专题三 力与物体的曲线运动

合集下载

力与物体的曲运动(学生版)-2024届新高考物理冲刺专项训练

力与物体的曲运动(学生版)-2024届新高考物理冲刺专项训练

专题力与物体的曲线运动一、单选题1(2024·河南周口·二模)扇车在我国西汉时期就已广泛被用来清选谷物。

谷物从扇车上端的进谷口进入分离仓,分离仓右端有一鼓风机提供稳定气流,从而将谷物中的秕粒a(秕粒为不饱满的谷粒,质量较轻)和饱粒b分开。

若所有谷粒进入分离仓时,在水平方向获得的动量相同。

之后所有谷粒受到气流的水平作用力可视为相同。

下图中虚线分别表示a、b谷粒的轨迹,F a、F b为相应谷粒所受的合外力。

下列四幅图中可能正确的是()A. B.C. D.2(2023·浙江温州·一模)中式八球国际大师赛是世界最大的台球联赛之一、当目标球被对方的球挡住时,需要使用跳球技术,将后手抬高,给母球一个向下的力,台球桌面有弹性,通过反作用力使母球弹起,如图所示。

忽略空气阻力,下列说法正确的是()A.台球在空中飞行时,做匀变速曲线运动B.台球在空中飞行时,受球杆的作用力和重力C.台球在桌面反弹时,桌面对台球的弹力是因为台球发生弹性形变D.球杆击打台球时,球杆对台球的作用力大于台球对球杆的反作用力3(2022·浙江温州·三模)如图所示,甲图是从高空拍摄的北京冬奥会钢架雪车赛道的实景图,乙图是其示意图。

比赛时,运动员从起点沿赛道快速向终点滑去,先后经过A、P、B、C、D五点。

运动员速度方向与经过P点的速度方向最接近的是()A.A点B.B点C.C点D.D点4(2024·辽宁葫芦岛·一模)在广东珠海举行的第十四届中国国际航空航天博览会上,身披七彩祥云的“歼-20”惊艳亮相珠海上空。

在起飞一段时间内,“歼-20”水平方向做匀速直线运动,竖直向上运动的v2 -h图像如图所示,则地面上观众看到的“歼-20”运动轨迹正确的是()A. B.C. D.5(2023·湖南·模拟预测)阴历正月十五放花灯,称为灯节,或称“元宵节”。

这一天,人们有观灯和吃元宵的习惯。

2021-2022年高考物理二轮专题突破专题三力与物体的曲线运动1力学中的曲线运动教案

2021-2022年高考物理二轮专题突破专题三力与物体的曲线运动1力学中的曲线运动教案

2021年高考物理二轮专题突破专题三力与物体的曲线运动1力学中的曲线运动教案一、学习目标1、掌握曲线运动的条件和运动的合成与分解2、掌握平抛运动规律3、掌握圆周运动规律4、会分析平抛运动与圆周运动的多过程组合问题 二、课时安排 2课时 三、教学过程 (一)知识梳理 1.物体做曲线运动的条件当物体所受合外力的方向跟它的速度方向不共线时,物体做曲线运动.合运动与分运动具有等时性、独立性和等效性.2.平抛运动(1)规律:v x =v 0,v y =gt ,x =v 0t ,y =12gt 2.(2)推论:做平抛(或类平抛)运动的物体①任意时刻速度的反向延长线一定通过此时水平位移的中点;②设在任意时刻瞬时速度与水平方向的夹角为θ,位移与水平方向的夹角为φ,则有tan θ=2tan φ.3.竖直平面内圆周运动的两种临界问题(1)绳固定,物体能通过最高点的条件是(2)杆固定,物体能通过最高点的条件是v>0.(二)规律方法1.竖直平面内圆周运动的最高点和最低点的速度关系通常利用动能定理来建立联系,然后结合牛顿第二定律进行动力学分析.2.对于平抛或类平抛运动与圆周运动组合的问题,应用合成与分解的思想分析这两种运动转折点的速度是解题的关键.(三)典例精讲高考题型一运动的合成与分解【例1】在杂技表演中,猴子沿竖直杆向上做初速度为零、加速度为a的匀加速运动,同时人顶着直杆以速度v0水平向右匀速移动,经过时间t,猴子沿杆向上移动的高度为h,人顶杆沿水平地面移动的距离为x,如图1所示.关于猴子的运动情况,下列说法中正确的是( )图1A.相对地面的运动轨迹为直线B.相对地面做匀加速直线运动C.t时刻猴子速度的大小为v0+atD.t时间内猴子的位移大小为x2+h2解析猴子在水平方向上做匀速直线运动,在竖直方向上做初速度为0的匀加速直线运动,根据运动的合成,知合速度与合加速度不在同一条直线上,所以猴子运动的轨迹为曲线.故A错误;猴子在水平方向上的加速度为0,在竖直方向上有恒定的加速度,根据运动的合成,知猴子做曲线运动的加速度不变,做匀变速曲线运动.故B错误;t时刻猴子在水平方向上的分速度为v0,在竖直方向上的分速度为at,所以合速度v=v20+at2.故C错误.在t时间内猴子在水平方向和竖直方向上的位移分别为x和h,根据运动的合成,知合位移s=x2+h2.故D正确.答案D归纳小结解决运动的合成与分解的一般思路(1)明确合运动或分运动的运动性质.(2)确定合运动是在哪两个方向上的合成或分解.(3)找出各个方向上已知的物理量(速度、位移、加速度等).(4)运用力与速度的关系或矢量的运算法则进行分析求解.高考题型二抛体运动问题【例2】(xx·浙江理综·23)在真空环境内探测微粒在重力场中能量的简化装置如图2所示.P是个微粒源,能持续水平向右发射质量相同、初速度不同的微粒.高度为h的探测屏AB竖直放置,离P点的水平距离为L,上端A与P点的高度差也为h.图2(1)若微粒打在探测屏AB 的中点,求微粒在空中飞行的时间; (2)求能被屏探测到的微粒的初速度范围;(3)若打在探测屏A 、B 两点的微粒的动能相等,求L 与h 的关系. 解析 (1)打在AB 中点的微粒32h =12gt 2①解得t =3hg②(2)打在B 点的微粒v 1=L t 1;2h =12gt 21③v 1=Lg4h④同理,打在A 点的微粒初速度v 2=Lg 2h⑤微粒初速度范围Lg4h ≤v ≤L g 2h⑥(3)由能量关系12mv 22+mgh =12mv 21+2mgh⑦代入④⑤式得L =22h .答案 (1)3hg(2)Lg4h ≤v ≤L g2h(3)L =22h 高考题型三 圆周运动问题【例3】 (多选)(xx·浙江理综·20)如图3所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90m 的大圆弧和r =40m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100m.赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍,假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动,要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g =10m/s 2,π=3.14),则赛车( )图3A.在绕过小圆弧弯道后加速B.在大圆弧弯道上的速率为45m/sC.在直道上的加速度大小为5.63m/s 2D.通过小圆弧弯道的时间为5.58s解析 在弯道上做匀速圆周运动时,根据径向静摩擦力提供向心力得,kmg =m v 2mr,当弯道半径一定时,在弯道上的最大速率是一定的,且在大弯道上的最大速率大于小弯道上的最大速率,故要想时间最短,可在绕过小圆弧弯道后加速,选项A 正确;在大圆弧弯道上的速率为v m R =kgR = 2.25×10×90m/s =45 m/s ,选项B 正确;直道的长度为x =L 2-R -r2=503m ,在小弯道上的最大速率为:v m r =kgr = 2.25×10×40m/s =30 m/s ,在直道上的加速度大小为a =v 2m R -v 2m r 2x =452-3022×503m/s 2≈6.50 m/s 2,选项C 错误;由几何关系可知,小圆弧轨道的长度为2πr 3,通过小圆弧弯道的时间为t =2πr3v m r =2×3.14×403×30s≈2.80s,选项D 错误.答案 AB 归纳小结1.解决圆周运动问题要注意以下几点:(1)要进行受力分析,明确向心力的来源,确定圆心以及半径.(2)列出正确的动力学方程F =m v 2r =mrω2=mωv =mr 4π2T2.2.竖直平面内圆周运动的最高点和最低点的速度通常利用动能定理来建立联系,然后结合牛顿第二定律进行动力学分析.高考题型四 平抛与圆周运动组合问题【例4】 如图4所示,半径R =0.5m 的光滑圆弧轨道ABC 与足够长的粗糙轨道CD 在C 处平滑连接,O 为圆弧轨道ABC 的圆心,B 点为圆弧轨道的最低点,半径OA 、OC 与OB 的夹角分别为53°和37°.将一个质量m =0.5kg 的物体(视为质点)从A 点左侧高为h =0.8m 处的P 点水平抛出,恰从A 点沿切线方向进入圆弧轨道.已知物体与轨道CD 间的动摩擦因数μ=0.8,重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8.求:图4(1)物体水平抛出时的初速度大小v 0;(2)物体经过B 点时,对圆弧轨道的压力大小F N ;(3)物体在轨道CD 上运动的距离x .(结果保留三位有效数字)解析 (1)由平抛运动规律知:v 2y =2gh 竖直分速度v y =2gh =4m/s 初速度v 0=v y tan37°=3m/s.(2)从P 点至B 点的过程,由机械能守恒有mg (h +R -R cos53°)=12mv 2B -12mv 20经过B 点时,由向心力公式有F N ′-mg =m v 2BR代入数据解得F N ′=34N由牛顿第三定律知,物体对轨道的压力大小为F N =34N.(3)因μmg cos37°>mg sin37°,物体沿轨道CD 向上做匀减速运动,速度减为零后不会下滑.从B 点到上滑至最高点的过程,由动能定理有-mgR (1-cos37°)-(mg sin37°+μmg cos37°)x =0-12mv 2B代入数据可解得x =135124m≈1.09m.答案 (1)3m/s (2)34N (3)1.09m 四、板书设计1、曲线运动的条件和运动的合成与分解2、平抛运动规律3、圆周运动规律4、平抛运动与圆周运动的多过程组合问题五、作业布置完成力与物体的曲线运动(1)的课时作业六、教学反思借助多媒体形式,使同学们能直观感受本模块内容,以促进学生对所学知识的充分理解与掌握。

专题2.3 力与曲线运动(解析版)

专题2.3 力与曲线运动(解析版)

第二部分核心主干专题突破专题2.3 力与曲线运动目录【突破高考题型】 (1)题型一曲线运动、运动的合成与分解 (1)题型二平抛(类平抛)运动的规律 (4)题型三圆周运动 (7)类型1水平面内圆周运动的临界问题 (7)类型2竖直平面内圆周运动的轻绳模型 (8)类型3竖直平面内圆周运动的轻杆模型 (9)【专题突破练】 (11)【突破高考题型】题型一曲线运动、运动的合成与分解1.曲线运动的理解(1)曲线运动是变速运动,速度方向沿切线方向。

(2)合力方向与轨迹的关系:物体做曲线运动的轨迹一定夹在速度方向与合力方向之间,合力的方向指向曲线的“凹”侧。

2.运动的合成与分解(1)物体的实际运动是合运动,明确是在哪两个方向上的分运动的合成。

(2)根据合外力与合初速度的方向关系判断合运动的性质。

(3)运动的合成与分解就是速度、位移、加速度等的合成与分解,遵循平行四边形定则。

【例1】(2022·学军中学适应考)2021年10月29日,华南师大附中校运会开幕式隆重举行,各班进行入场式表演时,无人机从地面开始起飞,在空中进行跟踪拍摄。

若无人机在水平和竖直方向运动的速度随时间变化关系图像如图所示,则无人机()A.在0~t1的时间内,运动轨迹为曲线B.在t1~t2的时间内,运动轨迹为直线C.在t1~t2的时间内,速度均匀变化D.在t3时刻的加速度方向竖直向上【答案】C【解析】在0~t1的时间内,无人机沿x方向和y方向均做初速度为零的匀加速直线运动,其合运动仍是直线运动,A错误;在t1~t2的时间内,无人机的加速度沿y轴负向,但初速度为t1时刻的末速度,方向不是沿y轴方向,初速度和加速度不共线,因此运动轨迹应是曲线,B错误;在t1~t2的时间内,无人机加速度沿y轴负向,且为定值,因此其速度均匀变化,C正确;在t3时刻,无人机有x轴负方向和y轴正方向的加速度分量,合加速度方向不是竖直向上,D错误。

【例2】.(2022·成都诊断)质量为m的物体P置于倾角为θ1的固定光滑斜面上,轻细绳跨过光滑轻质定滑轮分别连接着P与小车,P与滑轮间的细绳平行于斜面,小车以速率v水平向右做匀速直线运动。

专题三曲线运动

专题三曲线运动

撞的时间,则 的初速度 在第一次落地前若不碰,此后就不会相碰所示,斜面上a 、 点抛出, ) 物块平抛落地过程水平位。

设物块所受的最大静摩擦力等于滑动摩擦力,取重由以上考题可以看出,本专题的高频考点主要集中在对平抛运动和圆周运动规律的考查上,本专题常考的考点还有运动的合成与分解,考查的难度中等,题型一般为选择和计算。

本专题还常与功和能、电场和磁场等知识进行综合考查。

若水流速度不变,两人在静水中游速相等, 的大小关系为=2tan φ。

如图3-8甲所示。

做平抛运动的物体任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点。

如图3-8乙所示 创新预测如图3-9所示,一斜面固定在水平地面上, 现将一小球从斜面上P 点以某一初速度水平 ,不计空气阻力,假设小球落下后不反弹,则x1错误的是对于竖直面内的圆周运动要注意区分“绳模型”和“杆模解答圆周运动问题的关键是正确地受力分析,确定解决竖直面内圆周问题的基本思路是两点一过(1)要使小球不脱离轨道,求小球在A 点的速度大小; (2)求A 、B 两点的压力差ΔFN 与x 的函数关系;(用m 、R 、表示)(3)若测得两点压力差ΔFN 与距离x 的图象如图乙所示。

根据图象,求小球的质量。

做匀速圆周运动,则当盒子运动连接,某时刻系统位置如图所示,已知圆盘的半径为R ,试求宽的河的中线漂流,突然发现 为了避免危险应使小船在尽量远离瀑布的地方靠,小船在静水中速度为v =2 m/s ,探险队员应将船头指向什么(vLcos2 θ)/h (vLcos θ)/h 的斜面上时,其速度方在同一条竖直线上,且AB=BC 三点分别水平抛出一个物体,这三个物体都内的飞行计划。

设在水平,v x和v y随时间变化所示。

飞机按此计划飞行的过程中()图66 s内沿直线斜向上升,后14 s内沿曲线上升6 s内沿直线斜向上升,后14 s内沿曲线下降。

高一高二物理专体训练

高一高二物理专体训练

专题一 力与物体的平衡一、典型例题1.在粗糙水平地面上与墙平行放着一个截面为半圆的柱状物体A ,A 与竖直墙之间放一光滑圆球B ,整个装置处于静止状态.现对B 加一竖直向下的力F ,F 的作用线通过球心,设墙对B 的作用力为F 1,B 对A 的作用力为F 2,地面对A 的作用力为F 3.若F 缓慢增大而整个装置仍保持静止,截面如上图所示,在此过程中 ( )A .F 1保持不变,F 3缓慢增大B .F 1缓慢增大,F 3保持不变C .F 2缓慢增大,F 3缓慢增大D .F 2缓慢增大,F 3保持不变2. 如图7,人重600牛,木块A 重400牛,人与A 、A 与地面间的摩擦系数均为0.2,现人用水平力拉绳,使他与木块一起向右匀速直线运动,滑轮摩擦不计,求(1)人对绳的拉力.(2)人脚给A 的摩擦力方向和大小。

3.有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑.AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡(如图1-20 甲所示).现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是 ( )A .N 不变,T 变大B .N 不变,T 变小C .N 变大,T 变大D .N 变大,T 变小4、如图所示,半圆形支架DAB ,两绳OA 和OB 接于圆心O ,下悬重为G 的物体,使OA 固定不动,将OB 绳的B 端沿半圆支架从水平位置逐渐移动竖直位置C 的过程中,说明OA 绳和OB 绳对节点O 的拉力大小如何变化?二、学生练习1.如图所示,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,A 和B 以相同的速度在水平地面C 上做匀速直线运动(空气阻力不计).由此可知,A 、B 间的动摩擦因数μ1和B 、C 间的动摩擦因数μ2有可能是( )A .μ1=0,μ2=0B .μ1=0,μ2≠0C .μ1≠0,μ2=0D .μ1≠0,μ2≠02.如图跳伞运动员打开伞后经过一段时间,将在空中保持匀速降落.已知运动员和他身上装备的总重力为G 1,圆顶形降落伞伞面的重力为G 2,有8条相同的拉线,一端与飞行员相邻(拉线重力不计),另一端均匀分布在伞面边缘上(图中没有把拉线都画出来),每根拉线和竖直方向都成300角.那么每根拉线上的张力大小为( )A .1231G B .12)(321G G + C .8)(21G G + D .41G3.如图所示,两个完全相同的光滑球的质量均为m ,放在竖直挡板和倾角为α的固定斜面间.若缓慢转动挡板至与斜面垂直,在此过程中( )A .A 、B 两球间的弹力逐渐增大 B .B 球对挡板的压力逐渐减小C .B 球对斜面的压力逐渐增大D .A 球对斜面的压力逐渐增大4.如图所示,轻绳AC 与天花板夹角α=300,轻绳BC 与天花板夹角β=600.设AC 、BC 绳能承受的最大拉力均不能超过100N ,CD 绳强度足够大,求CD 绳下端悬挂的物重G 不能超过多少?5.三根不可伸长的相同的轻绳,一端系在半径为r 0的环1上,彼此间距相等,绳穿过半径为r 0的第2个圆环,另一端同样地系在半径为2r 0的环3上,如图所示,环1固定在水平面上,整个系统处于平衡状态.试求第2个环中心与第3个环中心之间的距离.(三个环都是用相同的金属丝制作的,摩擦不计)6.如图所示,用光滑的粗铁丝做成一直角三角形,BC 边水平,AC 边竖直,∠ABC =β.AB边及AC 两边上分别套有用细线相连的铜环(其总长度小于BC 边长),当它们静止时,细线跟AB 所成的角θ的大小为( )A .θ=βB .θ=2π C .θ<β D .β<θ<2π7.如图所示,质量为m 的工件置于水平放置的钢板C 上,二者间的动摩擦因数为μ,由于光滑导槽A 、B 的控制,工件只能沿水平导槽运动,现在使钢板以速度v 1向右运动,同时用力F 拉动工件(F 方向与导槽平行)使其以速度v 2沿导槽运动,则F 的大小为( )A .等于μmgB .大于μmgC .小于μmgD .不能确定8.如图所示,一个半球形的碗放在桌面上,碗口水平,碗的内表面及碗口是光滑的.一根细线跨在碗口上,线的两端分别系有质量为m 1和m 2的小球,当它们处于平衡状态时,质量为m 1的小球与O 点的连线与水平线的夹角为α=600.两小 球的质量比为m 2/m 1为( )A .33B .32C .23D .229.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上;②中弹簧的左端受大小也为F 的拉力作用;③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有( )A .l 2 > l 1B . l 4> l 3C .l 1 > l 3D .l 2 = l 410.如图所示,A 、B 两物体的质量分别为m A 和m B ,且m A >m B ,整个系统处于静止状态,滑轮的质量和一切摩擦均不计.如果绳一端由Q 点缓慢地向左移到P 点,整个系统重新平衡后,物体A 的高度和两滑轮间绳与水平方向的夹角θ如何变化?( )A .物体A 的高度升高,θ角变大B .物体A 的高度降低,θ角变小C .物体A 的高度升高,θ角不变D .物体A 的高度不变,θ角变小F ① F ②F ③ ④专题二 力与物体的直线运动一、例题【例1】在平直公路上,自行车与同方向行驶的一汽车同时经过A 点,自行车以v =4m/s 速度作匀速运动,汽车以v 0 =10m/s 的初速度、a =0.25m/s 2的加速度作匀减速运动。

模块一专题三曲线运动万有引力

模块一专题三曲线运动万有引力
【答案】
随堂反馈练习
上 页
下 页
见解析
课时活页训练
重点知识归纳
高考热点示例
强化训练
模 块 一 力 与 运 动 图3-6 (2010 年高考全国卷Ⅰ)一水平抛出的小球落 到一倾角为 θ 的斜面上时,其速度方向与斜面垂 直,运动轨迹如图 3-6 中虚线所示.小球在竖直 方向下落的距离与在水平方向通过的距离之比为 ( ) A.tan θ B.2tan θ 1 1 C. D. tan θ 2tan θ
随堂反馈练习 课时活页训练
上 页
下 页
重点知识归纳
高考热点示例
模 块 一 力 与 运 动
二、竖直平面内圆周运动分析 1.两种典型模型 (1)“绳模型” 如图 3-3 所示, 没有物体支撑的小球在竖直平 面内做圆周运动过最高点的情况:
上 页
图 3-3 ①临界条件: 绳子的拉力(或轨道的弹力)恰好为 零, 小球的重力提供其做圆周运动所需要的向心力, v2临界 即 mg=m , 临界= gr即是小球通过最高点的 v r 最小速度.
随堂反馈练习 课时活页训练
上 页
下 页
重点知识归纳
高考热点示例
模 块 一 力 与 运 动
(2)当小球的速度与斜面平行时,小球离斜面的 距离达到最大,从抛出开始计时,设经过 t1 时间最 大距离为 H. v0tanθ 因 vy1=gt1=v0tanθ,所以 t1= g v20tanθ x=v0t1= , g 1 2 v20tan2θ y= gt 1= . 2 2g H 又 y/tan θ+H/sin θ=x 即 +y=xtanθ, cosθ v2sinθtanθ 0 解得最大距离为:H= . 2g
重点知识归纳
高考热点示例

专题三曲线运动

专题三曲线运动

专题三:曲线运动【知识梳理】一、曲线运动一)曲线运动的速度方向:曲线运动的速度方向总沿轨迹的切线方向,因此曲线运动的速度方向时刻在改变,所以曲线运动一定是变速运动,其加速度一定不为零.二)物体做曲线运动的条件:从运动学角度说,物体的加速度方向跟速度方向不在一条直线上时,物体就做曲线运动.从动力学的角度说,如果物体所受合外力的方向跟物体速度的方向不在一条直线上时,物体就做曲线运动.三)研究曲线运动的基本方法:运动的合成和分解,即把复杂的曲线运动简化为简单的直线运动,用直线运动的规律来研究曲线运动,是研究曲线运动的基本方法.运动的合成和分解包括位移、速度、和加速度的合成和分解,这些描述运动状态的物理量都是矢量,对它们进行合成和分解都要用平行四边形定则.二、运动的合成与分解1.合运动和分运动:当物体同时参与几个运动时,其实际运动就叫做这几个运动的合运动,这几个运动叫做实际运动的分运动.2.运动的合成与分解(1)已知分运动(速度v 、加速度a 、位移s)求合运动(速度v 、加速度a 、位移s),叫做运动的合成. (2)已知合运动(速度v 、加速度a 、位移s)求分运动(速度v 、加速度a 、位移s),叫做运动的分解. (3)运动的合成与分解遵循平行四边形定则. 3.合运动与分运动的关系(1)等时性:合运动和分运动进行的时间相等.(2)独立性:一个物体同时参与几个分运动,各分运动独立进行,各自产生效果. (3)等效性:整体的合运动是各分运动决定的总效果,它替代所有的分运动. D.物体可能沿原曲线由B 返回A例1、如图(a)所示,河宽为L,船对水的速度为v 船,水的流速为v 水,试分析:(1)船怎样渡河,所需时间最短?最短时间是多少? (2)当v 船>v 水时,船怎样渡河位移最小?最小位移是多大? (3)当v 船<v 水时,船怎样渡河位移最小?最小位移是多大?【解析】(1)船渡河的时间t 取决于v 船垂直于河岸的分量v y 和河宽L,而与v 水无关.(a)图5-1-1(b)(c)v水设船头与河岸的夹角为θ,则渡河的时间表示为:θ船sin v L v L t y==可见,当sin θ=1,θ=900,即船头垂直于河岸时(图b),渡河时间最短为:船v L t =min(2)如图(c)所示, 当v 船>v 水时,船的合速度当v 垂直于河岸时,渡河位移最小,且等于河宽,即s min =L,所以船头应斜对上游,且与河岸的夹角为船水θv v arccos=(3)如右图所示,当v 船<v 水时,以v水末端为圆心,以v 船大小为半径画半圆,船的实际速度以v水的始端为始端,圆周上一点为末端.与河岸夹角最大的方向沿图示切线方向,此时渡河路径最短.由水船v v s L =min得:L v v s 船水=min【巩固练习】1、关于互成角度的两个初速不为零的匀变速直线运动的合运动,下列说法正确的是( )A.一定是直线运动B.一定是曲线运动C.可能是直线运动,也可能是曲线运动D.以上说法都不正确2、如图5-1-5在恒力F 作用下沿曲线从A 运动到B ,这时突然使它受的力反向,而大小不变,即由F 变为-F ,在此力作用下,关于物体以后的运动情况的下列说法中正确的是( )A .物体不可能沿曲线Ba 运动B .物体不可能沿直线Bb 运动C .物体不可能沿曲线Bc 运动D .物体不可能沿原曲线由B 返回A3、质量为m 的物体受到一组共点恒力作用而处于平衡状态,当撤去某个恒力F 1时,物体可能做( )A .匀加速直线运动;B .匀减速直线运动;C .匀变速曲线运动;D .变加速曲线运动。

专题03 力和曲线运动 【练】-2023年高考物理毕业班二轮热点题型归纳与变式演练(解析版)

专题03  力和曲线运动 【练】-2023年高考物理毕业班二轮热点题型归纳与变式演练(解析版)

专题03力与曲线运动一、单选题1.(2022·湖南·宁乡市教育研究中心模拟预测)如图所示,某次空中投弹的军事演习中,战斗机以恒定速度沿水平方向飞行,先后释放两颗炸弹,分别击中山坡上的M点和N点。

释放两颗炸弹的时间间隔为Δt1,此过程中飞机飞行的距离为s1;击中M、N的时间间隔为Δt2,M、N两点间水平距离为s2。

不计空气阻力。

下列判断正确的是()A.Δt1>Δt2,s1>s2B.Δt1>Δt2,s1<s2C.Δt1<Δt2,s1>s2D.Δt1<Δt2,s1<s2【答案】A【详解】释放的炸弹做平抛运动,若落地点在同一水平面上,落地的时间间隔与释放的时间间隔相等,由于N在M点的上方,则击中M、N的时间间隔△t2<△t1同理可知,由于炸弹和飞机水平方向的速度相同,时间越小,飞行的距离越小,所以s1>s2故A正确,BCD错误。

故选A。

2.(2022·浙江·模拟预测)2020年受“新冠肺炎”的影响,全国人民自愿居家隔离。

小豆在家和爸爸玩“套圈”游戏,第一次扔在小黄人正前M点,不计空气阻力。

第二次扔之前小豆适当调整方案,则小豆可能仍中的措施是()A.小豆在原处,仅增加扔套圈的水平初速度B.小豆在原处,仅减小水平扔出套圈时的高度C.小豆沿小黄人与M点连线方向后退,仅增加人和小黄人之间的距离D .小豆在原处,降低扔套圈的高度和扔套圈的水平初速度【答案】A【详解】ABD .物体做平抛运动满足2012x v t h gt ==,解得2h x v g=第一次扔在小黄人正前M 点,因此说明0x x <,其中0x 为第一次扔圈时小豆和小黄人之间的距离。

当小豆站在原处时,增加水平初速度、抛出高度都能增加“圈”的水平位移,使其等于0x ,增加套中的几率,故A 正确,BD 错误;C .小豆沿小黄人与M 点连线方向后退,仅增加人和小黄人之间的距离,相当于0x 进一步增大,而x 保持不变,因此不可能套中小黄人,故C 错误。

03讲 力与曲线运动之平抛圆周专题强化解析版

03讲 力与曲线运动之平抛圆周专题强化解析版

03讲力与曲线运动之平抛圆周专题强化解析版一、单选题1.(2022·福建泉州·高一期末)如图甲,在水平桌面上放一张白纸,白纸上固定一条由几段弧形轨道组合而成的弯道.使表面沾有红色印泥的钢球以一定的初速度从弯道的C 端滚入,钢球从出口A 离开后会在白纸上留下一条痕迹.如图乙,拆去一段轨道,球仍从C 端滚入,则球离开B 端后留下的痕迹可能为()A.痕迹①B.痕迹②C.痕迹③D.痕迹④【答案】B【详解】物体做曲线运动时,某一点的速度方向为该点轨迹切线方向,可知钢球从B 端离开的速度方向沿着管口切线方向,故留下的痕迹可能为痕迹②,B 正确,ACD 错误。

故选B。

2.(2022·全国·高一阶段练习)如图所示,塔吊水平摆臂摆动半径为15米,某次作业将摆臂末端一个重物从某高度缓缓放到地面,在50s t =的时间里摆臂摆过60︒角,绕绳机向下匀速释放钢绳的速度为0.4m/s ,经50s 重物到达地面。

该次作业中重物相对地面的位移大小约为()A.15m B.20m C.25m D.30m【答案】C【详解】根据题意可知,经50s 重物下降的高度为0.450m 20m h vt ==⨯=在50s 的时间里摆臂摆过60︒角,根据几何关系可知重物运动的水平距离为x=15m则重物相对地面的位移大小约为22222015m 25ms h x =+=+=故选C。

3.(2022·山东青岛·高三期中)如图,均质细杆的一端A 斜靠在光滑竖直墙面上,另一端B 置于光滑水平面上,杆在外力作用下保持静止,此时细杆与墙面夹角很小。

现撤去外力,细杆开始滑落,某时刻细杆与水平面间夹角为θ,此时A 端沿墙面下滑的速度大小为v A .关于细杆的运动,下列说法正确的是()A.细杆滑落过程中,B 端的速度一直增大B.细杆滑落过程中,A 端沿墙面下滑速度总大于B 端沿水平面运动的速度C.细杆与水平面间夹角为θ时,B 端沿水平面运动的速度大小tan B A v v θ=D.滑落过程中,细杆上各个点的速度方向都不沿杆的方向【答案】C【详解】A.细杆滑落过程中,开始时B 端速度为零,当A 端滑到地面时B 端的速度也为零,可知整个过程中B 端的速度先增大后减小,选项A 错误;BC.细杆与水平面间夹角为θ时,由速度分解知识可知sin cos A B v v θθ=即B 端沿水平面运动的速度大小tan B A v v θ=则当θ角从0~45°时B A v v <;当θ角从45°~90°时B A v v >;即细杆滑落过程中,A 端沿墙面下滑速度先小于B 端沿水平面运动的速度,后大于B 端沿水平面运动的速度,选项B 错误,C 正确;D.滑落过程中,A 点的速度竖直向下,B 点的速度水平向右,则杆上其他各点的速度方向介于两者之间,则必有一点的速度方向沿杆的方向,选项D 错误。

江西省南昌市新建一中2014届高考物理专题复习 专题三 力与物体的曲线运动学案

江西省南昌市新建一中2014届高考物理专题复习 专题三 力与物体的曲线运动学案

山西省南昌市新建一中2014届高考物理专题复习专题三力与物体的曲线运动学案知识网络专题知识要点一、曲线运动的条件和研究方法1.物体做曲线运动的条件:2.曲线运动的研究方法:运动的合成与分解,已知分运动的位移、速度、和加速度等求合运动的位移、速度、和加速度等,遵从平行四边形定则。

二、平抛(类平抛)运动1.速度规律: V X=V0V Y=gt 2.位移规律: X=v0tY=221gt三、匀速圆周运动1.向心力的大小为:2ωmrF=或rvmF2=2.描述运动的物理量间的关系:四、万有引力定律及应用思路1.万有引力定律:叫引力常量其中万2211221/1067259.6,kgmNGrmmGF∙⨯==-2.(1)天体运动的向心力来源于天体之间的万有引力。

即222224TrmrmrvmmarMmGπω====向(2)万有引力等于重力五、宇宙速度(1)第一宇宙速度(环绕速度):是卫星环绕地球表面运行的速度,也是绕地球做匀速圆周运动的最大速度,也是发射卫星的最小速度V1=7.9Km/s。

(2)第二宇宙速度(脱离速度):使物体挣脱地球引力束缚的最小发射速度,V2=11.2Km/s。

(3)第三宇宙速度(逃逸速度):使物体挣脱太阳引力束缚的最小发射速度,V3=16.7 Km/s。

高考体验1、(07)2007年4月24日,欧洲科学家宣布在太阳系之外发现了一颗可能适合人类居住的类地行星Gliese 581c。

这颗围绕红矮星Gliese 581运行的星球有类似地球的温度,表面可能有液态水存在,距离地球约为20光年,直径约为地球的1.5倍,质量约为地球的5倍,绕红矮星Gliese 581运行的周期约为13天。

假设有一艘宇宙飞船飞临该星球表面附近轨道,下列说法正确的是A.飞船在Gliese 581c表面附近运行的周期约为13天B.飞船在Gliese 581c表面附近运行时的速度大于7.9 km/sC.人在Gliese 581c上所受重力比在地球上所受重力大D.Gliese 581c的平均密度比地球平均密度小2、(08)据报道,我国数据中继卫星“天链一号Ol 星”于2008年4月25日在西昌卫星发射中心发射升空,经过4次变轨控制后,于5月1日成功定点在东经770赤道上空的同步轨道。

2021届高考物理三轮冲刺专题突破训练:曲线运动 (解析版)

2021届高考物理三轮冲刺专题突破训练:曲线运动 (解析版)

曲线运动1.如图所示滑雪运动员经过一段助滑后,获得一速度从A 点水平飞出,在空中飞行一段距离后落在B 点,已知该运动员在A 点沿水平方向飞出的速度v 0=15m/s ,斜坡倾角为53°,斜坡可看成一斜面。

(g 取10m/s 2,sin530.8︒=sin53°=0.8,cos530.6︒=co853°=0.6)(1)运动员在空中飞行的时间t ;(2)A 、B 间的距离。

2.如图所示,在水平放置的平行导轨一端架着一根质量m =1kg 的金属棒ab ,导轨另一端通过导线与电源相连,该装置放在高h =0.2 m 的绝缘垫块上。

当有竖直向下的匀强磁场时,接通电源,金属棒ab 会被平抛到距导轨右端水平距离s =1m 处,试求接通电源后安培力对金属棒做的功(g 取10 m/s 2)。

3.设一个质量M =50 kg 的跳台花样滑雪运动员(可看成质点),从静止开始沿斜面雪道从A 点滑下,沿切线从B 点进入半径R =15m 的光滑竖直冰面圆轨道BPC ,通过轨道最高点C 水平飞出,经t =2s 落到斜面雪道上的D 点,其速度方向与斜面垂直,斜面与水平面的夹角θ=37°,不计空气阻力,取当地的重力加速度g=10m/s2,(sin37°=0.60,cos37°=0.80)。

试求:(1)运动员运动到C点时的速度大小v C;(2)运动员在圆轨道最低点受到轨道支持力的大小F N。

4.如图所示,长度为L=0.4m的轻绳,系一小球在竖直平面内做圆周运动,小球的质量为m=0.5kg,小球半径不计,g取10m/s2,求:(1)小球刚好通过最高点时的速度大小;(2)小球通过最高点时的速度大小为4m/s时,绳的拉力大小。

5.跳台滑雪是一种勇敢者的滑雪运动,运动员穿专用滑雪板,在滑雪道上获得一定速度后从跳台飞出,在空中飞行一段距离后着陆。

现有某运动员从跳台a处沿水平方向飞出,在斜坡b处着陆,如图所示。

物理二轮 第一部分 专题三 学案 力与物体的曲线运动

物理二轮  第一部分  专题三  学案  力与物体的曲线运动

巧学妙解王荣誉出品
(3)滑动摩擦力:Ff=μmg=1.0 N x 轴物体做匀速运动:Fx=Ff×0.6
专题三 学案4
y 轴物体做匀加速运动:对物体列牛顿第二定律公式: Fy -
本 学 案 栏 目 开 关
Ff×0.8=ma 解得:Fy=1.6 N.故 t=10 s 时刻水平外力的大小: F= Fx 2+Fy 2= 0.62+1.62 N=1.7 N
专题三 学案4
如图 1,质量 m= 2.0 kg 的物体在
水平外力的作用下在水平面上运动, 物体和水平面间的动摩擦因数 μ= 0.05,
本 学 案 栏 目 开 关
已知物体运动过程中的坐标与时间的关
x= 3.0tm 系为 2 y = 0.2 t m
图1
, g= 10 m/s2.
巧学妙解王荣誉出品
审题突破 ①画出两物体的运动示意图; ②确定两物体的位移关系; ③注意两物体的运动时间相等
本 学 案 栏 目 开 关
专题三 学案4
解析
设 B 物体沿斜面运动的位移为 L′.
对 B:L′=v2t 1 2 对 A:(L+L′)sin 37° =2gt (L+L′)cos 37° =v1t 将题中各组数据分别代入上述三式,可知只有 C 组数据使公式 成立,所以答案选 C.
答案 CD
巧学妙解王荣誉出品
突破练习
专题三 学案4
1.如图 2 甲所示,在杂技表演中,猴子沿竖直杆向上运动, 其 v-t 图象如图乙所示,人顶杆沿水平地面运动的 x-t 图 象如图丙所示.若以地面为参考系,下列说法中正确的是
本 学 案 栏 目 开 关
(
)
图2
巧学妙解王荣誉出品
A.猴子的运动轨迹为直线 B.猴子在 2 s 内做匀变速曲线运动 C.t=0 时猴子的速度大小为 8 m/s D.t=2 s 时猴子的加速度大小为 4 m/s2

2015届高考物理二轮复习学案:专题3 力与曲线运动(人教版)

2015届高考物理二轮复习学案:专题3 力与曲线运动(人教版)

能力呈现【考情分析】力与曲线运动是力学中非常重要的内容,是高考热点之一.高考中单独考查曲线运动的知识点时,题型为选择题;将曲线运动与功和能、电场和磁场综合时,题型为计算题.【备考策略】考查的知识点有:对平抛运动的理解及综合运用、运动的合成与分解思想方法的应用、竖直平面内圆周运动的理解和应用、天体的运动.在复习中,要将基础知识、基本概念与牛顿运动定律及功能原理相结合,抓住处理问题的基本方法即运动的合成与分解,灵活掌握常见的曲线运动模型即平抛运动和类平抛运动,掌握竖直平面内的圆周运动并判断完成圆周运动的临界条件.1. (多选)(2013·上海)如图所示,在平静海面上,两艘拖船A 、B 拖着驳船C 运动的示意图.A 、B 的速度分别沿着缆绳CA 、CB 方向,A 、B 、C 不在一条直线上.由于缆绳不可伸长,因此C 的速度在CA、CB方向的投影分别与A、B的速度相等.由此可知C的( )A. 速度大小可以介于A、B的速度大小之间B. 速度大小一定不小于A、B的速度大小C. 速度方向可能在CA和CB的夹角范围外D. 速度方向一定在CA和CB的夹角范围内2. (2013·南京盐城一模)如图所示,球网高出桌面H,网到桌边的距离为L.某人在乒乓球训练中,从左侧处,将球沿垂直于网的方向水平击出,球恰好通过网的上沿落到右侧桌边缘.设乒乓球运动为平抛运动.则( )A. 击球点的高度与网高度之比为2∶1B. 乒乓球在网左右两侧运动时间之比为2∶1C. 乒乓球过网时与落到桌边缘时速率之比为1∶2D. 乒乓球在左、右两侧运动速度变化量之比为1∶23. (2013·江苏)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A. 太阳位于木星运行轨道的中心B. 火星和木星绕太阳运行速度的大小始终相等C. 火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D. 相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积4. (多选)(2013·金陵中学)如图所示,小球m在竖直放置的光滑圆形管道内做圆周运动.下列说法中正确的有( )A. 小球通过最高点的最小速度为B. 小球通过最高点的最小速度为0C. 小球在水平线ab以下管道中运动时,外侧管壁对小球一定有作用力D. 小球在水平线ab以上管道中运动时,内侧管壁对小球一定有作用力能力巩固1. (多选)(2013·全国)公路急转弯处通常是交通事故多发地带.如图所示,某公路急转弯处是一圆弧,当汽车行驶的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势,则在该弯道处( )A. 路面外侧高、内侧低B. 车速只要低于v c,车辆便会向内侧滑动C. 车速虽然高于v c,但只要不超出某一最高限度,车辆便不会向外侧滑动D. 当路面结冰时,与未结冰时相比, v c的值变小2. (多选)(2013·江苏)如图所示,从地面上同一位置抛出两小球A、B,分别落在地面上的M、N点,两球运动的最大高度相同. 空气阻力不计,则( )A. B的加速度比A的大B. B的飞行时间比A的长C. B在最高点的速度比A在最高点的大D. B在落地时的速度比A在落地时的大3. (2013·福建)设太阳质量为M,某行星绕太阳公转周期为T,轨道可视为半径为r的圆.已知引力常量为G,则描述该行星运动的上述物理量满足( )A. GM=2324πrT B. GM=2224πrT C. GM=2234πrT D. GM=324πrT4. (2013·镇江一模)如图所示,质量为m的小物块在光滑的水平面上以v0向右做直线运动,经距离l后,进入半径为R的光滑半圆形轨道,从圆弧的最高点飞出,恰好落在出发点上.已知l=1.6 m,m=0.10kg,R=0.4 m,不计空气阻力,重力加速度取g=10 m/s2.(1) 求小物块运动到圆形轨道最高点时的速度大小以及此时小物块对轨道的压力.(2) 求小物块的初速度大小v0.(3) 若圆形轨道粗糙,则小物块恰能通过圆形轨道最高点.求小物块在这个过程中克服摩擦力所做的功.专题三力与曲线运动【能力摸底】1. BD2. D3. C4. BC【能力提升】例1 A例2 (1) 0.8 m (2) E k=3.25h例3 (1) T0=2π(2) 小球对盒子的右侧面和下侧面有作用力,大小分别为4mg和mg例4 (1) v Av Bv0≤…) 例5 D 例6 A 例7 ABD【能力巩固】1. AC2. CD3. A4. (1) 由平抛运动规律得竖直方向2R=12gt2,水平方向l=vt, 解得v=4 m/s.最高点F N+mg=m2v R,解得F N=3 N.由牛顿第三定律得,小物块对轨道的压力为3N,方向竖直向上.(2) 由动能定理-2mgR=12mv2-12m20v,解得v0m/s.(3) 最高点mg=m2'v R,由动能定理-2mgR-W克=12mv'2-12m20v,解得W克=0.6 J.。

安徽省2020年中考物理总复习模块四力学专题三力和运动(含参考答案)

安徽省2020年中考物理总复习模块四力学专题三力和运动(含参考答案)

安徽省2020年中考物理总复习:专题三力和运动4中考真题再现(?学用见P44~45 )探究规律对接中考命题点1惯性(必考)1.( 2018 •安徽第11题)下列说法正确的是(B )A.物体运动的速度越大,其惯性越大B.太阳能电池是把太阳能转化为电能的装置C.滑动摩擦力的大小与接触面的大小有关D.在液体中,流速越大的位置,压强越大2.( 2017 •安徽第6题)一个质量为500 g的货物,随“天舟一号”货运飞船升入太空。

与发射前相比较,该货物的惯性不变(选填“变大” “变小”或“不变”)。

3.( 2016 •安徽第16题)下列说法错误的是(C )A.标枪投掷出去后能继续飞行是标枪具有惯性的缘故B.短跑运动员到达终点时不能立刻停下来是自身惯性的表现C.跳远时助跑可以增大运动员的惯性,从而提高成绩D.质量越大的物体惯性越大4.( 2015 •安徽第13题)司机在驾驶汽车时必须要系上安全带,系上安全带可以(C )A.减小汽车的惯性,防止发生事故B.减小司机的惯性,防止发生事故C.减小因汽车突然减速造成的伤害D.减小因汽车突然加速造成的伤害命题点2物体的受力分析(必考)5.( 2019 •安徽第7题)图中物块甲和乙处于静止状态。

已知甲重12 N,乙重8 N,不计绳重及一切摩擦,则甲受到地面的支持力为 4 N6.( 2019•安徽第14题)如图所示,A B两物块叠放在水平桌面上保持静止。

图中分别给出了A、B的受力示意图。

下列说法正确的是(B )A.F2与G、F1两个力的合力是一对作用力与反作用力B.F1与F3是一对作用力与反作用力C.G与F2是一对平衡力D.F2与F1是一对平衡力【解析】物块A处于平衡状态,即F2与G、F1两个力的合力是一对平衡力,A项错误;B对A 的压力F1与A对B的支持力F3是一对相互作用力,B项正确;因为F2=G+F1,所以A的重力G A 与地面对A的支持力F2大小不相等,地面对A的支持力F2与B对A的压力F1大小不相等,均不是一对平衡力,C、D项错误。

微专题Ⅰ-3 力与曲线运动

微专题Ⅰ-3 力与曲线运动

3.(2022·辽宁高考)2022 年北京冬奥会短道速滑混合团体 2 000 米接 力决赛中,我国短道速滑队夺得中国队在本届冬奥会的首金。 (1)如果把运动员起跑后进入弯道前的过程看作初速度为零的匀加 速直线运动,若运动员加速到速度 v=9 m/s 时,滑过的距离 x= 15 m,求加速度的大小; (2)如果把运动员在弯道滑行的过程看作轨道为半圆的匀速圆周运动,如图所 示,若甲、乙两名运动员同时进入弯道,滑行半径分别为 R 甲 =8 m、R 乙 = 9 m,滑行速率分别为 v 甲 =10 m/s、v 乙 =11 m/s,求甲、乙过弯道时的向心 加速度大小之比,并通过计算判断哪位运动员先出弯道。
(2)理清“一过程”——即从最高点到最低点,往往由动能定理将这两点联系•陕西宝鸡质检)在 2022 年 3 月 23 日的“天宫课堂”上,航天
员王亚平摇晃装有水和油的小瓶,静置后水和油混合在一起没有分 层。随后航天员叶光富启动“人工离心机”,即用绳子一端系住装 有水油混合物的瓶子,以绳子的另一端 O 为圆心做如图所示的圆周 运动,一段时间后水和油成功分层(水的密度大于油的密度),以空间站为参考系,此 时A.( 水)和油的线速度大小相等 B.水和油的向心加速度大小相等 C.水对油的作用力大于油对水的作用力 D.水对油有指向圆心的作用力
()
A.1∶2 B.1∶3 C.2∶1 D.1∶4
解析:斜面倾角的正切值为
tan
α = xy =
12gt2= gt v0t 2v0

则运
动的时
间为
t=
2v0tan g
α,可知运动的时间与平抛运动的初速度有关,初速度变为原来的
2
倍,
则运动时间变为原来的 2 倍,所以时间比为 1∶2。平抛运动下落的竖直高度 h

物理曲线运动知识点

物理曲线运动知识点

物理曲线运动知识点
物理曲线运动是指物体在运动过程中,其轨迹呈曲线形状。

以下是关于曲线运动的一些关键知识点:
1. 曲线运动的条件:当物体所受的合外力方向与其速度方向不在同一直线上时,物体将做曲线运动。

2. 曲线运动的特点:
- 在曲线运动中,物体在某一点的瞬时速度方向与通过该点的曲线切线方向相同。

- 曲线运动一定是变速运动,因为速度方向不断变化。

- 做曲线运动的物体一定具有加速度,且合外力方向与速度方向不共线。

3. 曲线运动的合外力方向:在做曲线运动的物体中,合外力方向始终指向曲线的凹侧。

4. 曲线运动的判断:判断物体是否做曲线运动,关键是观察物体所受合力或加速度方向与速度方向的关系。

若两方向共线,则为直线运动;不共线则为曲线运动。

5. 曲线运动的速度方向:在曲线运动中,质点在某一点的速度方向就是曲线上该点的切线方向。

6. 曲线运动的轨迹:曲线永远在合外力和速度方向的夹角里,曲线相对合外力上凸,相对速度方向下凹。

物体在曲线运动过程中,其轨道向合力所指的方向弯曲。

7. 曲线运动的分析:在曲线运动中,要关注力与速度、加速度与速度的关系,以及速度与曲线切线的关系。

8. 运动的合成与分解:运动的合成是指将多个独立的分运动合成为一个整体运动;运动的分解则是将一个运动拆分为多个独立的分运动。

运动的合成与分解遵循矢量叠加原理,即平行四边形定则。

以上是关于物理曲线运动的一些基本知识点,希望对您有所帮助。

高中物理精品试题: 力与物体的曲线运动

高中物理精品试题: 力与物体的曲线运动

专题3 力与物体的曲线运动一、计算题1、利用万有引力定律可以测量天体的质量.(1)测地球的质量英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”.已知地球表面重力加速度为g,地球半径为R,引力常量为G.若忽略地球自转的影响,求地球的质量.(2)测“双星系统”的总质量所谓“双星系统”,是指在相互间引力的作用下,绕连线上某点O做匀速圆周运动的两个星球A和B,如图9所示.已知A、B间距离为L,A、B绕O点运动的周期均为T,引力常量为G,求A、B的总质量.(3)测月球的质量若忽略其他星球的影响,可以将月球和地球看成“双星系统”.已知月球的公转周期为T1,月球、地球球心间的距离为L1.你还可以利用(1)、(2)中提供的信息,求月球的质量.图92、神舟十号载人飞船进入近地点距地心为r1、远地点距地心为r2的椭圆轨道正常运行.已知地球质量为M,引力常量为G,地球表面处的重力加速度为g,飞船在近地点的速度为v1,飞船的质量为m.若取距地球无穷远处为引力势能零点,则距地心为r、质量为m的物体的引力势能表达式为E p=-,求:(1)地球的半径;(2)飞船在远地点的速度.3、据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v=7.7 km/s绕地球做匀速圆周运动,运动方向与太阳帆板两端M、N的连线垂直,M、N间的距离L=20 m,地磁场的磁感应强度垂直于v,MN所在平面的分量B=1.0×10-5 T,将太阳帆板视为导体.图1(1)求M、N间感应电动势的大小E;(2)在太阳帆板上将一只“1.5 V,0.3 W”的小灯泡与M、N相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R=6.4×103 km,地球表面的重力加速度g=9.8 m/s2,试估算“天宫一号”距离地球表面的高度h(计算结果保留一位有效数字).4、如图28所示,从A点以v0=4 m/s的水平速度抛出一质量m=1 kg的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入光滑圆弧轨道BC,经圆弧轨道后滑上与C点等高、静止在粗糙水平面的长木板上,圆弧轨道C端切线水平,已知长木板的质量M=4 kg,A、B两点距C点的高度分别为H=0.6 m、h=0.15 m,圆弧轨道半径R=0.75 m,物块与长木板之间的动摩擦因数μ1=0.5,长木板与地面间的动摩擦因数μ2=0.2,g取10 m/s2.已知sin 37°=0.6,cos 37°=0.8,求:图28(1)小物块运动至B点时的速度大小和方向;(2)小物块滑动至C点时,对圆弧轨道C点的压力;(3)长木板至少为多长,才能保证小物块不滑出长木板.5、某电视台“快乐向前冲”节目中的场地设施如图27所示,AB为水平直轨道,上面安装有电动悬挂器,可以载人运动,水面上漂浮着一个半径为R、角速度为ω,铺有海绵垫的转盘,转盘的轴心离平台的水平距离为L,平台边缘与转盘平面的高度差为H.选手抓住悬挂器,可以在电动机带动下,从A点下方的平台边缘处沿水平方向做初速度为零,加速度为a的匀加速直线运动.选手必须做好判断,在合适的位置释放,才能顺利落在转盘上.设人的质量为m(不计身高大小),人与转盘间的最大静摩擦力为μmg,重力加速度为g.图27(1)假设选手落到转盘上瞬间相对转盘速度立即变为零,为保证他落在任何位置都不会被甩下转盘,转盘的角速度ω应限制在什么范围?(2)若已知H=5 m,L=8 m,a=2 m/s2,g取10 m/s2,且选手从某处C点释放能恰好落到转盘的圆心上,则他是从平台出发后多长时间释放悬挂器的?6、如图8所示,滑板运动员从倾角为53°的斜坡顶端滑下,滑下的过程中他突然发现在斜面底端有一个高h =1.4 m、宽L=1.2 m的长方体障碍物,为了不触及这个障碍物,他必须在距水平地面高度H=3.2 m的A点沿水平方向跳起离开斜面(竖直方向的速度变为零).已知运动员的滑板与斜面间的动摩擦因数μ=0.1,忽略空气阻力,重力加速度g取10 m/s2.(已知sin 53°=0.8,cos 53°=0.6)求:图8(1)运动员在斜面上滑行的加速度的大小;(2)若运动员不触及障碍物,他从斜面上起跳后到落至水平面的过程所经历的时间;(3)运动员为了不触及障碍物,他从A点沿水平方向起跳的最小速度.7、我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1所示,质量m=60 kg的运动员从长直助滑道AB的A处由静止开始以加速度a=3.6 m/s2匀加速滑下,到达助滑道末端B时速度v B=24 m/s,A与B的竖直高度差H=48 m.为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5 m,运动员在B、C间运动时阻力做功W=-1530 J,g取10 m/s2.图1(1)求运动员在AB段下滑时受到阻力F f的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大?8、如图1所示,在竖直平面内有由圆弧AB和圆弧BC组成的光滑固定轨道,两者在最低点B平滑连接.AB弧的半径为R,BC弧的半径为.一小球在A点正上方与A相距处由静止开始自由下落,经A点沿圆弧轨道运动.(1)求小球在B、A两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C点.图19、在真空环境内探测微粒在重力场中能量的简化装置如图19所示.P是一个微粒源,能持续水平向右发射质量相同、初速度不同的微粒.高度为h的探测屏AB竖直放置,离P点的水平距离为L,上端A与P点的高度差也为h.图19(1)若微粒打在探测屏AB的中点,求微粒在空中飞行的时间;(2)求能被屏探测到的微粒的初速度范围;(3)若打在探测屏A、B两点的微粒的动能相等,求L与h的关系.10、如图16所示,半径为R=1 m内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m=1 kg的小球,在水平恒力F= N的作用下由静止沿光滑水平面从A点运动到B点,A、B两点间的距离x= m,当小球运动到B点时撤去外力F,小球经半圆管道运动到最高点C,此时球对外轨的压力F N=2.6mg,然后垂直打在倾角为θ=45°的斜面上D处(取g=10 m/s2)。

2020年高三物理选择题特训03 力学中的曲线运动(学生版)

2020年高三物理选择题特训03 力学中的曲线运动(学生版)

2020年高三物理选择题强化训练专题三力学中的曲线运动(原卷版)一、单选题1.(2017·全国卷Ⅰ)发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响)。

速度较大的球越过球网,速度较小的球没有越过球网;其原因是()A.速度较小的球下降相同距离所用的时间较多B.速度较小的球在下降相同距离时在竖直方向上的速度较大C.速度较大的球通过同一水平距离所用的时间较少D.速度较大的球在相同时间间隔内下降的距离较大2.(2018·全国卷Ⅲ,17)在一斜面顶端,将甲、乙两个小球分别以v和v2的速度沿同一方向水平抛出,两球都落在该斜面上。

甲球落至斜面时的速率是乙球落至斜面时速率的()A.2倍B.4倍C.6倍D.8倍3.如图所示,当汽车静止时,车内乘客看到窗外雨滴沿竖直方向OE匀速运动。

现从t=0时汽车由静止开始做甲、乙两种匀加速启动,甲启动后t1时刻,乘客看到雨滴从B处离开车窗,乙启动后t2时刻,乘客看到雨滴从F 处离开车窗,F为AB中点。

则t1∶t2为()A.2∶1B.1∶ 2C.1∶ 3D.1∶(2-1)4.如图所示,三个质量相等的小球A、B、C从图示位置分别以相同的速度v0水平向左抛出,最终都能到达坐标原点O。

不计空气阻力,x轴所在处为地面,则可判断A、B、C三个小球A.在空中运动过程中,重力做功之比为1:2:3B.在空中运动过程中,动量变化率之比为1:2:3C.初始时刻纵坐标之比为1:4:9D.到达O点时,速度方向与水平方向夹角的正切值之比为1:4:95.在水平地面上有相距为L的A、B两点,甲小球以v1=10 m/s的初速度,从A点沿与水平方向成30°角的方向斜向上抛出,同时,乙小球以v2的初速度从B点竖直向上抛出。

若甲在最高点时与乙相遇,重力加速度g取10 m/s2,则下列说法错误的是A.乙球的初速度v2一定是5 m/sB.相遇前甲球的速度可能小于乙球的速度C.L为2.53mD.甲球与乙球始终在同一水平面上6.如图所示,水平地面上有一光滑弧形轨道与半径为r的光滑圆轨道相连,且固定在同一个竖直面内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)由G=m,得v=,则r越大,v越小.
(2)由G=mω2r,得ω=,则r越大,ω越小.
(3)由G=mr,得T=,则r越大,T越大.
6.卫星变轨
(1)由低轨变高轨,需增大速度,稳定在高轨道上时速度比低轨道小.
(2)由高轨变低轨,需减小速度,稳定在低轨道上时速度比高轨道大.
1.竖直平面内圆周运动的最高点和最低点的速度关系通常利用动能定理来建立联系,然后结合牛顿第二定律进行动力学分析.
(单选)(2013·北京·19)在实验操作前应该对实验进行适当的分析.研究平抛运动的实验装置示意图如图4所示.小球每次都从斜槽的同一位置无初速度释放,并从斜槽末端水平飞出.改变水平板的高度,就改变了小球在板上落点的位置,从而可描绘出小球的运动轨迹.某同学设想小球先后三次做平抛运动,将水平板依次放在如图1、2、3的位置,且1与2的间距等于2与3的间距.若三次实验中,小球从抛出点到落点的水平位移依次为x1、x2、x3,机械能的变化量依次为ΔE1、ΔE2、ΔE3,忽略空气阻力的影响,下面分析正确的是()
答案AD
以题说法 1.运动的独立性是分析分运动特点的理论依据,本题中水平方向和竖直方向互不影响.
2.对于任意时刻的速度、位移或加速度情况,要把两方向的速度、位移或加速度用平行四边形定则合成后再分析.
(双选)物体在光滑水平面上,在外力F作用下的v-t图象如图2甲、乙所示,从图中可以判断物体在0~t4的运动状态()
设小球抛出时的初速度为v0,则到达B点时有tan60°=
水平位移与水平速度v0的关系为x=v0t,联立解得
v0=,选项B正确.
答案B
以题说法 1.处理平抛(或类平抛)运动的基本方法就是把运动分解为水平方向的匀速直线运动和竖直方向的匀加速直线运动,通过研究分运动达到研究合运动的目的.
2.要善于建立平抛运动的两个分速度和分位移与题目呈现的角度之间的关系,这往往是解决问题的突破口.
题型2平抛运动问题的分析
例2 (单选)如图3,一小球从一半圆轨道左端A点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B点.O为半圆轨道圆心,半圆轨道半径为R,OB与水平方向夹角为60°,重力加速度为g,则小球抛出时的初速度为()
图3
A.B.
C.D.解析平抛运动Fra bibliotek水平位移x=R+Rcos60°
解析根据水平方向的位移图象可知,质点水平方向做匀速直线运动,水平速度vx=m/s.根据竖直方向的速度图象可知,在竖直方向做匀加速直线运动,加速度a=1m/s2.前2s内质点处于失重状态,2s末质点速度为v=m/s>4m/s,选项A正确,B错误.质点的加速度方向竖直向下,与初速度方向不垂直,选项C错误.质点向下运动的过程中a=1m/s2<g,所以质点除受重力外,还受竖直向上的力作用,在质点斜向下做曲线运动过程中这个力做负功,故机械能减小,选项D正确.
2.对于平抛或类平抛运动与圆周运动组合的问题,应用合成与分解的思想分析这两种运动转折点的速度是解题的关键.
3.分析天体运动类问题的一条主线就是F万=F向,抓住黄金代换公式GM=gR2.
4.确定天体表面重力加速度的方法有:(1)测重力法;(2)单摆法;(3)平抛(或竖直上抛)物体法;(4)近地卫星环绕法.
(2)杆固定,物体能通过最高点的条件是v>0.
4.在处理天体的运动问题时,通常把天体的运动看成是匀速圆周运动,其所需要的向心力由万有引力提供.其基本关系式为G=m=mω2r=m()2r=m(2πf)2r.
在天体表面,忽略自转的情况下有G=mg.
5.卫星的绕行速度v、角速度ω、周期T与轨道半径r的关系
2.平抛运动
(1)规律:vx=v0,vy=gt,x=v0t,y=gt2.
(2)推论:做平抛(或类平抛)运动的物体
①任意时刻速度的反向延长线一定通过此时水平位移的中点;②设在任意时刻瞬时速度与水平方向的夹角为θ,位移与水平方向的夹角为φ,则有tanθ=2tan_φ.
3.竖直平面圆周运动的两种临界问题
(1)绳固定,物体能通过最高点的条件是v≥.
应考策略 熟练掌握平抛、圆周运动的规律,对平抛和圆周运动的组合问题,要善于由转折点的速度进行突破;熟悉解决天体运动问题的两条思路;灵活应用运动的合成与分解的思想,解决带电粒子在电场中的类平抛运动问题;对带电粒子在磁场内的匀速圆周运动问题掌握找圆心求半径的方法.

1.物体做曲线运动的条件
当物体所受合外力的方向跟它的速度方向不共线时,物体做曲线运动.合运动与分运动具有等时性、独立性和等效性.
甲乙
图2
A.物体一直在做曲线运动
B.在t1~t3时间内,合外力先减小后增大
C.在t1、t3时刻,外力F的功率最大
D.在t1~t3时间内,外力F做的总功为零
答案AD
解析由图象可知物体沿x方向做加速度时刻变化的变速直线运动,沿y方向做匀速直线运动,结合运动的合成知识可知物体做曲线运动,选项A正确;速度—时间图线的斜率表示加速度,在t1~t3时间内,物体的加速度先增大后减小,故合外力先增大后减小,选项B错误;t1、t3时刻,速度的变化率为0,物体的加速度为0,合外力F为0,故F的功率为0,选项C错误;t1时刻的合速度的大小与t2时刻合速度的大小相等,则t1~t3时间内,物体的动能变化为0,据动能定理知外力F做的总功为零,选项D正确.
专题定位 本专题解决的是物体(或带电体)在力的作用下的曲线运动的问题.高考对本专题的考查以运动组合为线索,进而从力和能的角度进行命题,题目情景新,过程复杂,具有一定的综合性.考查的主要内容有:①曲线运动的条件和运动的合成与分解;②平抛运动规律;③圆周运动规律;④平抛运动与圆周运动的多过程组合问题;⑤应用万有引力定律解决天体运动问题;⑥带电粒子在电场中的类平抛运动问题;⑦带电粒子在磁场内的匀速圆周运动问题;⑧带电粒子在简单组合场内的运动问题等.用到的主要物理思想和方法有:运动的合成与分解思想、应用临界条件处理临界问题的方法、建立类平抛运动模型方法、等效的思想方法等.
题型1运动的合成与分解问题
例1 (双选)质量为2kg的质点在竖直平面内斜向下做曲线运动,它在竖直方向的速度图象和水平方向的位移图象如图1甲、乙所示,下列说法正确的是()
甲乙
图1
A.前2s内质点处于失重状态
B.2s末质点速度大小为4m/s
C.质点的加速度方向与初速度方向垂直
D.质点向下运动的过程中机械能减小
相关文档
最新文档