初二数学上学期第一次月考试卷
八年级上学期数学第一次月考试卷(含答案)
八年级上学期数学第一次月考试卷(满分150分时间:120分钟)一.单选题。
(每小题4分,共40分)1.在下列实数中,无理数有().A.﹣1B.3.14C.√2D.152.在平面直角坐标系中,点P(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.﹣8的立方根是()A.﹣2B.﹣12C.12D.24.用式子表示16的平方根,正确的是()A.±√16=±4B.√16=4C.√16=±4D.±√16=45.根据下列描述,能确定准确位置的是()A.某影城3号厅2排B.经十路中段C.南偏东40°D.东经117°,北纬36°6.点P在第二象限内,P到x轴的距离是5,到y轴的距离是3,则点P的坐标为()A.(﹣5,3)B.(﹣3,﹣5)C.(﹣3,5)D.(3,﹣5)7.与点P(2,b)和点Q(a,﹣3)关于y轴对称,则a+b的值是()A.﹣1B.﹣5C.1D.58.下列运算正确的是()A.√2+√3=√5B.2×√3=√6C.3√2-√2=3D.√12÷√3=29.如图,已知小华的坐标为(﹣2,﹣1),小亮的坐标为(﹣1,0),则小东的坐标应该是()A.(﹣3,﹣2)B.(1,1)C.(1,2)D.(3,2)10.已知直线MN∥x轴,M点的坐标为(1,3),且线段MN=4,则点N的坐标为()A.(5,3)B.(3,5)C.(5,3)或(﹣3,3)D.(3,5)或(3,﹣3)二.填空题。
(每小题4分,共24分)11.如果用有序数对(1,4)表示第一单元4号的住户,则第二单元6号住户用有序数对表示为 .12.36的算式平方根是 .13.在平面直角坐标系中,点(﹣3,1)关于x 轴对称的点的坐标是 . 14.在平面直角坐标系中,点M (a+1,a -1)在x 轴上,则a= . 15.对于任意不相等的两个数a ,b ,定义一种运算如下:a ×b=√a+b a -b,如3×2=√3+23-2,那么6×3= .16.已知a ,b 都是实数,若|a -2|+√b -4=0,则√ab a= . 三.解答题。
人教版八年级上册数学第一次月考试卷(含答案解析)
人教版八年级上册数学第一次月考试卷一.选择题(每小题3分,共30分)1.若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5B.6C.7D.82.下列说法正确的是()A.在一个三角形中至少有一个直角B.三角形的中线是射线C.三角形的高是线段D.一个三角形的三条高的交点一定在三角形的外部3.下列各图中,正确画出△ABC中AC边上的高的是()A.①B.②C.③D.④4.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC,这样就有∠QAE=∠P AE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS5.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC =6,则CD的长为()A.2B.4C.4.5D.36.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7B.10C.35D.707.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE =2,则AC的长是()A.4B.3C.6D.58.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF ≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个9.如图,点B、E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=ED B.∠A=∠DEF,AC=EDC.AC=ED,AB=EF D.∠ABC=∠EFD,BC=FD10.如图,已知AB=AC,AE=AF,BE与CF交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.①B.②C.①和②D.①②③二.填空题(每题3分,共30分)11.如图,自行车的三角形支架,这是利用三角形具有性.12.已知等腰三角形两边长分别为6cm、4cm,则它的周长为.13.若△ABC的三个内角满足,则这个三角形是三角形.14.一副三角板,如图所示叠放在一起,则图中∠α的度数是.15.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件.(只要填一个)16.如图,D为Rt△ABC中斜边BC的中点,过D作BC的垂线,交AC于E,且AE=DE,若BC=12cm,则AB的长为cm.17.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=.18.下列说法:①三角形三条中线的交点叫做三角形的重心;②三角形按边分类可分为三边都不相等的三角形、等腰三角形和等边三角形;③各边都相等的多边形是正多边形;④周长相等的两个三角形全等;⑤两条直角边分别相等的两个直角三角形全等.其中正确的有.(填序号)19.如图,△ABC≌△CDA,AD、BC交于点P,∠BCA=40°,则∠APB=(度).20.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3).如果要使以点A、B、D为顶点的三角形与△ABC全等,那么点D的坐标是.三.解答题(21题10分,22题12分,23题12分、24题12分、25题14分,共60分)21.(10分)一个多边形的内角和比它的外角和的3倍少180°.(1)求这个多边形的边数和内角和;(2)从该多边形的一个顶点作对角线,则所作的对角线条数为,此时多边形中有个三角形.22.(12分)如图,已知AD∥BC,AF=CE,AD=BC,E、F都在直线AC上,写出DE与BF之间的数量关系和位置关系并加以证明.23.(12分)如图,△ABC中,∠ACB=90°,DC=AE,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D(1)求证:AC=CB;(2)若AC=12cm,求BD的长.24.(12分)如图,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F.(1)若∠ABE=60°,求∠CDA的度数.(2)若AE=2,BE=1,CD=4.求四边形AECD的面积.25.(14分)在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知:C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边三角形ACE和BCD,联结AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系是:.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.(3)在(2)的条件下,∠APE的大小是否随着∠ACB的大小的变化而发生变化,若变化,写出变化规律,若不变,请求出∠APE的度数.参考答案与试题解析一.选择题(每小题3分,共30分)1.若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5B.6C.7D.8【分析】先根据非负数的性质,求出a、b的值,进一步根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,从而确定c的可能值;【解答】解:∵|a﹣4|+=0,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5符合条件;故选:A.2.下列说法正确的是()A.在一个三角形中至少有一个直角B.三角形的中线是射线C.三角形的高是线段D.一个三角形的三条高的交点一定在三角形的外部【分析】根据三角形的角平分线、中线和高的概念进行判断即可.【解答】解:A、一个三角形的三个内角中最多有一个直角,错误;B、三角形的中线是线段,错误;C、三角形的高是线段,正确;D、锐角三角形的高总在三角形的内部,而直角三角形和钝角三角形则不一定,错误;故选:C.3.下列各图中,正确画出△ABC中AC边上的高的是()A.①B.②C.③D.④【分析】根据高的定义对各个图形观察后解答即可.【解答】解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为E,纵观各图形,①②③都不符合高线的定义,④符合高线的定义.故选:D.4.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC,这样就有∠QAE=∠P AE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠P AE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠P AE.故选:D.5.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC =6,则CD的长为()A.2B.4C.4.5D.3【分析】先证明△ABC≌△EFD,得出AC=ED=6,再求出AD=AE﹣ED=4,即可得出CD=AC﹣AD=2.【解答】解:∵AB∥EF,∴∠A=∠E,在△ABC和△EFD中,,∴△ABC≌△EFD(ASA),∴AC=ED=6,∴AD=AE﹣ED=10﹣6=4,∴CD=AC﹣AD=6﹣4=2.故选:A.6.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7B.10C.35D.70【分析】由正n边形的每个内角为144°结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入中即可得出结论.【解答】解:∵一个正n边形的每个内角为144°,∴144n=180×(n﹣2),解得:n=10.这个正n边形的所有对角线的条数是:==35.故选:C.7.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE =2,则AC的长是()A.4B.3C.6D.5【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC=×4×2+AC×2=7,解得AC=3.故选:B.8.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF ≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据题意,结合已知条件与全等的判定方法对选项一一进行分析论证,排除错误答案.【解答】解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.故选:D.9.如图,点B、E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=ED B.∠A=∠DEF,AC=EDC.AC=ED,AB=EF D.∠ABC=∠EFD,BC=FD【分析】利用三角形全等的判定方法:SSS、SAS、ASA、AAS、HL进行分析即可.【解答】解:A、添加BC=FD,AC=ED可利用SAS判定△ABC≌△EFD,故此选项不合题意;B、添加∠A=∠DEF,AC=ED可利用ASA判定△ABC≌△EFD,故此选项不合题意;C、添加AC=ED,AB=EF不能判定△ABC≌△EFD,故此选项符合题意;D、添加∠ABC=∠EFD,BC=FD可利用ASA判定△ABC≌△EFD,故此选项不合题意;故选:C.10.如图,已知AB=AC,AE=AF,BE与CF交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.①B.②C.①和②D.①②③【分析】如图,证明△ABE≌△ACF,得到∠B=∠C;证明△CDE≌△BDF;证明△ADC ≌△ADB,得到∠CAD=∠BAD;即可解决问题.【解答】解:如图,连接AD;在△ABE与△ACF中,,∴△ABE≌△ACF(SAS);∴∠B=∠C;∵AB=AC,AE=AF,∴BF=CE;在△CDE与△BDF中,,∴△CDE≌△BDF(AAS),∴DC=DB;在△ADC与△ADB中,,∴△ADC≌△ADB(SAS),∴∠CAD=∠BAD;综上所述,①②③均正确,故选:D.二.填空题(每题3分,共30分)11.如图,自行车的三角形支架,这是利用三角形具有稳定性.【分析】根据三角形具有稳定性解答.【解答】解:自行车的三角形车架,这是利用了三角形的稳定性.故答案为:稳定性.12.已知等腰三角形两边长分别为6cm、4cm,则它的周长为16cm或14cm.【分析】根据等腰三角形的性质,分两种情况:①当腰长为6cm时,②当腰长为4cm时,解答出即可.【解答】解:当4为底时,其它两边都为6,4、6、6可以构成三角形,周长为16(cm);当4为腰时,其它两边为4和6,4、4、6可以构成三角形,周长为14(cm).综上所述,该等腰三角形的周长是14cm或16cm.故答案为:14cm或16cm.13.若△ABC的三个内角满足,则这个三角形是直角三角形.【分析】由于,则∠C=3∠A,∠B=2∠A,再根据三角形内角和定理得到∠A+∠B+∠C=180°,即∠A+2∠A+3∠A=180°,然后分别计算出∠A、∠B、∠C,再根据三角形的分类进行判断.【解答】解:∵,∴∠C=3∠A,∠B=2∠A,∵∠A+∠B+∠C=180°,∴∠A+2∠A+3∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴此三角形为直角三角形.故答案为直角.14.一副三角板,如图所示叠放在一起,则图中∠α的度数是75°.【分析】根据三角板的常数以及三角形的一个外角等于与它不相邻的两个内角的和求出∠1的度数,再根据直角等于90°计算即可得解.【解答】解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°15.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件AC=DF.(只要填一个)【分析】要使△ABC≌△DEF,已知∠1=∠2,BC=EF,添加边的话应添加对应边,符合SAS来判定.【解答】解:补充AC=DF.∵∠1=∠2,BC=EF,AC=DF∴△ABC≌△DEF,故填AC=DF.16.如图,D为Rt△ABC中斜边BC的中点,过D作BC的垂线,交AC于E,且AE=DE,若BC=12cm,则AB的长为6cm.【分析】根据已知条件,先证明△DBE≌△ABE,再根据全等三角形的性质(全等三角形的对应边相等)来求AB的长度.【解答】解:连接BE.∵D为Rt△ABC中斜边BC的中点,∴BD=BC=6cm,∵过D作BC的垂线,交AC于E,∴∠A=∠BDE=90°,在Rt△DBE和Rt△ABE中,,∴Rt△DBE≌Rt△ABE(HL),∴AB=BD=6cm.故答案为:6.17.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=270°.【分析】根据四边形内角和为360°可得∠1+∠2+∠A+∠B=360°,再根据直角三角形的性质可得∠A+∠B=90°,进而可得∠1+∠2的和.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.∴∠1+∠2=270°.故答案为:270°.18.下列说法:①三角形三条中线的交点叫做三角形的重心;②三角形按边分类可分为三边都不相等的三角形、等腰三角形和等边三角形;③各边都相等的多边形是正多边形;④周长相等的两个三角形全等;⑤两条直角边分别相等的两个直角三角形全等.其中正确的有①⑤.(填序号)【分析】根据三角形的重心、三角形的分类、正多边形、三角形全等进行判断即可.【解答】解:①三角形三条中线的交点叫做三角形的重心,正确;②三角形按边分类可分为三边都不相等的三角形、等腰三角形,错误;③各边都相等、各角都相等的多边形是正多边形,错误;④周长相等的两个三角形不一定全等,错误;⑤两条直角边分别相等的两个直角三角形全等,正确;故答案为:①⑤19.如图,△ABC≌△CDA,AD、BC交于点P,∠BCA=40°,则∠APB=80(度).【分析】先根据全等三角形的对应角相等得出∠BCA=∠DAC=40°,再根据三角形外角的性质求出∠APB=∠BCA+∠DAC=80°.【解答】解:∵△ABC≌△CDA,∴∠BCA=∠DAC=40°,∴∠APB=∠BCA+∠DAC=80°.故答案为80.20.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3).如果要使以点A、B、D为顶点的三角形与△ABC全等,那么点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).【分析】根据题意画出图形,根据A、B、C的坐标和全等三角形的性质即可得出答案.【解答】解:符合题意的有3个,如图,∵点A、B、C坐标为(0,1),(3,1),(4,3),∴D1的坐标是(4,﹣1),D2的坐标是(﹣1,3),D3的坐标是(﹣1,﹣1),故答案为:(4,﹣1)或(﹣1,3)或(﹣1,﹣1).三.解答题(21题10分,22题12分,23题12分、24题12分、25题14分,共60分)21.(10分)一个多边形的内角和比它的外角和的3倍少180°.(1)求这个多边形的边数和内角和;(2)从该多边形的一个顶点作对角线,则所作的对角线条数为(n﹣3),此时多边形中有(n﹣2)个三角形.【分析】(1)一个多边形的内角和等于外角和的3倍少180°,而任何多边形的外角和是360°,因而多边形的内角和等于900°.(2)n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数,即可求出答案.【解答】解:(1)360°×3﹣180°=1080°﹣180°=900°.故这个多边形的边数和内角和是900°;(2)设这个多边形的边数为n,则内角和为180°(n﹣2),依题意得:180(n﹣2)=360×3﹣180,解得n=7,则从该多边形的一个顶点作对角线,则所作的对角线条数为(n﹣3),此时多边形中有(n ﹣2)个三角形.故答案为:(n﹣3),(n﹣2).22.(12分)如图,已知AD∥BC,AF=CE,AD=BC,E、F都在直线AC上,写出DE与BF之间的数量关系和位置关系并加以证明.【分析】结论:DE=BF,DE∥BF.只要证明△ADE≌△CBF(SAS),即可推出DE=BF,∠AED=∠CFB,推出180°﹣∠AED=180°﹣∠CFB,推出∠DEF=∠EFB,可得DE ∥BF.【解答】解:结论:DE=BF,DE∥BF.理由:∵AF=EC,∴AF﹣EF=EC﹣EF,即AE=CF;∵AD∥BC∴∠A=∠C.在△ABC和△DEF中,,∴△ADE≌△CBF(SAS),∴DE=BF,∠AED=∠CFB,∴180°﹣∠AED=180°﹣∠CFB,∴∠DEF=∠EFB,∴DE∥BF23.(12分)如图,△ABC中,∠ACB=90°,DC=AE,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D(1)求证:AC=CB;(2)若AC=12cm,求BD的长.【分析】(1)由“AAS”可证△DBC≌△ECA,可得AC=BC;(2)由全等三角形的性质和中线的性质可求解.【解答】证明:(1)∵DB⊥BC,AE⊥CD,∴∠DBC=∠ACE=∠AFC=90°,∵∠DCB+∠ACF=90°,∠ACF+∠EAC=90°,∴∠DCB=∠EAC,且DC=AE,∠DBC=∠ACE=90°∴△DBC≌△ECA(AAS)∴AC=BC(2)∵AE是BC边上的中线,∴CE=BE=BC=AC=6cm,∵△DBC≌△ECA∴DB=CE=6cm24.(12分)如图,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F.(1)若∠ABE=60°,求∠CDA的度数.(2)若AE=2,BE=1,CD=4.求四边形AECD的面积.【分析】(1)由角平分线的性质定理证得AE=AF,进而证出△ABE≌△ADF,再得出∠CDA=120°;(2)四边形AECD的面积化为△AEC的面积+△ACD的面积,根据三角形面积公式求出结论.【解答】解:(1)∵AC平分∠BCD,AE⊥BCAF⊥CD,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF,∴∠ADF=∠ABE=60°,∴∠CDA=180°﹣∠ADF=120°;(2)由(1)知:Rt△ABE≌Rt△ADF,∴FD=BE=1,AF=AE=2,CE=CF=CD+FD=5,∴BC=CE+BE=6,∴四边形AECD的面积=△AEC的面积+△ACD的面积=CE•AE+=×2×5+×4×2=9.25.(14分)在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知:C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边三角形ACE和BCD,联结AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系是:AD=BE.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.(3)在(2)的条件下,∠APE的大小是否随着∠ACB的大小的变化而发生变化,若变化,写出变化规律,若不变,请求出∠APE的度数.【分析】(1)直接写出答案即可.(2)证明△ECB≌△ACD即可.(3)由(2)得到∠CEB=∠CAD,此为解题的关键性结论,借助内角和定理即可解决问题.【解答】解:(1)∵△ACE、△CBD均为等边三角形,∴AC=EC,CD=CB,∠ACE=∠BCD,∴∠ACD=∠ECB;在△ACD与△ECB中,,∴△ACD≌△ECB(SAS),∴AD=BE,故答案为AD=BE.(2)AD=BE成立.证明:∵△ACE和△BCD是等边三角形∴EC=AC,BC=DC,∠ACE=∠BCD=60°,∴∠ACE+∠ACB=∠BCD+∠ACB,即∠ECB=∠ACD;在△ECB和△ACD中,,∴△ECB≌△ACD(SAS),∴BE=AD.(3))∠APE不随着∠ACB的大小发生变化,始终是60°.如图2,设BE与AC交于Q,由(2)可知△ECB≌△ACD,∴∠BEC=∠DAC又∵∠AQP=∠EQC,∠AQP+∠QAP+∠APQ=∠EQC+∠CEQ+∠ECQ=180°∴∠APQ=∠ECQ=60°,即∠APE=60°.第21 页共21 页。
八年级数学第一次月考卷01(考试版:八年级上册第十一章~第十二章】人教版-25年初中上学期第一次月考
2024-2025学年八年级数学上学期第一次月考卷01(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八年级上册第十一章~第十二章。
5.难度系数:0.85。
一、选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列长度的三条线段能组成三角形的是()A.6,2,3B.3,3,3C.4,3,8D.4,3,72.如图,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的()A.全等形B.稳定性C.灵活性D.对称性3.如图,CM是△ABC的中线,AB=10cm,则BM的长为()A.7cm B.6cm C.5cm D.4cm4.画△ABC的BC边上的高AD,下列画法中正确的是()A.B.C.D.5.一个多边形的内角和等于540°,则它的边数为()A.4B.5C.6D.86.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS7.如图,△ABE≌△ACF,若AB=5,AE=2,则EC的长度是( )A.2B.3C.4D.58.如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件()A.∠BAC=∠BAD B.∠C=∠D C.AC=AD D.BC=AD9.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,CD=3,则点D到AB的距离是()A.6B.2C.3D.410.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2的度数为()A.210°B.250°C.270°D.300°11.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去12.如图1,∠DEF=20°,将长方形纸片ABCD沿直线EF折叠成图2,再沿折痕为BF折叠成图3,则∠CFE 的度数为()A.100°B.120°C.140°D.160°二、填空题(本题共6小题,每小题2分,共12分.)13.在Rt△ABC中,∠C=90°,∠A=40°,则∠B= .14.如图,CD是△ABC的高,∠ACB=90°.若∠A=35°,则∠BCD的度数是.15.如图所示的两个三角形全等,则∠1的度数是.16.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.17.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P=°.18.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1、B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A2023B2023O=.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:|―2|―6×―+(―4)2+8.20.(6分)解不等式组2x+1>x―123x―1≤5,并写出它的所有正整数解.21.(8分)如图,AC和BD相交于点0,OA=OC,OB=OD,求证:DC//AB.22.(8分)如图△ABC中,∠A=40°,∠ABC=∠C.(1)作∠ABC的平分线,交AC于点D(用直尺和圆规按照要求作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求∠BDC的大小.23.(10分)某校学生处为了了解全校1200名学生每天在上学路上所用的时间,随机调查了30名学生,下面是某一天这30名学生上学所用时间(单位:分钟):20,20,30,15,20,25,5,15,20,10,15,35,45,10,20,25,30,20,15,20,20,10,20,5,15,20,20,20,5,15.通过整理和分析数据,得到如下不完全的统计图.根据所给信息,解答下列问题:(1)补全条形统计图;(2)这30名学生上学所用时间的中位数为______ 分钟,众数为______ 分钟;(3)若随机问这30名同学中其中一名学生的时间,最有可能得到的回答是______ 分钟;(4)估计全校学生上学所用时间在20分钟及以下的人数.24.(10分)中央大街工艺品店销售冰墩墩徽章和冰墩墩摆件,若购买4个冰墩墩徽章和2个冰墩墩摆件需要130元,购买3个冰墩墩徽章和5个冰墩墩摆件需要220元.(1)求每个冰墩墩徽章和每个冰墩墩摆件各需要多少钱?(2)若某旅游团计划买冰墩墩徽章和冰墩墩摆件共50个,所用钱数不超过1150元,则该旅游团至少买多少个冰墩墩徽章?25.(12分)如图,已知△ABC中,AC=CB=20cm,AB=16cm,点D为AC的中点.(1)如果点P在线段AB上以6cm/s的速度由A点向B点运动,同时,点Q在线段BC上由点B向C点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△APD与△BQP是否全等?说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△APD与△BQP全等?(2)若点Q以②中的运动速度从点B出发,点P以原来的运动速度从点A同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?26.(12分)如图,在△ABC中,∠BAC=90°,AB=AC,点D为BC的中点.点E是直线AB上的一动点,连接DE,作DF⊥DE交直线AC于点F.(1)如图1,若点E与点A重合时,请你直接写出线段DE与DF的数量关系;(2)如图2,若点E在线段AB上(不与A、B重合)时,请判断线段DE与DF的数量关系并说明理由;(3)若点E在AB的延长线上时,线段DE与DF的数量关系是否仍然满足上面(2)中的结论?请利用图3画图并说明理由.。
八年级上册数学第一册月考试卷(含答案)
一、选择题(本大题共12小题,共36.0分)1.如果AD是△ABC的中线,那么下列结论:CB; ②AB=AC; ③S△ABD=S△ACD.其中一定成立的有() ①BD=12A. 3个B. 2个C. 1个D. 0个2.若一个正n边形的每个内角为144∘,则这个正n边形的所有对角线的条数是()A. 7B. 10C. 35D. 703.已知a,b,c是△ABC的三条边长,化简|a+b−c|−|c−a−b|的结果为()A. 2a+2b−2cB. 2a+2bC. 2cD. 04.将一张三角形纸片剪开分成两个三角形,这两个三角形不可能()A. 都是直角三角形B. 都是钝角三角形C. 都是锐角三角形D. 是一个直角三角形和一个钝角三角形5.把一个多边形纸片沿一条直线截下一个三角形后,变成一个十八边形,则原多边形纸片的边数不可能是()A. 16B. 17C. 18D. 196.在△ABC中,,则此三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7.画△ABC中AB边上的高,下列画法中正确的是()A. B.C. D.8.如果三角形的两边长分别为3和5,则周长L的取值范围是().A. 6<L<15B. 6<L<16C. 11<L<13D. 10<L<169.如图,在△ABC中,∠BAC=90°,BD平分∠ABC,CD//AB交BD于点D,已知∠ACB=34°,则∠D的度数为()A. 30°B. 28°C. 26°D. 34°10.满足下列条件的△ABC中,不是直角三角形的是()A. ∠A=2∠B=3∠CB. ∠B+∠A=∠CC. 两个内角互余D. ∠A:∠B:∠C=2:3:511.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C落在△ABC外的点C′处,若∠1=20°,则∠2的度数为()A. 80°B. 90°C. 100°D. 110°12.如图,有一条等宽纸带,按图折叠时(图中标注的角度为40°),那么图中∠ABC的度数等于()A. 70°B. 60°C. 50°D. 40°二、填空题(本大题共5小题,共15.0分)13.如图,△ABC中,∠A=55°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DB的度数为______.14.如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且S△ABC=4,则S△BEF=.15.如图,小林从P点向西直走8米后,向左转,转动的角度为α,再走8米,如此重复,小林共走了72米回到点P,则α为______.16.已知AH为△ABC的高,若∠B=40°,∠ACH=65°,则∠BAC的度数为______°.17.如图,木工师傅做完门框后,为了防止变形,常常像图中所示那样钉上两条斜拉的木条(图中的AB、CD),这样做的数学道理是__________________________。
2024-2025学年江苏省南京师范大学附属中学树人学校八年级上学期第一次月考数学及答案
2024-2025学年江苏省南京师大附中树人学校八年级(上)第一次月考数学试卷一、选择题1. 下列图形中,不是轴对称图形的是( )A. B.C D.2. 如图,ABC DEF ≌△△,若100A ∠=°,47F ∠=°,则E ∠的度数为( )A. 100°B. 53°C. 47°D. 33°3. 如图,ABC DEF ≌△△,点D ,E 在直线AB 上,4BE =,1AE =,则DE 的长为( )A. 5B. 4C. 3D. 24. 等腰三角形一边为4,一边为3,则此三角形的周长是( )A. 10cmB. 11cmC. 6cm 或8cmD. 10cm 或11cm5. A 、B 、C 三名同学玩“抢凳子”游戏.他们所站的位围成一个ABC ,在他们中间放一个木凳,谁先抢到凳子谁获胜,为保证游戏公平,则凳子应放的最适当的位置是在ABC 的( )A. 三边垂直平分线的交点B. 三边中线的交点C. 三个内角角平分线的交点D. 三边高的交点 6. 如图1,已知三角形纸片ABC ,AB AC =,50A ∠=°,将其折叠,如图2所示,使点A 与点B重.的合,折痕为ED ,点E ,D 分别在AB ,AC 上,那么DBC ∠的度数为( )A. 10°B. 15°C. 20°D. 30°7. 如图,已知ABC 的周长是36cm ,ABC ∠和ACB ∠的角平分线交于点O ,OD BC ⊥于点D ,若3cm OD =,则ABC 的面积是( )A. 248cmB. 254cmC. 260cmD. 266cm8. 如图,点P 为定角AOB ∠的平分线上的一个定点,且MPN ∠与AOB ∠互补,若MPN ∠在绕点P 旋转的过程中,其两边分别与OA OB ,交于点M N ,,则一下结论:①PM PN =恒成立;②OM ON +的值不变;③四边形PMON MN 的长不变;其中正确的个数为( )个A. 1B. 2C. 3D. 4二、填空题9. 如图,已知AD BC =,要使ABC CDA △△≌,还要添加的一个条件可以是______.(只需填上一个正确的条件).10. 如图,在ABC 中,点D 、E 、F 分别是BC AB AC ,,上的点,若B C BF CD ∠=∠=,,54BD CE EDF =∠=°,,则A ∠=________.11. 如图,把一个长方形纸条ABCD 沿EF 折叠,若154∠=°,则FGE ∠=_______.12. 如图,在3×3的方格中,每个小方格的边长均为1,则1∠与2∠的数量关系是________.13. 如图所示.A ,B ,C ,D 是四个村庄,B ,D ,C 在一条东西走向公路的沿线上,1km BD =,1km DC =,村庄A 与C ,A 与D间也有公路相连,且公路AD 是南北走向,3km AC =,只有A ,B 之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得 1.2km AE =,0.7km BF =,则建造的斜拉桥长至少有____________km .14. 如图,在ABC 中,4AB =, 5.5AC =,ABC ∠和ACB ∠的平分线交于点E ,过点E 作MN BC ∥分别交AB 、AC 于点M 、N ,则AMN 的周长为_________.15. 如图,ABC 的面积为212cm ,AP 垂直B ∠的平分线BP 于点P ,则PBC △的面积为__________2cm .16. 如图,射线OA OB ,上分别截取11OA OB =,连接11A B ,在11B A 、1B B 上分别截取1212B A B B =,连接22A B ,…按此规律作下去,若11A B O α∠=,则20232023A B O ∠=______.17. 如图,7cm AB =,60CAB DBA ∠=∠=°,5cm AC =,点P 在线段AB 上以2cm/s 的速度由点A 向点B 运动,同时点Q 在射线BD 上运动,当点P 运动结束时,点Q 随之结束运动,当点P Q ,运动到某处时有ACP △与BPQ 全等,则Q 的运动速度是 ________________cm/s .18. 如图,在ABC 中,BA BC =,BD 平分ABC ∠,交AC 于点D ,点M N 、分别为BD BC 、上动点,若4BC =,ABC 的面积为6,则CM MN +的最小值为_______.在的三、解答题19. 如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与ABC 关于直线l 成轴对称的A B C ′′′ .(2)ABC 的面积为__________.(3)在直线l 上找一点P (在答题纸上图中标出),使PB PC +的长最短.20. 如图,已知B 、E 、C 、F 在同一条直线上,AB DE =,AC DF =,BE CF =,AC 与DE 交于点G .(1)求证:ABC DEF ≌△△;(2)若50B ∠=°,60ACB ∠=°,求EGC ∠的度数.21. 麒麟某数学兴趣小组的同学用数学知识测一池塘的长度,他们所绘如图,点B ,F ,C (点F ,C 之间不能直接测量,为池塘的长度),点A ,D 在l 的异侧,且AB DE ∥,A D ∠=∠,测得AB DE =.(1)求证:ABC DEF ≌△△;(2)若100m 30m BE BF ==,,求池塘FC 的长. 22. 如图,四边形ABCD 中,BC CD =,AC DE =,90B DCE ∠=∠=°,AC 与DE 相交于点F .(1)求证:ABC ECD ∆≅∆(2)判断线段AC 与DE 的位置关系,并说明理由.23. 如图,在ABC 中,DM EN 、分别垂直平分AC 和BC ,交AB 于M N 、两点,DM 与EN 相交于点F .(1)若CMN 的周长为15cm ,求AB 的长;(2)若70MFN ∠=°,求MCN ∠的度数.24. 如图,已知ABC ,点P 为BAC ∠的平分线上一点,PE AB ⊥,PF AC ⊥,垂足分别为E 、F(1)求证∶ PE PF =(2)若BE CF =,求证:点P 在BC 的垂直平分线上.25. 如图,已知ABC (AC AB BC <<),请用无刻度的直尺和圆规,完成下列作图(不写作法,保留作图痕迹);(1)如图1,在AB 边上寻找一点M ,使AMC ACB ∠=∠;(2)如图2,在BC 边上寻找一点N ,使得NA NB BC +=.26. 如图甲,已知在ABC 中,90ACB ∠=°,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)说明ADC CEB △≌△.(2)说明AD BE DE +=.(3)已知条件不变,将直线MN 绕点C 旋转到图乙位置时,若3DE =、 5.5AD =,则BE=_____.27. 阅读理解:【概念学习】定义①:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“形似三角形”.定义②:从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“形似三角形”,我们把这条线段叫做这个三角形的“巧妙分割线”.【概念理解】(1)如图1,在ABC 中,36A ∠=°,AB AC =,CD 平分ACB ∠,则CBD △与ABC ______(填“是”或“不是”)互为“形似三角形”.的(2)如图2,在ABC 中,CD 平分ACB ∠,36A ∠=°,48B ∠=°,求证:CD 为ABC 的“巧妙分割线”;【概念应用】(3)在ABC 中,45A ∠=°,CD 是ABC 的巧妙分割线,直接写出ACB ∠的度数.28. 在ABC 中,,8AB AC BC ==,点M 从点B 出发沿射线BA 移动,同时点N 从点C 出发沿线段AC 的延长线移动,点M ,N 移动的速度相同,MN 与BC 相交于点D .(1)如图1,过点M 作//ME AC ,交BC 于点E ;①图中与BBBB 相等的线段________、_________;②求证:DME DNC ≌;(2)如图2,若60A ∠=°,当点M 移动到AABB 的中点时,求CCCC 的长度;(3)如图3,过点M 作MF BC ⊥于点F ,在点M 从点B 向点A (点M 不与点A ,B 重合)移动的过程中,线段BF 与CCCC 的和是否保持不变?若保持不变,请直接写出BF 与CCCC 的长度和;若改变,请说明理由.2024-2025学年江苏省南京师大附中树人学校八年级(上)第一次月考数学试卷一、选择题1. 下列图形中,不是轴对称图形的是( )A. B.C. D.【答案】C【解析】【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项A 、B 、D 均能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;选项C 故选:C .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2. 如图,ABC DEF ≌△△,若100A ∠=°,47F ∠=°,则E ∠的度数为( )A. 100°B. 53°C. 47°D. 33°【答案】D【解析】 【分析】首先根据全等三角形的性质得到100D A ∠=∠=°,然后利用三角形内角和定理求解即可.【详解】解:∵ABC DEF ≌△△,100A ∠=°,∴100D A ∠=∠=°,在DEF 中,47F ∠=°,∴18033E D E ∠=°−∠−∠=°,故选:D .【点睛】此题考查了全等三角形的性质,三角形内角和定理,解题的关键是熟练掌握以上知识点. 3. 如图,ABC DEF ≌△△,点D ,E 在直线AB 上,4BE =,1AE =,则DE 的长为( )A. 5B. 4C. 3D. 2【答案】A【解析】 【分析】由ABC DEF ≌△△,可得DE AB =,由点D ,E 在直线AB 上,可得DE AB AE BE ==+,计算求解即可.【详解】解:∵ABC DEF ≌△△,∴DE AB =,∵点D ,E 在直线AB 上,∴5DE AB AE BE ==+=,故选:A .【点睛】本题考查了全等三角形的性质.解题的关键在于明确线段之间的数量关系.4. 等腰三角形的一边为4,一边为3,则此三角形的周长是( )A. 10cmB. 11cmC. 6cm 或8cmD. 10cm 或11cm 【答案】D【解析】【分析】分边4是底边和腰长两种情况讨论,再根据三角形的任意两边之和大于第三边判断是否能组成三角形,然后求解即可.【详解】解:若4是底边,则三角形的三边分别为4、3、3,能组成三角形,周长43310=++=,若4是腰,则三角形的三边分别为4、4、3,能组成三角形,周长44311=++=,综上所述,此三角形的周长是10或11.故选:D .【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并判断是否能组成三角形.5. A 、B 、C 三名同学玩“抢凳子”游戏.他们所站的位围成一个ABC ,在他们中间放一个木凳,谁先抢到凳子谁获胜,为保证游戏公平,则凳子应放的最适当的位置是在ABC 的( )A. 三边垂直平分线的交点B. 三边中线的交点C. 三个内角角平分线的交点D. 三边高的交点【答案】A【解析】【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【详解】解:利用线段垂直平分线的性质得:要放在三边垂直平分线的交点上.故选:A .【点睛】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.6. 如图1,已知三角形纸片ABC ,AB AC =,50A ∠=°,将其折叠,如图2所示,使点A 与点B 重合,折痕为ED ,点E ,D 分别在AB ,AC 上,那么DBC ∠的度数为( )A. 10°B. 15°C. 20°D. 30°【答案】B【解析】 【分析】本题考查了等腰三角形的性质,折叠的性质,根据50A ∠=°,AB AC =可求得180652A ABC °−∠∠==°,结合折叠的性质,得到50ABD A ∠=∠=°根据15DBC ABC ABD ∠=∠−∠=°,选择即可.【详解】.∵50A ∠=°,AB AC =,∴180652A ABC °−∠∠==°, 折叠的性质,得到50ABD A ∠=∠=°, ∴15DBC ABC ABD ∠=∠−∠=°,故选B .7. 如图,已知ABC 的周长是36cm ,ABC ∠和ACB ∠的角平分线交于点O ,OD BC ⊥于点D ,若3cm OD =,则ABC 的面积是( )A. 248cmB. 254cmC. 260cmD. 266cm【答案】B【解析】 【分析】过点O 作OE ⊥AB 于点E ,OF ⊥AC 于点F ,根据角平分线的性质定理可得OD =OE =OF =3cm ,再由ABC ABO CBO CAO S S S S =++ ,即可求解.【详解】解∶如图,过点O 作OE ⊥AB 于点E ,OF ⊥AC 于点F ,∵ABC ∠和ACB ∠的角平分线交于点O ,OD BC ⊥,∴OD =OE ,OD =OF ,∴OD =OE =OF =3cm ,∵ABC 的周长是36cm ,∴AB +BC +AC =36cm ,∵ABC ABO CBO CAO S S S S =++ ,∴()21111136354cm 22222ABC S AB OE CB OD CA OF AB BC AC OD =⋅+⋅+⋅=++⋅=××= . 故选:B 【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线上点到角两边的距离是解题的关键. 8. 如图,点P 为定角AOB ∠的平分线上的一个定点,且MPN ∠与AOB ∠互补,若MPN ∠在绕点P 旋转的过程中,其两边分别与OA OB ,交于点M N ,,则一下结论:①PM PN =恒成立;②OM ON +的值不变;③四边形PMON 的面积不变;④MN 的长不变;其中正确的个数为( )个A. 1B. 2C. 3D. 4【答案】C【解析】 【分析】根据角平分线的性质,作PE OA PF OB ⊥⊥,,可得PE PF OE OF MPE NPF == ,,≌,由此可判定①②③,连接EF ,根据三角形三边关系可判定④,由此即可求解.【详解】解:∵点P 在AOB ∠∴AOP BOP ∠=∠,如图所示,过点P 作PE OA ⊥于点E ,作PF OB ⊥于点B ,∴90PEO PFO ∠=∠=°,PE PF =,OE OF =,∴在四边形PEOF 中,180EOF EPF ∠+∠=°,∵180AOB MPN ∠+∠=°,∴MPN EPF ∠=∠,即MPE EON EON NOF ∠+∠=∠+∠,∴MPE NPF ∠=∠,∴()MPE NPF SAS ≌,∴PM PN =,故①正确;由①正确可得,ME NF =,∴22OM ON OE EM OF NF OE OF +=++−==,故②正确;由MPE NPF ≌可得MPE NPF S S = ,∴MPE EPO OPN EPO OPN NPF PMON PEOF S S S S S S S S ++=++== 四边形四边形,∴四边形PMON 的面积是定值,故③正确;如图所示,连接EF ,由上述结论可得,PM PN PE PF ==,,MPN EPF ∠=∠,PM PE >,PN PF >,∴MN CD ≠,即MN 的长度发生变化,故④错误;综上所述,正确的有①②③,共3个,故选:C .【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,旋转的性质,四边形面积的计算方法等知识,掌握添加合理的辅助线,构造三角形全等是解题的关键.二、填空题9. 如图,已知AD BC =,要使ABC CDA △△≌,还要添加的一个条件可以是______.(只需填上一个正确的条件).【答案】AB CD =(答案不唯一)【解析】【分析】本题考查了全等三角形的判定,根据全等三角形的判定定理即可求解,掌握全等三角形的判定定理是解题的关键.【详解】解:ABC 与CDA 中,∵AB CD BC AD AC CA = = =,在∴()SSS ABC CDA △≌△,∴添加的一个条件可以是AB CD =,故答案为:AB CD =.10. 如图,在ABC 中,点D 、E 、F 分别是BC AB AC ,,上的点,若B C BF CD ∠=∠=,,54BD CE EDF =∠=°,,则A ∠=________.【答案】72°##72度【解析】【分析】由“SAS ”可证≌BDF CED ,可得BFD CDE ∠=∠,由外角的性质可得54B EDF ∠=∠=°,可求解.【详解】解:在BDF 和CED △中,===BF CD B C BD CE∠∠ ,∴()SAS BDF CED ≌ ,∴BFD CDE ∠=∠,∵FDC B BFD FDE EDC ∠=∠+∠=∠+∠,∴54B EDF ∠=∠=°,∴54C ∠=°∴180180545472A B C ∠=°−∠−∠=°−°−°=°,故答案为:72°.【点睛】本题考查了全等三角形的判定和性质,三角形内角和定理,掌握全等三角形的判定是本题的关键.11. 如图,把一个长方形纸条ABCD 沿EF 折叠,若154∠=°,则FGE ∠=_______.【答案】72°##72度【解析】【分析】先证明154DEF ∠=∠=°,AEG FGE ∠=∠,由折叠可得54DEF GEF ∠=∠=°,利用平角的含义可得18025472AEG ∠=°−×°=°,从而可得答案.【详解】解:∵154∠=°,AD BC ∥,∴154DEF ∠=∠=°,AEG FGE ∠=∠, 由折叠可得:54DEF GEF ∠=∠=°,∴18025472AEG ∠=°−×°=°,∴72FGE ∠=°.故答案为:72°【点睛】本题考查的是平行线的性质,轴对称的性质,熟记轴对称的性质与平行线的性质求解角度的大小是解本题的关键.12. 如图,在3×3的方格中,每个小方格的边长均为1,则1∠与2∠的数量关系是________.【答案】1290∠+∠=° 【解析】【分析】证明ABC DEF ≌△△得出2DEF ∠=∠,根据190DEF ∠+∠=°即可得出1290∠+∠=°. 【详解】解:根据网格特点可知,90ACB DFE ∠=∠=°,EF BC =,AC DF =,∴ABC DEF ≌△△,∴2DEF ∠=∠,∵190DEF ∠+∠=°,∴1290∠+∠=°.故答案为:1290∠+∠=°. 【点睛】本题主要考查了三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法.13. 如图所示.A ,B ,C ,D 是四个村庄,B ,D ,C 在一条东西走向公路的沿线上,1km BD =,1km DC =,村庄A 与C ,A 与D间也有公路相连,且公路AD 是南北走向,3km AC =,只有A ,B 之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得 1.2km AE =,0.7km BF =,则建造的斜拉桥长至少有____________km .【答案】1.1【解析】【分析】根据全等三角形的判定得出(SAS)ADB ADC ≌ ,进而得出3km AB AC ==,这样可以得出斜拉桥长度.【详解】解:由题意知:BD CD =,90BDA CDA ∠∠==°,∵在ADB 和ADC 中, DB DC ADB ADC AD AD = ∠=∠ =, ∴(SAS)ADB ADC ≌ ,∴3km AB AC ==,故斜拉桥至少有3 1.20.7 1.1km −−=,故答案为1.1.【点睛】此题主要考查了全等三角形的判定及其性质,根据已知得出(SAS)ADB ADC ≌ 是解题的关键. 14. 如图,在ABC 中,4AB =, 5.5AC =,ABC ∠和ACB ∠的平分线交于点E ,过点E 作MN BC ∥分别交AB 、AC 于点M 、N ,则AMN 的周长为_________.【答案】9.5【解析】【分析】根据角平分线定义、平行线的性质和可得ME MB NE NC ==,,进而求解. 【详解】解∶BE 平分ABC ∠,,ABE EBC ∴∠=∠MN BC ∥,MEB EBC ∴∠=∠,MEB ABE ∴∠=∠,MB ME ∴=同理可得∶NE NC =,9.5AMN C AM AN MN AM AN ME EN AM AN MB NC AB AC ∴=++=+++=+++=+= 故答案为∶9.5【点睛】本题考查等腰三角形的判定及性质,解题关键是掌握角平分线的定义,掌握平行线的性质. 15. 如图,ABC 的面积为212cm ,AP 垂直B ∠的平分线BP 于点P ,则PBC △的面积为__________2cm .【答案】6【解析】【分析】延长AP 交BC 于点D ,根据角平分线和垂线的定义,易证()ASA APB DPB ≌,得到12ABP DBP ABD S S S == ,AP DP =,进而得到12ACP DCP ACD S S S == ,即可求出PBC △的面积. 【详解】解:如图,延长AP 交BC 于点D ,BP 平分ABC ∠,ABP DBP ∴∠=∠,AP BP ⊥ ,90APB DPB ∴∠=∠=°,在APB △和DPB 中,ABP DBP BP BPAPB DPB ∠=∠ = ∠=∠, ()ASA APB DPB ∴ ≌,12ABP DBP ABD S S S ∴== ,AP DP =, ACP ∴△和DCP 等底同高,12ACP DCP ACD S S S ∴== , ()1122DPB DCP ABD ACD ABC PBC S S S S S S ∴=+=+= , ABC 的面积为212cm ,21126cm 2PBC S ∴=×= , 故答案为:6.【点睛】本题考查了角平分线的定义,全等三角形的判定和性质,三角形面积公式等知识,作辅助线构造全等三角形是解题关键.16. 如图,在射线OA OB ,上分别截取11OA OB =,连接11A B ,在11B A 、1B B 上分别截取1212B A B B =,连接22A B ,…按此规律作下去,若11A B O α∠=,则20232023A B O ∠=______.【答案】20222α【解析】 【分析】根据等腰三角形两底角相等用α表示出22A B O ∠,依此类推即可得到结论.【详解】解:1212B A B B = ,11A B O α∠=, 2212A B O α∴∠=, 同理332111222A B O αα∠=×=, 44312A B O α∠=, 112n n n A B O α−∴∠=, 2023202320222A B O α∴∠=, 故答案为:20222α. 【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.17. 如图,7cm AB =,60CAB DBA ∠=∠=°,5cm AC =,点P 在线段AB 上以2cm/s 的速度由点A 向点B 运动,同时点Q 在射线BD 上运动,当点P 运动结束时,点Q 随之结束运动,当点P Q ,运动到某处时有ACP △与BPQ 全等,则Q 的运动速度是 ________________cm/s .【答案】2或207【解析】【分析】本题考查了全等三角形的性质,由ACP △与BPQ 全等,分两种情况:AC BP =①,AP BQ =,AC BQ =②,AP BP =,建立方程组求得答案即可,熟练掌握知识点的应用及分情况分析是解题的关键.【详解】解:设它们运动的时间为s t ,点Q 的运动速度为cm /s x ,则2AP tcm =,()72cm PBt =−,cm BQ xt =,①若ACP BPQ △≌△,则AC PB =,AP BQ =,可得:572t =−,2t xt =,解得:2x =,1t =;②若ACP BQP △≌△,则AC BQ =,AP PB =,可得:5xt =,272t t =−, 解得:207x =,74t =; 综上:Q 的运动速度为2cm /s 或20cm /s 7, 故答案为:2或207. 18. 如图,在ABC 中,BA BC =,BD 平分ABC ∠,交AC 于点D ,点M N 、分别为BD BC 、上的动点,若4BC =,ABC 的面积为6,则CM MN +的最小值为_______.【答案】3【解析】【分析】本题考查了等腰三角形的性质,线段垂直平分线的性质,两点之间线段最短,垂线段最短,根据等腰三角形的性质可知,BBBB 垂直平分AC ,根据垂直平分线的性质得出CM AM =,由此可得CM MN AM MN +=+,又由“两点之间线段最短”和“垂线段最短”可得当A M N 、、三点共线且AN BC ⊥时AM MN +最短,根据三角形的面积公式可求出AN 的长,即CM MN +的最小值,熟练掌握知识点的应用是解题的关键.【详解】解:如图,连接AM ,∵在ABC 中,BA BC =,BD 平分ABC ∠,∴BD AC ⊥,AD CD =,∴BD 垂直平分AC ,∴CM AM =,∴CM MN AM MN +=+,如图,当A M N 、、三点共线且AN BC ⊥时, CM MN AM MN AN +=+=,此时AN 最小,即CM MN +的值最小,∵162ABC S BC AN =×= , ∴1462AN ××=, 解得3AN =,∴CM MN +的最小值为3,故答案为:3.三、解答题19. 如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与ABC 关于直线l 成轴对称的A B C ′′′ .(2)ABC 的面积为__________.(3)在直线l 上找一点P (在答题纸上图中标出),使PB PC +的长最短.【答案】(1)图见解析(2)72(3)图见解析【解析】【分析】本题主要考查了轴对称作图,三角形面积计算,轴对称的性质,解题的关键是熟练掌握轴对称的性质.(1)先作出点B 、C 关于直线l 对称的点B ′、C ′,然后再顺次连接即可;(2)利用割补法求值三角形的面积即可;(3)连接BC ′,交l 于P ,点P 即为所求.【小问1详解】解:如图所示,A B C ′′′ 即为所求. 【小问2详解】解:111372412131481222222×−××−××−××=−−−=. 故答案为:72. 【小问3详解】解:连接BC ′,交l 于P ,点P 即为所求.连接PC ,根据轴对称可知:PC PC ′=,∴PB PC PB PC ′+=+,∵两点之间线段最短,∴当B 、P 、C ′在同一直线上时,BP PC ′+最小,即PB PC +最小.20. 如图,已知B 、E 、C 、F 在同一条直线上,AB DE =,AC DF =,BE CF =,AC 与DE 交于点G .(1)求证:ABC DEF ≌△△(2)若50B ∠=°,60ACB ∠=°,求EGC ∠的度数.【答案】(1)见解析 (2)70°【解析】【分析】本题考查了全等三角形的判定与性质,三角形内角和定理,熟练掌握以上知识点并灵活运用是解此题的关键.(1)由BE CF =得出BC EF =,再利用SSS 证明ABC DEF ≌△△即可;(2)由全等三角形的性质得出50DEF B ∠=∠=°,再由三角形内角和定理计算即可得出答案. 【小问1详解】证明:∵BE CF =,∴BE CE CF CE +=+,即BC EF =,在ABC 和DEF 中,AB DE AC DF BC EF = = =,∴()SSS ABC DEF ≌;【小问2详解】解:如图:,∵ABC DEF ≌△△,∴50DEF B ∠=∠=°, ∴180180506070EGC GEC GCE ∠=°−∠−∠=°−°−°=°.21. 麒麟某数学兴趣小组的同学用数学知识测一池塘的长度,他们所绘如图,点B ,F ,C (点F ,C 之间不能直接测量,为池塘的长度),点A ,D 在l 的异侧,且AB DE ∥,A D ∠=∠,测得AB DE =.(1)求证:ABC DEF ≌△△;(2)若100m 30m BE BF ==,,求池塘FC 的长. 【答案】(1)见解析 (2)FC 的长是40m【解析】【分析】(1)利用“ASA ”即可求证;(2)利用全等三角形的性质即可求解.【小问1详解】证明:∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 与DEF 中,ABC DEF AB DEA D ∠=∠ = ∠=∠∴(ASA)ABC DEF ≌ ;【小问2详解】解:∵ABC DEF ≌△△∴BC EF =∴BF FC EC FC +=+,∴BF EC =,∵100m30m BE BF ==, ∴100303040FC =−−=m .答:FC 的长是40m【点睛】本题考查了全等三角形的判定与性质.熟记相关定理内容是解题关键.22 如图,四边形ABCD 中,BC CD =,AC DE =,90B DCE ∠=∠=°,AC 与DE 相交于点F .(1)求证:ABC ECD ∆≅∆(2)判断线段AC 与DE 的位置关系,并说明理由.【答案】(1)见解析 (2)AC DE ⊥,理由见解析【解析】【分析】(1)根据HL 即可证明ABC ECD △△≌.(2)根据ABC ECD △△≌得到BCA CDE ∠=∠,结合90B DCE ∠=∠=°得到90DFC ∠=°,即可得结论.【小问1详解】解:在Rt ABC △和Rt ECD △中AC DE AB EC== , ∴ABC ECD △△≌..【小问2详解】解:AC DE ⊥.理由如下:∵ABC ECD △△≌,∴BCA CDE ∠=∠,∵90B DCE ∠=∠=°,∴90BCA ACD ∠+∠=°,∴90CDE ACD ∠+∠=°,∴180()90DFCCDE ACD ∠=°−∠+∠=°, ∴AC DE ⊥.【点睛】本题考查全等三角形的判定与性质,常用的判定方法有:SSS 、SAS 、ASA 、AAS 、HL 等,熟练掌握全等三角形的判定定理是解题的关键.23. 如图,在ABC 中,DM EN 、分别垂直平分AC 和BC ,交AB 于M N 、两点,DM 与EN 相交于点F .(1)若CMN 的周长为15cm ,求AB 的长;(2)若70MFN ∠=°,求MCN ∠的度数.【答案】(1)15cm AB =(2)40°【解析】【分析】此题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,解题的关键是熟练掌握以上知识的应用及整体思想的应用.(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM CM =,BN CN =,然后求出CMN 的周长AB =;(2)根据三角形的内角和定理列式求出 MNF NMF ∠+∠,再求出A B ∠∠+,根据等边对等角可得A ACM ∠=∠,B BCN ∠=∠,然后利用三角形的内角和定理列式计算即可得解.【小问1详解】解:∵DM 、EN 分别垂直平分AC 和BC ,∴AM CM =,BN CN =,∴CMN 的周长CM MN CN AM MN BN AB =++=++=,∵CMN 的周长为15cm ,∴15cm AB =;【小问2详解】解:∵70MFN ∠=°,∴18070110MNF NMF ∠+∠=°−°=°,∵AMD NMF ∠=∠, BNE MNF ∠=∠,∴110AMD BNE MNF NMF ∠+∠=∠+∠=°,∴909018011070A B AMD BNE ∠+∠=°−∠+°−∠=°−°=°,∵AM CM =,BN CN =,∴A ACM ∠=∠,B BCN ∠=∠,∴()180218027040MCN A B ∠=°−∠+∠=°−×°=°. 24. 如图,已知ABC ,点P 为BAC ∠的平分线上一点,PE AB ⊥,PF AC ⊥,垂足分别为E 、F(1)求证∶ PE PF =(2)若BE CF =,求证:点P 在BC 的垂直平分线上.【答案】(1)见解析 (2)见解析【解析】【分析】(1)通过证明APE APF ≌△△,即可求证;(2)连接PB 、PC ,通过证明BPE CPF △≌△,得到BP CP =,即可求证.【小问1详解】证明:∵点P 为BAC ∠的平分线上一点∴BAP FAP ∠=∠∵PE AB ⊥,PF AF ⊥∴90PEA PFA ∠=∠=°在APE 和APF 中BAP FAP PEA PFA AP AP ∠=∠ ∠=∠ =∴()AAS APE APF ≌∴PE PF =【小问2详解】证明:连接PB 、PC ,如下图:由(1)可得:90BEP CFP ∠=∠=°又∵PE PF =,BE CF =∴()SAS BPE CPF ≌∴BP CP =∴点P 在BC 的垂直平分线上【点睛】此题考查了全等三角形的判定与性质,垂直平分线的判定,解题的关键是熟练掌握全等三角形的判定方法与性质.25. 如图,已知ABC (AC AB BC <<),请用无刻度的直尺和圆规,完成下列作图(不写作法,保留作图痕迹);(1)如图1,在AB 边上寻找一点M ,使AMC ACB ∠=∠;(2)如图2,BC 边上寻找一点N ,使得NA NB BC +=.在【答案】(1)见解析;(2)见解析【解析】【分析】(1)利用作一个角等于已知角的方法作图即可;(2)作AC 的垂直平分线,交BC 于点N 即可.【详解】解:(1);(2).【点睛】此题考查作图问题,关键是根据作一个角等于已知角和线段垂直平分线的作法解答. 26. 如图甲,已知在ABC 中,90ACB ∠=°,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)说明ADC CEB △≌△.(2)说明AD BE DE +=.(3)已知条件不变,将直线MN 绕点C 旋转到图乙的位置时,若3DE =、 5.5AD =,则BE=_____. 【答案】(1)见解析 (2)见解析(3)2【解析】【分析】本题考查了全等三角形判定与性质,垂线的定义,直角三角形的性质,熟练掌握以上知识点并灵活运用是解此题的关键.(1)由垂线的定义得出90ADC CEB ∠=∠=°,再由同角的余角相等得出BCE =∠∠CAD ,最后利用AAS 证明ADC CEB △≌△即可;(2)由全等三角形的性质可得=AD CE ,BE CD =,即可得证;(3)由垂线的定义得出90ADC CEB ∠=∠=°,再由同角的余角相等得出BCE =∠∠CAD ,最后利用AAS 证明ADC CEB △≌△,得出 5.5CE AD ==,BE CD =,即可得解.【小问1详解】证明:∵AD MN ⊥于D ,BE MN ⊥于E .∴90ADC CEB ∠=∠=°,∴90DAC ACD ∠+∠=°,∵90ACB ∠=°,∴90BCE ACD ∠+∠=°,∴BCE =∠∠CAD ,∵AC BC =,∴()AAS ADC CEB ≌;【小问2详解】证明:∵ADC CEB △≌△,∴=AD CE ,BE CD =,∴AD BE CE CD DE +=+=;【小问3详解】证明:∵AD MN ⊥于D ,BE MN ⊥于E .∴90ADC CEB ∠=∠=°,∴90DAC ACD ∠+∠=°,∵90ACB ∠=°,∴90BCE ACD ∠+∠=°,∴BCE =∠∠CAD ,∵AC BC =,∴()AAS ADC CEB ≌,∴ 5.5CE AD ==,BE CD =,的∴ 5.532BE CD CE DE ==−=−=,故答案为:2.27. 阅读理解:【概念学习】定义①:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“形似三角形”.定义②:从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“形似三角形”,我们把这条线段叫做这个三角形的“巧妙分割线”.【概念理解】(1)如图1,在ABC 中,36A ∠=°,AB AC =,CD 平分ACB ∠,则CBD △与ABC ______(填“是”或“不是”)互为“形似三角形”.(2)如图2,在ABC 中,CD ACB ∠,36A ∠=°,48B ∠=°,求证:CD 为ABC 的“巧妙分割线”;【概念应用】(3)在ABC 中,45A ∠=°,CD 是ABC 的巧妙分割线,直接写出ACB ∠的度数.【答案】(1)是;(2)证明见解析;(3)90°或105°或112.5°【解析】【分析】(1)由题意推出36BCD ∠=°,72ABC ∠=°,72BDC ∠=°,从而得出结论; (2)根据题意,通过计算得出BCD △是等腰三角形,36A A ∠=∠=°,48ACD B ∠=∠=°,96ADC ACB ∠=∠=°,从而得出结论;(3)根据题意,分为当ACD 是等腰三角形和BCD △是等腰三角形两类,当ACD 是等腰三角形时,再分为:AC AD =,AD CD =,AC CD =三种情形讨论;同样当BCD △是等腰三角形时,也分为三种情形讨论,分别计算出ACB ∠的度数即可.【详解】解:(1)∵在ABC 中,36A ∠=°,AB AC =, ∴180722A ABC ACB °−∠∠=∠==°, ∵CD 平分ACB ∠, ∴1362BCD ACB ∠=∠=°, ∴18072BDC BCD B =°−−=°∠∠∠,∴BCD A B B BDC ACB ===∠∠,∠∠,∠∠,∴CBD △与是互为“形似三角形”,故答案为:是;(2)∵在ABC 中,36A ∠=°,48B ∠=°,∴18096ACB A B =°−−=°∠∠∠,∵CD 平分ACB ∠, ∴1482ACD BCD ACB ===°∠∠∠, ∴18096ADC A ACD B BCD =°−−°=∠∠∠,∠∠,∴A A ACD B ADC ACB DC DB ====∠∠,∠∠,∠∠,,∴ACD 与ABC 是互为“形似三角形”,且BCD △是等腰三角形,∴CD 为ABC 的“巧妙分割线”;(3)(Ⅰ)当ACD 是等腰三角形,另一个三角形与原三角形是“形似三角形”时,①如图1所示:当AD CD =时,则45ACD A ∠=∠=°,90BDC A ACD ∴∠=∠+∠=°,此时,C ABC BD 、△△是“形似三角形”,可知45BCD A ∠=∠=°,∴9045B BCD A =°−=°=∠∠∠,∴90ACB ∠=°;②如图2所示:当AC AD =时,则1804567.52ACD ADC °−°∠=∠==°, 此时,C ABC BD 、△△是“形似三角形”,可知45BCD A ∠=∠=°,4567.5112.5ACB ∴∠=°+°=°;③当AC CD =时,这种情况不存在;(Ⅱ)当BCD △是等腰三角形,另一个三角形与原三角形是“形似三角形”时,①如图3所示:当CD DB =时,45B BCD ∠=∠=°,同理可知90ACB ∠=°;②如图4所示:当BC BD =时,BDC BCD ∠=∠,此时,ABC ACD 、是“形似三角形”,可知ACD B ∠=∠,45BCD BDC ACD A ACD ∴∠=∠=∠+∠=∠+°,在BCD △中,由三角形内角和可知2180B BDC ∠+∠=°,得()245180ACD ACD ∠+∠+°=°, 30ACD ∴∠=°,45230105ACB ACD BCD ∴∠=∠+∠=°+×°=°;③当CD CB =时,这种情况不存在;综上所述:ACB ∠的度数为90°或105°或112.5°.【点睛】本题主要考查了等腰三角形的性质与判定,角平分线的定义,三角形内角和定理和三角形外角的性质,解决问题的关键是利用分类讨论的思想求解.28. 在ABC 中,,8AB AC BC ==,点M 从点B 出发沿射线BA 移动,同时点N 从点C 出发沿线段AC 的延长线移动,点M ,N 移动的速度相同,MN 与BC 相交于点D .(1)如图1,过点M 作//ME AC ,交BC 于点E ;①图中与BBBB 相等的线段________、_________;②求证:DME DNC ≌;(2)如图2,若60A ∠=°,当点M 移动到AABB 的中点时,求CCBB 的长度;(3)如图3,过点M 作MF BC ⊥于点F ,在点M 从点B 向点A (点M 不与点A ,B 重合)移动的过程中,线段BF 与CCBB BF 与CCBB 的长度和;若改变,请说明理由.【答案】(1)①CN 、EM ; ②见解析;(2)CCBB 的长度为2;(3)保持不变;BF +CD =4.【解析】【分析】(1)①根据移动过程分析和等腰三角形的性质即可解答;②由平行的性质、等腰三角形的性质进行等边和等角转换,最后运用AAS 即可证明结论;(2)由(1)的结论和等边三角形的性质,通过等量转换即可得解;(3)首先过点M 作ME //AC ,由等腰三角形的性质以及全等三角形的性质,即可求得BF 与CD 的长度保持不变.【详解】(1) ①∵点M 、N 同时移动且移动的速度相同,∴BM =CN ,∵AB =AC ,∴∠B =∠ACB又∵ME//AC,∴∠N=∠DME,∠ACB=∠MEB,∴∠MEB=∠B,∴BM=ME,故答案是:CN、EM;②∵BM=ME,BM=CN∴ME=CN,∵MN与BC相交于点D,∴∠MDE=∠NDC,在△DME和△DNC中∠MDE=∠NDC,∠DME=∠N,ME=NC ∴△DME≌△DNC(AAS);(2) 如图:过点M作ME//AC,交BC于点E ∵∠A=60°,AB=AC,∴△ABC是等边三角形,∴∠B=∠ACB=60°∵ME//C,∴∠BEM=∠ACB=60°,∴△BEM是等边三角形,∴BE=BM.∵M是AB的中点,∴1122 BE BM AB BC ===∴BE=CE=4.由(1)可证△DME≌△DNC ∴DE=CD,∴CD=12CE=2,∴CD的长度为2;.。
人教版数学八年级上册第一次月考数学试卷带答案解析
人教版数学八年级上册第一次月考数学试卷一、选择题(每题2分,共30分)1.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.162.适合条件∠A=∠B=∠C的三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形3.如果CD平分含30°三角板的∠ACB,则∠1等于()A.110°B.105°C.100°D.95°4.下列说法错误的是()A.一个三角形中至少有一个角不少于60°B.三角形的中线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA6.下列说法:①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等④全等三角形的周长相等其中正确的说法为()A.①②③④B.①②③ C.②③④ D.①②④7.如图,∠BAC=40°,AD平分∠BAC,BD∥AC,则∠D的度数为()A.20°B.30°C.40°D.50°8.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°9.如果一个多边形的每一个内角都是135°,那么这个多边形的边数是()A.5 B.6 C.8 D.1010.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°11.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F12.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°13.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°14.△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是()A.1个B.2个C.3个D.4个15.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=a,则下列结论正确的是()A.2a+∠A=180°B.a+∠A=90°C.2a+∠A=90°D.a+∠A=180°二、填空题(每题3分,共15分)16.已知一个多边形的内角和与外角和之比为5:2,则它的边数是.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠B=26°,∠DAE=24°,则∠C=.18.如图B点在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B北偏东80°方向,则∠ACB=.19.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,则其斜边上的高CD为cm.20.如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC=度.参考答案与试题解析一、选择题(每题2分,共30分)1.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【考点】三角形三边关系.【分析】设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.2.适合条件∠A=∠B=∠C的三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形【考点】三角形内角和定理.【分析】由三角形内角和为180°和∠A=∠B=∠C,可得∠A+∠B+∠C=2∠C=180°,得∠C=90°,故该三角形的形状为直角三角形.【解答】解:∵角形内角和为180°.∴∠A+∠B+∠C=180°.又∵∠A=∠B=∠C的.∴2∠C=180°.解得∠C=90°.故适合条件∠A=∠B=∠C的三角形是直角三角形.故选项A错误,选项B错误,选项C错误,选项D正确.故选D.3.如果CD平分含30°三角板的∠ACB,则∠1等于()A.110°B.105°C.100°D.95°【考点】三角形内角和定理.【分析】先根据角平分线定义得到∠ACD=45°,然后在△ACD中根据三角形内角和求∠1的度数.【解答】解:∵CD平分∠ACB,∴∠ACD=×90°=45°,在△ACD中,∵∠1+∠A+∠ACD=180°,∴∠1=180°﹣30°﹣45°=105°.故选B.4.下列说法错误的是()A.一个三角形中至少有一个角不少于60°B.三角形的中线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的面积.【分析】分别根据三角形内角和定理,三角形的角平分线、中线和高对各选项进行逐一分析即可.【解答】解:A、∵三角形的内角和等于180°,∴一个三角形中至少有一个角不少于60°,故本选项正确;B、三角形的中线一定在三角形的内部,故本选项正确;C、三角形的中线把三角形的面积平均分成相等的两部分,故本选项正确;D、直角三角形有三条高,故本选项错误.故选D.5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的判定.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.6.下列说法:①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等④全等三角形的周长相等其中正确的说法为()A.①②③④B.①②③ C.②③④ D.①②④【考点】全等图形.【分析】根据全等三角形概念:能够完全重合的两个三角形叫做全等三角形可得答案.【解答】解:①全等三角形的形状相同、大小相等,说法正确;②全等三角形的对应边相等、对应角相等,说法正确;③面积相等的两个三角形全等,说法错误;④全等三角形的周长相等,说法正确;故选:D.7.如图,∠BAC=40°,AD平分∠BAC,BD∥AC,则∠D的度数为()A.20°B.30°C.40°D.50°【考点】三角形内角和定理.【分析】由∠BAC=40°,AD平分∠BAC可得∠BAD=∠CAD=20°,由BD∥AC可知∠D=∠CAD,从而求得∠D的度数.【解答】解:∵∠BAC=40°,AD平分∠BAC,∴∠BAD=∠CAD=20°.又∵BD∥AC,∴∠D=∠CAD.∴∠D=20°.故选项A正确,选项B错误,选项C错误,选项D错误.故选A.8.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°【考点】等边三角形的性质;多边形内角与外角.【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.9.如果一个多边形的每一个内角都是135°,那么这个多边形的边数是()A.5 B.6 C.8 D.10【考点】多边形内角与外角.【分析】已知每一个内角都等于135°,就可以知道每个外角是45度,根据多边形的外角和是360度就可以求出多边形的边数.【解答】解:多边形的边数是:n==8,即该多边形是八边形.故选:C.10.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°【考点】全等图形.【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D.11.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F【考点】全等三角形的判定.【分析】考查三角形全等的判定定理,有AAS,SSS,SAS,ASA四种.根据题目给出的两个已知条件,要证明△ABC≌△FED,需要已知一对对应边相等即可.【解答】解:∵∠C=∠D,∠B=∠E,说明:点C与D,B与E,A与F是对应顶点,AC的对应边应是FD,根据三角形全等的判定,当AC=FD时,有△ABC≌△FED.故选C.12.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【考点】三角形的外角性质.【分析】先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选A.13.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】根据全等三角形对应角相等,∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,根据∠BED+∠CED=180°,可以得到∠A=∠BED=∠CED=90°,再利用三角形的内角和定理求解即可.【解答】解:∵△ADB≌△EDB≌△EDC∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C∵∠BED+∠CED=180°∴∠A=∠BED=∠CED=90°在△ABC中,∠C+2∠C+90°=180°∴∠C=30°故选D.14.△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】和△ABC全等,那么必然有一边等于3,有一边等于,又一角等于45°.据此找点即可,注意还需要有一条公共边.【解答】解:分三种情况找点,①公共边是AC,符合条件的是△ACE;②公共边是BC,符合条件的是△BCF、△CBG、△CBH;③公共边是AB,符合条件的三角形有,但是顶点不在网格上.故选D.15.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=a,则下列结论正确的是()A.2a+∠A=180°B.a+∠A=90°C.2a+∠A=90°D.a+∠A=180°【考点】全等三角形的判定与性质.【分析】根据已知条件可证明△BDE≌△CFD,则∠BED=∠CDF,由∠A+∠B+∠C=180°,得∠B=,因为∠BDE+∠EDF+∠CDF=180°,所以得出a与∠A的关系.【解答】解:在△BDE和△CFD中,,∴△BDE≌△CFD,∴∠BED=∠CDF,∵∠A+∠B+∠C=180°,∴∠B=,∵∠BDE+∠EDF+∠CDF=180°,∴180°﹣∠B﹣∠BED+a+∠CDF=180°,∴∠B=a,即=a,整理得2a+∠A=180°.故选A.二、填空题(每题3分,共15分)16.已知一个多边形的内角和与外角和之比为5:2,则它的边数是7.【考点】多边形内角与外角.【分析】设内角的度数是5x°,则外角是2x°,根据内角与相邻的外角互补,即可求得外角的度数,然后根据外角和是360度,即可求得边数.【解答】解:设内角的度数是5x°,则外角是2x°,根据题意得:5x+2x=180,解得:x=,则2x=,故多边形的边数是:=7.故答案为7.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠B=26°,∠DAE=24°,则∠C=74°.【考点】三角形内角和定理.【分析】根据直角三角形两锐角互余求出∠BAD,再求出∠BAE,然后根据角平分线的定义求出∠BAC,再根据三角形的内角和等于180°列式计算即可得解.【解答】解:∵AD⊥BC,∴∠BAD=90°﹣∠B=90°﹣26°=64°,∵∠DAE=24°,∴∠BAE=∠BAD﹣∠DAE=64°﹣24°=40°,∵AE平分∠BAC,∴∠BAC=2∠BAE=2×40°=80°,在△ABC中,∠C=180°﹣∠BAC﹣∠B=180°﹣80°﹣26°=74°.故答案为:74°.18.如图B点在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B北偏东80°方向,则∠ACB=85°.【考点】方向角.【分析】根据方向角的定义,即可求得∠DBA,∠DBC,∠EAC的度数,然后根据三角形内角和定理即可求解.【解答】解:如图,∵AE,DB是正南正北方向,∴BD∥AE,∵∠DBA=45°,∴∠BAE=∠DBA=45°,∵∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°,又∵∠DBC=80°,∴∠ABC=80°﹣45°=35°,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣60°﹣35°=85°.故答案是:85°.19.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,则其斜边上的高CD为cm.【考点】勾股定理;三角形的面积.【分析】首先利用勾股定理计算出AB的长,再根据三角形的面积计算出CD长即可.【解答】解:∵AC=5cm,BC=12cm,∴AB==13(cm),=AC•CB=AB•CD,∴S△ACB∴5×12=13×CD,解得:CD=,故答案为:.20.如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC=120度.【考点】等边三角形的性质;全等三角形的判定与性质.【分析】根据等边三角形的性质及全等三角形的判定SAS判定△DAC≌△BAE,得出对应角相等,再根据角与角之间的关系得出∠BOC=120°.【解答】解:∵△ABD,△ACE都是正三角形∴AD=AB,∠DAB=∠EAC=60°,AC=AE,∴∠DAC=∠EAB∴△DAC≌△BAE(SAS)∴DC=BE,∠ADC=∠ABE,∠AEB=∠ACD,∴∠BOC=∠CDB+∠DBE=∠CDB+∠DBA+∠ABE=∠ADC+∠CDB+∠DBA=120°.故填120.。
2024-2025学年北师大版八年级数学上册第一次月考综合测试卷(含答案)
八年级上学期第一次月考综合测试卷时间:100分钟 满分:120分 考试范围:北师大版八年级上册第一章~第二章一、选择题(每小题3分,共30分)1.下列是无理数的是( )A.-13B.4C.3.141 592 6D.-π2.下列几组数中,是勾股数的是( )A.1,2,3B.0.3,0.4,0.5C.15,8,17D.35,45,13.下列各式中正确的是( )A.16=±4B.3-27=-9C.(-3)2=-3D.94=324.已知下列各式:23,0.1,35,12,6,其中不是最简二次根式的有( )A.2个B.3个C.4个D.5个5.在如图所示的数轴上,表示数3-7的点应在( )A.A ,O 之间B.O ,B 之间C.B ,C 之间D.C ,D 之间6.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6km 处往东拐,仅走了1 km,就找到了宝藏,则门口A 到藏宝点B 的直线距离是( )A.20 kmB.14 kmC.11 kmD.10 km7.如图,一场暴雨过后,垂直于地面的一棵大树在距地面5米的C 处折断,树尖B 恰好碰到地面,经测量树尖B 与树桩A 相距12米,则大树折断前高为( )A.13米 B.17米 C.18米 D.22米8.如图,是一种筷子的收纳盒,长、宽、高分别为4 cm,3 cm,12 cm,现有一长为16 cm 的筷子插入到盒的底部,则筷子露在盒外的部分h (cm)的取值范围( )A.3<h<4 B.3≤h ≤4 C.2≤h ≤4 D.5≤h ≤69.把两块同样大小的含45°角的直角三角尺按如图所示放置,其中一块的锐角顶点与另一块的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上,若AC=22,则CD的长是( )A.3B.5C.25+2D.23+210.如图,有一根高为2.1 m的木柱,它的底面周长为40 cm,在准备元旦联欢晚会时,为了营造喜庆的氛围,小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( ) A.1 400 cm B.350 cm C.840 cm D.300 cm二、填空题(每小题3分,共15分)11. 写出一个在3和4之间的无理数:12.如图,每个小正方形的边长为1,可通过“剪一剪”“拼一拼”,将五个小正方形拼成一个面积一样的大正方形,则这个大正方形的边长是 .13.若m,n为实数,且m=1―n+n-1+8,则mn的立方根为 .14 .如图,有一块一边长为24 m的长方形绿地,在绿地旁边B处有健身器材.由于居住在A处的居民践踏了绿地,小颖想在A处立一个标牌“少走 步,踏草何忍”,但小颖不知应填什么数,请你帮她填上.(假设2步为1 m)15.有一个边长为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,且这3个正方形所围成的三角形是直角三角形.再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”.请你算出“生长”了2 021次后形成的图形中所有的正方形的面积和是 .三、解答题(共8小题,共75分)16.(8分)把下列各数填入相应的集合内:227,π5,0,3.14,-5,0.313 131…,38,-64,7.151 551…(相邻两个1之间5的个数逐次加1).有理数集合{ …};无理数集合{ …};正数集合{ …};负数集合{ …}.17.(每小题3分,共12分)解答下列各题.(1)(x+5)2=16(2)8(x-1)3=-1258(3)48-27+13 (4)(-2+6)(-2-6)-(3-13)2.18.(8分)如图,一个梯子AB,顶端A 靠在墙AC 上,这时梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米到E 点,底端则水平滑动8米到D 点,求滑动前梯子底端与墙的距离CB 是多少.19.(8分)如图,在四边形ABDC中,∠A=90°,AB=6,AC=8,BD=5,CD2=125.(1)连接BC,求BC的长;(2)求△BCD的面积.20.(8分)已知a-2的平方根是±2,a-3b-3的立方根是3,整数c满足c<12<c+1.(1)求a,b,c的值;(2)求a2+b2+c3+17的算术平方根.21.(10分)为了积极响应国家新农村建设,某镇政府采用了移动宣讲的广播形式进行宣传.如图,笔直公路MN的一侧有一报亭A,报亭A到公路MN的距离AB 为600米,且宣讲车P周围1 000米以内能听到广播宣传,宣讲车P在公路MN 上沿PN方向行驶.(1)请问报亭的人能否听到广播宣传,并说明理由;(2)如果能听到广播宣传,已知宣讲车的速度是200米/分,那么报亭的人总共能听到多长时间的广播宣传?22.(10分)八年级某班开展了手工制作比赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的前两个步骤如下:①如图,先裁下一张长20 cm,宽16 cm 的长方形纸片ABCD;②将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处.请你根据①②步骤分别计算FC,EC 的长.23.(11分)小明在解决问题:已知a=12+3,求2a 2-8a+1的值.他是这样分析与解答的:因为a=12+3=2―3(2+3)(2-3)=2-3,所以a-2=-3.所以(a-2)2=3,即a 2-4a+4=3.所以a 2-4a=-1.所以2a 2-8a+1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题:(1)计算:12+1= .(2)计算:12+1+13+2+14+3+…+1100+99.(3)若a=12-1,求4a 2-8a+1的值.参考答案12345678910DCDBBDCB DB11.1112.513.214.1615.2022解析:6.D 如图,过点B 作BC⊥AC ,垂足为C,过点N 作NM⊥AC ,垂足为M.由题意可知AC=AF-MF+MC=8-3+1=6(km),BC=2+6=8(km),在Rt△ACB中,AB=AC 2+BC 2=62+82=10(km).解析:9.D 如图,作AF⊥BC 于点F,∵△AED 和△ACB 是一样的等腰直角三角形,AC=22,∴BC=AD=4,∴AF=12BC=2,BF=CF=2,∴DF=AD 2-AF 2=42-22=23,∴CD=DF+CF=23+2.三、解答题16.有理数集合{227,0,3.14,0.313 131…,38,-64,…};无理数集合{π5,-5,7.151 551…(相邻两个1之间5的个数逐次加1),…};正数集合{227,π5,3.14,0.313 131…,38,7.151 551…(相邻两个1之间5的个数逐次加1),…};负数集合{-5,-64,…}.17.(1)x=-1或x=-9.(2)因为8(x-1)3=-1258,所以(x-1)3=-12564,所以x-1=-54,所以x=1-54,所以x=-14(3)原式=43-33+33=433.(4)原式=4-6-(3-2+13)=-2-43=-103.18.∵AC⊥BC ,∴AC 2+CB 2=AB 2,CE 2+CD 2=DE 2,由题意知AB=DE ,AC=24米,AE=4米,BD=8米,∴CE=24-4=20(米),CD=CB+8,∴242+CB 2=202+(CB+8)2,解得CB=7(米).答:滑动前梯子底端与墙的距离CB 是7米.19.(1)∵在△ABC 中,∠A=90°,AB=6,AC=8,∴BC 2=AB 2+AC 2=100,∴BC=10.(2)在△BCD 中,BC=10,BD=5,CD 2=125,∵BC 2+BD 2=102+52=125=CD 2,∴△BCD 是直角三角形,且∠CBD=90°,∴△BCD 的面积为12BD·BC=12×5×10=25. 20.(1)根据题意,得a-2=4,a-3b-3=27,所以a=6,b=-8.12=23≈3.46,所以3<12<4,所以c=3.(2)由(1)知a=6,b=-8,c=3,所以a 2+b 2+c 3+17=62+(-8)2+33+17=144.因为122=144,所以a 2+b 2+c 3+17的算术平方根为12.21.(1)报亭的人能听到广播宣传.理由:∵600米<1 000米,∴报亭的人能听到广播宣传.(2)如图,假设当宣讲车P 行驶到P 1点时,报亭的人开始听到广播宣传,当宣讲车P 行驶过P 2点时,报亭的人开始听不到广播宣传,连接AP 1,AP 2.易知AP 1=AP 2=1 000米,AB=600米,AB ⊥MN ,∴BP 1=BP 2=1 0002-6002=800(米),∴P 1P 2=1 600米.∵1 600÷200=8(分),∴报亭的人总共能听到8分钟的广播宣传.22.∵ 将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处,∴DE=FE ,AF=AD.在Rt△ABF 中,由勾股定理,得BF 2=AF 2-AB 2=202-162=144,∴BF=12 cm .∴FC=20-12=8(cm).设CE=x cm,则EF=DE=(16-x )cm .在Rt△CEF 中,由勾股定理,得EF 2=FC 2+CE 2,即(16-x )2=82+x 2,解得x=6,∴EC=6 cm .23.(1)2-1 解法提示:12+1=2-1(2+1)(2-1)=2-1.(2)原式=(2-1)+(3-2)+(4-3)+…+(100-99)=100-1=10-1=9.(3)因为a=12-1=2+1(2-1)(2+1)=2+1,所以a-1=2.所以(a-1)2=2,即a 2-2a +1=2.所以a 2-2a=1.所以4a 2-8a +1=4(a 2-2a )+1=4×1+1=5.。
数学八年级上册第一次月考试卷
数学八年级上册第一次月考试卷一、选择题(每题3分,共30分)1. 下列长度的三条线段能组成三角形的是()A. 3,4,8.B. 5,6,11.C. 1,2,3.D. 5,6,10.2. 一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是()A. 14.B. 15.C. 16.D. 17.3. 三角形的一个外角小于与它相邻的内角,这个三角形是()A. 直角三角形。
B. 钝角三角形。
C. 锐角三角形。
D. 不确定。
4. 若等腰三角形的顶角为80°,则它的底角度数为()A. 80°.B. 50°.C. 40°.D. 20°.5. 如图,在△ABC中,∠A = 60°,∠B = 40°,则∠C等于()A. 80°.B. 70°.C. 60°.D. 100°.6. 下列图形中具有稳定性的是()A. 正方形。
B. 长方形。
C. 直角三角形。
D. 平行四边形。
7. 在△ABC中,∠A:∠B:∠C = 1:2:3,则∠C的度数为()A. 30°.B. 60°.C. 90°.D. 120°.8. 如图,已知AB = AC,AD = AE,欲证△ABD≌△ACE,须补充的条件是()A. ∠B = ∠C.B. ∠D = ∠E.C. ∠1 = ∠2.D. ∠CAD = ∠DAC.9. 如图,△ABC≌△DEF,若AB = DE,∠B = ∠E,则下列结论错误的是()A. AC = DF.B. ∠A = ∠D.C. BC = EF.D. ∠C = ∠D.10. 已知△ABC≌△A'B'C',且△ABC的周长为20,AB = 8,BC = 5,则A'C'等于()A. 7.B. 8.C. 5.D. 15.二、填空题(每题3分,共15分)11. 三角形的内角和等于______。
人教版八年级上册数学第一次月考数学试卷及答案
人教版八年级上册数学第一次月考数学试卷及答案人教版数学八年级上册第一次月考数学试卷一、选择题(共10小题,每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是()A。
3cm,4cm,5cmB。
4cm,6cm,10cmC。
1cm,1cm,3cmD。
3cm,4cm,9cm2.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A。
22B。
17C。
17或22D。
263.一个三角形的两边长分别为3和8,第三边长是一个偶数,则第三边的长不能为()A。
6B。
8C。
10D。
124.在如图中,正确画出AC边上高的是()A。
B。
C。
D。
5.如图,线段AD把△ABC分为面积相等的两部分,则线段AD是()A。
三角形的角平分线B。
三角形的中线C。
三角形的高D。
以上都不对6.适合条件∠A=∠B=∠C的三角形是()A。
锐角三角形B。
等边三角形C。
钝角三角形D。
直角三角形7.过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是()A。
8B。
9C。
10D。
118.若一个多边形的内角和等于1080°,则这个多边形的边数是()A。
9B。
8C。
7D。
69.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A。
5B。
6C。
7D。
810.三角形的一个外角是锐角,则此三角形的形状是()A。
锐角三角形B。
钝角三角形C。
直角三角形D。
无法确定二、填空题(共10小题,每小题3分,共30分)13.如图,共有10个三角形。
14.如图所示,∠CAB的外角等于120°,∠B等于40°,则∠C的度数是 100°。
15.如图,∠1,∠2,∠3是△XXX的不同的三个外角,则∠1+∠2+∠3= 360°。
16.要使五边形木架(用5根木条钉成)不变形,至少要再钉2根木条。
17.一个多边形截去一个角后,所形成的一个新多边形的内角和为2520°,则原多边形是11边形。
人教版八年级数学上册第一次月考测试题(含答案)
第一次月考数学试卷一.选择题(共8小题,每小题3分,满分24分)1.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A .1,2,6B .2,2,4C .1,2,3D .2,3,42.一个三角形的三条边长分别为1、2、x ,则x 的取值范围是( )A .1≤x ≤3B .1<x ≤3C .1≤x <3D .1<x <33.如图,AD 是△ABC 的中线,已知△ABD 的周长为25cm ,AB 比AC 长6cm ,则△ACD 的周长为()A .19cmB .22cmC .25cmD .31cm4.若AD 是△ABC 的中线,则下列结论错误的是( )A .AD 平分∠BACB .BD=DC C .AD 平分BC D .BC=2DC5.如图,直线a ∥b ,则∠A 的度数是( )A .28°B .31°C .39°D .42°6.已知△ABC 中,∠A :∠B :∠C=2:3:4,则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形7.如图,l 1∥l 2,∠1=120°,∠2=100°,则∠3=( )A .20°B .40°C .50°D .60°8.如下图,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C ,不正确的等式是( )A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE二.填空题(共6小题,每小题3分,满分18分)9.一个三角形的两边长分别为2厘米和9厘米,若第三边的长为奇数,则第三边的长为厘米.10.在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是三角形.11.如图,AB∥CD,∠1=50°,∠2=110°,则∠3= 度.12.如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P= 度.13.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD= 度.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).三.解答题(满分25分)15.已知,如图,AE是∠BAC的平分线,∠1=∠D.求证:∠1=∠2.16.如图,△ABC中,按要求画图:(1)画出△ABC中BC边上的中线AD;(2)画出△ABC中AB边上的高CH.17.如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ACD的度数.18.如图,AB∥CD,∠A=60°,∠C=∠E,求∠C.19.如图,AB∥CD,证明:∠A=∠C+∠P.四、解答题(共18分)20.一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.21.如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.22.如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC.五、解答题(共15分)23.如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.24.已知,如图在△ABC中,AC=BC,AC⊥BC,直线EF交AC于F,交AB于E,交BC的延长线于D,且CF=CD,连接AD、BF,则AD与BF之间有何关系?请证明你的结论.八年级(上)第一次月考数学试卷参考答案与试题解析一.选择题(共8小题,每小题3分,满分24分)1.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,4【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+2<6,不能组成三角形,故此选项错误;B、2+2=4,不能组成三角形,故此选项错误;C、1+2=3,不能组成三角形,故此选项错误;D、2+3>4,能组成三角形,故此选项正确;故选:D.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.2.一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3 B.1<x≤3 C.1≤x<3 D.1<x<3【考点】三角形三边关系.【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:根据题意得:2﹣1<x<2+1,即1<x<3.故选D.【点评】考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围.3.如图,AD是△ABC的中线,已知△ABD的周长为25cm,AB比AC长6cm,则△ACD的周长为()A.19cm B.22cm C.25cm D.31cm【考点】三角形的角平分线、中线和高.【分析】根据三角形中线的定义可得BD=CD,再表示出△ABD和△ACD的周长的差就是AB、AC的差,然后计算即可.【解答】解:∵AD是BC边上的中线,∴BD=CD,∴△ABD和△ACD周长的差=(AB+BD+AD)﹣(AC+AD+CD)=AB﹣AC,∵△ABD的周长为25cm,AB比AC长6cm,∴△ACD周长为:25﹣6=19cm.故选:A.【点评】本题主要考查了三角形的中线的定义,把三角形的周长的差转化为已知两边AB、AC的长度的差是解题的关键.4.若AD是△ABC的中线,则下列结论错误的是()A.AD平分∠BAC B.BD=DC C.AD平分BC D.BC=2DC【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线的概念:连接三角形的顶点和对边中点的线段叫做三角形的中线.【解答】解:A、AD平分∠BAC,则AD是△ABC的角平分线,故本选项错误;AD是△ABC的中线,则有BD=DC,AD平分BC,BC=2DC,故B、C、D正确.故选A.【点评】本题主要考查三角形的中线的概念,并能够正确运用几何式子表示是解本题的关键.5.如图,直线a∥b,则∠A的度数是()A .28°B .31°C .39°D .42°【考点】三角形内角和定理;平行线的性质.【专题】计算题;压轴题.【分析】本题主要利用平行线的性质和三角形的有关性质进行做题.【解答】解:∵a ∥b ,∴∠DBC=∠BCb=70°(内错角相等),∴∠ABD=180°﹣70°=110°(补角定义),∴∠A=180°﹣31°﹣110°=39°(三角形内角和性质).故选C .【点评】此题主要考查了学生的三角形的内角和定理:三角形的内角和为180°.及平行线的性质.6.已知△ABC 中,∠A :∠B :∠C=2:3:4,则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形【考点】三角形内角和定理.【专题】压轴题.【分析】根据比例,设三个内角为2k 、3k 、4k ,再根据三角形的内角和定理求出最大角的度数.【解答】解:根据题意,设∠A 、∠B 、∠C 分别为2k 、3k 、4k ,则∠A+∠B+∠C=2k+3k+4k=180°,解得k=20°,∴4k=4×20°=80°<90°,所以这个三角形是锐角三角形.故选A .【点评】本题主要考查设“k”法的运用和三角形的内角和定理.7.如图,l 1∥l 2,∠1=120°,∠2=100°,则∠3=( )A .20°B .40°C .50°D .60°【考点】三角形的外角性质;平行线的性质.【专题】计算题.【分析】先延长∠1和∠2的公共边交l1于一点,利用两直线平行,同旁内角互补求出∠4的度数,再利用外角性质求解.【解答】解:如图,延长∠1和∠2的公共边交l1于一点,∵l1∥l2,∠1=120°,∴∠4=180°﹣∠1=180°﹣120°=60°,∴∠3=∠2﹣∠4=100°﹣60°=40°.故选B.【点评】本题主要考查作辅助线构造三角形,然后再利用平行线的性质和外角性质求解.8.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【考点】全等三角形的性质.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.二.填空题(共6小题,每小题3分,满分18分)9.一个三角形的两边长分别为2厘米和9厘米,若第三边的长为奇数,则第三边的长为9 厘米.【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:根据三角形的三边关系,得:第三边的取值范围是大于7而小于11.又第三边的长是奇数,故第三边的长是9厘米.【点评】考查了三角形的三边关系,还要注意第三边是奇数这一条件.10.在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是钝角三角形.【考点】三角形的角平分线、中线和高.【分析】根据三角形的高的概念,通过具体作高.发现:锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部.【解答】解:有两条高在三角形外部的是钝角三角形.【点评】注意不同形状的三角形的高的位置.11.如图,AB∥CD,∠1=50°,∠2=110°,则∠3= 60 度.【考点】三角形内角和定理;对顶角、邻补角;平行线的性质.【专题】计算题.【分析】如图所示,可根据邻补角、内错角以及三角形内角和求出∠3的度数.【解答】解:∵∠2=110°,∴∠4=70°,∵AB∥CD,∴∠5=∠1=50°,利用三角形的内角和定理,就可以求出∠3=180°﹣∠4﹣∠5=60°.【点评】本题考查了三角形的内角和定理,以及平行线的性质:两直线平行,同旁内角互补.12.如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P= 30 度.【考点】三角形的外角性质;平行线的性质.【专题】计算题.【分析】要求∠P的度数,只需根据平行线的性质,求得其所在的三角形的外角,根据三角形的外角的性质进行求解.【解答】解:根据平行线的性质,得∠A的同位角是70°.再根据三角形的外角的性质,得∠P=70°﹣40°=30°.故答案为:30°.【点评】特别注意根据平行线的性质以及三角形的一个外角等于和它不相邻的两个内角和,能够发现并证明此题中的结论:∠P=∠A﹣∠B.13.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD= 95 度.【考点】全等三角形的性质.【分析】运用全等求出∠D=∠C,再用三角形内角和即可求.【解答】解:∵△OAD≌△OBC,∴∠OAD=∠OBC;在△OBC中,∠O=65°,∠C=20°,∴∠OBC=180°﹣(65°+20°)=180°﹣85°=95°;∴∠OAD=∠OBC=95°.故答案为:95.【点评】考查全等三角形的性质,三角形内角和及推理能力,本题比较简单.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD (添加一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加一个边从而利用SAS来判定其全等,或添加一个角从而利用AAS来判定其全等.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.三.解答题(满分25分)15.已知,如图,AE是∠BAC的平分线,∠1=∠D.求证:∠1=∠2.【考点】平行线的判定与性质;三角形的角平分线、中线和高.【专题】证明题.【分析】由∠1=∠D,根据同位角相等,两直线平行可证AE∥DC,根据两直线平行,内错角相等可证∠EAC=∠2,再根据角平分线的性质即可求解.【解答】证明:∵∠1=∠D,∴AE∥DC(同位角相等,两直线平行),∴∠EAC=∠2(两直线平行,内错角相等),∵AE是∠BAC的平分线,∴∠1=∠EAC,∴∠1=∠2.【点评】本题考查了平行线的判定与性质和三角形的角平分线的性质,有一定的综合性,但难度不大.16.如图,△ABC中,按要求画图:(1)画出△ABC中BC边上的中线AD;(2)画出△ABC中AB边上的高CH.【考点】作图—复杂作图;三角形的角平分线、中线和高.【分析】(1)作线段BC的垂直平分线,垂足为D,连接AD即可;(2)以C为圆心,以任意长为半径画弧交BA的延长线于两点,再以这两点为圆心,以大于这两点间的长度的为半径画弧,相交于一点,然后作出高即可.【解答】解:(1)如图,AD即为所求作的BC边上的中线;(2)如图,CH即为所求作的AB边上的高.【点评】本题考查了复杂作图,主要有线段垂直平分线的作法,过一点作已知直线的垂线,都是基本作图,需熟练掌握.17.如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ACD的度数.【考点】三角形内角和定理.【专题】压轴题.【分析】本题考查的是三角形内角和定理,求出∠ACB的度数后易求解.【解答】解:∵∠A=70°,∠B=50°,∴∠ACB=180°﹣70°﹣50°=60°(三角形内角和定义).∵CD平分∠ACB,∴∠ACD=∠ACB=×60°=30°.【点评】此类题解答的关键为求出∠ACB后求解即可.18.如图,AB∥CD,∠A=60°,∠C=∠E,求∠C.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】根据两直线平行,内错角相等,可得∠DFE,由外角的性质,即可求得∠C.【解答】解:∵AB∥CD,∠A=60°,∴∠DFE=∠A=60°,∵∠DFE=∠C+∠E,∠C=∠E,∴∠C=30°.【点评】此题考查了平行线的性质与三角形外角的性质.19.如图,AB∥CD,证明:∠A=∠C+∠P.【考点】平行线的性质;三角形的外角性质.【专题】证明题.【分析】因为∠PED为△PCE的外角,所以∠P+∠C=∠PED;再根据两直线平行,同位角相等可得∠A=∠PED,即∠A=∠C+∠P.【解答】证明:∵AB∥CD,∴∠A=∠PED,(两直线平行,同位角相等)又∠PED为△PCE的外角,∴∠P+∠C=∠PED,∴∠P+∠C=∠A.【点评】本题考查三角形外角的性质及平行线的性质,解答的关键是沟通外角和内角的关系.四、解答题(共18分)20.一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.【考点】多边形内角与外角.【分析】多边形的内角和比外角和的4倍多180°,而多边形的外角和是360°,则内角和是1620度.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.【点评】此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.21.如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据角平分线的定义得到∠BAC=∠DAC,再利用SAS定理便可证明其全等.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,,∴△ABC≌△ADC.【点评】此题主要考查了全等三角形的判定,关键是找准能使三角形全等的条件.22.如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC.【考点】全等三角形的判定.【专题】证明题.【分析】根据中点的定义可知AE=AB,AF=AC,可知AE=AF,根据SAS即可证明△AFB≌△AEC.【解答】证明:∵点E、F分别是AB、AC的中点,∴AE=AB,AF=AC,∵AB=AC,∴AE=AF,在△AFB和△AEC中,AB=AC,∠A=∠A,AE=AF,∴△AFB≌△AEC.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.五、解答题(共15分)23.如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.【考点】三角形的角平分线、中线和高;三角形内角和定理.【分析】由三角形的内角和是180°,可求∠A=60°.又因为BE是AC边上的高,所以∠AEB=90°,所以∠ABE=30°.同理,∠ACF=30度,又因为∠BHC是△CEH的一个外角,所以∠BHC=120°.【解答】解:∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又∵BE是AC边上的高,所以∠AEB=90°,∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理,∠ACF=30°,∴∠BHC=∠BEC+∠ACF=90°+30°=120°.【点评】此题主要考查了三角形外角的性质及三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;三角形的外角通常情况下是转化为内角来解决.24.已知,如图在△ABC中,AC=BC,AC⊥BC,直线EF交AC于F,交AB于E,交BC的延长线于D,且CF=CD,连接AD、BF,则AD与BF之间有何关系?请证明你的结论.【考点】全等三角形的判定与性质.【分析】通过全等三角形的判定定理SAS证得△BCF≌△ACD,则由“全等三角形的对应边相等”推知AD=BF.【解答】解:AD=BF,理由如下:如图,∵AC⊥BC,∴∠BCF=∠ACD=90°,∴在△BCF与△ACD中,,∴△BCF≌△ACD(SAS),∴AD=BF.【点评】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b >0.其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON +AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y +5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是() A.x=y B.ax+1=ay-1C .ax =-ayD .3-ax =3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( ) A .100元 B .105元 C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( ) A .130° B .40° C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b >0.其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC是∠AOB的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON +AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y +5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
人教版八年级数学上学期第一次月考测试卷含答案
人教版八年级数学上学期第一次月考测试卷含答案一、选择题1.下列各式中,运算正确的是( )A .32222-=B .8383-=-C .2323+=D .()222-=-2.下列运算正确的是 ( ) A .3223÷= B .235+= C .233363⨯=D .18126-=3.已知:x =3+1,y =3﹣1,求x 2﹣y 2的值( ) A .1B .2C .3D .434.下列各式中,正确的是( ) A .16=±4 B .±16=4C .2668⨯= D .42783+⨯=- 45.式子2x -在实数范围内有意义,则x 的取值范围是( ) A .0x <B .0xC .2xD .2x6.下列说法错误的个数是( ) ①所有无限小数都是无理数;②()23-的平方根是3±;③2a a =;④数轴上的点都表示有理数 A .1个B .2个C .3个D .4个7.如图直线a ,b 都与直线m 垂直,垂足分别为M 、N ,MN =1,等腰直角△ABC 的斜边,AB 在直线m 上,AB =2,且点B 位于点M 处,将等腰直角△ABC 沿直线m 向右平移,直到点A 与点N 重合为止,记点B 平移平移的距离为x ,等腰直角△ABC 的边位于直线a ,b 之间部分的长度和为y ,则y 关于x 的函数图象大致为( )A .B .C .D .8.下列计算或判断:(1)±3是27的立方根;(2)33a =a ;(3)64的平方根是2;(4)22(8)±=±8;(5)65- =65+,其中正确的有( )A .1个B .2个C .3个D .4个 9.下列各式计算正确的是( )A .235+=B .2236=()C .824+=D .236⨯=10.关于12的下列说法中错误的是( ) A .12是12的算术平方根 B .3124<< C .12不能化简 D .12是无理数11.使式子2124x x ++-成立的x 的取值范围是( ) A .x≥﹣2B .x >﹣2C .x >﹣2,且x ≠2D .x≥﹣2,且x ≠212.下列各式计算正确的是( ) A .()233= B .()255-=± C .523-= D .3223-=二、填空题13.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 32016p q =()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 14.设a ﹣b=23b ﹣c=23a 2+b 2+c 2﹣ab ﹣ac ﹣bc=_____.15.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为:22164?a x a x =则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.16.14(1)(1)(2)(8)(9)x x x x x x +⋅⋅⋅=+++++的解是______.17.若a 、b 、c 均为实数,且a 、b 、c 均不为043252a cb=___________ 18.已知|a ﹣20072008a -=a ,则a ﹣20072的值是_____.19.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=1332=_____.20.2m 1-1343m --mn =________.三、解答题21.观察下列各式子,并回答下面问题. 211-222-233-244-(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(12n n -,该式子一定是二次根式,理由见解析;(224015和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断; (2)将16n =代入,得出第16240,再判断即可. 【详解】解:(12n n - 该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(221616240- 22515=25616=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.22.(112=3=4=;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=5==;(2=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,(2)如果n 为正整数,用含nn, (3)证明:∵n 是正整数,n.故答案为5=256; n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.计算(a +b aba b-+)÷(ab b ++ab a --ab )(a ≠b ).【答案】-+a b 【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论. 试题解析:解:原式=a ab b ab a b++-+÷()()()()()()a aa b b ba b a b a b aba ba b--+-+-+-=a b+÷()()2222a a ab b ab b a b ab a b a b ----++-=a b +·()()()ab a b a b ab a b -+-+=-a b +.24.阅读下列材料,然后回答问题: 在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==--- . 以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-. (1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1. 【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案. 【详解】 (1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.25.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中2,b=12. 【答案】原式=2a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a ba b-+, 当2,b=12时, 原式221212++-2【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.26.计算下列各式: (1()2112323-;(21118-48227【答案】(14323 ;(2)355239【分析】先根据二次根式的性质化简,再合并同类二次根式即可. 【详解】(1)原式2=-2=;(2)原式==. 【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a a a a a ≥⎧==⎨-<⎩,)0,0a b =≥≥=(a ≥0,b >0).27.计算:(1(2|a ﹣1|,其中1<a 【答案】(1)1;(2)1 【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1(2)∵1<a ,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.28.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4 【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可; (2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可. 【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.29.(1)计算)(2201113-⎛⎫--•- ⎪⎝⎭(2)已知,,a b c 为实数且2c =2c ab-的值【答案】(1)13;(2)12-【分析】(1)利用完全平方公式、负整数指数幂、零指数幂分别计算再合并即可; (2)先依据二次根式有意义的条件,求得a 、b 、c 的值,然后再代入计算即可. 【详解】(1))(2201113-⎛⎫--•- ⎪⎝⎭31=+⨯=4+9=13;(2)根据二次根式有意义的条件可得:∵()2303010a a b ⎧-≥⎪⎪-≥⎨⎪-+≥⎪⎩, ∴3a =,1b =-,∴2c =∴(()2223112c ab -=-⨯-=-【点睛】本题主要考查了二次根式的混合运算,二次根式有意义的条件以及二次根式的化简求值,熟练掌握二次根式有意义的条件是解题的关键.30.计算下列各题: (1(2)2-. 【答案】(1)2)2-- 【分析】(1)根据二次根式的运算顺序和运算法则计算即可; (2)利用平方差、完全平方公式进行计算. 【详解】解:(1)原式==; (2)原式22(5=--+525=---2=--【点睛】本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由合并同类项、二次根式的性质分别进行判断,即可得到答案.【详解】解:A 、-=A 正确;B =B 错误;C 、2不能合并,故C 错误;D 2=,故D 错误;故选:A . 【点睛】本题考查了二次根式的性质,合并同类项,解题的关键是熟练掌握运算法则进行解题.2.A解析:A 【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题. 【详解】A 、3=,故选项A 正确;B B 错误;C 、18=,故选项C 错误;D =D 错误; 故选:A . 【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.3.D解析:D 【分析】先根据x 、y 的值计算x y +、x y -的值,再将所求式子利用平方差公式进行化简,然后代入求值即可. 【详解】∵1,1x y ==,∴11112x y x y +==-=-=,则22()()2x y x y y x -=+-== 故选:D . 【点睛】本题考查了代数式的化简求值、二次根式的加减法与乘法,利用平方差公式对代数式进行化简是解题关键.4.C解析:C 【分析】根据算术平方根与平方根的定义、二次根式的加法与乘除法逐项判断即可.【详解】A4=,此项错误B、4=±,此项错误C==,此项正确D==故选:C.【点睛】本题考查了算术平方根与平方根的定义、二次根式的加法与乘除法,掌握二次根式的运算法则是解题关键.5.D解析:D【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】x-≥,即:20x,解得:2故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键. 6.C解析:C【分析】根据无理数定义判断①;根据平方根的算法判断②;利用二次根式的性质化简判断③;根据数轴的特点,判断④.【详解】无限不循环小数才是无理数,①错误;=,3的平方根是②正确;3a=,③错误;数轴上的点可以表示所有有理数和无理数,④错误故选:C.【点睛】本题考查无理数的定义、平方根的计算、二次根式的性质以及数轴表示数,紧抓相关定义是解题关键.7.D解析:D【解析】【分析】根据等腰直角△ABC被直线a和b所截的图形分为三种情况讨论:①当0≤x≤1时,y是BM+BD;②当1<x≤2时,y是CP+CQ+MN;当2<x≤3时,y=AN+AF,分别用x表示出这三种情况下y的函数式,然后对照选项进行选择.【详解】①当0≤x≤1时,如图1所示.此时BM=x,则DM=x,在Rt△BMD中,利用勾股定理得BD=2x,所以等腰直角△ABC的边位于直线a,b之间部分的长度和为y=BM+BD=(2+1)x,是一次函数,当x=1时,B点到达N点,y=2+1;②当1<x≤2时,如图2所示,△CPQ是直角三角形,此时y=CP+CQ+MN=2+1.即当1<x≤2时,y的值不变是2+1.③当2<x≤3时,如图3所示,此时△AFN是等腰直角三角形,AN=3﹣x,则AF2(3﹣x),y=AN+AF=(﹣1﹣2)x2,是一次函数,当x=3时,y=0.综上所述只有D答案符合要求.故选:D.【点睛】本题主要考查动点问题的函数图象,解题的方法是动中找静,在不同的情况下找到y与x 的函数式.8.B解析:B【解析】根据立方根的意义,可知27的立方根是3,故(133a a=正确,故(2)正64=8,可知其平方根为±2,故(3)不正确;根据算术平方根的意义,可知=,故2288±=(),故(4656-5(5)正确.故选B.9.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】A23B、错误,2();2312=C8222232==D23236=⨯=故选:D.【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.10.C解析:C【分析】根据算术平方根的定义,无理数的定义及估值,二次根式的化简依次判断.【详解】A12的算术平方根,故该项正确;B、34<<,故该项正确;C=D=是无理数,故该项正确;故选:C.【点睛】此题考查算术平方根的定义,无理数的定义及估值,二次根式的化简,熟练掌握各知识点并运用解题是关键.11.C解析:C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】解:由题意得:2x-40≠,2x∴≠±,又∵20x+≥,∴x≥-2.∴x的取值范围是:x>-2且2x≠.故选C.【点睛】本题考查了分式和二次根式有意义的条件,解不等式,是基础题.12.A解析:A【分析】根据二次根式的性质和运算法则逐一计算可得.【详解】A、23=此选项计算正确,符合题意;B、5=此选项计算错误,不符合题意;C-不是同类二次根式,不能合并,此选项计算错误,不符合题意;D、-=故选:A.【点睛】本题主要考查了利用二次根式的性质化简以及二次根式的加减运算,准确利用二次根式的性质计算是解题的关键.二、填空题13.(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1, ∴222(1)4a a ab b +--+=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵32016p q +=, ∴20163p q =-,p=2016-62016+9q,∴p=14x 3(其中x 为正整数), 同理可得:q=14y 2(其中y 为正整数),则x+3y=12(x 、y 为正整数)∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩, ∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。
2024-2025学年初中八年级上学期第一次月考数学试题及答案(人教版)
2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或43. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )A. 50oB. 80oC. 50o 或80oD. 不能确定 4. 若三角形的两条边的长度是4cm 和9cm ,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm5. 一个多边形的内角和是900°,则这个多边形的边数为 ( )A. 6B. 7C. 8D. 96. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6 7. 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )的A. 4B. 5C. 6D. 710. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分BAC ∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.15. Rt ABC 中,∠C=90°,∠B=2∠A ,BC=3cm , AB=____cm .16. 如图,Rt ABC ∆中,∠B =90 ,AB =3cm ,AC =5cm ,将ΔΔΔΔΔΔΔΔ折叠,使点C 与点A 重合,折痕为DE ,则CE =____cm .17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度.三.解答题(本大题满分62分)19 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数..21. 如图,点D E ,分别AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.在的24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .26. 如图,∠ABC =90°,D 、E 分别在BC 、AC 上,AD ⊥DE ,且AD =DE ,点F 是AE 中点,FD 与AB 相交于点M .(1)求证:∠FMC =∠FCM ;(2)AD 与MC 垂直吗?并说明理由.的2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A 、不是轴对称图形,不符合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不符合题意.故选:B .【点睛】本题考查了轴对称图形识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或4【答案】C【解析】【分析】分4是腰长与底边两种情况,再根据三角形任意两边之和大于第三边讨论求解即可.【详解】①4是腰长时,三角形的三边分别为4、4、2,能组成三角形,所以,第三边4;②4是底边时,三角形的三边分别为2、2、4, 224+= ,∴不能组成三角形,综上所述,第三边为4.故选C .【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论.3. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )为.A50o B. 80o C. 50o或80o D. 不能确定【答案】C【解析】【分析】已知中没有明确该角为顶角还是底角,所以应分两种情况进行分析.【详解】分两种情况:若该角为底角,则顶角为180°−2×50°=80°;若该角为顶角,则顶角为50°.∴顶角是50°或80°.故选C.【点睛】此题考查等腰三角形的性质,解题关键在于分情况讨论.4. 若三角形的两条边的长度是4cm和9cm,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm【答案】C【解析】【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边,进行解答即可.【详解】由题可得:9﹣4<第三边<9+4,所以5<第三边<13,即第三边在5 cm~13 cm之间(不包括5 cm 和13 cm),结合选项可知:9 cm符合题意.故选C.角形的两边的差一定小于第三边.5. 一个多边形的内角和是900°,则这个多边形的边数为()A. 6B. 7C. 8D. 9【答案】B【解析】【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B.【点睛】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.6. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6【答案】D【解析】【分析】根据三角形的三边关系逐一判断即可得答案.【详解】A .∵1+2=3,故不能组成三角形,不符合题意,B .∵1+3<5,故不能组成三角形,不符合题意,C .∵3+3=6,故不能组成三角形,不符合题意,D .∵4+5>6;5-4<6,故能组成三角形,符合题意,.故选:D .【点睛】本题考查三角形的三边关系,任意三角形的两边之和大于第三边,两边之差小于第三边,熟练掌握三角形的三边关系是解题关键.7 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确【答案】C【解析】 【分析】本题要判定AED CEB ≌,已知EA EC =,DE BE =,具备了两组边对应相等,由于对顶角相等可得AED CEB ∠=∠,可根据SAS 能判定AED CEB ≌.【详解】解:在AED 与CEB 中,EA EC AED CEB DE BE = ∠=∠ =,(SAS)AED CEB ∴ ≌,∴不用补充条件即可证明AED CEB ≌,.故选:C .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F【答案】D【解析】【分析】三角形全等的判定定理中,常见的不能判定三角形全等的条件为SSA ,AAA ,通过对条件的对比很容易得出结论.【详解】A 选项对应判定定理中的SSS ,故正确;B 选项对应判定定理中的AAS ,故正确;C 选项对应判定定理中的ASA ,故正确;D 选项则为SSA ,两边加对角是不能判定三角形全等的,故错误.故选D .【点睛】本题考查三角形全等判定定理,能熟记并掌握判定定理是解题关键.9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】根据题意易得1PM PM =,2P N PN =,然后根据三角形的周长及线段的数量关系可求解. 【详解】解:由轴对称的性质可得:OA 垂直平分1PP ,OB 垂直平分2P P ,∴1PM PM =,2P N PN =, ∵1212PMN C PM PN MN PM P N MN PP =++=++=△,12PP =6,∴6PMN C = ;故选C .【点睛】本题主要考查轴对称的性质及线段垂直平分线的性质定理,熟练掌握轴对称的性质及线段垂直平分线的性质定理是解题的关键.10. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°【答案】A【解析】 【分析】此题考查了平行线的性质,三角形外角的性质,首先根据AB CD ∥得到170A ∠=∠=°,然后利用三角形外角的性质求解即可.解题的关键是熟练掌握三角形外角的性质:三角形的外角等于与它不相邻的两个内角的和.【详解】如图所示,∵AB CD ∥,70A ∠=°,∴170A ∠=∠=°,∵40C ∠=°∴1704030E C ∠=∠−∠=°−°=°.故选A .11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°【答案】B【解析】 【分析】根据垂直的定义,直角三角形的两个锐角互余,即可求解.【详解】解:∵AD BC ⊥,48C ∠=°,∴90ADC ∠=°,∵48C ∠=°,∴904842DAC ∠=°−°=°,故选:B .【点睛】本题考查了垂直的定义,直角三角形的两个锐角互余,求得90ADC ∠=°是解题的关键. 12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80【答案】C【解析】 【分析】由30B ∠= ,70ADC ∠= ,利用外角的性质求出BAD ∠,再利用AD 平分BAC ∠,求出BAC ∠,再利用三角形的内角和,即可求出C ∠的度数.【详解】∵30B ∠= ,70ADC ∠=, ∴703040BAD ADC B ∠=∠−∠=−= ,∵AD 平分BAC ∠,∴280BAC BAD ∠=∠= ,∴180180308070C B BAC ∠=−∠−∠=−−= .故选C .【点睛】本题考查了三角形的外角性质定理,角平分线的定义以及三角形的内角和定理,熟练掌握相关性质和定理是解题关键.二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.【答案】2【解析】【分析】由中线定义,得AD CD =,根据周长定义,进行线段的和差计算求解.【详解】∵BD 是ABC 的中线,∴AD CD =,∴ABD △和BCD △的周长的差()()AB BD AD BC BD CD AB BC =++−++=−,∵53AB BC ==,, ∴ABD △和BCD △的周长的差532=−=.故答案为:2.【点睛】本题考查中线的定义;由中线得到线段相等是解题的关键.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.【答案】1620°【解析】【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n−3)条对角线可得n−3=8,计算出n 的值,再根据多边形内角和(n−2)•180 (n ≥3)且n 为整数)可得答案.【详解】解:设多边形边数为n ,由题意得:n−3=8,n=11,内角和:180°×(11−2)=1620°.故答案为1620°.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n边形从一个顶点出发可引出(n−3)条对角线,多边形内角和公式(n−2)•180 (n≥3)且n为整数).中,∠C=90°,∠B=2∠A,BC=3cm,AB=____cm.15. Rt ABC【答案】6【解析】【详解】试题分析:根据直角三角形的性质即可解答.解:如图:∵Rt△ABC中,∠C=90°,∠B=2∠A∴∠A+∠B=90°∴∠A=30°,∠B=60°∴=,∵BC=3cm,∴AB=2×3=6cm.故答案为6.考点:直角三角形的性质.∆中,∠B=90 ,AB=3cm,AC=5cm,将ΔΔΔΔΔΔΔΔ折叠,使点C与点A重合,折痕为DE,16. 如图,Rt ABC则CE=____cm.【答案】258【解析】 【分析】在Rt △ABC 中,由勾股定理可得BC4= cm ,设AE =x cm ,由折叠的性质可得CE =x cm ,BE = (4)x −cm ,从而由勾股定理可得:2223(4)x x =+−,即可求解.【详解】解:∵在Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,∴由勾股定理可得:BC4=cm ,设AE =x cm ,则由折叠的性质可得:CE =x cm ,BE =BC -CE =(4)x −cm ,∴在Rt △ABE 中,由勾股定理可得:2223(4)x x =+−,解得:258x =(cm ). 即CE 的长为258cm . 故答案是:258. 【点睛】本题考查了折叠性质以及勾股定理的应用,熟练掌握勾股定理的内容是解题的关键. 17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.【答案】8##八【解析】【分析】本题考查的是多边形的内角和,以及多边形的外角和,解答本题的关键是熟练掌握任意多边形的外角和是360°,与边数无关. 先根据内角的度数与和它相邻的外角的度数比为3:1,求得每一个外角的度数,再根据任意多边形的外角和是360°,即可求得结果.【详解】解:设每一个外角的度数为x ,则每一个内角的度数3x ,则3180x x +=°,解得45x =°,∴每一个外角的度数为45°,∴这个多边形的边数为360458°÷°=,故答案为:8.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度. 的【答案】50【解析】【分析】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形内角和定理,由等腰三角形的性质可得B C ∠=∠,进而可证明()SAS BDE CFD ≌,得到BED CDF ∠=∠,即可得130BDE CDF BDE BED ∠+∠=∠+∠=°,最后根据平角的定义即可求解,掌握等腰三角形的性质及全等三角形的判定和性质是解题的关键.【详解】解:∵AB AC =,∴B C ∠=∠,又∵BE CD =,BD CF =,∴()SAS BDE CFD ≌,∴BED CDF ∠=∠,∵50B ∠=°,∴18050130BDE BED ∠+∠=°−°=°,∴130BDE CDF ∠+∠=°,∴()18018013050EDF BDE CDF ∠=°−∠+∠=°−°=°, 故答案为:50.三.解答题(本大题满分62分)19. 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .【答案】证明见解析.【解析】【分析】由HL 证明Rt △ABE ≌Rt △CDF ,得出对应边相等AE =CF ,由AE ﹣EF =CF =EF ,即可得出结论.详解】∵DF ⊥AC ,BE ⊥AC ,∴∠CFD =∠AEB =90°,在Rt △ABE 和Rt △CDF 中,{AB CD BE DF==, ∴Rt △ABE ≌Rt △CDF (HL ),∴AE =CF ,∴AE ﹣EF =CF =EF ,∴AF =CE .【点睛】本题考查了全等三角形的判定与性质.掌握全等三角形的判定方法是解题的关键.20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数.【答案】∠A=36°,∠ABC=∠C=72°【解析】【分析】设∠A=x ,根据等腰三角形的性质和三角形的外角性质、三角形的内角和定理即可求得各个角的度数.【详解】解:设∠A=x ,∵AD=BD ,∴∠ABD=∠A=x ,∴∠BDC=∠ABD+∠A=2x ,∵BD=BC ,∴∠C=∠BDC=2x ,∵AB=AC ,∴∠ABC=∠C=2x ,∴在△ABC 中,x+2x+2x=180°,∴x=36°,2x=72°,【即∠A=36°,∠ABC=∠C=72°.【点睛】本题考查了等腰三角形的性质、三角形的外角性质、三角形内角和定理,熟练掌握等腰三角形的性质和外角性质是解答的关键.21. 如图,点D E ,分别在AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.【答案】(1)证明见解析(2)证明见解析【解析】【分析】本题考查三角形全等的判定与性质,熟记三角形全等的判定定理:SSS SAS ASA AAS 、、、是解决问题的关键.(1(2)根据三角形全等的判定定理找条件证明即可得证.【小问1详解】证明:在ABE 和ACD 中,AD AE A A AB AC = ∠=∠ =()SAS ABE ACD ∴≌ ,∴B C ∠=∠;【小问2详解】证明: AD AE =,AB AC =,BD CE ∴=,由(1)知,B C ∠=∠,在BOD 和COE 中,BOD COE B C DB EC ∠=∠ ∠=∠ =()AAS ≌BOD COE ∴△△,∴OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同的速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?【答案】点C 是路段ΔΔΔΔ的中点,理由见解析.【解析】【分析】本题考查了全等三角形的判定和性质,利用HL 证明Rt Rt ACD BCE ≌得到AC BC =即可求解,掌握全等三角形的判定和性质是解题的关键.【详解】解:点C 是路段ΔΔΔΔ的中点,理由如下:∵两人从点C 同时出发,以相同的速度同时到达D E ,两地,∴CD CE =,∵DA AB ⊥,EB AB ⊥,∴90A B ∠=∠=°,又∵DA EB =,∴()Rt Rt HL ACD BCE ≌, ∴AC BC =,∴点C 是路段ΔΔΔΔ的中点.23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.【答案】(1)见解析 (2)①;②32【解析】【分析】(1)根据线段的垂直平分线到线段两端点的距离相等即可得证;(2)①由在ABC 中,AB AC =,40A ∠=°,利用等腰三角形的性质,即可求得ABC ∠的度数,利用等边对等角求得DBA ∠的度数,则可求得DBC ∠的度数;②将ABC 的周长转化为AB AC BC ++的长即可求得.【小问1详解】解:∵AB 的垂直平分线MN 交AC 于点D ,∴DB DA =,∴ABD △是等腰三角形;【小问2详解】解:①在ABC 中,∵AB AC =,40A ∠=°, ∴180180407022AABC C −∠°−∠=∠=°==°°, 由(1)得DA DB =,40DBA A ∠=∠=︒,∴704030DBC ABC DBA ∠=∠−∠=°−°=°;故答案为:30°;②∵AB 的垂直平分线MN 交AC 于点D ,6AE =,∴212AB AE ==,∵CBD △的周长为20,∴20BD CD BC AD CD BC AC BC ++=++=+=,∴ABC 的周长122032AB AC BC =++=+=. 【点睛】此题考查了线段的垂直平分线的性质及等腰三角形的判定与性质,解题的关键是熟练掌握以上知识的应用.24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.【答案】见解析【解析】【分析】利用AAS 证明PBD PCE ≌即可.本题考查了三角形全等的判定和性质,熟练掌握三角形全等的判定是解题的关键.【详解】证明:∵PD AB PE AC ⊥⊥,,∴90PDB PEC ∠=∠=°,∵AB AC =,∴B C ∠=∠,∵P 是边BC 的中点,∴PB PC =,∵PDB PEC B C PB PC ∠=∠ ∠=∠ =,∴PBD PCE ≌,∴PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .【答案】证明见解析【解析】【分析】过M作ME⊥AD于E,根据垂直定义和角平分线性质得出∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=ME,根据全等三角形性质,推导得△MCD≌△MED,根据全等得出CD=DE,同理得AE=AB,即可得出答案.【详解】如图,过M作ME⊥AD于E,∵∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,∴∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=EM,∴CDM EDMC DEMCM EM∠=∠∠=∠=,∴△MCD≌△MED(AAS),∴CD=DE,∵BAM EAMB AEMBM EM∠=∠∠=∠=∴△ABM≌△AEM(AAS),∴AE=AB,∴AD=AE+DE=CD+AB.【点睛】本题考查了角平分线、全等三角形的知识;解题的关键是熟练掌握角平分线、全等三角形的性质,从而完成求解.26. 如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.【答案】(1)见解析;(2)AD ⊥MC ,理由见解析【解析】【分析】(1)由已知可以证得△DFC ≌△AFM ,从而得到CF =MF ,最后得到∠FMC =∠FCM ; (2)由(1)可以证得DE ∥CM ,再根据AD ⊥DE 可得AD ⊥MC .【详解】解:(1)证明:∵△ADE 是等腰直角三角形,F 是AE 中点,∴DF ⊥AE ,DF =AF =EF ,又∵∠ABC =90°,∠DCF ,∠AMF 都与∠MAC 互余,∴∠DCF =∠AMF ,在△DFC 和△AFM 中,DCF AMF CFD MFA DF AF∠=∠ ∠=∠ = , ∴△DFC ≌△AFM (AAS ),∴CF =MF ,∴∠FMC =∠FCM ;(2)AD ⊥MC ,理由:由(1)知,∠MFC =90°,FD =FA =FE ,FM =FC ,∴∠FDE =∠FMC =45°,∴DE ∥CM ,∴AD ⊥MC .【点睛】本题考查全等三角形的综合运用,熟练掌握三角形全等的判定和性质、等腰三角形的性质、同角余角相等的性质、平行线的判定与性质、垂直的判定并灵活运用是解题关键.。
人教版八年级数学上册第一次月考
八年级数学上学期第一次月考基础知识达标测(考试时间:90分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第十一章、第十二章(人教版八年级上册)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.一个多边形的内角和为540︒,则这个多边形的边数等于( ) A .四 B .五 C .六 D .七2.如图,A DB D⊥于点D ,G CB C⊥于点C ,C FA B⊥于点F ,关于高的说法错误的是( )A .ABC 中,AD 是B C 边上的高 B .G B C 中,C F 是B G 边上的高 C .A B C中,G C 是B C 边上的高D .G B C中,G C 是B C 边上的高3.(2023春·吉林长春·七年级吉林大学附属中学校考期中)点O 是A B C内一点;O A 、O C 分别平分B A C ∠、B C A ∠,64B∠=︒;则O∠=( )A .116︒B .122︒C .136︒D .152︒4.如图,A D ,A E ,A F 分别是A B C的中线,角平分线和高,下列各式中错误的是( )A .2AB CA B DSS =△△B .12B A E B A C∠=∠C .90B B A F∠+∠=︒D .AE C E=5.如图1,已知线段,1a ∠,求作A B C,使,1B Ca A B C B C A =∠=∠=∠,芮芮的作法如图2所示,则下列说法中一定正确的是( )A .作A B C的依据为A S A B .弧E F 是以A C 长为半径画的C .弧M N 是以点A 为圆心,a 为半径画的D .弧G H 是以Q C 长为半径画的 6.如图,两个三角形全等,其中已知某些边的长度和某些角的度数,则x 的值为( )A .45︒B .55︒C .60︒D .65︒7.如图,已知B A C D C A∠=∠.若添加一个条件后,可得A B CC D A△△≌,则在下列条件中,不.能添加...的是( )A .B CD A= B .A BC D= C .BD∠=∠ D .B C A D∥8.如图,在平面直角坐标系中,点()A 3,5,点C ,B 分别在x 轴,y 轴负半轴上,若A B B C=,且A BB C⊥,则B O C的面积是( )A .152B .12C .15D .249.如图,用四颗螺丝将不能弯曲的木条围成一个木框,不计螺丝大小,其中相邻两颗螺丝的距离依次为4、5、6、9,且相邻两根木条的夹角均可以调整,若调整木条的夹角时不破坏此木框,则任意两颗螺丝的距离的最大值是( )A .7B .10C .11D .1410.已知点C 为线段A B 上一点,分别以A C 、B C 为边在线段A B 同侧作A C D和B C E,且C A C D=,C BC E=,A C DB C E α∠=∠=,直线A E 与B D 交于点F ,将图1中的A C D绕点C 顺时针旋转任意角度(交点F 至少在B D 、A E 中的一条线段上),如图2,则A F B ∠与α的数量关系为( )A .180A FB α∠+=︒B .90A F B α∠-=︒C .3A F Bα∠=D .4A F Bα∠=第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.如图,小明从点A 出发,前进10m 后向右转20︒,再前进10m 后又向右转20︒,这样一直下去,直到他第一次回到出发点A 为止,他所走的路径构成了一个多边形.那么小明一共走了 米.12.如图,由4个相同的小正方形组成的格点图中,∠1+∠2+∠3= 度.13.如图,在三角形A B C 中,90B ??,若按图中虚线剪去B∠,则12∠+∠等于 .14.如图,在A B C中,90C∠=︒,A D 平分B A C∠,10c mB C=,7cmB D=,则点D 到A B 的距离为 c m.15.如图,A B C中,90A C B ∠=︒,5A C =,12B C =,13A B=.点P 是线段A B 上的一个动点,则C P 的最小值为 .16.A B C中,12c mA BA C ==,BC∠=∠,8cmB C=,点D 为A B 的中点.如果点P 在线段B C 上以2cm /s 的速度由B 点向C 点运动,同时,点Q 在线段C A上由C 点向A 点运动.若点Q 的运动速度为cm /s v ,则当B P D △与C Q P V 全等时,v 的值为 .三、解答题(本大题共7小题,共62分.解答时应写出文字说明、证明过程或演算步骤) 17.(8分)已知A B C的三边长为3,5,x .(1)求x 的取值范围; (2)若A B C的周长为偶数,求x 的值.18.(8分)如图,点A 、D 、C 、F 在同一条直线上,A D C F A B D E B C E F===,,.(1)求证:A B CD E F≌△△;(2)求证:A B D E∥.19.(8分)如图,在小正方形边长为1的方格纸内将A B C向下平移1个单位长度,再向右平移4个单位长度得到A B C ''',点A 、B 、C 的对应点分别为A '、B '、C '.(1)在图中画出平移后的A B C ''';(2)A B C的面积为______;(3)作A B 边上的高C D ; (4)能使A B QA B CS S =△△的格点Q (C 点除外)共有______个.20.(9分)如图,在A B C中,B D 是高,B E 是角平分线,10E B D∠=︒,60C∠=︒.(1)尺规作图(保留作图痕迹):作B E D的角平分线E F ; (2)在满足(1)的条件下,求证:E FA B∥.21.(9分)已知一个正n 边形的内角和是三角形内角和的4倍. (1)求n .(2)求正n 边形每个内角的度数;(3)用足够多边长相等的这种正n 边形和正三角形两种地板镶嵌地面,则一个顶点处需要此正n 边形和正三角形的地板块数分别为:______. 22.(9分)如图,A B C ∆的外角D A C∠的平分线交B C 边的垂直平分线于P 点,P DA B⊥于D ,P E A C⊥于E ,连接B P ,C P .(1)求证:B D C E=;(2)若4cmA C=,求A D的长.A B=,10c m23.(11分)如图1,在△ABC中,∠BAC=90°,AB=AC,∠ABC=∠ACB=45°.MN是经过点A的直线,BD⊥MN于D,CE⊥MN于E.(1)求证:BD=AE.(2)若将MN绕点A旋转,使MN与BC相交于点G(如图2),其他条件不变,求证:BD=AE.(3)在(2)的情况下,若CE的延长线过AB的中点F(如图3),连接GF,求证:∠1=∠2.。
人教版八年级(上)第一次月考数学试卷及答案
人教版八年级(上)第一次月考数学试卷及答案人教版八年级(上)第一次月考数学试卷一、选择题(共12小题,每小题4分,满分48分)1.以下长度的三条线段中,能够组成三角形的是()。
A。
2cm,3cm,4cmB。
1cm,4cm,2cmC。
1cm,2cm,3cmD。
6cm,2cm,3cm2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()。
A。
带①去B。
带②去C。
带③去D。
带①和②去3.能够把一个任意三角形分成面积相等的两部分的是()。
A。
角平分线B。
中线C。
高D。
A、B、C都可以4.下面四个图形中,线段BE是△ABC的高的图形是()。
A。
B。
C。
D。
5.适合条件∠A=∠B=∠C的△ABC是()。
A。
锐角三角形B。
直角三角形C。
钝角三角形D。
等边三角形6.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()。
A。
5B。
6C。
7D。
87.下列命题正确的是()。
A。
三角形的角平分线,中线,高均在三角形内部B。
三角形中至少有一个内角不小于60°C。
直角三角形仅有一条高D。
直角三角形斜边上的高等于斜边的一半8.如图,在△ABC中,AB=AC,∠BAD=∠CAD,则下列结论:①△ABD≌△ACD,②∠B=∠C,③BD=CD,④AD⊥BC。
其中正确的个数有()。
A。
1个B。
2个C。
3个D。
4个9.如图,在△ABC中,AD平分∠XXX于D,XXX于E,∠B=40°,∠BAC=82°,则∠DAE=()。
A。
7°B。
8°C。
9°D。
10°10.已知,如图AB=CD,BC=AD,∠B=23°,则∠D=()。
A。
67°B。
46°C。
23°D。
不能确定11.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()。
A。
AB=CDB。
24-25八年级数学第一次月考卷(全解全析)【测试范围:苏科版八上第1章-第2章】(扬州专用)
2024-2025学年八年级数学上学期第一次月考卷(扬州专用)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版八上第1章-第2章。
5.难度系数:0.85。
第Ⅰ卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列图形中,是轴对称图形的是()A.B.C.D.【答案】C【详解】解:A、不是轴对称图形,故不符合题意;B、不是轴对称图形,故不符合题意;C、是轴对称图形,故符合题意;D、不是轴对称图形,故不符合题意;故选:C.2.如图,若BAC BAD Ð=Ð,ABC ABD Ð=Ð,则直接判定ABC ABD V V ≌的理由是( )A .SASB .SSSC .ASAD .AAS 【答案】C 【详解】解:∵BAC BAD AB AB ABC ABD Ð=Ð=Ð=Ð,,,∴()ABC ABD ASA V V ≌,故选:C .3.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃, 那么,最省事的方法是( )A .带①去B .带②去C .带③去D .带①去和带②去4.如图,在Rt ABC △中,90B Ð=°,以点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点D E 、;再分别以点D 、E 为圆心、大于12DE 的长为半径画弧,两弧交于点F ,射线AF 交边BC 于点G .若1BG =,则点G 到AC 边的距离为( )A .2B .1C .12D .无法确定【答案】B 【详解】解:过G 作GH AC ^交AC 于点H ,由作图可知AF 平分CAB Ð,∵90B Ð=°,∴BG GH =,又∵1BG =,∴1GH =,故选:B .5.请仔细观察用直尺和圆规作一个角A O B Т¢¢等于已知角AOB Ð的示意图(图②),要说明D O C DOC Т¢¢=Ð,需要证明D O C DOC ¢¢¢V V ≌,则这两个三角形全等的依据是( )A .SASB .SSSC .ASAD .AAS【答案】B 【详解】解:由作图得:,,OD O D OC O C CD C D ¢¢¢¢¢¢===,∴()SSS D O C DOC ¢¢¢V V ≌.故选:B6.如图,已知等边ABC V 中,BD CE =,AD 与BE 相交于点P ,则APE Ð的度数是( )A .30°B .45°C .60°D .75°【答案】C 【详解】解:ABC QV 是等边三角形AB BC \=,60ABC C Ð=Ð=°在ABD △与BCE V 中AB BC ABD BCEBD CE =ìïÐ=Ðíï=î()SAS ABD BCE \V V ≌BAD CBE\Ð=Ð60APE BAD ABP ABP PBD ABC \Ð=Ð+Ð=Ð+Ð=Ð=°故选:C .7.如图,ABC V 的两条高AD ,相交于点F ,若ABD CFD ≌△△,6DC =,2DF =,则ABCV的面积为( )A .48B .24C .18D .12\6284BC DC BD BD =+=+==,\44624ABC ABD S S ==´=V V ,故选B .8.如图,在ABC V 中,90A Ð=°,6AB =,8AC =,10BC =,平分BCA Ð交于点D ,点P ,Q 分别是,AC 上的动点,连接AP ,PQ ,则AP PQ +的最小值是( )A .6B .5C .4.8D .4关于直线的对称点AM BC ^于M ,Q ¢共线,且与AM 重合时,PA 第Ⅱ卷二、填空题:本题共10小题,每小题3分,共30分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
108︒
C
B A
初二数学月考试卷
一、选择题 题号 1 2 3 4 5 6 7 8 答案
1.在下图所示的四个汽车标志图案中,属于轴对称图案的有( )
A .1个
B .2个
C .3个
D .4个 2.下列说法中不正确的是( )
A. 9
4的平方根是3
2 B.-2是4的一个平方根 C. 10的平方根是±10 D.0.01的算术平方根是0.1 3.若三角形三边分别为5,12,13,那么它最长边上的中线长是 ( ) A. 1.7 B. 5 C. 5.5 D. 6.5 4.如果三角形一边的垂直平分线经过三角形一个顶点,那么这个三角形一定是( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .不能确定 5.到三角形三个顶点距离相等的点是 ( ) A .三边高线的交点
B .三条中线的交点
C .三条垂直平分线的交点
D .三条内角平分线的交点
6.如图,在下列三角形中,若AB =AC ,则能被一条直线分成两个小等腰三角形的是( )
(1) (2) (3) (4)
A.(1)(2)(3)
B. (1)(2)(4)
C.(2)(3)(4)
D. (1)(3)(4)
7.如图,所有的四边形都是正方形,所有的三角形都是直角三角形, 其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、 B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为 ( )
A .
14cm B .4cm C . 15cm D . 3cm
90︒
C
B A
45︒
C
B
A
36︒
C B
A
8.如图,在等腰梯形ABCD 中,AD BC ∥,对角线AC BD ⊥于点O ,AE BC DF BC ⊥⊥,,垂足分别为E 、F ,设AD=2,BC=4,则梯形ABCD 的面积是( )
A .18
B .9
C .8
D .12 二、填空题
9.立方根等于它本身的数是 . 10.81的平方根是 。
11.已知一个正数a 的平方根为2m -3和3m -22,则a= . 12.比较大小15 3.8 (填>或=或<)
13.已知一个直角三角形的两边长分别是3㎝和5㎝,则第三边的长为 。
14.如果等腰梯形的腰长为6cm ,上底长2cm ,下底长8cm ,则该等腰梯形的较小内角
是___________0
.
15.如图,DE 是AC 边的垂直平分线,AB =5cm ,BC =4cm 。
那么△BEC 的周长是 16.如图,在△ABC 中,∠C=90°,AD 平分∠CAB,CD=4cm,AB=8cm ,那么ADB
S
=_________cm 2.
17.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C ′处,折痕为EF ,若∠ABE =20°,那么∠EFC ′的度数为 度.
18.如图,在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块, 它的棱长和场地宽AD 平行且大于AD ,木块的底面是边长为0.2米的正方形, 一只蚂蚁从点A 处,到达C 处需要走的得最短路程是 米.
三、解答题
(第17题)
D
C
A
B E F
O
(第15题) (第16题) D B
A (第18题)
19.求下列各式中x 的值:
(1) (x+1)2
=25 (2)27x 3
=-8
20.计算或求值
(1
|1
(2)y x y y x y x 8,09632
-=+++-求满足、实数的平方根和立方根。
21.如图,在△ABC 中,AB=26,BC=20,边BC 上的中线AD=24, 求AC.
B A
D A
C A
22.如图,在正方形网格中,每个小正方形的边长都为1.请在所给网格中按下列要求画出图形.
(1)从点A 出发的一条线段AB ,使它的另一个端点落在格点(即小正方形的顶点)上,
且长度为8;
(2)画出以(1)中的AB 为边的所有等腰三角形ABC ,使点C 在格点上,并在所画的图上标出除线段AB 外其他两边
AC .BC 的长度.
(3) 在图2中利用网格线作图:在AB 上找一点P,使P 到BC 和AC 的距离相等;在射线CP 上找一点Q,使QB=QA .
23.如图,在等腰梯形ABCD 中,∠C=60°,AD ∥BC ,且AD=DC ,E 、F 分别在AD 、DC 的延长线上,且DE=CF ,AF 、BE 交于点P. (1)求证:AF=BE ;
(2)请你猜测∠BPF 的度数,并证明你的结论.
D B
C A P E
(第23题) (1) (2)
24.(1)观察与发现:小明将三角形纸片ABC (AB >AC )沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到△AEF (如图②).小明认为△AEF 是等腰三角形,你同意吗?请说明理由. (2)实践与运用:将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D ′处,折痕为EG (如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.
25.如图,D 是等边△ABC 外一点,DB=DC ,∠BDC=120o ,点E 、F 分别在AB 、AC 上。
试说明:(1)AD 是BC 的垂直平分线。
(2)若ED 平分∠BEF ,则FD 平分∠EFC 吗? (3)若∠EDF=600,则EF=BE+CF.
A C D B
图① A C D B 图②
F
E E D C
F B A
图③ E D C A B F G C ' D ' A D E C B G α 图④ 图⑤ (第24题)
26.探究题:
㈠小明在玩积木游戏时,把三个正方形积木摆成一定的形状,正视图如图①,
问题(1):若此中的三角形△DEF为直角三角形,P的面积为9,Q的面积为15,
则M的面积为_______。
问题(2):若P的面积为36cm2,Q的面积为64 cm2,同时M的面积为100 cm2,则
△DEF为_______三角形。
㈡图形变化:Ⅰ.如图②,分别以直角三角形的三边为直径向三角形外作三个半圆,你能找出这三个半圆的面积之间有什么关系吗?请说明理由。
Ⅱ.如图③,如果直角三角形两直角边的长分别为3和4,以直角三角形的三边
为直径作半圆,你能利用上面中的结论求出阴影部分的面积吗?。