高一数学柱、锥、台的表面积与体积
柱锥台球的体积与表面积
2 锥体的体积
V = 1/3πr²h
如何计算柱锥台球的体积
1
Step 1
测量柱体的半径(r)和高度(h)
Step 2
2
使用柱体的体积公式计算柱体的体积(Vc)
3
Step 3
测量锥体的半径(r)和高度(h)
Step 4
4
使用锥体的体积公式计算锥体的体积(Vc)
5
Step 5
将柱体的体积和锥体的体积相加得到柱锥台 球的总体积(V)
4
使用锥体的表面积公式计算锥体的表面积
(A c)
5
Step 5
将柱体的表面积和锥体的表面积相加得到柱 锥台球的总表面积(A)
柱锥台球的尺寸影响体积和表 面积吗?
柱锥台球的尺寸,如半径和高度,会直接影响它的体积和表面积。增加柱锥 台球的尺寸会增加其体积和表面积。
柱锥台球的体积和表面积之间 的关系
柱锥台球的体积和表面积之间是相互关联的。当柱锥台球的体积增加时,它 的表面积也会增加。
柱锥台球的表面积公式
1 柱体的表面积
A = 2πrh + 2πr²
2 锥体的表面积
A = πr(l + r)
如何计算柱锥台球的表面积径(r)和高度(h)
Step 2
2
使用柱体的表面积公式计算柱体的表面积
(A c)
3
Step 3
测量锥体的半径(r)和斜高(l)
Step 4
柱锥台球的体积与表面积
柱锥台球是一种特殊形状的台球,它由柱体和锥体两部分组成。在本演示中, 我们将讨论柱锥台球的体积和表面积,以及与数学和物理学的关系。
柱锥台球的形状
柱锥台球由一个底部较大的柱体和一个顶部较小的锥体组成。这种特殊形状 让它成为一个有趣的几何体。
柱体、锥体、台体的表面积与体积 课件
故B1F= 82-22=2 15, 所以S梯形BB1C1C=12×(8+4)×2 15=12 15, 故四棱台的侧面积S侧=4×12 15=48 15, 所以S表=48 15+4×4+8×8=80+48 15.]
[规律方法] 空间几何体表面积的求法技巧 (1)多面体的表面积是各个面的面积之和. (2)组合体的表面积应注意重合部分的处理. (3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展 开为平面图形计算,而表面积是侧面积与底面圆的面积之和.
柱体、棱体、台体的表面积与侧面积
(1)已知圆柱的上、下底面的中心分别为 O1,O2,过直线 O1O2 的
平面截该圆柱所得的截面是面积为 8 的正方形,则该圆柱的表面积为( )
A.12 2π
B.12π
C.8 2π
D.10π
(2)已知某圆锥的底面半径为 8,高为 6,则该圆锥的表面积为________.
S 圆柱侧=2πrl
r′=r ←――――
S
圆台侧=π(r′+r)l
r′=0 ――――→
S 圆锥侧=πrl.
(2)柱体、锥体、台体的体积公式之间有什么关系? [提示] 柱体、锥体、台体的体积公式之间的关系: V=Sh←S′――=――S V=13(S′+ S′S+S)h―S′――=―→0 V=13Sh.
(3)已知四棱台的上、下底面分别是边长为4和8的正方形,侧面是腰长为8 的等腰梯形,则该四棱台的表面积为________cm2.
(1)B (2)144π (3)80+48 15 [(1)因为过直线O1O2的平面截该圆柱所得 的截面是面积为8的正方形,所以圆柱的高为2 2 ,底面圆的直径为2 2 ,所 以该圆柱的表面积为2×π×( 2)2+2π× 2×2 2=12π.
【课件】圆柱、圆锥、圆台的表面积与体积+课件高一下学期数学人教A版(2019)必修第二册
设圆台的上底面面积为S',下底面面积为S
r O
1
1
2
2
2
2
V圆台 (r r r r )h ( S S S S )h
3
3
1
这和V棱台 ( S S S S )h是一致的。
3
1
因而得 V台体 = ( S S S S )h
3
【练习】 如图,在直角梯形 ABCD 中,BC∥AD,∠ABC=90°,AB=5,
1
V锥体 Sh
3
1 2
r h
3
1
V台体 = ( S SS S )h
3
1
= h(r 2 rr r 2 )
3
2
感谢聆听
S圆柱 =πr +πr +2πrl 2πr (r l )
2
2
(1)圆柱的表面积、体积
圆柱的侧面展开图是什么?如何计算它的表面积?
r O
l
2 r
O
圆柱的侧面展开图是一个矩形,
S圆柱表面积 2r 2rl 2r (r l ).
2
V圆柱 = πr h
2
例1 将一个边长分别为4π,8π的矩形卷成一个圆柱的侧面,则
圆台的表面积为(
A.81π
)
B.100π
C.168π
D.169π
解 圆台的轴截面如图所示,
设上底面半径为 r,下底面半径为 R,则它的母线长为
l= h2+R-r2= 4r2+3r2=5r=10,
所以 r=2,R=8。
故 S 侧=π(R+r)l=π(8+2)×10=100π,
S 表=S 侧+πr2+πR2=100π+4π+64π=168π。故选 C。
圆柱、圆锥、圆台、球的表面积和体积 高一数学(人教A版2019必修第二册)
(2)一个长方体的各顶点均在同一球面上,且一个顶点上的三 条棱的长分别为1,2,3,则此球的表面积为________.
解析:长方体外接球如图,长方体的体对角面是矩形,该矩 形的对角线就是球的直径,此对角线也是长方体的体对角线,长 方体的体对角线长为 12+22+32= 14,设球的半径为R,则有
在Rt△POE中,PE=4,
OE=3,则高PO=7 .
所以
V
1· 3
SABCD·
PO
1 3
62
7 12
7,
S侧面积
1· 2
c·
PE
1 2
4
6
4
48.
【提升总结】圆柱、圆台、圆锥表面积公式 圆柱的表面积为:
S圆柱表 2r2 2rl 2r r l
圆锥的表面积为:
S圆锥表 r2 rl r r l
答案:6
题型三 球的切、接问题——微点探究 微点 1 球与正方体、长方体的切、接问题 例 2 (1)将棱长为 2 的正方体木块削成一个体积最大的球,则 该球的体积为( )
A.43π
B.
2π 3
C.
3π 2
D.π6
解析:将棱长为2的正方体木块削成一个体积最大的球时,球 的直径等于正方体的棱长2,则球的半径R=1.
结合棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积公式,你将它们统 一成柱体、锥体、台体的体积公式吗?
V柱体 =Sh (S为底面积,h为柱体高)
1 V锥体 = 3 Sh (S为底面积,h为锥体高)
V台体
=
1 3
(
S
S S S )h (S′、S分别为上、下底面面积,h为台体高)
23高中数学“圆柱、圆锥、圆台、球的表面积和体积”知识点详解
高中数学“圆柱、圆锥、圆台、球的表面积和体积”知识点详解一、引言在高中数学中,立体几何是一个非常重要的部分,它涉及到三维空间中图形的性质、度量以及变换等内容。
圆柱、圆锥、圆台和球是立体几何中最为常见的几何体,它们的表面积和体积计算是高中数学的重点和难点。
本文将详细介绍这些几何体的表面积和体积的计算方法,帮助同学们更好地掌握这一知识点。
二、圆柱的表面积和体积1.圆柱的表面积圆柱的表面积等于其侧面积与两个底面面积之和。
具体计算公式如下:表面积= 侧面积+ 2 ×底面面积= 2πrh + 2πr²= 2πr(h + r)其中,r为底面半径,h为高。
1.圆柱的体积圆柱的体积等于其底面面积与高的乘积。
具体计算公式如下:体积= 底面面积×高= πr²h三、圆锥的表面积和体积1.圆锥的表面积圆锥的表面积等于其侧面积与底面面积之和。
具体计算公式如下:表面积= 侧面积+ 底面面积= πrl + πr²= πr(l + r)其中,r为底面半径,l为母线长。
母线长l可以通过勾股定理求得:l = √(h² + r²),其中h为高。
1.圆锥的体积圆锥的体积等于其底面面积与高的乘积的三分之一。
具体计算公式如下:体积= (1/3) ×底面面积×高= (1/3) × πr²h四、圆台的表面积和体积1.圆台的表面积圆台的表面积等于其侧面积与上、下底面面积之和。
具体计算公式如下:表面积= 侧面积+ 上底面面积+ 下底面面积= π(R + r)l + πR² + πr²= π(R + r)(l + R + r)其中,R为上底面半径,r为下底面半径,l为母线长。
母线长l可以通过勾股定理求得:l = √[(R - r)² + h²],其中h为高。
1.圆台的体积圆台的体积可以使用以下公式计算:体积= (1/3) × (上底面面积+ 下底面面积+ √(上底面面积×下底面面积)) ×高= (1/3) × π(R² + r² + Rr) × h= (1/3) × π(R + r)(R² - Rr + r²)h / (R - r) (当R≠r时)= (1/3) × πh(R^2 + Rr + r^2) (当R=r时)五、球的表面积和体积1.球的表面积球的表面积等于其大圆的面积的4倍。
圆柱、圆锥、圆台的表面积和体积课件-高一数学人教A版(2019)必修第二册
3
球的表面积与体积
问题六
设球的半径为R,你能类比圆的面积公式
推导方法,推导出球的体积公式吗?
提示
分割、求近似和,再由近似和转化为准确和,
得出球的体积公式.
知 识 梳 理
1.球的表面积公式S= 4πR2(R为球的半径).2.球Biblioteka 体积公式V=4 3πR
3
.
例3
(1)一个球的表面积是16π,则它的体积是
3
解析 设圆台较小底面的半径为r,则另一底面的半径为3r.
由S侧=7π(r+3r)=84π,解得r=3.
反思
感悟
圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面
展开为平面图形计算,而表面积是侧面积与底面圆的面积之和.
跟踪训练1
若一个圆柱的轴截面是面积为9的正方形,则这个圆柱的侧面积为
A.9π
直角三角形中列出方程并求解.
跟踪训练2
若一个圆锥的轴截面是等边三角形,其面积为 3,
3
则这个圆锥的体积为________.
3π
解析
画出示意图,如图所示,设圆锥的母线长为 a,
1
3
则由 ·a· a= 3,得 a=2.
2
2
故圆锥的底面圆直径为 2,圆锥的高为 3,
1
3
2
圆锥的体积 V=3π×1 × 3= 3 π.
A.64π
解析
64π
B. 3
C.32π
32π
D. 3
√
设球的半径为 R,则由题意可知 4πR2=16π,故 R=2.
4 3 32π
所以球的体积 V= πR =
.
3
3
例3
(2)长、宽、高分别为 2, 3, 5的长方体的外接球的表面积为
柱体、锥体、台体的表面积和体积
柱体的体积公式
柱体的体积可以通过以下公式计算:
体积 = 底面积 × 高度 底面积 = πr² 其中,r 是底面半径,h 是高度。
锥体的定义和特征
• 锥体由一个圆锥面和一个尖顶组成。 • 锥体的高度是尖顶到底面的垂直距离。
锥体的表面积公式
柱体、锥体、台体的表面 积和体积
通过学习柱体、锥体和台体的表面积和体积公式,你将能够理解它们的定义、 特征以及在日常生活和建筑中的应用。
柱体的定义和特征
• 柱体由两个平行的圆面以及它们之间的侧面组成。 • 柱体的高度是两个平行圆面之间的垂直距离。
柱体的表面积公式
柱体的表面积可以通过以下公式计算:
锥体的表面积可以通过以下公式计算: 总表面积 = πr² + πrl 其中,r 是底面半径,l 是斜高。
锥体的体积公式
锥体的体积可以通过以下公式计算:
体积 = 1/3 × 底面积 × 高度 底面积 = πr² 其中,r 是底面半径,h由两个平行的圆面和它们之间的侧面组成。 • 底面和顶面是平行的,而侧面是梯形形状。
柱、锥、台、球的表面积与体积精例
表面积与体积
X
一. 棱柱的侧面积、表面积与体积 1. 直棱柱的侧面积、表面积与体积
S侧=C•h
S表= S侧+2S底 S表= S侧+2S底
V棱柱= S•h
2. 斜棱柱的侧面积、表面积与体积
S侧=C’•L
二. 棱锥的侧面积、表面积与体积
S侧= S△1+S △2 +S △3 +… S表= S侧+S底
2
它的体积是
2cm
俯视图
4_________. 2 cm
4 3
3
例2
已知长方体ABCD-A1B1C1D1的长、宽、高分别 为3,2,1,求沿其表面从点A到点C1的最短距离。 D1 C1 B1 A1 1 C E D
2 2 3
A
B 1
例2
已知长方体ABCD-A1B1D1的长、宽、高分别为3, 2,1,求沿其表面从点A到点C1的最短距离。 D1 C1 B1 F A
A
5 4 B 4
3 C B 4 C
12 5
5
5
A
A
3
C
3
思考:
1.用棱长为1的正方体的体积作为单位体积,下图 长方体的体积的数值为24.假如将体积单位改用棱 长为2的正方体的体积,这个长方体的体积变为多 少?
2.一个正方体和一个圆柱等高,并且侧面积相等。 比较它们的体积哪个大?为什么? P 3.求证:经过长方体相对两个面 的中心的任意平面,把长方体分 成体积相等的两个柱体。 Q
1
D
2
1 C 2
1
A
3Ba来自 例2已知长方体ABCDD1 A1B1C1D1的长、宽、高分 别为3,2,1,求沿其表面 A1 从点A到点C1的最短距离。 D
柱、锥、台表面积与体积
柱、锥、台的表面积与体积
要点1 柱体的表面积
棱柱的侧面是平行四边形;圆柱的侧面展开图是矩形. 设柱体的底面周长为c ,高为h ,则S 侧=c·h ,S 表=S 侧+2S 底. 要点2 锥体的表面积
棱锥的侧面展开图是由若干个三角形拼成的,因此侧面积为各三角形面积之和;圆锥的侧面展开图为扇形.表面积公式为:S 表=S 侧+S 底. 要点3 台体的表面积
棱台的侧面展开图为若干个梯形拼接而成,因此侧面积为各梯形的面积之和,而圆台的侧面展开图为扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,它们的表面积公式为:S 表=S 侧+S 上底+S 下底. 要点4 柱体、锥体与台体的体积公式
V 柱体=Sh ,(S 为底面积,h 为柱体的高). V 锥体=1
3Sh ,(S 为底面积,h 为锥体的高). V 台体=1
3(S +SS ′+S ′)h , V 柱――――→S ′=S V 台――――→S ′=0
V 锥
例1 (1)已知棱长为5的各侧面均为正三角形的四棱锥
S -ABCD ,求它的侧面积、表面积.
(2)一个正方体和一个圆柱等高,并且侧面面积相等,求这个正方体和圆柱的体积之比.
例2(1)已知一圆台上底面半径为2,下底面的半径为3,截得此圆台的圆锥的高为6,求此圆台的体积.
例3某几何体的三视图如图所示,该几何体的体积等于________,表面积等于________.
空间几何体体积计算的常见技巧
1.等积变换法
例如图所示,三棱锥的顶点为P,PA、PB、PC为三条侧棱,且PA、PB、PC两两互相垂直,又PA=2,PB=3,PC=4,求三棱锥P -ABC的体积V.。
第一课时圆柱、圆锥、圆台的表面积和体积课件-高一下学期数学人教A版(2019)必修第二册
19
课堂精炼
【训练 3】
π
如图所示,在梯形 ABCD 中,∠ABC= ,AD∥BC,BC=2AD
2
=2AB=2,将梯形 ABCD 绕 AD 所在的直线旋转一周而形成的曲面所围成的
几何体的体积为(
5
A. π
3
4
B. π
3
2
C. π
3
)
D.2π
解析
由题意,旋转而成的几何体是圆柱,挖去一个圆
锥(如图),
又 BD=A1D·tan 60°=3 3,∴R+r=3 3,
∴R=2 3,r= 3,又 h=3,
1
1
2
2
∴V 圆台= πh(R +Rr+r )= π×3×[(2 3)2+
3
3
2 3× 3+( 3)2]=21π.
∴圆台的体积为 21π.
答案
10
21π
关于旋转体面积、体积等计
算问题,一般重点考察几何
体的轴截面,将立体问题平
面积与两底面积之和
题型二
求圆柱、圆锥、圆台的体积
数 学
7
知识梳理
2.柱体、锥体、台体的体积公式
V 柱体= sh (S 为底面面积,h 为柱体高);
V 锥体=
sh
(S 为底面面积,h 为锥体高);
1
V 台体= (S′+ S′S+S)h(S′,S 分别为上、下底面面积,h 为台体高).
3
8
课堂精讲
8.3.2 第一课时 圆柱、圆
锥、圆台的表面积和体积
数 学
1
题型一
求圆柱、圆锥、圆台的表面积
数 学
2
知识梳理
1.圆柱、圆锥、圆台的表面积和体积
高一 数学 必修 立体几何 第四讲 柱、锥、台体的表面积和体积
例题 2.如图,某几何体的正视图(主视图)是平行四
边形,侧视图(左视图)和俯视图都是矩形,则该几
何体的体积为( C )
A.18 3
B.12 3C.9Fra bibliotek3D.6 3
例题 3.某几何体的三视图如图所示,
根据图中标出的数据,可得这个几何
体的体积为
.
1
2
正视图
3 2 侧视图
俯视图
例题 4.(高考安徽卷理)一个多面体的三视图如图所示,则该 多面体的表面积为( )
A.21+ 3
B.18+ 3
C.21
D.18
D' A'
E'
C'
F'
B' G'
GD AF E
C B
例题 5.(山东高考理)三棱锥 P ABC 中,D,E 分别为 PB,PC 的中点,记三棱锥
D ABE 的体积为V1 , P ABC
的体积为
V2
,则
V1 V2
________.
P
E
D
A
C
B
技巧传播
给出几何体的三视图求面积、体积的问题,关键因素是“图”,即根据三视图想象直观图 的真实形状,作出直观图,并根据三视图中的数据标出直观图中的量.
柱、锥、台体的表面积和体积
知识要点
等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积
柱,锥,台的体积及球的表面积和体积
[例2] 如图,圆柱的底面直径与高
都等于球的直径.
求证:(1) 球的
体积等于圆柱体积
的 2;
O
3
(2) 球] 如图,圆柱的底面直径与高
都等于球的直径.
***补例*** 1. 若圆台的高是3,一个底面半径
是另一个底面半径的2倍,母线与下底 面所成的角是45°,求这个圆台的侧 面积.
***补例***
2. 如图,一块正方形薄铁片的边长
为22cm,以它的一 个顶点为圆心,一
22cm
边长为半径画弧.沿
弧剪下一扇形,围
成一锥筒.求它的侧面积和体积.
1
V锥 3 sh V台 3 h(s s' ss')
1 V锥 3 sh
s'=0
1 V台体 3 h(s s' ss')
V柱 sh
s'=s
V圆锥
1 3
R2h
r=0
V圆台
1 3
h(r 2
R
R2
)
V圆柱 R2h
r=R
三、 球的表面积、体积公式
S球表 4R2
V球
4 R3
3
典型例题 [例1] 有一堆规格相同的铁制六角
1、多面体的表面积公式是什么?
S多面体表 底面面积 侧面面积
2、圆柱体的表面积公式是什么?
S圆柱表 2 r(r l)
3、圆锥体的表面积公式是什么?
S圆锥表 r(r l)
4、圆台的表面积公式是什么?
S圆台表(r'2 r2 r'l rl)
柱、锥、台表面积体积公式
圆柱体体积公式
圆柱体体积公式
$V = pi r^{2}h$
解释
其中,$V$表示圆柱体的体积,$pi$是圆周率,$r$是底面圆的半径,$h$是圆柱的高。
棱柱体表面积公式
棱柱体表面积公式
根据棱柱的形状和尺寸有所不同,需 要具体问题具体分析。
解释
棱柱体的表面积由底面和顶面的面积 以及侧面的面积组成,具体计算方法 需要根据棱柱的具体形状和尺寸来确 定。
03
台体表面积体积公式
圆台体表面积公式
总结词
圆台体表面积公式是计算圆台侧面积和两个底面积的总和。
详细描述
圆台体表面积公式为 S = π * (r1 + r2) * l,其中 r1 和 r2 分别为圆台上下底面的半径, l 为圆台母线长度。
圆台体体积公式
总结词
圆台体体积公式是计算圆台所占三维空间的 大小。
物理学
在计算物体之间的相互作用力、热传导、电磁波的传播等物理现象 时,需要使用表面积和体积公式来描述物体的大小和形状。
化学工程
在化学工程领域,表面积和体积的计算对于反应器设计、传热传质计 算等方面具有重要意义。
表面积和体积公式的推导过程
要点一
柱体
柱体的表面积由底面和侧面组成,侧面 面积是高乘以底面周长,底面周长是 2πr(r为底面半径),所以侧面面积 是2πrh(h为高),底面面积是πr^2, 所以柱体表面积是2πrh+πr^2,体积 是底面积乘以高,即πr^2h。
棱台体体积公式
总结词
棱台体体积公式是计算棱台所占三维空间的 大小。
详细描述
棱台体体积公式为 V = (1/3) * (a1 + a2) * l * h,其中 a1 和 a2 分别为棱台上下底面的边
柱、锥、台的表面积与体积
柱、锥、台的表面积与体积【学习目标】1.通过对柱、锥、台体的研究,掌握柱、锥、台的表面积的求法。
2.通过对柱、锥、台体的研究,掌握柱、锥、台的体积的求法。
【学习重点】学习重点:柱体、锥体、台体的表面积和体积计算。
学习难点:台体体积公式的推导。
【自主学习】 正方体、长方体的表面积可以理解成各个面的面积之和,圆柱、圆锥的表面积可以理解成底面面积与侧面展开图的面积之和。
那么如何计算柱体、锥体、台体的表面积,进而去研究他们的体积问题呢?阅读课本23-27页回答下列问题:棱体、棱锥、棱台的表面积是如何求的呢?圆柱、圆锥、圆台的表面积公式是什么?你是如何得到的呢?柱体、锥体、台体的体积公式是什么?你是如何得到的呢?【典型例题】已知棱长为a ,各面均为等边三角形的正四面体S-ABC 的表面积.如图是一种机器零件,零件下面是六棱柱(底面是正六边形,侧面是全等的矩形)形,上面是圆柱(尺寸如图,单位:mm )形. 电镀这种零件需要用锌,已知每平方米用锌0.11kg ,问电镀10 000个零件需锌多少千克(结果精确到0.01kg )【基础题组】1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8 B.8π C.4π D.2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比为 ( )A.1+2π2πB.1+4π4πC.1+2ππD.1+4π2π3.若一个圆台的正视图如图所示,则其侧面积等于 ( )A .6B .6πC .35πD .65π4.三视图如图所示的几何体的全面积是 ( )A .7+ 2 B.112+ 2 C .7+ 3 D.325.如果一个空间几何体的正视图与侧视图均为全等的等边三角形, 俯视图为一个半径为1的圆及其圆心,那么这个几何体的体积为( )A .33πB .332πC .π3D .3π6.三棱锥ABC V -的中截面是111C B A ∆,则三棱锥111C B A V -与三棱锥BC A A 1-的体积之比是( )A .1:2B .1:4C .1:6D .1:87.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是________.8.一简单组合体的三视图及尺寸如下图所示(单位:cm ),则该组合体的表面积为________cm2.9.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.10.长方体ABCD —A1B1C1D1中,宽、长、高分别为3、4、5,现有一个小虫从A 出发沿长方体表面爬行到C1来获取食物,求其路程的最小值.【拓展题组】1.已知由半圆的四分之三截成的扇形的面积为B ,由这个扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( )A .11∶8B .3∶8C .8∶3D .13∶82.一个几何体的三视图如图,该几何体的表面积为( )A .372B .360C .292D .2803.一个几何体的三视图如图所示,则该几何体的表面积为________.4.有一根长为3π cm ,底面半径为1 cm 的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,求铁丝的最短长度.【探究题组】1.有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).2.右图是一个正方体,H 、G 、F 分别是棱AB 、AD 、1AA 的中点。
高一数学柱椎体和台体的表面积与体积3PPT优秀资料
面积公式可求侧面积. 例2 如图是一个底面直径为20 cm的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm,高为20 cm的圆锥形铅锤,当铅
锤从水中取出后,杯里的水将下降多少?
=60π(cm3),设水面下降的高度为 x cm,
变式2 如图所示,在长方体ABCD-A′B′C′D′中,截下一个棱锥C-A′DD′,求棱锥C-A′DD′的体积与剩余部分的体积之比.
则小圆柱的体积为 π(20) x= 求【简规单 律几方何法体】的表求面棱积锥就的是表根面据积组,成可几以何先体求的侧各面个积侧,面再与求底底面面的积面.积求2之侧和面.积,要清楚各侧面三角形的形状,并找出求面积的条件; 2 100πx. 【规律方法】 像本例中的实际应用题,解题的关键则是建立数学模型,然后利用体积公式中的相关量列出方程,即可求解.
• 【分析】 本题考查空间几何体的表面积 计算、三视图及空间想象能力.
• 【解析】 通过三视图还原三棱柱直观图 如图所示,通过正视图可以得出该三棱柱 底面边长为2,侧棱长为1,三个侧面为矩 形,上下底面为正三角形,
∴S 表=3×(2×1)+2×( 43×22)=6+2 3. 【答案】 6+2 3
• 当几何体不规则或直接求体积有困难时, 可利用转化思想,采用间接方法,如割补 法等求其体积,也可借助体积公式和图形 的性质转化为其他等体积的几何体,再求 体积.
• 例2 如图是一个底面直径为20 cm的装有一 部分水的圆柱形玻璃杯,水中放着一个底 面直径为6 cm,高为20 cm的圆锥形铅锤, 当铅锤从水中取出后,杯里的水将下降多 少?
• 2.锥体的侧面积 变式2 如图所示,在长方体ABCD-A′B′C′D′中,截下一个棱锥C-A′DD′,求棱锥C-A′DD′的体积与剩余部分的体积之比. • (1)棱锥的侧面展开图是由若干个三角形拼 (1)棱台的侧面展开图为若干个梯形拼接而成,因此侧面积为各个梯形的面积之和.
高一数学教案:柱体锥体台体的表面积与体积
高一数学教案:柱体锥体台体的表面积与体积
【摘要】欢迎来到高一数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。
因此小编在此为您编辑了此文:“高一数学教案:柱体锥体台体的表面积与体积”希望能为您的提供到帮助。
本文题目:高一数学教案:柱体锥体台体的表面积与体积
学习目标
1. 了解柱、锥、台的体积计算公式;
2. 能运用柱、锥、台的体积公式进行计算和解决有关实际问题.
学习过程
一、课前准备
(预习教材P25~ P26,找出疑惑之处)
复习1:多面体的表面积就是___________________
加上___________.。
1.3 .1柱、锥、台的表面积与体积
棱柱 ABC-A1B1C1 中,AB=BC=2 2, 知识点 3 多面体的展开问题
,E、5.F如图分,在 别直是 三棱柱 AAAB1C,-AC1B11CB11中的 ,A中 B=点 BC=,2 沿 2,棱 的最短路径的长度为________. CC1=4,∠ABC=90°,E、F 分别是 AA1,C1B1 的中点,沿棱
知识点 1 多面体的表面积
1.在正方体 ABCD-A1B1C1D1 中,三棱锥 D1-AB1C 的表
面积与正方体的表面积的比为(
)
A.1∶1 C.1∶ 3
Hale Waihona Puke B.1∶ 2 D.1∶2若一正四棱台的上底、下底面边长分别为 2,4,
其表面积为 80,求该四棱台的高.
【解】 设该正四棱台的斜高为 h′,高为
柱的表面从点 E 到点 F 的最短路径的长度为________.
已知圆柱的高为 h,底面半径为 R,轴截 面为矩形 A1ABB1,在母线 AA1 上有一点 P,且 PA=a,在母线 BB1 上取一点 Q,使 B1Q=b,则圆柱侧面上 P、Q 两点的最短距 离为多少?
简单几何体的侧面积
几何体
侧面展开图
S直棱柱侧=___ch c为底面__周__长_
h为__高__
正棱锥 正棱台
S正棱锥侧=__12___c_h_′_ c为底面___周__长_ h′为__斜__高__,即侧面等腰 三角形的高
S正棱台侧=__12_(_c_+_c_′__)_h′ c′为上底面___周__长 c为下底面____周__长 h′为___斜_高__,即侧面等腰 梯形的高
3 ∴S 表=2S 底+S 侧 =2×12×4×4× 23+4×2×3 =24+8 3.
如图所示,已知三棱锥 A-BCD 的底面 是等边三角形,三条侧棱长都等于 1 且∠BAC=30°, M,N 分别在棱 AC 和 AD 上,求 BM+MN+NB 的 最小值.
柱体、锥体、台体的表面积和体积 课件
[知识提炼Байду номын сангаас梳理]
1.棱柱、棱锥、棱台的表面积 棱柱、棱锥、棱台都是由多个平面图形围成的多面 体,因此它们的表面积等于各个面的面积之和,也就是 展开图的面积.
2.圆柱、圆锥、圆台的表面积
底面积:S 底=πr2 圆
侧面积:S 侧=2πrl 柱
表面积:S=2πrl+2πr2 底面积:S 底=πr2 圆 侧面积:S 侧=2πrl 锥 表面积:S=πrl+πr2
所以 r=4.则 h=4. 故圆锥的体积 V 圆锥=13πr2h=634π. 答案:A
[迁移探究 1] (变换条件,改变问法) 将典例 2 中 第(2)题的条件“侧面积是 16 2π”改为“若其体积为 3 π”,求该圆锥的侧面积.
解:设圆锥的底面半径为 r,则高 h=r,母线 l=PB
= 2r.
[变式训练] 圆台的上、下底面半径分别是 10 cm 和 20 cm,它的侧面展开图的扇环的圆心角是 180°,求圆 台的表面积.
解:如图所示,设圆台的上底面周长为 c cm,由于 扇环的圆心角是 180°,则 c=π·SA=2π×10,解得 SA= 20(cm).
同理可得 SB=40(cm), 所以 AB=SB-SA=20(cm). 所以 S 表=S 侧+S 上+S 下= π×(10+20)×20+π×102+π×202= 1 100π(cm2).
2+5 则 S 底= 2 ×4=14,高 h=4. 所以 V 四棱柱=S 底·h=56.
归纳升华 1.求解柱体体积的关键是根据条件找出相应的底面 积和高,对于旋转体要充分利用旋转体的轴截面,将待求 的量转化到轴截面内求. 2.求解锥体体积的关键是明确锥体的底面是什么图 形,特别是三棱锥,哪个三角形作为底面是解题的关键点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.3.1柱体、锥体、台体的表面积与体积
一、教学目标
1、知识与技能
(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。
(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。
(3)培养学生空间想象能力和思维能力。
2、过程与方法
(1)让学生经历几何全的侧面展一过程,感知几何体的形状。
(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。
3、情感与价值
通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响。
从而增强学习的积极性。
二、教学重点、难点
重点:柱体、锥体、台体的表面积和体积计算
难点:台体体积公式的推导
三、学法与教学用具
1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标。
2、教学用具:实物几何体,投影仪
四、教学设想
1、创设情境
(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类。
(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容。
2、探究新知
(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图
(2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求?
(3)教师对学生讨论归纳的结果进行点评。
3、质疑答辩、排难解惑、发展思维
(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:
)''22rl l r r r S +++=(圆台表面积π
r 1
为上底半径 r 为下底半径 l 为母线长
(2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系。
(3)教师引导学生探究:如何把一个三棱柱分割成三个等体积
的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的
了解。
如图:
(4)教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系。
(s ’,s 分别我上下底面面积,h 为台柱高)
4、例题分析讲解
(课本)例1、 例2、 例3
5、巩固深化、反馈矫正
教师投影练习
1、已知圆锥的表面积为 a ㎡,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为 。
(答案:m a ππ
332) 2、棱台的两个底面面积分别是245c ㎡和80c㎡,截得这个棱台的棱锥的高为35cm ,
求这个棱台的体积。
(答案:2325cm 3)
6、课堂小结
本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式。
用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握。
7、评价设计
习题1.3 A 组1.3。