传感器的动态特性与静态特性
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2 描述传感器静态特性的主要指标
1.线性度
传感器的校准曲线与选定的拟合直线的偏离程度称 为传感器的线性度,又称非线性误差。
eL Dymax / yFS 100% (2.5)
yF.S.—— 传 感 器 的 满 量 程 输出值(F.S.是full scale 的缩写);
Dymax——校准曲线与拟合 直线的最大偏差。
变量与引起此变化的输入改变量之比。常用Sn表
示灵敏度,其表达式为
Sn dy/dx
(2.6)
2.1.2 描述传感器静态特性的主要指标
对线性传感器,可表示为
Sn Dy/Dx
(2.7)
一般希望测试系统的灵敏度在满量程范 围内恒定,这样才便于读数。也希望灵敏度
较高,因为S越大,同样的输入对应的输出越大。
n
2
D2i yi kxi b min
i 1
i 1
2.1.2 描述传感器静态特性的主要指标
D2i 对k和b一阶偏导数等于零,求出b和k的表达式
k
D2i
2 yi
kxi
b
xi
0
b
D2i
2 yi
kxi
b 1
0
即得到k和b的表达式
n
k
xi yi
n xi2
xi yi xi 2
b
xi2 yi xi xi yi
n xi2
xi 2
2.1.2 描述传感器静态特性的主要指标
将k和b代入拟合直线方程,即可得到拟合直
线,然后求出残差的最大值Lmax即为非线性误差。
这种方法拟合精度很高。
2.1.2 描述传感器静态特性的主要指标
2.灵敏度
灵敏度是指传感器在稳态工作情况下输出改
第
二
章
传感器的一般特性分析与标定
♣ 第一节 传感器的静态特性 ♣ 第二节 传感器的动态特性 ♣ 第三节 传感器的无失真测试条件 ♣ 第四节 传感器的标定
传感器的一般特性分析与标定
在生产过程和科学实验中, 要对各种各样的 参数进行检测和控制, 就要求传感器能感受被测 非电量的变化并将其不失真地变换成相应的电量, 这取决于传感器的基本特性,即输出—输入特性。
2.1.2 描述传感器静态特性的主要指标
选择拟合直线的方法 (1)端点直线法,对应的线性度称端点线性度
。简单直观,拟合精度较低。最大正、负偏 差不相等。
y
Dymax
O
x
2.1.2 描述传感器静态特性的主要指标
(2)端点平移直线法,对应的线性度称独立线 性度。最大正、负偏差相等。
y
Dymax
Dymax|Dymax|
2.1.1 传感器的静态数学模型
4.一般情况 特性曲线过原点,但不对称。
y
y(x) a1x a2 x2 an xn
O
x y(x) a1x a2 x2 a3x3 a4 x4
y(x) y(x) 2(a1x a3x3 a5x5 )
这就是将两个传感器接成差动形式可拓宽 线性范围的理论根据。
O
x
2.1.2 描述传感器静态特性的主要指标
(3)最小二乘拟合直线法
设拟合直线方程为y = b + kx
y
若实际校准测试点有n个,则yi 第i个校准数据与拟合直线 上响应值之间的残差为
0
Δi=yi-(kxi+b)
y=kx+b
xI
x
最小二乘拟合法
最小二乘法拟合直线的原理就是使 D2i为最小值,即
Байду номын сангаас
n
y a1 x a2 x2 a4 x4
(2.3)
y
因不具有对称性,
线性范围较窄,所以
传感器设计时一般很
O
x 少采用这种特性。
2.1.1 传感器的静态数学模型
3.无偶次非线性项
当a2=a4=…=0时,静态特性为
y a1 x a3 x3 a5 x5
(2.4)
y
特性曲线关于原点
对称,在原点附近有较 O x 宽的线性区。
2.1.1 传感器的静态数学模型
设a0=0,即不考虑零位输出,则静态特性曲 线过原点。一般可分为以下几种典型情况。
1.理想的线性特性 当a2a3…an0时,
静态特性曲线是一条直线, 传感器的静态特性为
y a1 x (2.2)
y Ox
2.1.1 传感器的静态数学模型
2.无奇次非线性项
当a3=a5=…=0时,静态特性为
传感器的一般特性分析与标定
传感器所测量的物理量基本上有两种形式:
静 态 量 , 常 量 或 变 化 缓慢 的 量
输
入
量动
态
量
— —静态特性 , 周 期 变 化 、 瞬态
变
化
或
随
机
变
化
的
量
— —动态特性
传感器的输出-输入特性是与其内部结构参数有关的外 部特性。
一个高精度的传感器必须有良好的静态特性和动态特 性才能完成信号无失真的转换。
2.1.1 传感器的静态数学模型
在静态条件下,若不考虑迟滞及蠕变,则传 感器的输出量y与输入量x的关系可由一代数方程 表示,称为传感器的静态数学模型,即
y a0 a1 x a2 x2 an xn
(2.1)
式中 a0——无输入时的输出,即零位输出; a1——传感器的线性灵敏度; a2,a3 , … , an——非线性项的待定常数。
2.1.1 传感器的静态数学模型 2.1.2 描述传感器静态特性的主要指标
2.1.1 传感器的静态数学模型
传感器作为感受被测量信息的器件,希望 它按照一定的规律输出有用信号,因此需要研 究描述传感器的方法,来表示其输入— 输出关 系及特性,以便用理论指导其设计、制造、校 准与使用。
描述传感器最有效的方法是传感器的数学 模型。
2.1.2 描述传感器静态特性的主要指标
3.迟滞(迟环)
在相同工作条件下做全量程范围校准时,正行程(输 入量由小到大)和反行程(输入量由大到小)所得输出输 入特性曲线不重合。
eh
2.1 传感器的静态特性
定义
传感器的静态特性是指被测量的值处于稳定状态时的 输出输入关系。
只考虑传感器的静态特性时, 输入量与输出量之间的关 系式中不含有时间变量。
尽管可用方程来描述输出输入关系,但衡量传感器静 态特性的好坏是用一些指标。
重要指标有线性度、灵敏度、迟滞和重复性等。
2.1 传感器的静态特性
2.1.2 描述传感器静态特性的主要指标
借助实验方法确定传感器静态特性的过程称 为静态校准。
当满足静态标准条件的要求,且使用的仪器 设备具有足够高的精度时,测得的校准特性即为 传感器的静态特性。
由校准数据可绘制成特性曲线,通过对校准 数据或特性曲线的处理,可得到数学表达式形式 的特性,及描述传感器静态特性的主要指标。