭矩。
2)降速同时降低了负载的惯量,惯量的减少为减速比的平方。
大家可以看一下一般电机都有一个惯量数值。
1.3减速器的种类一般的减速机有斜齿轮减速器(包括平行轴斜齿轮减速器、蜗轮减速器、锥齿轮减速器等等)、行星齿轮减速器、摆线针轮减速器、蜗轮蜗杆减速器、行星摩擦式机械无级变速器等等。
毕业设计论文----减速器毕业设计
一. 选择电动机类型按工作要求和条件,选用Y 型异步电动机封闭式结构,电压380V 。
二. 选择电动机容量工作机主轴功率P W =FV=2500×1.5=3.75KW传动装置的总功率ηa =η1.η23. η3. η4. η5=0.95×0.993×0.96×0.99× 0.96=0.841 式中(由表2-2查得)η1=0.95 η2=0.99 η3=0.96 η4=0.99 η5=0.96分别为V 带传动.轴承.齿轮传动(齿轮精度为8级,不包括轴承效率)联轴器.卷筒∴.P d =w aP η=3.75kw0.841=4.459kw三. 确定电动机转速 卷筒轴工作转速为:η=60×1000×1.5πD =60×1000×1.5π×260110.24r min按表2.1推荐的传动比合理范围初取V 带传动的传动比为1i '=2∼4 齿轮传动比2i '=3∼7则总传动比合理范围为i '=21i i ''=6∼28∴电动机转速的合理范围为n d =i 'n=(6∼28)×110.24=(661.2∼3086.72)r min根据电动机详细技术特征和外形及安装尺寸见表 根据额度功率P ed ≥P d ,且转速满足 661.2r min <n d <3086.72r min 选电动机型号为:Y132S-4 nd=1440r min 四.传动装置的总传动比及分配传动比 1.总传动比 i=n d n 1=1440110.2413.062.分配各级传动比分配传动装置传动比 i=1j i i式中1i 、j i 分别为V 带传动和减速器的传动比为使V 带传动外廓尺寸不至于过大;初取1i =2.8则齿轮的传动比为: 2i =i i 1=13.062.8=4.66五.计算传动装置的运动和动力参数(1)各轴功率按工作机所需功率及传动效率进行计算 各轴的功率为:I 轴输入功率:I P 入=P d .η1=4.459×0.95=4.23kwII 轴输入功率:II P 入=I P 入.η2.η3=4.23×0.99×0.96=4.02kw III 轴输入功率:III P 入= II P 入.η2.η4=4.02×0.99×0.99=3.94KW (2)各轴的转速: I 轴的转速:n 1 =n i 1=14402.8=514.29r min II 轴的转速:n 2 =n 1i 1514.294.66=110.36r minIII 轴的转速:n 3=n 2=110.36r min(3)各轴的转矩为:I 轴的输入转矩 T 1=T d .i 1.η1=29.57×2.8×0.95=78.66N.mII 轴的输入转矩 T 2=T 1.i 2.η2.η3=78.66×4.66×0.99×0.96=348.37N.m III 轴的输入转矩 T3=T 2.η2η4=348.37×0.99×0.99=341.44N.m设计V 型带1.确定计算功率P CPC=K A .P ,已知P=5.5kw ,查表得K A =1.2 则P C =6.6kw2.选择带型 根据计算功率P C =6.6kw 和小带轮转速n 1=n d =1440r/min 查表得选A 型带3.确定V 带轮基准直径查表知A 型带的d min =75mm i=2.8 ε=0.02 n 2=14402.8=514.29r/minD d2 =n1n 2d d1 1−ε =2.8×100 1−0.02 =274.4查表 取dd1=100mm dd2=280mm 4.验算带速: V=πd d1n 160×1000π×100×144060×1000=7.54m/s5.确定带的基准长度L d 和中心距a按设计要求, 初取中心距 a 0=450mm ,符合0.7(d d1+d d2)<2(d d1+d d2) 即262.08<a 0<748.8 计算V 带的基准长度L 0 L 0=2a0+π2 (d d1+d d2)+(d d2−d d1)24a 0=2×450+π2(100+274.4)+(274.4−100)24×450=1504.708mm ≈1505mm 查表得L d =1550mm 计算实际中心距 a ≈a 0+L d −L 02=450+1550−15052=472.5mma min =a-0.015L d =472.5-0.015×1550=449.25mm a max =a+0.03L d =472.5+0.03×1550=519mm 6.验算小带轮包角 1 =1800−d d1−d d2a×57.30=1800−(274.4−100)472.5×57.30=158.850 ≈15907.确定V 带根数查表得:P 0=1.32kw △P 0=0.17kw K α=0.95 K L =0.98Z=Pc P 0=P Cp0+△P 0= 6.61.32+0.17 ×0.95×0.98=4.76所以Z=5根8.确定单根V 带的初拉力 F 0=500P C ZV2.5K α−1 +qV 2=500×6.65×7.54 2.50.95−1 +0.1×7.542=148.5N9.带传动作用在带轮轴上的压力F 0=2ZF 0sinα12=2×5×148.5×sin15902=1460N10.带轮结构设计设计斜齿轮大带轮n 2= 514.29r min ,即为减速器中的小齿轮转速n 3= 514.29r min 滚子的转速为110.36r min ,即为减速器中的大齿轮转速n 4=110.36r min 输入减速器轴的功率P 减=4.459×0.95=4.23kw ,每年工作300天(1) 取齿轮材料及热处理方法采用硬齿面,参考表;大小齿轮都用45#钢,表面淬火。
主减速器设计_毕业论文说明书
主减速器设计_毕业论⽂说明书题⽬名称:主减速器设计⼀、设计内容和要求:1.根据提供的数据,确定主减速器的结构尺⼨,注意汽车设计规范;2.按主减速器设计的要求进⾏设计参数的选择和计算,完成各部件的强度校核;3.要求设计结构紧凑,各零部件布置合理;4.在完成参数的计算和选择后,按照规定的格式规范撰写设计说明书;5.应⽤CAD软件绘制主减速器总成的装配图和零件图,并遵守制图规范;6.设计分组进⾏,每组由组长负责,设计由组内同学分⼯合作完成;7.设计成绩按组及个⼈答辩情况分级评定;8.设计中遇到问题时及时向指导教师汇报。
⼆、完成内容:1.绘制零件图和装配图,图纸总量不少于2张A0图纸(装配图A0);2.编制设计计算说明书1份,字数为3000字以上;3.课程设计总结⼀份,要求注明组内成员的分⼯及⼯作量,字数不限。
专业负责⼈意见签名:年⽉⽇摘要本次设计是有关发动机CA488的主减速器。
本次设计内容:⽅案选择、⽀撑⽅式的选择、计算与校核、轴承计算与校核。
汽车正常⾏驶时,发动机的转速通常在2000rmin⾄3000rmin左右,如果将这么⾼的转速只靠变速箱来降低,那么变速箱的内齿轮副的传动⽐则需很⼤,两齿轮的半径也越⼤。
另外,转速下降,扭矩势必增加,也就加⼤了变速箱与变速箱后⼀级传动机构的传动负荷。
所以,在动⼒向左右驱动轮分流的差速器之前设置⼀个主减速器。
汽车主减速器最主要的作⽤就是减速增扭。
我们知道发动机的转速是⼀定的,当通过主减速器将传动速度降下来以后,能获得⽐较⾼的输出扭矩,从⽽得到较⼤的驱动⼒。
此外,汽车主减速器还有改变动⼒输出⽅向、实现左右车轮差速和中后桥的差速功能。
关键字:主减速器、驱动轮、齿轮、设计、校核⽬录1 课程设计的⽬的 (5)2 单级主减速器结构⽅案分析 (6)2.1 主减速器的功⽤ (6)2.2 主减速器的结构形式 (6)2.2.1 主减速器的齿轮类型选择 (6)2.2.2 主减速器的减速形式选择 (6)2.3 主减速器主、从动锥齿轮的⽀撑⽅案 (6)2.3.1 主动锥齿轮的⽀撑 (6)2.3.2 从动锥齿轮的⽀撑 (7)3 主减速器的基本参数选择与设计计算 (8)3.1 主减速器计算载荷的确定 (8)3.2 主动锥齿轮的计算转矩 (9)3.3 主减速器锥齿轮的主要参数选择 (9)3.3.1 主、从动锥齿轮齿数Z1和Z2的确定 (9)3.3.2 从动锥齿轮⼤端分度圆直径D2和端⾯模数m s (10)3.3.3 主、从动锥齿轮齿⾯宽和的计算 (11)3.3.4 中点螺旋⾓β的选择 (11)3.3.5 双曲⾯齿轮副偏移距E (11)3.3.6 双曲⾯齿轮的偏移⽅向 (12)3.3.7 螺旋⽅向的确定 (12)3.3.8 法向压⼒⾓α (13)4 主减速器双曲⾯锥齿轮的强度计算 (14)4.1 单位齿长圆周⼒的计算 (14)4.2 轮齿的弯曲强度计算 (14)4.2.1 主动锥齿轮强度校核 (14)4.2.2 从动锥齿轮强度校核 (15)4.3 轮齿的表⾯接触强度计算 (15)4.4主减速器锥齿轮的材料选择 (15)5 主减速器轴承计算及选择 (17)5.1 锥齿轮齿⾯上的作⽤⼒ (17)5.1.1 齿宽中点处的圆周⼒F (17)5.1.2 锥齿轮的轴向⼒和径向⼒ (18)5.2 主减速器轴承载荷的计算 (19)5.3 锥齿轮型号的确定 (21)结论 (23)参考⽂献 (23)1 课程设计的⽬的本课程设计是在学完“汽车设计”课程之后进⾏的,旨在对车辆设计的学习进⾏总结,对所学知识加以巩固。
减速器毕业设计
减速器毕业设计
减速器是一种常见的机械传动装置,广泛应用于各个领域中。
本文的毕业设计目标是设计一种小型减速器,以实现高效率、低噪音和稳定的运行。
首先,需要进行减速器的结构设计。
考虑到减速器的使用需求,设计采用了螺旋伞齿轮传动结构。
该结构具有传动效率高、传动平稳等优点。
通过计算和选型,确定了减速器的减速比,并设计了减速器的齿轮尺寸和齿数。
其次,需要进行减速器的材料选择和强度计算。
在材料选择上,考虑到减速器的使用环境和传动力矩要求,选用了高强度钢材作为主要材料。
通过应力分析和强度计算,保证减速器在正常工作负载下不会发生弯曲、断裂等问题。
接下来,需要进行减速器的润滑设计。
润滑是减速器正常运行的关键,能够减少磨损和摩擦,延长使用寿命。
设计采用了油润滑方式,并选用了适当的润滑油。
通过润滑油的供给方式和润滑系统的设计,保证减速器在工作过程中能够良好的润滑。
最后,进行减速器的性能测试和分析。
通过实际搭建小型减速器样机,进行加载和负载测试。
通过测试数据的分析,评估减速器的传动效率、噪音和运行稳定性等性能指标。
综上所述,本文的毕业设计是设计一种小型减速器,通过结构设计、材料选择、强度计算、润滑设计和性能测试等环节,实
现高效率、低噪音和稳定的运行。
该设计对于提高传统减速器的性能和优化其应用具有一定的实际意义。
毕业设计---减速器传动轴的加工
毕业设计(论文)题目_减速器传动轴的加工_摘要随着机电一体化的加工技术的迅猛发展,数控机床的应用已日趋普及,机械制造业正在越来越多地采用数控技术来改善其生产加工方式,社会对其相应技术人才的需求也越来越高.减速机利用齿轮的速度转换器将电机的回转数减速到所需要的回转数,它主要是一种动力传达的机构。
在当前用于传递动力与运动的机构中,减速机的应用非常广泛,可以说,几乎在各式机械的传动系统中都可以见到其踪影。
从大动力的传输工作到小负荷、精确的角度传输都可以见到减速机的身影,而且在工业的应用上,减速机具有减速及增加转矩的功能,因此减速机广泛用在速度与扭矩的转换设备中。
减速机的功用主要有两个方面:一是降速同时提高输出的扭矩,扭矩的输出比列按电机的输出乘以减速比,但不能超出减速机的额定扭矩;二是减速同时降低负载的惯量,惯量的减少是减速比的平方,一般情况下电机都有一个惯量值。
因此,本人概述了轴类典型零件的加工工艺及加工方案,通过自己所学专业知识和实际加工经验并把数控机床与普通机床合理的结合在一起,更好的应用到实际当中.本次毕业设计主要的内容是对于减速机输出轴的加工采用数控车床C616A进行加工,采用线切割技术把毛坯切好进行热处理,再用车床进行粗加工,先把轴的端面车好,留下一定的余量,对加速轴的两外端进行倒角。
接着对键槽用铣刀进行半精加工,最后用C616A数控车床进行精加工磨砂保证亮端面的平行度偏差不超过0.1,外圆的尺寸保证在φ68。
让各部位尺寸都达到标准。
关键词:机械加工数控加工加工工艺目录摘要 (2)1绪论 (4)2数控加工工艺与分析 (5)3刀具的选择 (12)4输出轴类零件加工 (13)5输出轴的毛坯,材料及热处理 (15)6输出轴的加工工艺 (17)7切削用量选择 (19)8输出轴的加工 (21)9展望 (24)结束语 (25)参考文献 (26)1绪论1.1数控起源与发展1946年诞生了世界上第一台电子计算机,这表明人类创造了可增强和部分代替脑力劳动的工具。
(完整版)减速机设计毕业设计
摘要传统的摆线针轮减速机精确度不够,不能应用于精密传动的场合,本课题旨在改进传统的行星针轮摆线减速机,提高精度和效率。
通过改进齿轮啮合副以及使用精度更高的等速输出机构来实现。
本设计通过对基本机构的分析来确定本设计机构的可能性,然后通过接触强度的计算进行摆线轮尺寸的确定,摆线齿轮的尺寸确定后就可以确定针轮的尺寸,通过摆线齿轮的尺寸来初步确定十字盘的尺寸,通过对十字盘的校核来验算尺寸是否合格,不合格继续修改参数,进行下一轮计算,直到算出合格的参数为止。
然后通过选取联轴器来确定轴的最小尺寸,在根据轴上零件尺寸来确定各轴段尺寸,最后确定整个减速器的尺寸。
通过查阅公式进行了一系列计算后,各零部件的强度都符合要求,确定了本设计的改进方案在理论上的合理性和可行性。
关键词:行星传动摆线齿轮十字钢球等速输出机构变齿厚AbstractTraditional cycloidal reducer precision is not enough, can not be applied to precision transmission occasions, this subject aims to improve the traditional needle wheel planetary cycloid reducer, improve accuracy and efficiency. By improving the gear meshing pair and use higher precision constant output mechanism.This design through the analysis of basic mechanism to determine the possibility of the design organization, and then through the calculation of contact strength for determination of cycloid gear size, the size of the cycloidal gear is determined can determine the size of needle wheel, through the size of the cycloidal gear to preliminarily determine the dimensions of the cross plate, plate through the cross checking to check the size whether qualified, unqualified continue to modify parameters,calculation of the next round until work out qualified parameters. Then select coupling to determine the minimum size of shaft, in according to the size of shaft parts to determine the various shaft section size, finally determine the size of the whole reducer.By looking at in a series of calculation formula, the strength of the parts meet the requirements, determine the improvement scheme of the design in theory the rationality and feasibility.Keywords:Planetary-transmission; Cycloid ; Cross steel ball uniform output mechanism; Variable tooth thickness目录第1章绪论 (1)1.1 目的和意义 (1)1.2 摆线针轮与钢球等速输出机构的国内外研究概况 (1)1.2.1 摆线针轮减速器的国内外研究概况 (2)1.2.2 无隙钢球等速输出机构的研究现状 (3)1.3 主要研究内容 (4)第2章传动总体设计 (5)2.1 传动机构设计 (5)2.1.1 机构的改进方案 (5)2.2.1 总体的结构设计 (8)2.2 计算负载以及电机的选择 (9)第3章摆线齿轮的设计及校核 (10)3.1 摆线齿轮的受力分析 (10)3.2 摆线轮及针轮的校核计算 (13)3.2.1 齿面接触强度计算 (13)3.2.2 针齿抗弯曲强度计算及刚度计算 (14)3.3 摆线针轮的计算和校核过程 (14)3.4转臂轴承的选择 (19)第4章十字钢球等速输出机构的计算及校核 (20)4.1 结构组成及工作原理 (20)4.2 无回差特性分析 (21)4.3 力学性能分析 (23)4.3.1 钢球滚道槽啮合副的受力分析 (23)4.3.2 强度分析 (26)4.4 十字钢球等速输出机构的计算和校核 (27)第5章轴的设计计算及校核和键的校核 (30)5.1 轴的设计及校核过程 (30)5.1.1 输入轴的设计与校核 (30)5.1.2 输出轴的设计与校核 (35)5.2 键的校核 (41)结论 (41)致谢 (42)参考文献 (42)第1章绪论减速器是各种机械设备中最常见的部件,它的作用是将电动机转速减少或增加到机械设备所需要的转速,摆线针轮行星减速器由于具有减速比大、体积小、重量轻、效率高等优点,在许多情况下可代替二级、三级的普通齿轮减速器和涡轮减速器,所以使用越来越普及,为世界各国所重视。
汽车减速器毕业设计
汽车减速器毕业设计嘿,朋友们!今天咱来聊聊汽车减速器毕业设计这档子事儿。
你说这汽车减速器啊,就好比是汽车的“贴心小棉袄”。
它能让汽车跑起来更稳,就像咱走路稳当当的,不会磕磕绊绊。
要是没有它,那汽车就跟脱缰的野马似的,可不得乱套啦!咱做毕业设计的时候,可得好好琢磨琢磨。
首先得搞清楚它的原理吧,这就像是了解一个人的脾气性格一样。
你得知道它是怎么工作的,怎么让汽车减速的,这可不是随随便便就能糊弄过去的。
然后呢,设计的结构也很重要啊!就跟盖房子似的,你得把框架搭好,得结实,不能摇摇晃晃的。
这结构要是不合理,那减速器能好用吗?肯定不行啊!在选材上也不能马虎呀!你想想,要是用了质量不咋地的材料,那不是给自己找麻烦嘛。
就跟你穿衣服似的,得挑质量好的,穿着舒服还耐穿。
还有啊,装配的时候也得细心细心再细心。
每个零件都得放对地方,就跟拼图似的,一块都不能错。
要是装错了,那可就出大乱子啦!咱做这个毕业设计,不就是为了以后能真的在汽车行业里大展拳脚嘛。
你说要是连个减速器都搞不定,那还怎么混呀!所以啊,咱得下功夫,别怕麻烦。
设计的时候遇到难题了,别着急上火,这很正常呀!谁还没有个卡壳的时候呢。
多去查查资料,多和同学讨论讨论,说不定灵感就来了呢。
咱就把这个毕业设计当成一次挑战,一次让自己变得更厉害的机会。
等咱把它完成了,那得多有成就感啊!到时候看着自己设计的减速器,心里肯定美滋滋的。
反正啊,汽车减速器毕业设计可不是闹着玩的,得认真对待。
咱得让这个“小棉袄”发挥出它最大的作用,让汽车跑得又稳又快。
加油吧,朋友们!咱一定能行!。
减速器毕业设计
第一章减速器概述1.1 减速器的主要型式及其特性减速器是一种由封闭在刚性壳体内的齿轮传动、蜗杆传动或齿轮—蜗杆传动所组成的独立部件,常用在动力机与工作机之间作为减速的传动装置;在少数场合下也用作增速的传动装置,这时就称为增速器。
减速器由于结构紧凑、效率较高、传递运动准确可靠、使用维护简单,并可成批生产,故在现代机械中应用很广。
减速器类型很多,按传动级数主要分为:单级、二级、多级;按传动件类型又可分为:齿轮、蜗杆、齿轮-蜗杆、蜗杆-齿轮等。
电动机联轴器高速轴中间轴低速轴减速器系统框图以下对几种减速器进行对比:1)圆柱齿轮减速器当传动比在8以下时,可采用单级圆柱齿轮减速器。
大于8时,最好选用二级(i=8—40)和二级以上(i>40)的减速器。
单级减速器的传动比如果过大,则其外廓尺寸将很大。
二级和二级以上圆柱齿轮减速器的传动布置形式有展开式、分流式和同轴式等数种。
展开式最简单,但由于齿轮两侧的轴承不是对称布置,因而将使载荷沿齿宽分布不均匀,且使两边的轴承受力不等。
为此,在设计这种减速器时应注意:1)轴的刚度宜取大些;2)转矩应从离齿轮远的轴端输入,以减轻载荷沿齿宽分布的不均匀;3)采用斜齿轮布置,而且受载大的低速级又正好位于两轴承中间,所以载荷沿齿宽的分布情况显然比展开好。
这种减速器的高速级齿轮常采用斜齿,一侧为左旋,另一侧为右旋,轴向力能互相抵消。
为了使左右两对斜齿轮能自动调整以便传递相等的载荷,其中较轻的龆轮轴在轴向应能作小量游动。
同轴式减速器输入轴和输出轴位于同一轴线上,故箱体长度较短。
但这种减速器的轴向尺寸较大。
圆柱齿轮减速器在所有减速器中应用最广。
它传递功率的范围可从很小至40 000kW,圆周速度也可从很低至60m/s一70m/s,甚至高达150m/s。
传动功率很大的减速器最好采用双驱动式或中心驱动式。
这两种布置方式可由两对齿轮副分担载荷,有利于改善受力状况和降低传动尺寸。
设计双驱动式或中心驱动式齿轮传动时,应设法采取自动平衡装置使各对齿轮副的载荷能得到均匀分配,例如采用滑动轴承和弹性支承。
汽车主减速器及差速器毕业设计说明书
毕业设计(论文)题目名称:院系名称:班级:学号:学生姓名:指导教师:2010年06月前言汽车自上个世纪末诞生以来,已经走过了风风雨雨的一百多年。
从卡尔.本茨造出的第一辆三轮汽车以每小时18公里的速度,跑到现在,竟然诞生了从速度为零到加速到100公里/小时只需要三秒钟多一点的超级跑车。
这一百年,汽车发展的速度是如此惊人!同时,汽车工业也造就了多位巨人,他们一手创建了通用、福特、丰田、本田这样一些在各国经济中举足轻重的著名公司。
让我们一起来回望这段历史,品味其中的辛酸与喜悦,体会汽车给我们带来的种种欢乐与梦想……在我国随着长春第一生产汽车厂的建成投产。
1955年生产了61辆汽车,才结束了我国一直不能生产汽车的历史。
经过几十年的努力,目前我国建立了自己的汽车工业。
全国汽车由建国时的5万辆上升到现在的上千万辆。
改革开放以来,我国引进了许多国家汽车的先进技术,使得我国汽车工业的产量和质量都得到了巨大的发展和提高。
但是由于我国是发展中国家,与发达国家相比,我国汽车工业无论是产量还是质量都有相当大的差距。
要使我国实现四个现代化,我国汽车工业必须坚持不懈地有更大的发展。
基于以上事实,我选择了“轻型载货汽车减速器和差速器设计”这一课题。
在本次设计中得到了史建茹老师的精心指导才使得我得以按时完成任务。
在此向史建茹老师表示感谢。
摘要汽车主减速器及差速器是汽车传动中的最重要的部件之一。
它能够将万向传动装置产来的发动机转矩传给驱动车轮,以实现降速增扭。
本次设计的是有关轻型载货汽车的主减速器和差速器总成。
并要使其具有通过性。
本次设计的内容包括有:方案选择,结构的优化与改进。
齿轮与齿轮轴的设计与校核,以及轴承的选用与校核。
并且在设计过程中,描述了主减速器的组成和差速器的差速原理和差速过程。
方案确定主要依据原始设计参数,对比同类型的减速器及差速器,确定此轮的传动比,并对其中重要的齿轮进行齿面接触和齿轮弯曲疲劳强度的校核。
而对轴的设计过程中着重齿轮的布置,并对其受最大载荷的危险截面进行强度校核,轴承的选用力求结构简单且满足要求。
行星齿轮减速器设计说明书
一齿差渐开线行星齿轮减速器设计摘要本毕业设计的目标是设计一齿差渐开线行星齿轮减速器。
本减速器属于K-H-V型。
K 表示行星轮,H表示转臂,V表示输出轴。
由于行星轮与内齿轮齿数差为1,所以叫“一齿差”,可以实现很大传动比。
行星轮少齿差行星齿轮减速器具有结构紧凑、体积小、重量轻、传动平稳、效率高、传动比范围大等优点,在许多情况下可以代替多级的普通齿轮传动。
但齿轮必须修正,即选定一对变位系数。
设计时首先在一齿差齿轮传动的基础上进行机构的运动设计,包括几何尺寸的计算、强度校核计算等。
设计时要满足几个条件,即要保证啮合率不小于1、齿顶不相碰、不发生齿廓重迭干涉,然后对主要零件进行详细的受力分析和设计计算,从而进行装配结构的设计,并最终在AutoCAD环境下绘出减速器的装配图和零件图。
另外,还在pro-engineer环境下实现三维建模,并对减速器传动进行相关的分析。
关键词:减速器一齿差变位 pro-engineerThe design of one tooth difference involute planetary gear reducerAbstractMy design goal is a kind of one tooth difference involute planetary gear reducer. The reducer belonging to the K-H-V type. K stands for planetary gear, H stands for tumbler, and V stands for output axle. The tooth difference between the planetary gear and the internal gear is one, therefore it can achieve a large transmission ratio. Planetary gear with few teeth difference planetary gear reducer has the advantages of compact structure, small volume, light weight, stable transmission, high efficiency, wide range of transmission ratio etc, in many cases can replace the multistage ordinary gear drive. But the gear must be trimmed, that is to selecte a pair of displacements coefficient. When I design it, first of all, I do the motion design of mechanisms at the base of one gear tooth difference movement, which includes geometry size calculation and strength checking calculation. The design must meet several conditions, we must ensure that the coincidence should not be less than one, no collision between top gear teeth, and no profile overlapping interference, then make detailed stress analysis and design calculation of the main parts, thus design the assembly structure, and ultimately drawn in AutoCAD environment the reducer assembly and main parts. In addition, achieve three-dimensional modeling in pro-engineer environment to conduct relevant analysis.Key words:reducer one tooth difference displace pro-engineer目录1.前言 (4)1.1课题来源 (4)1.2产品的发展与研究 (4)1.3渐开线少齿差行星传动 (5)1.4 渐开线少齿差行星传动减速器工作原理 (6)1.4.1少齿差行星齿轮传动基本原理 (6)1.4.2实现少齿差行星传动的条件 (7)2.传动方案的总体设计 (7)2.1拟定传动方案 (7)2.2电机的选择 (8)2.3 选择W机构 (8)2.4零件材料和热处理的选择 (9)3.减速装置的设计 (9)3.1齿轮齿数的确定 (9)3.2模数的确定 (10)3.3齿轮几何尺寸的设计计算 (12)3.4偏心轴的设计 (20)3.5销轴及销轴套的选择 (21)3.6浮动盘的设计 (22)3.7输出轴的设计 (22)4.主要零件的校核 (23)4.1偏心轴的校核 (23)4.2销轴的弯曲强度校核 (25)4.3销轴套与滑槽平面的接触强度校核 (26)4.4轴承的校核 (27)5.一齿差行星传动效率计算 (27)5.1行星机构的啮合效率计算 (28)5.2输出机构效率计算 (29)5.3转臂轴承的效率计算 (30)5.4 总效率计算 (30)6.减速器的润滑与密封与固定 (30)7.三维建模 (30)7.1零件建模 (30)7.2虚拟装配及爆炸视图 (36)结束语 (37)参考文献 (38)致谢....................................................... 错误!未定义书签。
减速器毕业设计说明书
减速器毕业设计说明书
一、设计背景
减速器是一种重要的机械传动装置,广泛应用于工业生产中,具有降
低转速、增加扭矩的作用。
本次毕业设计的目标是设计一款高效稳定、功率大、体积小的减速器。
二、产品设计要求
1. 转速范围:500-3000 rpm
2. 扭矩范围:10-100 Nm
3. 传动比:10:1-50:1
4. 高效率:大于90%
5. 低噪音:小于70 dB
6. 易于维护
三、产品设计方案
1. 采用行星齿轮,能够满足高效率、大扭矩的要求。
2. 采用等分滑动齿轮,能够保证低噪音、平滑运行。
3. 使用优质材料,提高产品使用寿命。
4. 采用模块化设计,易于维护、升级。
四、产品设计流程
1. 研究市场需求和竞争环境,确定产品定位和设计方向。
2. 进行产品规划和概念设计,确定产品形态和功能。
3. 开展技术方案研究,选择合适的材料、传动轴和齿轮。
4. 设计外观和结构,进行3D建模并进行仿真实验。
5. 制作样品,进行实验评测,测试性能和稳定性。
6. 进行样品的改进和完善,进行量产设计。
五、设计成果及展望
本次毕业设计设计出符合要求的减速器样品,并获得了较好的性能表现。
在实验测试过程中,减速器稳定性高、噪声低、寿命长,能够满足市场的需求。
同时,本设计采用模块化设计,易于维护和升级,未来有望在市场上获得更好的用户口碑和商业利润。
行星齿轮减速器毕业设计
行星齿轮减速器毕业设计行星齿轮减速器毕业设计随着科技的不断进步和社会的不断发展,机械工程领域的研究也越来越受到人们的关注。
作为机械工程师的学生,我也深深地被这个领域所吸引。
在我的毕业设计中,我选择了研究和设计一种行星齿轮减速器。
一、行星齿轮减速器的原理和应用行星齿轮减速器是一种常见的机械传动装置,它由太阳轮、行星轮和内齿圈组成。
太阳轮位于行星轮的中心,行星轮则围绕太阳轮旋转,同时与内齿圈啮合。
通过这种结构,行星齿轮减速器可以实现不同速比的传动。
行星齿轮减速器具有结构紧凑、传动效率高、承载能力强等优点,因此被广泛应用于机械设备中。
例如,汽车的变速器中常常采用行星齿轮减速器来实现不同档位的切换。
此外,行星齿轮减速器还广泛应用于工业机械、航天器、机器人等领域。
二、行星齿轮减速器的设计过程在我的毕业设计中,我首先进行了行星齿轮减速器的设计。
根据实际需求,我确定了需要实现的速比和扭矩传递要求。
然后,我通过计算和仿真分析,确定了行星齿轮减速器的齿轮参数,包括模数、齿数、齿宽等。
接下来,我使用计算机辅助设计软件进行了行星齿轮减速器的三维建模。
通过建模,我可以清晰地观察到各个齿轮之间的啮合情况,并进行必要的调整和优化。
同时,我还进行了有限元分析,以确保行星齿轮减速器在工作过程中的强度和刚度满足要求。
最后,我制造了一台实物样机,并进行了试验验证。
通过试验,我可以验证设计的准确性和可行性,并对行星齿轮减速器的性能进行评估和优化。
三、行星齿轮减速器的挑战和未来发展在行星齿轮减速器的设计和研究过程中,我也面临了一些挑战。
例如,行星齿轮减速器的制造精度要求高,对工艺技术和设备要求较高。
此外,行星齿轮减速器在运行过程中会产生一定的噪声和振动,需要进行有效的减振和降噪处理。
然而,随着材料科学、制造技术和仿真分析等方面的不断进步,行星齿轮减速器的性能和可靠性将得到进一步提升。
未来,我们可以通过使用新材料、改进制造工艺和优化设计等手段,进一步提高行星齿轮减速器的承载能力、传动效率和使用寿命。
机械设计专业学生毕业设计(减速机设计说明书+图纸PDF格式)
机械设计课程设计报告带式输送机减速装置设计姓学名:zcp68941125 号:指导教师:日期:2007 年4 月20目录课程设计任务书⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯电动机的选择⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯传动装置的运动和动力参数计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯窄V 带传动设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 4 4 6减速器高速级齿轮设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 减速器低速级齿轮设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 轴的设计计算(输入轴)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14 轴的设计计算(中间轴)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯15 轴的设计计算(输出轴)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯16滚动轴承的选择及计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯键连接的选择及校核计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯19 21连轴器的选择⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯22 减速器附件的选择⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯22润滑与密封⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯参考资料⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯心得体会⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯222223《机械设计》课程设计任务书传动方案的分析与拟定1.设计题目设计某车间零件传送设备的传动装置1)传动布置方案2)已知条件⑴输送带主动轴输出转矩T=720Nm⑵输送带工作速度V=1.00m/s(允许输送带速度误差±5%)⑶滚筒直径D=350mm⑷滚筒效率 =0.96(包括滚筒轴承的效率损失)3)设备工作条件,室内工作,连续单向运转,载荷平稳,每日两班,工作8 年,车间有三相交流电源。
减速器毕业设计(内附有图纸)
摘要齿轮传动是现代机械中应用最广的一种传动形式。
它的主要优点是:①瞬时传动比恒定、工作平稳、传动准确可靠,可传递空间任意两轴之间的运动和动力;②适用的功率和速度范围广;③传动效率高,η=0.92-0.98;④工作可靠、使用寿命长;⑤外轮廓尺寸小、结构紧凑。
由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用,在现代机械中应用极为广泛。
国内的减速器多以齿轮传动、蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。
另外,材料品质和工艺水平上还有许多弱点,特别是大型的减速器问题更突出,使用寿命不长。
国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。
但其传动形式仍以定轴齿轮传动为主,体积和重量问题,也未解决好。
当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。
减速器与电动机的连体结构,也是大力开拓的形式,并已生产多种结构形式和多种功率型号的产品。
近十几年来,由于近代计算机技术与数控技术的发展,使得机械加工精度,加工效率大大提高,从而推动了机械传动产品的多样化,整机配套的模块化,标准化,以及造型设计艺术化,使产品更加精致,美观化。
在21世纪成套机械装备中,齿轮仍然是机械传动的基本部件。
CNC机床和工艺技术的发展,推动了机械传动结构的飞速发展。
在传动系统设计中的电子控制、液压传动、齿轮、带链的混合传动,将成为变速箱设计中优化传动组合的方向。
在传动设计中的学科交叉,将成为新型传动产品发展的重要趋势。
关键字:减速器;轴承;齿轮;机械传动。
目录摘要 (I)目录................................................. I II 第1章减速箱传动方案的拟定及说明 . (1)1.1、工作机器特征的分析 (1)1.2、传动方案的拟定及说明 (1)第2章运动参数计算 (3)2.1电机的选择 (3)2.2传动比的分配 (5)2.3 运动参数的计算 (7)第3章各传动零件的设计计算 (9)3.1皮带轮的设计计算. (9)3.2皮带轮结构设计 (15)3.3齿轮的设计 (18)3.4各轴的设计 (34)3.5 轴承的选择及校核 (62)3.6 键的选择与校核 (71)第4章减速器的箱体(箱盖)设计 (77)4.1 箱体(箱盖)的分析 (77)4.2 箱体(盖)的材料 (77)4.3 箱体的设计计算(参照【4】*P15) (77)第5章减速器的润滑 (81)5.1 润滑方式的确定 (81)5.2 油池中油量的确定 (81)5.3 轴承润滑 (81)5.4 润滑剂的选择 (82)5.5 油的密封及防止脂的稀释 (82)参考文献 (84)第1章减速箱传动方案的拟定及说明1.1、工作机器特征的分析由设计任务书可知:该减速箱用于螺旋运输机,工作速度不高(V=0.8m/s),圆周力不大(P=4000N),因而传递的功率也不会太大.由于工作运输机工作平稳,转向不变,使用寿命不长(5年),故减速箱应尽量设计成闭式,箱体内用油液润滑,轴承用脂润滑.要尽可能使减速箱外形及体内零部件尺寸小,结构简单紧凑,造价低廉,生产周期短,效率高。
减速器毕业设计
减速器毕业设计减速器毕业设计在机械工程领域中,减速器是一种非常重要的设备,用于降低旋转速度并增加扭矩。
它广泛应用于各种机械设备,如汽车、机床、工业机器人等。
对于机械工程专业的学生来说,减速器毕业设计是一个重要的任务,它不仅考验着学生的专业知识和技能,还需要创新思维和解决问题的能力。
首先,减速器毕业设计需要学生对减速器的原理和工作方式有深入的了解。
减速器的基本原理是通过齿轮传动来实现速度减小和扭矩增大。
学生需要研究不同类型的减速器,如齿轮减速器、行星减速器、蜗杆减速器等,并了解它们的结构和特点。
此外,学生还需要掌握减速器的工作原理,包括齿轮的啮合、传动比的计算等。
其次,减速器毕业设计需要学生进行实际的设计和制造。
学生可以选择一个具体的应用场景,如汽车发动机减速器或工业机器人关节减速器,来进行设计。
设计过程中,学生需要考虑减速器的传动比、扭矩传递能力、运行稳定性等因素,并进行相应的计算和分析。
此外,学生还需要使用CAD软件进行减速器的三维建模和仿真,以验证设计的可行性。
除了设计和制造,减速器毕业设计还需要学生进行性能测试和优化。
学生可以使用实验室的测试设备,如扭矩传感器和转速测量仪,来测试减速器的扭矩输出和转速。
通过实验数据的分析,学生可以评估设计的减速器是否满足要求,并进行必要的优化。
优化的方法可以包括材料的选择、齿轮的优化设计等。
此外,减速器毕业设计还需要学生考虑减速器的可靠性和寿命。
学生可以进行可靠性分析,如故障模式与影响分析(FMEA),以识别潜在的故障模式和采取相应的措施。
学生还可以进行寿命评估,如疲劳寿命分析和可靠性增长试验,以确定减速器的寿命和可靠性。
最后,减速器毕业设计还需要学生进行报告撰写和答辩。
学生需要将设计过程、实验结果和分析等内容整理成报告,并进行清晰、准确的表达。
在答辩环节,学生需要向评委展示自己的设计思路、解决问题的方法和结果,回答评委的问题,并进行相应的辩护和讨论。
总之,减速器毕业设计是机械工程专业学生的重要任务,它要求学生掌握减速器的原理和工作方式,进行实际的设计和制造,进行性能测试和优化,考虑减速器的可靠性和寿命,并进行报告撰写和答辩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、 电动机的选择
1、输送机用于煤矿地面输送煤炭及矸石,载荷平稳单向运输,
根据工作条件和工作要求,选用 YB 系列隔爆异步电动机。
2、确定电动机的容量
工作机所需的功率 Pw =FwVw/1000ηw,其中(Vw =Ωr 查指导书
= 2πRn = πDn)
表(10-1)
式中:Fw —工作装置的阻力;N
表(10-113)
为使带传动的尺寸不至过大,满足 ib<ig,可取 ib = 2.6, 查得
则齿轮的传动比 ig = i/ib = 10.286/2.6 = 3.956
ib<ig 可在
山西煤炭职工联合大学
设计说明书
计算及说明
结果
四、 计算传动装置的运动和动力参数
指导书 P13
1、各轴的转速:nⅠ = nm/ ib = 1440/2.6 =554 r/min nⅡ = nⅠ/ ib = 554/3.965 =140 r/min nw = nⅡ = 140 r/min
齿跟圆直径:df1 、df2
ha*、 C* 取自教材
P104
山西煤炭职工联合大学
设计说明书
计算及说明
结果
df1 = d1 - 2 hf =60.606 – 7.5 = 53.106 mm df2 = d2 - 2 hf = 239.3939 – 7.5= 231.8939 mm 齿宽:b1 、b2
b2 =ψd .d1 = 1×60.606 =60.606 mm 取 b2 =60mm b1 = b2 + (5~10)= 65~70 mm 取 b1 =66mm
设计说明书
计算及说明
结果
一、 传动方案的拟订
1、 传动方案图选任务书方案
由电动机通过皮带拖动Ⅰ轴,齿轮与齿轮啮合带动Ⅱ轴, 从而通过联轴器带动滚筒转动,完成减速与传动,这样可以节 约资金。
2、 传动方案已知数据的选择
运输带卷筒转速 140 r/min,卷筒直径 300mm,卷筒切向 力 F = 1400N。
全齿高:h = ha + hf =2.25 mn =6.75mm
分度圆直径:da1 、da2 da1 = d1 + 2 ha =60.606 +6 = 66.606 mm da2 = d2 + 2 ha = 239.3939 + 6 = 245.393 mm
顶隙:C = C*. mn = 0.25 mn=0.75mm
用弯曲疲劳强度验算其承载能力。
由教材
(1)确定许用接触应力:[бH]=бHlim/SH MPa 其中
(表 7-8)查得
山西煤炭职工联合大学
设计说明书
计算及说明
结果
SH = 1 (一般可靠度) ∴бH]=бHlim = 530N/mm2 (бHlim 取两轮中较小者,由教材 P131)
(2)计算小齿轮的各个转距
-1-
山西煤炭职工联合大学
设计说明书
计算及说明
结果
滚筒的转速(即工作装置主轴转速):
nw = 140 r/min 根据指导书(表 3-2)确定传动比的范围,取带传动比
ib = 2~4,单级圆住齿轮传动比 ig = 3~5,则总传动比 i 的 范围为 ib= (2×3~4×5)= 6~20; 电动机的转速范围应为:
螺旋角系数: Z COS COS8 0.995
材料弹性系数:ZE =189.8 节点区域系数:ZH =2.48 (不变位 X = 0) (6)初步计算小齿轮分度圆直径
山西煤炭职工联合大学
设计说明书
计算及说明
结果
2
d1
3
2KT 1
d
.
u 1 u
ZEZHZ Z
H
mm
式中,u 为齿数比,u = Z2\Z1 = 79\20 = 3.95
由于该输送机对减速器没有特殊的要求,又采用软齿面 由教材
齿轮,并选用供应方便,价格便宜的钢,选小齿轮材料为 45#(表 7-7)
钢调质处理,HBS1 = 229~286;大齿轮材料为 45#钢正火, 选取小齿轮
HBS2 =162~217;通常又按齿面硬度的中间值,由教材图 材料
(7-33)查得:
齿轮的接触疲劳极限:
名 Ⅱ轴
滚筒轴
转速 r/min 1440
554
140
140
-2-
山西煤炭职工联合大学
设计说明书
计算及说明
结果
功率 P(KW) 转距 T (N.m) 传动比 i
效率η
4 26.5
2.6 0.95
五、齿轮的选择
3.8
3.65
66.5
248.98
3.956 0.96
3.54 241.48
1 0.97
1、选择齿轮材料
d1 = mt Z1 = mn Z1/ COSβ= 3×20/ cos8.1096°
= 60.606 mm
d2 = mt Z2 = mn Z2/ COSβ= 3×79/ cos8.1096°
= 239.3939 mm
齿顶高:ha = ha*. mn = 1×3=3 mm
(ha*为标准值 1mm)
齿跟高:hf =( ha* + C*). mn =(1+0.25)×3=3.75mm
n = i. nw = (6~20)×140 = 840~2800 r/min 在这个范围内的电动机的同步转速有 1000 r/min 和
型号由
1500 r/min 两种,综合考虑电动机的传动装置的情况再确定 指导书
最后的转速,为降低电动机的重量和成本,可选择同步转速为表(10-112)
1500 r/min,根据同步转速确定电动机型号为 YB112M-4,其 查得
满载转速 nw = 1440 r/min。
电机型号 同步转速 满载转速 堵转转速 最大转距 输出轴径
YB-112M-4 1500 r/min 1440 r/min
2.2
2.2
28
三、 计算传动比并分配各级传动比
输出轴径
1、总传动比:i= nm/nw = 1440/140 = 10.286
由指导书
2、分配各级传动比
2、各轴的输入功率: PⅠ = Pm×ηb = 4×0.95 = 3.8 KW PⅡ = PⅠ×ηr×ηg = 3.8×0.99×0.97 = 3.65 KW
查得
Pw = PⅡ×ηr×ηc = 4×0.959×0.98= 3.54KW 3、各轴的转距:
To = 9550Pm/ nm= 9550×4/1440 = 26.5 N.m
(式 7-41) Yβ由教材 (表 7-56)
F1 21 66.5103 4.38 0.3991 0.9395 66 60.6063
31.88MPa
≤[σF1]= 220MPa
故:安全
六、三角带的传动设计
T1 = 9550 PⅠ/ nⅠ= 9550×3.8/554 = 65.5 N.m
T2 = 9550 PⅡ/ nⅡ= 9550×3.65/140= 248.98 N.m
Tw = 9550 Pw/ nw= 9550×3.54/140 = 241.98 N.m
最后将计算的结果添入下表:
参数
电动机轴
轴 Ⅰ轴
εα =[ 1.88 – 3.2(1/Z1 ± 1/Z2]COS8°
= 1.67 其轴向重合度:
εβ =ψd Z/π×tanβ = 1×20/3.14×tan8°=0.895
其重合度系数:
zε 4 (1 ) zε
3
4 1.67 (1 0.895) 1.37 0.785 3
由教材 P140 由教材 P129 (式 7-35)
a = d1+d2/2 = mn (Z1 + Z2)/2COSβ
= 3×(20+79)/2COS8°= 149.96 mm 为了加工方便,把中心距 a 取为 150mm
由教材 (表 7-14)得
则β= arccos mn(Z1 + Z2)/ 2a
= arccos 3×(20 + 79)/ 2×150
ηw = 0.94
Vw —工作装置的线速度;m/s
Fw —工作装置的效率;
Tw —工作装置的转矩;N.m
山西煤炭职工联合大学
设计说明书
计算及说明
结果
nw —工作装置的转速;r/min ∴Pw = 1400×3.14×300×140/1000×0.94×1000×60
= 3.27 KW 电动机的输出功率:Po = Paw/η
3、校核齿跟弯曲强度
σF = 2KT1/bd mnYFS Yε Yβ≤[σF]MPa
(1) 确定 YFS/[σF]的大值
YFS1 = 4.38
YFS2= 3.95
ZV1 = Z1/cos3β= 20/ cos38.1096°= 20.2020
ZV2 = Z2/cos3β= 79/ cos38.1096°= 81.4182
T = 9550 P/n
由教材 P128
T1 = 9550×3.6/554 = 66.5 N.m (3)选取负荷系数
由于齿轮相对于支承的位置为对称位置,因此负荷
系数 K= KA KV Kα Kβ KA 为使用系数; KV 为动载系数; Kα 为齿间载荷分配系数; Kβ为齿向载荷分布系数; 取K = 1
其中η为电动机至滚筒传动装置的总效率,包括 V 带传动、一对齿轮传动、两对滚动轴承及联轴器等效率, η值计算如下: η = ηbηgηr2ηc 由指导书(表 10-1)查得: 带传动效率ηb = 0.95; 一对齿轮的传动效率ηg = 0.97; 一对滚动轴承的传动效率ηr = 0.99; 联轴器的效率η = 0.98; 因此:η = 0.95×0.97×0.992×0.98 =0.885 所以;Po = Pw /η = 3.27/0.885 = 3.695 KW 根据 Po 选取电动机的额定功率使 Pm = (1~1.3)Po = 3.695~4.803 KW,并由表 (10-110)(指导书)查得电动机的额定功率 Pm = 4KW。 3、确定电动机的转速