离散数学作业答案

合集下载

《离散数学》作业参考答案

《离散数学》作业参考答案
Q→(P R) (P Q R) (P Q R) (P Q R) (P Q R) ( P Q R) ( P Q R) ( P Q R)(主析取范式)
7 (P→Q) (P→R) ( P Q) ( P R) (合取范式) ( P Q (R R) ( P ( Q Q) R) ( P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R)(主合取范式)
(P ( Q Q)) (( P P) Q) (P Q) (P Q) ( P Q) (P Q) (P Q) (P Q) ( P Q)(主析取范式) 2.Q→( P R) Q P R(主合取范式) (Q→( P R)) ( P Q R) ( P Q R) ( P Q R) ( P Q R) (P Q R)
E
(6)
(8)
E
前提
(9) E E
(7),(8)
8 、A→(C B),B→ A,D→ C A→ D.
证明:
(1) A
附加前提
(2) A→(C B) 前提
(3) C B
(1),(2)
(4) B→ A
前提
(5) B
(1),(4)
(6) C
(3),(5)
(7) D→ C
前提
(8) D
( P (Q Q)) (( P P) Q) ( P Q) ( P Q) ( P Q) (P Q) ( P Q) ( P Q) (P Q)(主析取范式) 4. (P→Q) (R P) ( P Q) (R P) (P Q) (R P)(析取范式) (P Q (R R)) (P ( Q Q) R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R)(主析取范式) ( (P→Q) (R P)) (P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R)

离散数学大作业答案

离散数学大作业答案

一、简要回答下列问题:(每小题3分,共30分)1.请给出集合的结合率。

答:结合律(AUB)UC=AU(BUC)x∈(AUB)UC,即 x∈AUB 或 x∈C即 x∈A 或 x∈B 或 x∈C 即 x∈A 或 x∈B∪C即 x∈AU(BUC)说明 (AUB)UC包含于AU(BUC)同理可证AU(BUC)包含于(AUB)UC所以(AUB)UC=AU(BUC)2.请给出一个集合A,并给出A上既不具有自反性,又不具有反自反性的关系。

3.设A={1,2},问A上共有多少个不同的对称关系?答:不同的对称关系有:8种R = ΦR = {<1,1>}R = {<2,2>}R = {<1,1>,<2,2>}R = {<1,2>,<2,1>}R = {<1,1>,<1,2>,<2,1>}R = {<1,2>,<2,1>,<2,2>}R = {<1,1>,<1,2>,<2,1>,<2,2>}4.设A={1,2,3,4,5,6},R是A上的整除关系,M={2,3},求M的上界,下界。

5.关于P,Q,R请给出使极小项m0,m4为真的解释。

答:m0= ┐p∧┐q∧┐r m4= p∧┐q∧┐r6.什么是图中的简单路?请举一例。

答:图的通路中,所有边e1,e2,…,ek互不相同,称为简单通路。

7.什么是交换群,请举一例。

答:如果群〈G,*〉中的运算*是可以交换的,则称该群为可交换群,或称阿贝尔群。

如〈I,+〉是交换群。

8.什么是群中右模H合同关系?答:设G是群,H是G的子群,a,b∈G,若有h∈H,使得a =bh,则称a合同于b(右模H),记为a≡b(右mod H)。

9.什么是有壹环?请举一例。

答:幺元:如果A中的一个元素e,它既是左幺元又是右幺元,则称e为A中关于运算☆的幺元。

离散数学习题答案.docx

离散数学习题答案.docx

精品文档离散数学习题答案习题一及答案:( P14-15 )14、将下列命题符号化:( 5)李辛与李末是兄弟解:设 p:李辛与李末是兄弟,则命题符号化的结果是p( 6)王强与刘威都学过法语解:设 p:王强学过法语; q:刘威学过法语;则命题符号化的结果是p q ( 9)只有天下大雨,他才乘班车上班解:设 p:天下大雨; q:他乘班车上班;则命题符号化的结果是q p( 11)下雪路滑,他迟到了解:设 p:下雪; q:路滑; r :他迟到了;则命题符号化的结果是( p q)r15、设 p: 2+3=5.q:大熊猫产在中国 .r:太阳从西方升起 .求下列复合命题的真值:( 4)(p q r )(( p q)r )解: p=1, q=1,r=0 ,(p q r )(110)1,((p q)r )((11)0)(00)1(p q r )(( p q)r ) 1 1119、用真值表判断下列公式的类型:( 2)( p p)q解:列出公式的真值表,如下所示:p q p qp) ( p p)q( p001111011010100101110001由真值表可以看出公式有 3 个成真赋值,故公式是非重言式的可满足式。

20、求下列公式的成真赋值:精品文档( 4)( p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:( p q)1p0q0q0所以公式的成真赋值有: 01,10, 11。

习题二及答案:( P38)5、求下列公式的主析取范式,并求成真赋值:( 2)(p q) (q r )解:原式( p q) q r q r( p p) q r( p q r ) ( p q r )m3m7,此即公式的主析取范式,所以成真赋值为011, 111。

6、求下列公式的主合取范式,并求成假赋值:( 2)( p q) ( p r )解:原式( pp r ) ( p q r )( p q r )M 4,此即公式的主合取范式,所以成假赋值为 100。

离散数学作业标准答案

离散数学作业标准答案

离散数学作业一、选择题1、下列语句中哪个就是真命题(C )。

A.我正在说谎。

B.如果1+2=3,那么雪就是黑色的。

C.如果1+2=5,那么雪就是白色的。

D.严禁吸烟!2、设命题公式))((r q p p G →∧→=,则G 就是( C )。

A 、 恒假的B 、 恒真的C 、 可满足的D 、 析取范式 3、谓词公式),,(),,(z y x yG x z y x F ∃∀→中的变元x ( C )。

A.就是自由变元但不就是约束变元 B.既不就是自由变元又不就是约束变元 C.既就是自由变元又就是约束变元 D.就是约束变元但不就是自由变元4、设A={1,2,3},则下列关系R 不就是等价关系的就是(C ) A.R={<1,1>,<2,2>,<3,3>}B.R={<1,1>,<2,2>,<3,3>,<2,3>,<3,2>}C.R={<1,1>,<2,2>,<3,3>,<1,4>}D.R={<1,1>,<2,2>,<3,3>,<1,2>,<1,3>,<2,3>,<2,1>,<3,1>,<3,2>} 5、设R 为实数集,映射σ=R →R,σ(x)= -x 2+2x-1,则σ就是( D )。

A.单射而非满射B.满射而非单射C.双射D.既不就是单射,也不就是满射 6、下列二元运算在所给的集合上不封闭的就是( D ) A 、 S={2x-1|x ∈Z +},S 关于普通的乘法运算 B 、 S={0,1},S 关于普通的乘法运算 C 、 整数集合Z 与普通的减法运算D 、 S={x | x=2n ,n ∈Z +},S 关于普通的加法运算7、*运算如下表所示,哪个能使({a,b},*)成为含幺元半群( D )b b b a a a b a * a b b b a a b a *8( A )A B C D 9、下列各组数中,能构成无向图的度数列就是( D ) A.1,1,1,2,4 B.1,2,3,4,5 C.0,1,0,2,4 D.1,2,3,3,510、一棵树有2个4度顶点,3个3度顶点,其余都就是树叶,则该树中树叶的个数就是( B )A 、8B 、9C 、 10D 、 11 11、“所有的人都就是要死的。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

离散数学课后答案详细

离散数学课后答案详细

第一章命题逻辑基本概念课后练习题答案4.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.5.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.7.因为p与q不能同时为真.13.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。

2. 存在三个可识别的状态A,B,C。

置换群 $S_3$ 作用在状态集上。

定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。

确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。

3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。

4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。

b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。

答案1. $A \cap B = \{2,4,6\}$。

2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。

这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。

所以合数的个数不小于任意$n$。

4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。

如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。

所以从这条路径中任意取出的子路径都是最短路径。

b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。

因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。

所以从$i$到$j$的最短路径可能不唯一。

(完整版)离散数学习题答案

(完整版)离散数学习题答案

离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p :李辛与李末是兄弟,则命题符号化的结果是p (6)王强与刘威都学过法语解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是p q∧(9)只有天下大雨,他才乘班车上班解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p →(11)下雪路滑,他迟到了解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r∧→15、设p :2+3=5. q :大熊猫产在中国. r :太阳从西方升起.求下列复合命题的真值:(4)()(())p q r p q r ∧∧⌝↔⌝∨⌝→解:p=1,q=1,r=0,,()(110)1p q r ∧∧⌝⇔∧∧⌝⇔(())((11)0)(00)1p q r ⌝∨⌝→⇔⌝∨⌝→⇔→⇔()(())111p q r p q r ∴∧∧⌝↔⌝∨⌝→⇔↔⇔19、用真值表判断下列公式的类型:(2)()p p q→⌝→⌝解:列出公式的真值表,如下所示:p qp⌝q⌝()p p →⌝()p p q→⌝→⌝001111011010100101110001由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。

20、求下列公式的成真赋值:(4)()p q q⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒0p q ⇔⎧⎨⇔⎩所以公式的成真赋值有:01,10,11。

习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧,此即公式的主析取范式,()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨所以成真赋值为011,111。

*6、求下列公式的主合取范式,并求成假赋值:(2)()()p q p r ∧∨⌝∨解:原式,此即公式的主合取范式,()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔所以成假赋值为100。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

离散数学试题答案

离散数学试题答案

离散数学试题答案一、选择题1. 命题逻辑中,若命题P为“今天是周末”,命题Q为“我去野餐”,那么复合命题“今天是周末或我去野餐”在逻辑上的表示为:A. P∨QB. P∧QC. ¬P∨QD. ¬P∧Q答案:A2. 在集合论中,集合A和集合B的并集表示为:A. A - BB. B - AC. A ∪ BD. A ∩ B答案:C3. 有限自动机中,确定一个状态为接受状态的条件是:A. 有从该状态出发的ε-转移B. 所有从该状态出发的转移都能到达另一个接受状态C. 该状态不在任何闭包中D. 该状态在至少一个闭包中答案:D4. 哈希表中,解决冲突的常用方法不包括:A. 开放定址法B. 链地址法C. 再散列法D. 树形查找法答案:D5. 图的邻接矩阵表示法中,若顶点u到顶点v有一条边,则矩阵中的元素M[u][v]为:A. 0B. 1C. -1D. ∞答案:B二、填空题1. 在命题逻辑中,德摩根定律表明了________和________的对偶关系,即(¬(P∧Q))等价于________,而(¬(P∨Q))等价于________。

答案:合取;析取;¬P∨¬Q;¬P∧¬Q2. 集合的幂集是指该集合的所有________的集合,记作P(A)。

答案:子集3. 一个有向图G,若对于任意顶点u和v,都存在从u到v以及从v到u的路径,则称图G是________的。

答案:强连通4. 在图的遍历算法中,深度优先搜索(DFS)使用________数据结构进行遍历,而广度优先搜索(BFS)使用________数据结构进行遍历。

答案:栈;队列5. 哈密顿回路是指在一个图中,通过所有顶点恰好一次且最后回到起点的闭合路径,而欧拉回路是指通过图中每条边恰好一次并且回到起点的闭合路径,若一个图存在欧拉回路,则该图必须是________的。

答案:连通三、简答题1. 请简述命题逻辑中的四种标准形式及其真值表。

离散数学答案版(全)

离散数学答案版(全)

第一章命题逻辑内容:命题及命题联结词、命题公式的基本概念,真值表、基本等价式及永真蕴涵式,命题演算的推理理论中常用的直接证明、条件证明、反证法等证明方法。

教学目的:1. 熟练掌握命题、联结词、复合命题、命题公式及其解释的概念。

2. 熟练掌握常用的基本等价式及其应用。

3. 熟练掌握(主)析/合取范式的求法及其应用。

4. 熟练掌握常用的永真蕴涵式及其在逻辑推理中的应用。

5. 熟练掌握形式演绎的方法。

教学重点:1 .命题的概念及判断2 .联结词,命题的翻译3. 主析(合)取范式的求法4. 逻辑推理教学难点:1. 主析(合)取范式的求法2. 逻辑推理1.1命题及其表示法1.1.1 命题的概念数理逻辑将能够判断真假的陈述句称作命题。

1.1.2 命题的表示命题通常使用大写字母 A , B,…,Z或带下标的大写字母或数字表示,如A i, [10], R等,例如A1:我是一名大学生。

A1:我是一名大学生.[10]:我是一名大学生。

R:我是一名大学生。

1.2命题联结词1.2.1否定联结词「P1.2.2合取联结词A1.2.3 析取联结词V1.2.4 条件联结词—125126 与非联结词T性质:(1)P T P=「( PAP)二「P;(2)(P T Q)T( P T Q) -「( P T Q) - PAQ;(3)( P T P)T( Q TQ) -「P T「Q= P V Q。

127 或非联结词J性质:(1) P J P=「( P V Q) =「P;(2)( P J Q );( P J Q) =「( P J Q) = P V Q;(3)( P J P)J( Q J Q) =「P Q=P V-Q) = PAQ1.3 命题公式、翻译与解释1.3.1 命题公式定义命题公式,简称公式,定义为:(1)单个命题变元是公式;(2 )如果P是公式,则「P是公式;(3)如果P、Q是公式,则PAQ、PVQ、P > Q、P Q都是公式;(4)当且仅当能够有限次的应用(1)、(2)、(3)所得到的包括命题变元、联结词和括号的符号串是公式。

离散数学习题答案精选全文完整版

离散数学习题答案精选全文完整版

可编辑修改精选全文完整版离散数学习题答案习题一:P121.判断下列句子哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明。

(2)5是无理数。

(3)3是素数或4是素数。

(4)x2+3<5,其中x是任意实数。

(5)你去图书馆吗?(6)2与3都是偶数。

(7)刘红与魏新是同学。

(8)这朵玫瑰花多美丽呀!(9)吸烟请到吸烟室去!(10)圆的面积等于半径的平方乘π。

(11)只有6是偶数,3才能是2的倍数。

(12)8是偶数的充分必要条件是8能被3整除。

(13)2025年元旦下大雪。

1、2、3、6、7、10、11、12、13是命题。

在上面的命题中,1、2、7、10、13是简单命题;1、2、10是真命题;7的真值现在还不知道。

2.将上题中是简单命题的命题符号化。

(1)p:中国有四大发明。

(2)q:5是无理数。

(7)r:刘红与魏新是同学。

(10)s:圆的面积等于半径的平方乘π。

(1)t:2025年元旦下大雪。

3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值。

“5是有理数”的否定式是“5不是有理数”。

解:原命题可符号化为:p:5是有理数。

其否定式为:非p。

非p的真值为1。

4.将下列命题符号化,并指出真值。

(1)2与5都是素数。

(2)不但π是无理数,而且自然对数的底e也是无理数。

(3)虽然2是最小的素数,但2不是最小的自然数。

(4)3是偶素数。

(5)4既不是素数,也不是偶数。

a:2是素数。

b:5是素数。

c:π是无理数。

d:e是无理数。

f:2是最小的素数。

g:2是最小的自然数。

h:3是偶数。

i:3是素数。

j:4是素数。

k:4是偶数。

解:(1)到(5)的符号化形式分别为a∧b,c∧d,f∧非g,h∧i,非j∧非k。

这五个复合命题的真值分别为1,1,1,0,0。

5.将下列命题符号化,并指出真值。

a:2是偶数。

b:3是偶数。

c:4是偶数。

离散数学作业答案

离散数学作业答案

第一章 命题逻辑1.第7页第3题(1)解:逆命题:如果我去公园,则天不下雨;反命题:如果天下雨,则我不去公园;逆反命题:如果我不去公园,则天下雨了。

(2)解:(此题注意:P 仅当Q 翻译成P Q →)逆命题:如果你去,那么我逗留。

反命题:如果我不逗留,那么你没去。

逆反命题:如果你没去,那么我不逗留。

(3)解:逆命题:如果方程n n n x y z +=无整数解,那么n 是大于2的正整数。

反命题:如果n 不是大于2的正整数,那么方程n n n x y z +=有整数解。

逆反命题:如果方程n n n x y z +=有整数解,那么n 不是大于2的正整数。

(4)解:逆命题:如果我不完成任务,那么我不获得更多的帮助。

反命题:如果我获得了更多的帮助,那么我能完成任务。

逆反命题:如果我能完成任务,那么我获得了更多的帮助。

2.第15页第1题(4)解:(())P Q P T ⌝⌝∨→⌝↔()()P Q P Q ⌝∧↔⌝∨⌝()()P Q P Q ⇔⌝∨⌝↔⌝∨⌝(重言式) (9)解:P P Q F Q T ∧⌝→⇔→⇔(重言式)(10)解:P Q Q T Q Q ∨⌝→⇔→⇔(可满足式)3.第16页第5题(2)证明:(())P Q P ⌝⌝∨→⌝(())()P Q P P Q PP Q PP P QF QF ⇔⌝∨∨⌝⇔⌝∨∧⇔⌝∧⌝∧⇔⌝∧∧⌝⇔∧⌝⇔因此,(())P Q P F ⌝⌝∨→⌝↔,得证。

(4)证明:()()P P P P →⌝∧⌝→()()P P P P P PF ⇔⌝∨⌝∧∨⇔⌝∧⇔因此,()()P P P P F →⌝∧⌝→↔,得证。

4.第16页第6题(1)P Q P Q ∧⇒→证明:设P Q ∧为真,那么P 为真,并且Q 为真,因此P Q →为真。

所以P Q P Q ∧⇒→。

(2)()()()P Q R P Q P R →→⇒→→→证明:设()()P Q P R →→→为假,于是P Q →为真,P R →为假。

离散数学习题与参考答案

离散数学习题与参考答案

习题六格与布尔代数
一、填空题
1、设是偏序集,如果_________, 则称<A, ≤>是(偏序)格.
2、设〈B,∧,∨,′,0,1〉是布尔代数,对任意的a∈B,有a∨a′=____,a∧a′=______.
3、一个格称为布尔代数,如果它是______格和______格.
4、设<>是有界格,a,b L,若a b=0,则a=b=_____;若a b=1,则a=b=____.
二、证明题
1、设<L, ≤>是格,a,b,c,d∈L。

试证:若a≤b且c≤d,则
a∧c≤b∧d
2、证明:在有补分配格中,每个元素的补元一定唯一。

3、设<S,⊕,⊙,′,0,1>是一布尔代数,则
R={<a,b> | a⊕b=b}是S上的偏序关系
4、若<A,≤>是一个格,则对任意a、b 、c∈A,有若a≤c且b≤c,则a∨b ≤c。

5、若<A,≤>是一个格,则对于任意a,b∈A,证明以下两个公式等价;(1)a≤b
(2)a∨b =b
6、证明:如果格中交对并是分配的,那么并对交也是分配的,反之亦然。

7、如果<A,≤>是有界格,全上界和全下界分别是1和0,则对任意元素a∈A,证明:
a∨1=1∨a=1 ,a∨0=0∨a=a。

离散数学作业习题答案

离散数学作业习题答案

第一章 习题解答
• 1-4 (8) c)
– (A∧B∧C)∨(┐A∧B∧C)
• (A∨┐A) ∧(B∧C) • T∧(B∧C) • B∧C
ቤተ መጻሕፍቲ ባይዱ
第一章 习题解答
• • 1-5 (1) a) 证明:
– – – – – – – – (P∧(P→Q))→Q (P∧(┐P∨Q))→Q (P∧┐P)∨(P∧Q)→Q (P∧Q)→Q ┐(P∧Q)∨Q ┐P∨┐Q∨Q ┐P∨T T
第一章 习题解答
• • 1-6 (3) c) 证明:
• • • • • • P→(┐P→Q) ┐P∨(P∨Q) T ┐P∨P (┐P↑┐P)↑(P↑P) P↑(P↑P)
P26(3) P26(1)
第一章 习题解答
• • 1-6 (3) c) 证明:
• • • • • • P→(┐P→Q) ┐P∨(P∨Q) T ┐P∨P (┐P↓P) ↓ (┐P↓P) ((P↓P)↓P)↓((P↓P)↓P)
习题2-5
(7) – 证明:(x)( y)(P(x)→Q(y)) – (x)( y)( ┐P(x) ∨Q(y)) – (x) ┐P(x) ∨( y)Q(y) – ┐(x)P(x) ∨( y)Q(y) – ( x)P(x)→(y)Q(y)
习题2-6
(1) b) – (x)(┐((y)P(x,y))→((z)Q(z)→R(x))) – (x)((y)P(x,y)∨((z)Q(z)→R(x))) – (x)((y)P(x,y) ∨(┐(z)Q(z) ∨R(x))) – (x)((y)P(x,y) ∨((z)┐Q(z) ∨R(x))) – (x) (y) (z) ( P(x,y) ∨┐Q(z) ∨R(x))
• • • • • (Q→(P∧┐P))→(R→(R→(P∧┐P)))R→Q 设R→Q为F,则R为T,且Q为F,又P∧┐P为F 所以Q→(P∧┐P)为T,R→(P∧┐P)为F 所以R→(R→(P∧┐P))为F,所以 (Q→(P∧┐P))→(R→(R→(P∧┐P)))为F 即(Q→(P∧┐P))→(R→(R→(P∧┐P)))R→Q成 立。

离散数学习题及答案

离散数学习题及答案

离散数学习题及答案一、选择题:1、下列命题正确的是( A )。

A .φ⋂{φ}=φB .φ⋃{φ}=φC .{a}∈{a ,b ,c}D .φ∈{a ,b ,c}2、设集合},{y x X =,则=)(x ρ( C )。

}}.,{},{},{{.}};,{},{},{,{.}};{},{,{.}};{},{{.y x y x D y x y x C y x B y x A φφ3、下列式子中正确的有( B )。

..};,{.};{.;0.φφφφφφ∈∈∈=D b a C B A4、某个集合的元数为10,可以构成( D )个子集。

A 、10B 、20C 、210D 、1025、下列命题正确的有( A )A 、}},{,,{},{b a b a b a ⊆B 、}},,{,,{},{c b a b a b a ∈C 、}}},{{,{},{b a a b a ⊆D 、}}},{{,,{},{b a b a b a ∈6、集合A={a ,b ,c},A 上的关系R={(a ,b ),(a ,c ),(b ,a ),(b ,c ),(c ,a ),(c ,b ),(c ,c )},则R 具有关系的( B )性质。

A 、自反性B 、对称性C 、反对称性D 、传递性7、设R 为实数集,映射σ=R →R ,σ(x )= -x 2+2x-1,则σ是( D )。

A .单射而非满射B .满射而非单射C .双射D .既不是单射,也不是满射8、下列语句中,( C )是命题。

A .下午有会吗?B .这朵花多好看呀!C .2是常数。

D .请把门关上。

9、一个公式在等价意义下,下面哪个写法是唯一的( C )。

A .析取范式B .合取范式C .主析取范式D .以上答案都不对10、通过约束变元的换名规则,可以将 ∀x(P(x)→R(x, y))∧Q(x, y) 改写为( C )A 、∀x(P(x)→R(u, y)∧Q(x, y)B 、∀x(P(y)→R(y, y)∧Q(x, y)C 、∀z(P(z)→R(z, y))∧Q(x, y)D 、∀z(P(z)→R(z, y))∧Q(z, y)11、∃x(P(x)∨(∀y)R(y))→Q(x)中∃x 的辖域是( C )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章
1.假定A是ECNU二年级的学生集合,B是ECNU必须学离散数学的学生的集合。

请用A
和B表示ECNU不必学习离散数学的二年级的学生的集合。

2.试求:
(1)P(φ)
(2)P(P(φ))
(3)P(P(P(φ)))
3.在1~200的正整数中,能被3或5整除,但不能被15整除的正整数共有多少个?
能被5整除的有40个,
能被15整除的有13个,
∴能被3或5整除,但不能被15整除的正整数共有
66-13+40-13=80个。

第三章
1.下列语句是命题吗?
(1)2是正数吗?
(2)x2+x+1=0。

(3)我要上学。

(4)明年2月1日下雨。

(5)如果股票涨了,那么我就赚钱。

2.请用自然语言表达命题(p⌝→r)∨(q⌝→r),其中p、q、r为如下命题:
p:你得流感了
q:你错过了最后的考试
r:这门课你通过了
3.通过真值表求p→(p∧(q→p))的主析取范式和主合取范式。

4.给出p→(q→s),q,p∨⌝r⇒r→s的形式证明。

第四章
1.将∀x(C(x)∨∃y(C(y)∧F(x,y)))翻译成汉语,其中C(x)表示x有电脑,F(x,y) 表示x和y是同
班同学,个体域是学校全体学生的集合。

解:
学校的全体学生要么自己有电脑,要么其同班同学有电脑。

2.构造∀x(P(x)∨Q(x)),∀x(Q(x)→⌝R(x)),∀xR(x)⇒∀xP(x)的形式证明。

解:
①∀xR(x) 前提引入
②R(e) ①US规则
③∀x(Q(x)→⌝R(x)) 前提引入
④Q(e) →⌝R(e) ③US规则
⑤⌝Q (e) ②④析取三段论
⑥∀x(P(x)∨Q(x)) 前提引入
⑦P(e) ∨Q(e) ⑥US规则
⑧P(e) ⑤⑦析取三段论
⑨∀x (P(x)) ⑧EG规则
第五章
1.设R、S、T都是X上的关系。

证明:R︒(S∩T)⊆(R︒S)∩(R︒T),(R∩S)︒T⊆(R︒T)∩(S︒T)。

2.设X是所有人组成的集合,定义X上的关系R1和R2:aR1b当且仅当a比b高,aR2b
当且仅当a和b有共同的祖父母。

问关系R1和R2是否是自反、反自反、对称、反对称、传递的?
3.设R1和R2是X上的关系。

证明t(R1⋃R2)⊇t(R1)⋃t(R2)。

4.下列集合关于整除关系⎪构成偏序集。

请分别画出它们的哈斯图,判断它们是否是全
序集,给出它们的极大元、极小元、最大元、最小元。

(2){2,4,8,16};
(4){2,3,4,5,9,10,80}。

第六章
1.f:X→Y,下列命题是否成立?
(1)f是一对一的当且仅当对任意a,b∈X,当f(a)=f(b)时,必有a=b;
(2)f是一对一的当且仅当对任意a,b∈X,当f(a)≠f(b)时,必有a≠b。

2.下图展示了五个关系的关系图。

问:这些关系中,哪些是函数?哪些是一对一的函数?
哪些是到上的函数?哪些是一一对应?
第七章
1.6个学生:Alice、Bob、Carol、Dean、Santos和tom,其中,Alice和Carol不和,Dean
和Carol不和,Santos、Tom和Alice两两不和。

请给出表示这种情形的图模型。

2.设简单无向图G=(V,E),若δ(G)≥k(k≥1),则G有长度为k的基本通路。

解:证明:
我们假设存在k-1的基本通路,则存在k个顶点,通路最后一个顶点与通路上顶点相连的度数至多为k-1。

因为δ(G)≥k(k≥1),所以该顶点必定与其他顶点相连,那么存在长度为K的基本通路。

得证。

3.一大学有5个专业委员会:物理、化学、数学、生物、计算机,6位院士:B、C、D、
G、S、W。

专业委员会由院士组成,物理委员会有院士:C、S和W,化学委员会有院
士:C、D和W;数学委员会有院士:B、C、G和S;生物委员会有院士:B和G;计算机委员会有院士:D和G。

每个专业委员会每周开一小时例会,所有成员都不能缺席。

如果某院士同时是两个专业委员会的成员,那么这两个专业委员会的例会就不能安排在同一个时间。

现要为这些例会安排时间,希望它们的时间尽可能集中。

问最少需要几个开会时间?请给出一种安排。

第八章
1.说明下图不是哈密顿图。

解:从图中删除所标记的6个顶点,所得到的图由7个孤立点组成,有7个连通分量。

所以,该图不满足哈密顿图的必要条件,因而不是哈密顿图
2.证明连通图的割边一定是每棵生成树的边。

证明:删除割边后的图一定不连通,其中不存在生成树。

所以,每课生成树都包含割边
第九章
1.股评家推荐了12个股票,一股民欲购买其中的3个。

问在下列各种条件下,分别有多
少种不同的投资方式?
(1)每个股票各投资3000元;
(2)3个股票分别投资5000元、3000元和1000元。

2.16支互不同颜色的蜡笔平分给4个孩子,有多少种不同的分法?
解: C(16,4) C(12,4) C(8,4) C(4,4)
3. 某学校有2504个计算机科学专业的学生,其中1876人选修了C 语言,999人选修了
Fortran 语言,345人选修了JA V A ,876人选修了C 语言和Fortran 语言,231人选修了Fortran 和JA V A ,290人选修了C 和JA V A ,189个学生同时选了C 、Fortran 和JAV A 。

问没有选这3门程序设计语言课中的任何一门的学生有多少个?
第十章
1. 求初值问题的通项公式:a n =10a n-1-25a n-2;a 0=-7,a 1=15。

解:
特征方程:r 2-10r+25=0,特征根:r 2=r 1=5
通解:a n =(α+βn)5n
由a 0=α50=α=-7和a 1= (-7+β)51 =15解得:α=-7,β=10
初值问题的解:a n =(-7+10n)2n
2. 计算广义二项式系数35-⎛⎫
⎪⎝⎭和 1.23⎛⎫ ⎪⎝⎭
的值。

解: ()()3331351215!5----⋯--+⎛⎫==- ⎪⎝⎭ 1.2 1.2(1.21)...(1.231)0.0323!3--+⎛⎫== ⎪⎝⎭
3. 某人有大量1角、2角和3角的邮票(面值相同的邮票看成是相同的),现要在信封上
贴邮票,邮票排成一行且邮票的总值为r 角。

若不考虑贴邮票的次序,ar 表示贴邮票的方法数,求{ar}的生成函数。

相关文档
最新文档