有限元法基础-5等参元与数值积分

合集下载

《有限元基础及应用》课程大纲

《有限元基础及应用》课程大纲

《有限元基础及应用》课程教学大纲一、课程基本信息二、课程目标(一)总体目标:有限元法是求解复杂工程问题进行数值模拟非常有效的方法,是现代数字化科技的一种重要基础性原理。

将它应用于科学研究中,可以成为探究物质客观规律的先进手段;将它应用于工程技术中,可成为工程设计和分析的可靠工具。

有限元法已经成为机械工程、车辆工程、航空航天工程、土木建筑等专业的必修课或选修课,有限元商用软件也是广大工程技术人员从事产品开发、设计、分析,以及生产服务的重要工具。

通过本课程的学习使同学们掌握有限元分析方法的基础知识和原理;掌握大型有限元分析软件(ANSYS)的使用;有限元方法的实际应用:能够针对具有复杂几何形状的变形体完整获取复杂外力作用下它内部准确力学信息,在准确进行力学分析的基础上,可以对所研究对象进行强度、刚度等方面的判断,以便对研究结构进行静态、动态的强度和刚度分析、参数设计以及结构优化设计。

内容由浅入深,通俗易懂,结合实践应用分析,培养学生理论联系实际和解决实际问题的能力。

(二)课程目标:课程目标1:掌握有限元方法的基本原理,分析过程和步骤,形函数的构造方法,以及针对不同维度、不同结构准确选择合适的单元的技巧;课程目标2:掌握有限元分析方法,具有对不同工程问题建立相应力学模型再选取适合的有限元模型离散,最后得到高精度低成本的数值模拟结果;课程目标3:利用有限元原理和应用软件(ANSYS),能够针对车辆结构中具有复杂几何形状的零部件完整获取复杂外力作用下其内部的准确力学信息(位移、应力和应变),并能根据强度、刚度、稳定性及疲劳等进行分析判断结构的安全性,具有分析和解决工程实际问题的能力;课程目标4:掌握大型商用有限元软件(ANSYS)对车辆结构部件的静力学、动力学和多物理场耦合问题进行数值模拟和分析。

能够了解不同单元的适用范围以及有限元方法数值模拟的局限性。

(三)课程目标与毕业要求、课程内容的对应关系本课程支撑专业培养计划中毕业要求1、2、3、5。

有限元法介绍

有限元法介绍

通俗地说,有限元法就是一种计算机模拟技术,使人们能够在计算机上用软件模拟一个工程问题的发生过程而无需把东西真的做出来。

这项技术带来的好处就是,在图纸设计阶段就能够让人们在计算机上观察到设计出的产品将来在使用中可能会出现什么问题,不用把样机做出来在实验中检验会出现什么问题,可以有效降低产品开发的成本,缩短产品设计的周期。

有限元法也叫有限单元法(finite element m ethod, FEM),是随着电子计算机的发展而迅速发展起来的一种弹性力学问题的数值求解方法。

五十年代初,它首先应用于连续体力学领域—飞机结构静、动态特性分析中,用以求得结构的变形、应力、固有频率以及振型。

由于这种方法的有效性,有限单元法的应用已从线性问题扩展到非线性问题,分析的对象从弹性材料扩展到塑性、粘弹性、粘塑性和复合材料,从连续体扩展到非连续体。

有限元法最初的思想是把一个大的结构划分为有限个称为单元的小区域,在每一个小区域里,假定结构的变形和应力都是简单的,小区域内的变形和应力都容易通过计算机求解出来,进而可以获得整个结构的变形和应力。

事实上,当划分的区域足够小,每个区域内的变形和应力总是趋于简单,计算的结果也就越接近真实情况。

理论上可以证明,当单元数目足够多时,有限单元解将收敛于问题的精确解,但是计算量相应增大。

为此,实际工作中总是要在计算量和计算精度之间找到一个平衡点。

有限元法中的相邻的小区域通过边界上的结点联接起来,可以用一个简单的插值函数描述每个小区域内的变形和应力,求解过程只需要计算出结点处的应力或者变形,非结点处的应力或者变形是通过函数插值获得的,换句话说,有限元法并不求解区域内任意一点的变形或者应力。

大多数有限元程序都是以结点位移作为基本变量,求出结点位移后再计算单元内的应力,这种方法称为位移法。

有限元法本质上是一种微分方程的数值求解方法,认识到这一点以后,从70年代开始,有限元法的应用领域逐渐从固体力学领域扩展到其它需要求解微分方程的领域,如流体力学、传热学、电磁学、声学等。

有限单元法的数学基础

有限单元法的数学基础

有限单元法的数学基础1、引言有限元方法归根结底是一种数值计算方法,它有严格的数学证明作为其近似的客观性和合理性的保证。

力学问题最终归结为一组微分方程的边值问题或者初值问题抑或是混合问题。

比如弹性静力学最终归结为L-N 方程的微分提法。

在很难或者根本不可能得到所得方程的理论解的情况下,究竟用什么样的方法才能得到方程的近似解(这种近似解已经能够满足实际工程的需要),在这种情况下,二十世纪五六十年代由结构力学家进而由数学家提出和证明了这种思想方法的合理性。

有限元方法产生于力学计算,但是,它本质上并不是力学的专利。

世间万物的变化过程很多都可以通过微分方程特别是偏微分方程来描述,也就是说,微分方程是很多现象和过程的数学结构,而大多数的微分方程是不能得到理论解的,这时候就可以使用有限元方法来求其近似解,因为有限元方法是求解微分方程(组)的数值计算方法。

它适用于力学的微分方程,也同样适用于其它领域的相应的微分方程的数值求解。

2、有限元方法数学根源对于一个给定的微分方程定解问题,为了求其近似解,我们可以使用Ritz 方法和Galerkin 方法。

下面分别阐述这两种方法,然后讨论有限元方法和他们的关系。

(1) Ritz 法Ritz 法源于最小势能原理,设H 是可分的Hilbert 空间,在H 中取有限维空间Sn ,它是由N 个线性无关向量12,,,N φφφ 张成,即:121,,(,,)NN n n i i N N i S C C C C R ωωφ=⎧⎫≡=∀∈⎨⎬⎩⎭∑用N S 代替H ,在N S 上求泛函J(w)的极值,即求N U ∈N S ,使得()N J U =min ()N N S N J ωω∈实际上寻求N U 只需通过解一个线性方程组1()(,)()02J D F ωωωω=-≥D--------双线性形式 F--------线性泛函1NN i i i C ωφ==∑111,111()(,)()21(,)()2N N NN i i i i i i i i i NN i j i j i ii j i J D C C F C D C C F C ωφφφφφφ====== =-∑∑∑∑∑-因此,()N J ω是一个以12,,,N C C C 为未知数(自变量)的二次多项式12(,,,)N j C C C ,如果二次项的系数矩阵,1,2,,[(,)]i j i j N D φφ= 是正定的,那么12(,,,)N j j C C C = 在N+1维空间是一个开口向上的椭球抛物面,它有且只有一个极(最)小值点,所谓在N S 上求()N J ω的极值,就是确定00012,,,N C C C ,使得:00012(,,,)N j C C C =1000,,12min (,,,)N C C R N j C C C ∈极值条件:ijC ∂∂|00012,,,N C C C =0 (1,,i N = ) 得:01()()ni ji i i D CF φφφ==∑ (1,,i N = )即:00012[,,,]T N C C C C = 适合方程组:KC=F11[(),,()]T F F F φφ=112111222212(,)(,)(,)(,)(,)(,)(,),(,),,(,)N N N N N N D D D D D D K D D D φφφφφφφφφφφφφφφφφφ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,,,,,, 。

有限元分析第五章(第二部分

有限元分析第五章(第二部分

§5-5数值积分1、问题的提出在上一节中对等参元进行单元分析时要进行下列积分: (i) 单元刚度矩阵(ii)体积力的等效结点力(iii)边界力的等效结点力(iv)温升载荷的等效结点力式(5-4-5)~(5-4-8)分别归结为计算以下两种形式的积分对于上述积分仅在单元的形状十分规则的情况下才能得到解析的结果(精确值),一般情况只能用数值积分方法(主要是高斯求积法)求近似值。

虽然数值积分是“被迫“采用的,但后来发现:有选择地控制积分点的个数和位置,可以方便地实现我们的某些特殊意图。

这样一来,数值积分就成为有限元分析的一个重要组成部分,以至本来可以精确积分的三角形单元也常常采用数值积分。

2、数值积分的基本概念任何积分工作取决于三个要素:给定的积分区间,给定的被积函数,具体的积分方法。

下面以一维情况为例介绍数值积分的基本概念 (i) 梯形法函数()x f 在区间(a,b)的积分可以表达为 ()()ini ibax f W dx x f I ∑⎰=≈=1⎰⎰⎰---111111),()(dxdxy x f dx x f 、 [][][][][][][]ηξd d J t B E B tdxdyB E B k T Te det 1111⎰⎰⎰⎰--=={}[][]ηξσd d J t f f N td f f N r y x T y x T eV det 1111⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=⎰⎰⎰⎰--{}[]{}ηξσγd Jd t B T det 01111T ⎰⎰--={}[]()()⎪⎪⎭⎫ ⎝⎛=⎭⎬⎫⎩⎨⎧=⎰⎰⎰--dy y f dx x f tds q p N r T 1111,ΓΓ(5-4-5) (5-4-8) (5-4-7) (5-4-6)i W :权系数; i x :积分样点;()i x f :积分样点的函数值。

梯形法的求积公式为其中,1--=n ab h ,而a b W ni i -=∑=1(ii) 当被积函数为n-1次多项式P n-1(x )时,则由n 个样点及其样点值(x i , P n-1(x i ),i=1,n )可以精确重构这个多项式,从而可以得到精确解。

有限元法

有限元法

有限元法有限元法是一套求解微分方程的系统化数值计算方法,它比传统解法具有理论完整可靠,物理意义直观明确,解题效能强等优点,特别是由于这种方法适应性强,形式单纯、规范,所以近年来在电子计算机的配合下,已推广应用到很多工程技术部门和某些科学领域。

本章是从应用的角度来介绍有限元法的基本知识,首先通过典型的位移法阐述有限元法的一般原理与解算过程,然后叙述了剖分单元的技巧,最后介绍与有限元法有关的弹性力学问题。

常用符号规定如下(括号内为力学术语或释例):Ω,表示区域及其边界。

表示区域Ω的单元及其边界。

表示单元的第i个顶点,简记作节点i。

表示系数(刚度)矩阵。

()表示单元的系数(刚度)矩阵。

(x,y,z)表示总体的直角坐标。

()表示单元的局部坐标。

(,,),(,,,)等表示单元的自然坐标。

(x,y ,)表示节点i的直角坐标。

(u,v,w)表示一组待定函数(分别为沿x,y,z方向的位移分量),其列矢量表示为u。

1(u,v,w)表示(u,v,w)在单元上的插值函数,其列矢量表示为u。

(u,v,w)表示节点i的函数(位移)值。

{u,v,w}表示节点i的一组参数值,即函数直到某阶导数在节点i上的值按一定次序排成的列矢量{u}。

例如{u}= {u,v,w}=(u,u,u,u,v,v,v,v,w,w,w,w)式中τ表示转置。

{u,v,w}表示{u,v,w}按单元的节点序号排成的列矢量,表示为{u}。

等表示单元的型函数。

{R}表示n次多项式中含变量x,y,z各项按一定次序排成的列矢量,并以表示其中第k个分量。

例如二元二次多项式{}表示n 次多项式中各项相应的系数排成的列矢量,并以表示其中第k个分量。

例如对于{},{}={f,g,h}表示与节点参数相对应的一组已知函数及其导数在节点i上的值排成的列矢量。

2{f,g,h}表示{f,g,h}按单元的节点序号排成的列矢量。

,或放在定义或公式之后表示其中函数u,v,w,变量x,y,z或下标i,j,k作循环替换后,该定义或公式仍然成立。

有限元法的基本原理

有限元法的基本原理

第二章有限单元法的基本原理作为一种比较成熟的数值计算方法,有限元的数学基础是变分原理。

经过半个过世纪的发展,它的数学基础已经比较完善。

从数学角度分析,有限元法是以变分原理和剖分插值为基础的数值计算方法。

它广泛的应用于解算各种类型的偏微分方程,特别对椭圆型方程,因为椭圆型方程的边值问题等价于适当的变分问题,即能量积分的级值问题。

通过变分,导出相应的泛涵,再把作用域从几何上剖分为足够小的单元,这样就能够用简单的图形去拟合复杂的边界,用简单的初等函数去模拟单元的性质。

在解算中先对每个单元进行分析,后在通过连接单元的节点对作用域的整体进行分析,就是对泛涵求极值,从而把一个复杂的偏微分方程求解问题,变成解线形代数方程组的问题。

尽管这样会出现大量的未知数,由于采用了矩阵分析的方法,总体上很有规律,适合编制程序用计算机完成。

通常的数学考虑包括这些:1)从古典变分方法原理去定义微分方程边值问题的广义解以及在古典变分方法的框架对有限元进行理论分析。

2)保证偏微分方程边值问题的提法正确,即要求解存在、唯一和稳定,即保证数值解法是可靠的。

3)有限元中重要的一点是采用了分块多项式插值函数,因此,有限元的误差估计转化为插值逼近的误差估计问题。

4)有限元的收敛性和误差估计。

由于本文是应用有限元的理论解决大地测量中的问题,因此,这里将不讨论上叙问题,而是从固体力学的基本方程出发,通过虚功原理建立起离散化的有限元方程。

另外,还以八节点六面体单元为例,简要叙述了实际中最常用的等参单元的概念及其数值变化的一些公式。

§2.1 弹性力学基本方程有限元法中经常要用到弹性力学的基本方程,这里写出这些方程的矩阵表达式。

2-1-1、平衡方程对任意一点的受力情况分析,沿坐标轴方向x, y ,z分解得到平衡方程0*00000000=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂z y xxz yz xy z y x F F F z yzz x y z y x τττσσσ 记为: 0=+F A σ其中A 是微分算子,F 是体积力向量。

有限单元法基础

有限单元法基础

性体在各节点处的位移解。
3、单元分析---三角形单元
y
3.1 单元的结点位移和结点力向量
从离散化的网格中任取一个单元。三个结点 按反时针方向的顺序编号为:i, j, m。
结点坐标: (xi,yi) , (xj,yj) , (xm,ym) 结点位移: (ui,vi) , (uj,yj) , (um,vm) 共有6个自由度
单元位移插值函数: u(x, y) a1 a2 x a3 y
(3.1)
v(x, y) a4 a5x a6 y
插值函数的系数: a1 aiui a ju j amum / 2 A, a4 aivi a jv j amvm / 2 A,
a2 biui bju j bmum / 2 A, a5 bivi bjv j bmvm / 2 A,
um a1 a2 xm a3 ym , vm a4 a5 xm a6 ym ,
求解以上方程组得到以节点位移和节点坐标表示的6个参数:
a1 aiui a ju j amum / 2 A, a4 aivi a jv j amvm / 2 A, a2 biui bju j bmum / 2 A, a5 bivi bjv j bmvm / 2 A, a3 ciui c ju j cmum / 2 A, a6 civi c jv j cmvm / 2 A,
研究方法
从数学上讲它是微分方程边值问题(椭圆型微分方程、抛物型微分方程和双曲型微 分方程)的一种的数值解法,是一种将数学物理问题化为等价的变分问题的解法,并作 为一种通用的数值解法成为应用数学的一个重要分支。从物理上讲是将连续介质物理 场进行离散化,将无限自由度问题化为有限自由度问题的一种解方法。从固体力学上 认识,是瑞利-里兹法的推广。

有限元法简介

有限元法简介

有限元法的孕育过程及诞生和发展 牛顿(Newton) 莱布尼茨(Leibniz G. W.)
大约在300年前,牛顿和莱布尼茨发明了积 分法,证明了该运算具有整体对局部的可加 性。虽然,积分运算与有限元技术对定义域 的划分是不同的,前者进行无限划分而后者 进行有限划分,但积分运算为实现有限元技 术准备好了一个理论基础。
思路:以计算机为工具,分析任意变形体以获得所有 力学信息,并使得该方法能够普及、简单、高效、方 便,一般人员可以使用。 实现办法:
技术路线:
发展过程: 如何处理 对象的离散化过程
常用单元的形状
.点 (质量)
面 (薄壳, 二维实体,
..
轴对称实体)
. .
...
. .
...
线性
二次
. . 线(弹簧,梁,杆,间隙)
有限元法介绍
有限元法的基本思想是将结构离散化,用 有限个容易分析的单元来表示复杂的对象, 单元之间通过有限个结点相互连接,然后 根据变形协调条件综合求解。由于单元的 数目是有限的,结点的数目也是有限的, 所以称为有限元法(FEM,Finite Element Method)。
有限元法是最重要的工程分析技术之一。 它广泛应用于弹塑性力学、断裂力学、流 体力学、热传导等领域。有限元法是60年 代以来发展起来的新的数值计算方法,是 计算机时代的产物。虽然有限元的概念早 在40年代就有人提出,但由于当时计算机 尚未出现,它并未受到人们的重视。
X
0.056
0.058
X
0.06
Y
Y
0 -0.02 -0.04 -0.06 -0.08
0
-0.001
-0.002
-0.003 0.054

有限元分析基础

有限元分析基础

有限元分析基础第⼀讲第⼀章有限元的基本根念Basic Concepts of the Finite Element Method1.1引⾔(introduction)有限元(FEM 或FEA)是⼀种获取近似边值问题的计算⽅法。

边值问题(boundary valueproblems, 场问题field problem )是⼀种数学问题(mathematical problems)(在所研究的区域,⼀些相关变量满⾜微分⽅程如物理⽅程、位移协调⽅程等且满⾜特定的区域边界)。

边值问题也称为场问题,场是指我们研究的区域,并代表⼀种物理模型。

场变量是满⾜微分⽅程的相关变量,边界条件代表场变量在场边界上特定的值(物理边界转化为数学边界)。

根据所分析物理问题的不同,场变量包括位移、温度、热量等。

1.2有限元法的基本思路 (how does the finite element methods work)有限元法的基本思路可以归结为:将连续系统分割成有限个分区或单元,对每个单元提出⼀个近似解,再将所有单元按标准⽅法组合成⼀个与原有系统近似的系统。

下⾯⽤在⾃重作⽤下的等截⾯直杆来说明有限元法的思路。

等截⾯直杆在⾃重作⽤下的材料⼒学解答图1.1 受⾃重作⽤的等截⾯直杆图1.2 离散后的直杆受⾃重作⽤的等截⾯直杆如图所⽰,杆的长度为L ,截⾯积为A ,弹性模量为E ,单位长度的重量为q ,杆的内⼒为N 。

试求:杆的位移分布,杆的应变和应⼒。

)()(x L q x N -=EAdxx L q EA dx x N x dL )()()(-==-==x x Lx EA q EA dx x N x u 02)2()()((1))(x L EAq dx du x -==ε )(x L AqE x x -==εσ等截⾯直杆在⾃重作⽤下的有限元法解答 (1) 离散化如图1.2所⽰,将直杆划分成n 个有限段,有限段之间通过⼀个铰接点连接。

有限元法基础重点归纳(精)

有限元法基础重点归纳(精)
29、常应变三角形单元:当单元确定后。矩阵B是常量,单元中任一点的应变分量也是常量的单元。
30、有限元法的任务:建立和求解整个弹性体的节点位移和节点力之间的关系的平衡方程。31、单元刚度矩阵:表达了单元节点位移与节点力之间的转换关系。
32、单元刚度矩阵的性质:①单元刚度矩阵中每个元素有明确的物理意义②K e是对称矩阵③K e的每一行或每一列元素之和为零,因此K e为奇异矩阵④K e不随单元的平行移动或作n π角度的转动而改变。33、刚度集成法集成规律:①先对每个单元求出其单元刚度矩阵K e ,而且以分块形式按节点编号顺序排列②将单元刚度矩阵扩大阶数为2n*2n ,并将单元刚度矩阵中的子块按局部码与总码的对应关系,搬到扩大后的矩阵中,形成单元贡献矩阵K e。③将所有单元贡献矩阵同一位置上的分块矩阵简单叠加成总体刚度矩阵中的一个子矩阵,各行各列都按以上步骤即形成总体刚度矩阵K。34、整体刚度矩阵的性质:①整体刚度矩阵是对称矩阵②整体刚度矩阵中每一元素的物理意义:整体刚度矩阵的第一列元素代表使第一个节点在x方向有一单元位移,而其余节点位移皆为零时必须在节点上施加的里。对于K的其余各列也有类似意义③整体刚度矩阵K的主对角线上的元素总是正的④整体刚度矩阵K是一个稀疏阵⑤整体刚度矩阵K是一个奇异阵。35、带形矩阵:整体刚度矩阵K的非零元素分布在以主对角线为中心的斜带形区域内的矩阵。
γxy
=E 1−μ
2∗
1−μ2
γxy
42、制造位移函数:{u (x,y =α1+α2x +α3y
v (x,y =α4+α5x +α6y
43、等参单元精度比四边形单元高,四边形精度比三角形精度高。
44、轴对称问题:很多工程物件,它们的几何形状承受的载荷以及约束条件都对称于其一固定轴,这即为对称轴,此时载荷作用下的位移、应变和应力也对称于该对称轴的问题。45、等参数单元:优点:①形状方位任意,适应性好,精度高,容易构造高阶单元②具有统一形式,规律性强,采用数值积分算,程序处理方便③高阶等参单元精度高,描述复杂边界,形状能力强,所需单元少。缺点:①单元各方向尺寸要尽量接近②单元边界不能过于曲折,不能有拐点折点,尽量接近直线或抛物线③边之间夹角要尽量接近直角④单元形状不能过度畸变,边中节点不能过于偏离中间。46、有限元法基础理论:弹性力学,材料力学

有限元入门

有限元入门
体所有各点的位移都远小于物体的原有尺寸,因而应变和转角 都远小于1,这样,在考虑物体变形以后的平衡状态时,可以 用变形前的尺寸来代替变形后的尺寸,而不致有显著的误差; 并且,在考虑物体的变形时,应变和转角的平方项或乘积项都 可以略去不计,这就使得弹性力学中的微分方程都成为线性方 程。
有限差分方法
(Finite Differential Method)
该方法将求解域划分为差分网格,用有限 个网格节点代替连续的求解域。有限差分 法以泰勒级数展开等方法,把控制方程中 的导数用网格节点上的函数值的差商代替 进行离散,从而建立以网格节点上的值为 未知数的代数方程组。该方法是一种直接 将微分问题变为代数问题的近似数值解法, 数学概念直观,表达简单,是发展较早且 比较成熟的数值方法。
三、 塑性加工中的有限元法概述
有限元法与其它塑性加工模拟方法相比,功能最 强、精度最高、解决问题的范围最广。它可以采 用不同形状、不同大小和不同类型的单元离散任 意形状的变形体,适用于任意速度边界条件,可 以方便地处理模具形状、工件与模具之间的摩擦 、材料的硬化效应、速度敏感性以及温度等多种 工艺因素对塑性加工过程的影响,能够模似整个 金属成形过程的流动规律,获得变形过程任意时 刻的力学信息和流动信息,如应力场、速度场、 温度场以及预测缺陷的形成和扩展。
1-7 有限单元法的基本内容
有限元法的力学基础是弹性力学,而方程求解的原理是泛 函极值原理,实现的方法是数值离散技术,最后的技术载 体是有限元分析软件。必须掌握的基本内容应包括: 1、基本变量和力学方程(即弹性力学的基本概念) 2、数学求解原理(即能量原理) 3、离散结构和连续结构的有限元分析实现(有限元分析 步骤) 4、有限元法的应用(即有限元法的工程问题研究) 5、各种分析建模技巧及计算结果的评判 6、学习典型分析软件的使用,初步掌握一种塑性有限元 软件 注意:会使用有限元软件不等于掌握了有限元分析工具

有限元基础知识归纳

有限元基础知识归纳

有限元基础知识归纳(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--有限元知识点归纳1.、有限元解的特点、原因答:有限元解一般偏小,即位移解下限性原因:单元原是连续体的一部分,具有无限多个自由度。

在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。

2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49(1)在节点i处N i=1,其它节点N i=0;(2)在单元之间,必须使由其定义的未知量连续;(3)应包含完全一次多项式;(4)应满足∑Ni=1以上条件是使单元满足收敛条件所必须得。

可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。

4、等参元的概念、特点、用时注意什么(王勖成P131)答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。

即:为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即:其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。

称前者为母单元,后者为子单元。

还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。

如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。

5、单元离散P42答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。

每个部分称为一个单元,连接点称为结点。

对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。

力学课程——精选推荐

力学课程——精选推荐

⼒学课程课程名:理论⼒学(I)Theoretical Mechanics (I)理论⼒学主要通过讲解⼒学的基本概念、定理及其应⽤,介绍处理⼒学问题的基本⽅法。

核⼼任务是利⽤⽜顿定律和分析⼒学原理建⽴质点、质点系和刚体运动的微分⽅程。

作为理⼯科学⽣的基础⼒学课程,学习理论⼒学务必达到以下要求:准确理解基本概念,熟悉基本定理和公式并能灵活应⽤,学习⼀些研究⼒学问题的基本⽅法。

理论⼒学的课程可以按内容分为运动学、静⼒学和动⼒学三部分,也可以按研究⽅法分为⽜顿⼒学和分析⼒学两部分。

在《理论⼒学(I)》中,主要讲述⽜顿⼒学内容,包括:点的运动学、刚体运动学、复合运动、⼏何静⼒学、质点动⼒学、质点系动⼒学、刚体动⼒学。

课程包括基本理论⼒学实验。

先修要求:微积分、⼤学物理教材及参考书:李俊峰、张雄、任⾰学、⾼云峰,《理论⼒学》,清华⼤学出版社/Springer出版社;⾼云峰、李俊峰,《理论⼒学辅导与习题集》,清华⼤学出版社/Springer出版社。

课程名:理论⼒学(II)Theoretical Mechanics (II)理论⼒学主要通过讲解⼒学的基本概念、定理及其应⽤,介绍处理⼒学问题的基本⽅法。

核⼼任务是利⽤⽜顿定律和分析⼒学原理建⽴质点、质点系和刚体运动的微分⽅程。

作为理⼯科学⽣的基础⼒学课程,学习理论⼒学务必达到以下要求:准确理解基本概念,熟悉基本定理和公式并能灵活应⽤,学习⼀些研究⼒学问题的基本⽅法。

理论⼒学的课程可以按内容分为运动学、静⼒学和动⼒学三部分,也可以按研究⽅法分为⽜顿⼒学和分析⼒学两部分。

在《理论⼒学(I)》中,主要讲述分析⼒学内容,包括:分析⼒学基本概念、变分原理、拉格朗⽇⽅程、哈密顿⽅程。

先修要求:微积分、⼤学物理、理论⼒学(I)教材及参考书:李俊峰、张雄、任⾰学、⾼云峰,《理论⼒学》,清华⼤学出版社Springer出版社;⾼云峰、李俊峰,《理论⼒学辅导与习题集》,清华⼤学出版社/Springer出版社;⾃编补充讲义。

工程电磁场数值分析(有限元法)

工程电磁场数值分析(有限元法)
使用适当的数值方法求解离散方程组,得到场函数的近似解 。
04
有限元法在工程电磁场中的应用
静电场问题
总结词
有限元法在静电场问题中应用广泛,能够准确模拟和预测静电场 的分布和特性。
详细描述
静电场问题是指电荷在静止状态下产生的电场,有限元法通过将 连续的静电场离散化为有限个单元,对每个单元进行数学建模和 求解,能够得到精确的解。这种方法在电力设备设计、电磁兼容 性分析等领域具有重要应用。
单元分析
对每个单元进行数学建模,包 括建立单元的平衡方程、边界 条件和连接条件等。
整体分析
将所有单元的平衡方程和连接 条件组合起来,形成整体的代 数方程组。
求解代数方程组
通过求解代数方程组得到离散 点的场量值。
有限元法的优势和局限性
02
01
03
优势 可以处理复杂的几何形状和边界条件。 可以处理非线性问题和时变问题。
传统解析方法难以解决复杂电磁场问题,需要采用数值分析方法 进行求解。
有限元法的概述
有限元法是一种基于离散化的数值分 析方法,它将连续的求解域离散为有 限个小的单元,通过求解这些单元的 近似解来逼近原问题的解。
有限元法具有适应性强、精度高、计 算量小等优点,广泛应用于工程电磁 场问题的数值分析。
02
静磁场问题
总结词
有限元法在静磁场问题中同样适用,能够有效地解决磁场分布、磁力线走向等问题。
详细描述
静磁场问题是指恒定磁场,不随时间变化的磁场问题。有限元法通过将磁场离散化为有限个磁偶极子,对每个磁 偶极子进行数学建模和求解,能够得到静磁场的分布和特性。这种方法在电机设计、磁力泵设计等领域具有重要 应用。
有限元法的基本步骤
01

数值分析公式大全

数值分析公式大全

数值分析公式大全数值分析(Numerical Analysis)是数学的一个分支,主要研究数学问题的计算方法和数值计算的理论基础。

数值分析具有广泛的应用领域,包括物理学、工程学、经济学、计算机科学等。

在数值分析中,有许多重要的公式和方法,下面是一些常用的数值分析公式:1.插值公式插值公式是通过已知函数在给定数据点上的取值来求出未知函数在其他数据点上的近似值的方法。

常见的插值公式包括拉格朗日插值、牛顿插值、埃尔米特插值等。

2.数值微积分公式数值微积分公式主要用于计算函数的导数和积分的近似值。

常见的数值微积分公式包括梯形公式、辛普森公式、龙贝格公式等。

3.线性方程组解法线性方程组解法是求解形如Ax=b的线性方程组的方法,其中A是一个已知的矩阵,b是一个已知的向量。

常见的线性方程组解法包括高斯消元法、LU分解法、迭代法等。

4.非线性方程求根非线性方程求根是求解形如f(x)=0的非线性方程的方法,其中f(x)是一个已知的函数。

常见的非线性方程求根方法包括二分法、牛顿迭代法、割线法等。

5.数值积分公式数值积分公式主要用于计算函数在给定区间上的积分近似值。

常见的数值积分公式包括梯形公式、辛普森公式、高斯积分公式等。

6.数值微分公式数值微分公式用于计算函数的导数的近似值。

常见的数值微分公式包括中心差分公式、前向差分公式、后向差分公式等。

7.数值优化方法数值优化方法主要用于求解最优化问题,即求解函数的最大值或最小值。

常见的数值优化方法包括牛顿法、梯度下降法、拟牛顿法等。

8.常微分方程数值解法常微分方程数值解法用于求解形如dy/dx=f(x,y)的常微分方程的数值解。

常见的常微分方程数值解法包括欧拉方法、龙格-库塔方法等。

9.偏微分方程数值解法偏微分方程数值解法用于求解形如u_t=f(u,x,y)+Φ(u,x,y)的偏微分方程的数值解。

常见的偏微分方程数值解法包括有限差分法、有限元法等。

上述公式和方法只是数值分析中的一部分,不同问题需要选择适合的公式和方法进行求解。

有限单元法简介

有限单元法简介

3.非线性边界(接触问题) 在加工、密封、撞击等问题中,接触和摩擦 接触和摩擦的作用不可忽 接触和摩擦 视,接触边界属于高度非线性边界。 平时遇到一些接触问题,如: • 齿轮传动; • 冲压成型; • 轧制成型; • 橡胶减振器; • 紧配合装配等 当一个结构与另一个结构或外部边界相接触时通常要考虑 非线性边界条件。实际的非线性可能同时出现上述两种或三种 非线性问题。
(2)用每个单元内所假设的近似函数来分片地表示全求解 域内待求的未知场变量。 • 每个单元内的近似函数由未知场函数(或其导数)在单元各 个节点上的数值和与其对应的插值函数来表达(此表达式 通常表示为矩阵形式)。 • 由于在联结相邻单元的节点上,场函数应具有相同的数 值,因而将它们用作数值求解的基本未知量。
2.几何非线性问题 当物体的位移较大时,应变与位移的关系是非线性关系 应变与位移的关系是非线性关系,这意味 应变与位移的关系是非线性关系 着结构本身会产生大位移或大转动,而单元中的应变却可大可小。 研究这类问题时一般都假定材料的应力与应变呈线性关系 假定材料的应力与应变呈线性关系。 假定材料的应力与应变呈线性关系 这类问题包括: • 大位移大应变问题 如:橡胶部件成形过程 • 大位移小应变问题 如:如结构的弹性屈曲问题
6 有限元法的发展、现状和未来 有限元法的发展、
有限元法的早期工作
•从应用数学的角度考虑,有限元法的基本思想可以追溯到Courant在1943年的工作。 他首先尝试应用在一系列三角形区域上定义的分片连续函数和最小位能原理相结合, 来求解St.Venant扭转问题。 •此后,不少应用数学家、物理学家和工程师分别从不同角度对有限元法的离散理论、 方法及应用进行了研究。 •有限元法的实际应用是随着电子计算机的出现而开始的。首先是Turner,Clough等 人于1956年将刚架分析中的位移法推广到弹性力学平面问题,并用于飞机结构的分 析。他们首次给出了用三角形单元求解平面应力问题的正确解答。三角形单元的特 性矩阵和结构的求解方程是由弹性理论的方程通过直接刚度法确定的。他们的研究 工作开始了利用电子计算机求解复杂弹性力学问题的新阶段。 •1960年Clough进一步求解了平面弹性问题,并第一次提出了“有限单元法”的名称, 使人们更清楚地认识到有限单元法的特性和功效。

有限元ppt课件

有限元ppt课件
h h
y(xi )2 y(xi1) h
a x b x
y(xi1) 2 y(xi ) y(xi1)
h hi 2 i1
yi1 2 yi yi1 h2
(1 5)
x
13
将(1-4)(1-5)代入(1-3),得
yi1 2 yi h2

yi1

yi1 yi h
39
厚度为1的微分体,在水平方向拉
力F的作用下发生了位移 xdx
拉力表达式:
F xdy 1
x
x dy
拉力做的功:
dx
xdx
dW

1 2
F xdx
将F代入:
dW

1 2

x
x
dxdy
40
储存在微分体内的应变能:
x
x dy
dU

dW

1 2

x
x
dxdy
单位体积内的应变能:
17
因此有 y(x) (x)
试探函数中所取的项数越多,逼近的精度越高。
将试探函数代入式(1-9),可以得到关于n个待定系数
的泛函表达式,简记为 I y(x) I(1,2,3, ,n)
根据多元函数有极值的必要条件,有

1
I (1,2 ,3,

2
I (1,2 ,3,
机械工程有限元法基础
1
有限元法是根据变分原理求解数学物理问题的一 种数值方法.
它从最初的固体力学领域 拓展到了
发展到了
从简单的静力分析
电磁学,流体力学,传热学, 声学等领域
动态分析,非线性分析, 多物理场耦合分析等复 杂问题的计算

有限单元法知识点总结

有限单元法知识点总结

有限单元法知识点总结1. 有限元法概述有限单元法(Finite Element Method ,简称FEM)是一种数值分析方法,适用于求解工程结构、热传导、流体力学等领域中的强耦合、非线性、三维等问题,是一种求解偏微分方程的数值方法。

有限元法将连续的物理问题抽象为由有限数量的简单几何单元(例如三角形、四边形、四面体、六面体等)组成的离散模型,通过对单元进行适当的数学处理,得到整体问题的近似解。

有限元法广泛应用于工程、材料、地球科学等领域。

2. 有限元法基本原理有限元法的基本原理包括离散化、加权残差法和形函数法。

离散化是将连续问题离散化为由有限数量的简单单元组成的问题,建立有限元模型。

加权残差法是选取适当的残差形式,并通过对残差进行加权平均,得到弱形式。

形函数法是利用一组适当的形函数来表示单元内部的位移场,通过形函数的线性组合来逼近整体位移场。

3. 有限元法的步骤有限元法的求解步骤包括建立有限元模型、建立刚度矩阵和载荷向量、施加边界条件、求解代数方程组和后处理结果。

建立有限元模型是将连续问题离散化为由简单单元组成的问题,并确定单元的连接关系。

建立刚度矩阵和载荷向量是通过单元的应变能量和内力作用,得到整体刚度矩阵和载荷向量。

施加边界条件是通过给定位移或力的边界条件,限制未知自由度的取值范围。

求解代数方程组是将有限元模型的刚度方程和载荷方程组成一个大型代数方程组,通过数值方法求解。

后处理结果是对数值结果进行处理和分析,得到工程应用的有用信息。

4. 有限元法的元素类型有限元法的元素类型包括结构单元、板壳单元、梁单元、壳单元、体单元等。

结构单元包括一维梁单元、二维三角形、四边形单元、三维四面体、六面体单元。

板壳单元包括各种压力单元、弹性单元、混合单元等。

梁单元包括梁单元、横梁单元、大变形梁单元等。

壳单元包括薄壳单元、厚壳单元、折叠单元等。

体单元包括六面体单元、锥体单元、八面体单元等。

5. 有限元法的数学基础有限元法的数学基础包括变分法、能量方法、有限元插值等。

有限元方法概述

有限元方法概述
北京航空航天大学
主要工学硕士数学课程

工程数学 计算方法(数值分析) 随机过程 矩阵论 运筹学(最优化方法) 图论 模糊数学 有限元方法 小波分析 应用泛函分析北 Nhomakorabea航空航天大学
数学课程在研究生培养中的重要性
科技发展日新月异,数学科学地位不断提
高,在自然科学和工程技术方面广泛应用。 数学的面貌发生很大变化,现代数学在理 论上更加抽象、方法上更加综合、应用上 更加广泛。 综合运用数学的能力关系到研究生的创新 能力和研究水平的提高,对研究生的论文 质量至关重要。
X
北京航空航天大学
(2)单元分析 用单元节点位移表示单元内部位移-第i个单元 中的位移用所包含的结点位移来表示。
ui 1 ui ( x xi ) u ( x ) ui Li ui 第i结点的位移 xi 第i结点的坐标
北京航空航天大学
第i个单元的应变 应力 内力
du ui 1 ui i dx Li
自重作用下等截面直杆的解
受自重作用的等截面直杆 如图所示,杆的长度为L, 截面积为A,弹性模量为 E,单位长度的重量为q, 杆的内力为N。 试求:杆的位移分布,杆 的应变和应力。
北京航空航天大学
材料力学解答
N ( x) q( L x)
x
N ( x) q ( L x) A A
d2y EI 2 P ( x L) dx
M ( x) EI d2y dx 2
x
和边界条件
y |x 0 0 dy |x 0 0 dx
M ( x) P ( x L)
北京航空航天大学
再如对于弹性力学问题,可以建立起基本方程与 边界条件,如下: 平衡方程: 几何方程: 物理方程: 边界条件:

(完整版)有限元法的基本原理

(完整版)有限元法的基本原理

第二章有限元法的基本原理有限元法吸取了有限差分法中的离散处理内核,又继承了变分计算中选择试探函数并对区域积分的合理方法。

有限元法的理论基础是加权余量法和变分原理,因此这里首先介绍加权余量法和变分原理。

2.1等效积分形式与加权余量法加权余量法的原理是基于微分方程等效积分的提法,同时它也是求解线性和非线性微分方程近似解的一种有效方法。

在有限元分析中,加权余量法可以被用于建立有限元方程,但加权余量法本身又是一种独立的数值求解方法。

2.1.1微分方程的等效积分形式工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件的形式提出来的,可以一般地表示为未知函数u 应满足微分方程组⎛A 1(u )⎫ ⎪A (u )= A 2(u )⎪=0(在Ω内)(2-1) M ⎪⎝⎭域Ω可以是体积域、面积域等,如图2-1所示。

同时未知函数u 还应满足边界条件⎛B 1(u )⎫ ⎪B (u )= B 2(u )⎪=0(在Γ内)(2-2)M ⎪⎝⎭要求解的未知函数u 可以是标量场(例如压力或温度),也可以是几个变量组成的向量场(例如位移、应变、应力等)。

A ,B 是表示对于独立变量(例如空间坐标、时间坐标等)的微分算子。

微分方程数目应和未知场函数的数目相对应,因此,上述微分方程可以是单个的方程,也可以是一组方程。

所以在以上两式中采用了矩阵形式。

以二维稳态的热传导方程为例,其控制方程和定解条件如下:A (φ)=∂∂φ∂∂φ(k )+(k )+q =0(在Ω内)(2-3)∂x ∂x ∂y ∂y⎧φ-φ=0⎪B(φ)=⎨∂φ-q=0⎪k⎩∂n (在Γφ上)(在Γq上)(2-4)这里φ表示温度(在渗流问题中对应压力);k是流度或热传导系数(在渗流问题中对应流度K/μ);φ和q是边界上温度和热流的给定值(在渗流问题中分别对应边界上的压力和边界上的流速);n是有关边界Γ的外法线方向;q是源密度(在渗流问题中对应井的产量)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
有限元法基础
5. 等参元与数值积分
关键概念
等(超、次)参变换 等参变换的条件 数值积分 高斯积分
雅克比矩阵和行列式 等参元的收敛性 精确积分
减缩积分
矩阵的秩
零能模式
3
有限元法基础
5.1等参变换的概念
将局部(自然)坐标中的简单几何形状的单元,转换
成总体(物理)坐标中的几何扭曲的单元,必须建立一
个坐标变换,即
y y y
z N i N i x x z N i N i J y y N i z N i z z
J 1 =
1 * J J
J 的伴随矩阵
15
有限元法基础
5.1等参变换的概念 由坐标变换求得Jacobi矩阵中的元素
n Ni x xi i 1 n Ni y yi i 1 n Ni z zi i 1 n Ni x xi i 1 n Ni y yi i 1 n Ni z zi i 1 n Ni x xi i 1 n Ni y yi i 1 n Ni z zi i 1
11
有限元法基础
5.1等参变换的概念 单元矩阵的变换 等参变换单元矩阵的变化:
等参变换
单元矩阵的变化:B、K、dΩ、……
12
有限元法基础
5.1等参变换的概念 由于插值函数使用自然坐标,涉及到求导和积分的变 换,如B矩阵的偏微分计算,K矩阵的积分计算。
x Bi 0 y 0 Ni 0 y x N i x 0 0 Ni N i y 0 N i y N i x
L1 x L2 y f 或 f L3 z L 4
4
有限元法基础
5.1等参变换的概念
J 1 是否存在? 存在的条件是
J ( x, y, z ) 0 ( , , )
这是两个坐标系间一对一变换的条件
24
有限元法基础
5.2 等参变换的条件与收敛性 以二维情况为例说明 1)子单元与母单元的单元节点编号顺序相反, J 顺序相同
J 0 0

2) dA d d d d sin(d , d ) d d sin
13
有限元法基础
5.1等参变换的概念 1)导数之间的变换 由复合函数求导规则有
Ni Ni x Ni y Ni z x y z
写成矩阵形式
N i x N i x N i x
d (d d ) d J d d d
17
有限元法基础
5.1等参变换的概念 单元刚度矩阵
K e BT CB d BT CB J d d d
1 1 1 1 1 1
等效体积力
Q N T F J d d d
e F 1 1 1 1 1 1
若子单元与母单元同样是凸的,即各节点处
0 180
0 sin 1
J 0
J 1 存在
25
有限元法基础
5.2 等参变换的条件与收敛性 畸变单元举例 节点1 节点2 节点3
sin 1 0, J1 0
sin2 0, J2 0
sin3 0, J3 0
第五章 等参元与数值积分
5.1 等参变换的概念
5.2 等参变换的条件和收敛性
5.3 数值积分方法 5.4 数值积分阶次的选择
1
有限元法基础
5. 等参元与数值积分
本章重点
等参变化的概念和实现单元特性矩阵方法
实现等参变换的条件和满足收敛准则的条件
数值积分的基本思想和Gauss积分的特点 单元刚度矩阵数值积分阶次的选择
16
有限元法基础
5.1等参变换的概念 2)体积微元的变换
x y z d i d j d k x y z d d i d j d k x y z d d i d j d k d
5
有限元法基础
5.1等参变换的概念
6
有限元法基础
5.1等参变换的概念
规则化单元:母单元
在自然坐标系内(局部)
实际单元:子单元 在总体坐标系内(整体)
利用节点坐标和形函数建立坐标变换关系
x Ni' xi
i 1
n
m
y Ni' yi
i 1
n
m
z Ni' zi
i 1
n
m
u Ni ui

Ae
( ) d
0
1 1 L2

0
( ) J dL1dL2
直边三角形时: J 2
22
有限元法基础
5.1等参变换的概念 6)体积坐标

L1, L2 , L3 , 1 L4
Ni [ , , , 1 ]
21
1/2
有限元法基础
5.1等参变换的概念 5)面积坐标
L1, L2 , 1 L3
Ni [ , , 1 ]
Ni Ni L1 Ni L2 Ni L3 Ni Ni L1 L2 L3 L1 L3 Ni Ni L1 Ni L2 Ni L3 Ni Ni L1 L2 L3 L2 L3
i 1
v Ni vi
i 1
w Ni wi
i 1
7
有限元法基础
5.1等参变换的概念 等参变换
坐标变换和场函数插值采用相同的节点,m=n, 并且
采用相同的插值函数。这样建立的单元,称为等参元。 超参变换 坐标变换的节点数多于场函数插值的节点数,即m>n。 这样建立的单元,称为超参元。 次参变换 坐标变换的节点数少于场函数插值的节点数,即m<n。 这样建立的单元,称为次参元。
1 (1, 0, 0) 2 (0,1, 0) 3(0, 0,1) 4(0, 0, 0)

e
( ) d
0
1 1 L1 1 L1 L2

0 0
( ) J dL3dL2 dL1
23
有限元法基础
5.2 等参变换的条件与收敛性 等参变换的条件
等参变换中,需计算Jacobi矩阵的逆
8
有限元法基础
5.1等参变换的概念 例:一维2节点单元
x Ni xi
i 1
2
y Ni yi
i 1
2
z Ni zi
i 1
2
1 N i (1 i ) 2
(i 1, 2)
9
有限元法基础
5.1等参变换的概念 例:二维3节点单元
x Ni xi
i 1
四边形退化为三角形单元的积分精度较差。
27
有限元法基础
5.2 等参变换的条件与收敛性 等参单元的收敛性 弹性力学问题的收敛性包括完备性和协调性: 完备性:场插值至少一阶完备,能正确反映刚体位移 和常应变。
协调性:单元内部位移连续且满足几何方程,单元间
的位移场是连续的。
28
有限元法基础
5.2 等参变换的条件与收敛性 完备性 设单元内任一点i的位移场为
由于 J 是连续函数,故在1-2边至到2-3边时 必有一点
J 0
,不具备等参变换条件。
26
有限元法基础
5.2 等参变换的条件与收敛性 畸变单元举例 边1-2 退化为一个节点 在该点处
d 0
J 0 ,也不具备
等参变换条件。 实际计算单元刚度矩阵是用数值积分,
并不会出现奇异性,应用中仍可使用;
19
有限元法基础
5.1等参变换的概念 边界面力的变换
e QT e N TT d
以 1为例,d 0
Q e N T T dA N T T Ad d
Ae 1 1 1 1
20
有限元法基础
5.1等参变换的概念 4)对二维问题
Ni x Ni x y Ni Ni Ni x ( x, y) x x N J N N y i ( , ) i i y y y
dA = d d
1
Ad d
1/2
y z y z 2 Z x z x 2 x y x y 2 A
y * J = x

y x
x y y x J
面元
d dxdy J dd
线元 1
x 2 y 2 d d
3
y Ni yi
i 1
3
z Ni zi
i 1
3
Ni [1 , , ]
10
有限元法基础
5.1等参变换的概念 例:平面4节点单元
x Ni xi
i 1
4
y Ni yi
i 1
4
1 Ni (1 i )(1 i ) (i 1, 2,3, 4) 4
18
有限元法基础
5.1等参变换的概念 3)面积微元的变换 以 1为例,d 0
相关文档
最新文档