应用随机过程教学大纲

合集下载

《应用随机过程》教学大纲

《应用随机过程》教学大纲

《应用随机过程》课程教学大纲课程代码:090541007课程英文名称:Applications Stochastic Processes课程总学时:40 讲课:40 实验:0 上机:0适用专业:应用统计学大纲编写(修订)时间:2017.6一、大纲使用说明(一)课程的地位及教学目标随机过程是现代概率论的一个重要的组成部分,其理论产生于上世纪初期,主要是由物理学、生物学、通讯与控制、管理科学等方面的需求而发展起来的。

它是研究事物的随机现象随时间变化而产生的情况和相互作用所产生规律的学科。

随机过程的理论为许多物理、生物等现象提供诸多数学模型,同时为研究这类现象提供了数学手段。

本课程为统计学专业的专业课程,通过本课程的学习,掌握随机过程的基本概念、基本理论、内容和基本方法,了解随机过程的重要应用,为后继课程学习提供知识准备,另一方面,随机过程的发展也是人们认识客观世界的一个重要组成部分,它有助于学生辩证唯物主义世界观的培养。

(二)知识、能力及技能方面的基本要求1.基本知识:通过本科程的学习,使学生掌握,要求学生掌握随机过程的基本概念、二阶矩过程的均方微积分、马尔可夫过程的基本理论、平稳过程的基本理论、鞅和鞅表示、维纳过程、Ito定理、随机微分方程等理论和方法。

2.基本能力:通过本课程的学习,使学生能较深刻地理解随机过程的基本理论、思想和方法,并能应用其解决实践中遇到的随机问题,从而提高学生的数学素质,加强学生开展科研工作和解决实际问题的能力。

3.基本技能:掌握建立随机数学模型、分析和解决问题方面的技能,为进一步自学有关专业应用理论课程作好准备。

(三)实施说明本大纲是根据沈阳理工大学关于制订本科教学大纲的原则意见专门制订的。

在制订过程中参考了其他学校相关专业应用随机过程教学大纲。

本课程思维方式独特,还需要学生有较高的微积分基础,教学中应注意概率意义的解释和学生基础情况的把握,处理好抽象与具体,偶然与必然、一维与多维,理论与实践的关系。

(完整word版)应用随机过程教学大纲

(完整word版)应用随机过程教学大纲

(完整word版)应⽤随机过程教学⼤纲《应⽤随机过程A》课程教学⼤纲课程编号: L335001 课程类别:专业限选课适⽤专业:统计学专业学分数:3学分学时数: 48学时应修(先修)课程:数学分析、概率统计、微分⽅程、⾼等代数⼀、本课程的地位和作⽤应⽤随机过程是数学与应⽤数学专业的专业限选课程,是统计学专业的专业课程之⼀。

随机过程是研究客观世界中随机演变过程规律性的学科,随机过程的研究对象为随时间变化的随机现象,即随时间不断变化的随机变量,通常被视为概率论的动态部分。

随着科学技术的发展,它已⼴泛地应⽤于通信、控制、⽣物、地质、经济、管理、能源、⽓象等许多领域,国内外许多⾼等⼯科院校在研究⽣中设此课程,⼤量⼯程技术⼈员对随机分析的⽅法也越来越重视。

通过本课程的学习,使学⽣初步具备应⽤随机过程的理论和⽅法来分析问题和解决问题的能⼒。

⼆、本课程的教学⽬标使学⽣掌握随机过程的基本知识,通过系统学习,学⽣的概率理论数学模型解决随机问题的能⼒得到更加进⼀步的提⾼,特别在经济应⽤上,通过本课程的学习,可以让数学专业的学⽣很⽅便地转向在⾦融管理、电⼦通讯等应⽤领域的研究。

三、课程内容和基本要求”记号标记既(⽤“*”记号标记难点内容,⽤“?”记号标记重点内容,⽤“*是重点⼜是难点的内容。

)第⼀章预备知识1.教学基本要求(1)掌握概率空间, 随机变量和分布函数, 矩母函数和特征函数的概念和相关性质。

(2)掌握条件概率, 条件期望和独⽴性的概念和相关性质。

(3)了解概率中收敛性的概念和相互关系。

2.教学内容(1)概率空间(2)▽随机变量和分布函数(3)▽*数字特征、矩母函数和特征函数(4)▽*条件概率、条件期望和独⽴性(5)收敛性第⼆章随机过程的基本概念和类型1.教学基本要求(1)掌握随机过程的定义。

(2)了解有限维分布族和Kolmogorov定理。

(3)掌握独⽴增量过程和独⽴平稳增量过程概念。

2.教学内容(1)基本概念(2)▽*有限维分布和Kolmogorov定理(3)▽随机过程的基本类型第三章 Poisson过程1.教学基本要求(1)了解计数过程的概念。

《应用随机过程》教学大纲

《应用随机过程》教学大纲

《应用随机过程》教学大纲英文名称Stochastic Process课程代码0212713适用对象研究生统计学、数量经济学类专业先修课程数学分析、概率论与数理统计考考试方式课程论文一、课程的性质、教学目的和要求(一)性质和目的随机过程是研究随机变量在时间参数的变化过程中所呈现出的统计规律性的一门学科,具有较高的理论和应用价值,是研究生相关专业的选修课。

本课程着重学习在经济金融领域中有较高应用价值的一些内容,如随机过程的基本概念和基本类型,泊松过程,更新过程,马尔可夫链,鞅,等基础知识,从而为学生学习后继课程和毕业论文打下必要的基础。

(二)教学方法主要是理论教学,采取多媒体辅助教学。

(三)教学安排本课程总学时48学时,其中习题课6学时。

二、课程内容和学时分配第一章金融领域中的数学模型(5节)教学重点:资产组合和期权定价理论及套利定价难点:期权定价理论和套利定价第一节债券和利率第二节证券市场和股票的波动第三节资产组合第四节期权定价理论和套利定价第二章随机过程(6节)教学重点:随机过程基本概念难点:Poisson过程第一节随机过程的基本概念第二节随机过程的数字特征第三节离散时间和离散型随机过程第四节正态随机过程第五节 Poisson过程第六节平稳随机过程第三章 Poisson过程(6)教学重点:Poisson过程的几个等价定义难点:更新过程第一节齐次Poisson过程到达时间间隔与等待时间的分布第二节非齐次Poisson过程和复合Poisson过程第三节年龄与剩余寿命第四节更新过程第四章离散参数Markov链(9)教学重点:Markov链在金融中的应用难点:状态空间的分解第一节Markov链的基本概念第二节 Chapman-Kolmogorov方程第三节 Markov链的状态分类第四节闭集与状态空间的分解第五节转移概率的极限状态与平稳分布第六节从随机游动到Black-Scholes公式第七节 Markov链在金融、经济中的应用举例第五章连续时间Markov链(3节)教学重点:生灭过程难点:极限定理第一节连续时间Markov链的定义第二节极限定理和Kolmogorov方程第三节生灭过程第四节生灭过程与股票价格过程第六章 Brown运动(9节)教学重点:Brown运动的推广难点:Brown运动联合分布第一节 Brown运动的背景及应用第二节 Brown运动的定义及基本性质第三节 Brown运动的推广第四节标准Brown运动的联合分布第五节 Brown运动的首中时及最大值第六节 Brown运动轨道的性质第七节 Brown运动在金融、经济中的应用举例第八节 Poisson过程在证券价格波动中的应用第七章鞅及其应用(6节)教学重点:条件期望即鞅的应用难点:随机微分方程第一节鞅的定义及其性质第二节上鞅、下鞅及分解定理第三节停时与停时定理第四节条件期望的投影性及鞅的应用三、教科书和参考书(一)教科书《随机过程及其在金融领域中的应用》王军王娟主编清华大学出版社2007。

随机过程教学大纲

随机过程教学大纲

随机过程教学大纲一、引言随机过程是研究随机现象在时间上的演化规律的数学模型。

其应用十分广泛,例如通信、信号处理、金融、风险管理、天气预报等领域都有涉及。

因此,对随机过程有深入的理解是非常重要的。

本课程旨在介绍随机过程的基本概念、分类、特性以及一些重要的应用。

课程将以数学公式和实例相结合的方式,让学生彻底掌握随机过程的基本知识和应用技巧。

二、课程大纲1. 随机变量及其分布•随机变量的概念与性质•离散型和连续型随机变量•随机变量的分布函数•重要离散分布:二项分布、泊松分布•重要连续分布:正态分布、指数分布2. 随机过程基础•随机过程的概念和性质•二阶矩、平均值和自相关函数•马尔可夫过程和其性质•香农熵3. 系统建模•随机过程的建模方法•马尔可夫链、隐马尔可夫模型•系统状态空间的建模4. 随机过程的统计特性•期望和方差•过程的独立性与相关性•协方差和谱密度•平稳过程和短程相关性5. 应用实例•随机信号处理•随机过程在自然界中的应用•随机过程在金融分析中的应用•随机过程在通信中的应用三、教学方法•课堂讲授:介绍随机过程的基本知识和应用实例。

•课程作业:通过编写随机过程的程序或仿真实验,让学生深入理解随机过程的数学模型,并且培养学生的实际操作能力。

•翻转课堂:通过在线视频或录播课程来辅助教学,学生可以在家庭作业或个人学习时间内预习相关的知识点,提高学生的学习效率。

四、考核方式•平时成绩:包括课堂参与、作业完成情况、电话网代表机考试参与情况等。

•期末考核:课程结束后将进行一次考试,考核学生对随机过程的基本知识和应用能力。

•个人报告:学生需要在课程结束前提交一份随机过程在其专业领域应用的调研报告。

五、教材和参考书教材《随机过程导论》(第四版),高杨、李可等,清华大学出版社,2015年。

参考书《随机过程与信号处理》(第三版),J.F.Kingman等,科学出版社,2000年。

《随机过程及其应用》(第二版),S.M. Ross著,中国工业出版社,2011年。

《应用随机过程》教学大纲

《应用随机过程》教学大纲

《应用随机过程》教学大纲应用随机过程教学大纲一、课程简介《应用随机过程》是一门应用性较强的数学课程,主要介绍了随机过程及其在实际问题中的应用。

随机过程是对随机变量的研究,是概率论的一个重要分支。

通过本课程的学习,学生可以了解随机过程的基本概念、性质和常见的应用领域,并能够运用所学知识解决实际问题。

二、教学目标1.掌握随机过程的基本概念、性质和常用模型。

2.学会应用随机过程解决实际问题,如排队论、信号处理等。

3.培养学生的数学建模能力和分析问题的能力。

三、教学内容1.随机过程的基本概念1.1随机过程的定义1.2随机过程的分类1.3随机过程的性质2.随机过程的常见模型2.1马尔可夫链2.2马尔可夫过程2.3泊松过程2.4随机游动3.应用随机过程解决实际问题3.1排队论3.1.1M/M/1模型3.1.2M/M/s模型3.1.3M/M/1队列的平稳分析3.2信号处理3.2.1随机信号的表示3.2.2自相关函数与功率谱密度3.2.3高斯过程与线性系统四、教学方法1.理论讲解:通过课堂讲解,介绍随机过程的基本概念、性质和常见模型。

2.实例分析:针对不同应用实际问题,引导学生运用所学知识解决实际问题。

3.课堂讨论:设置讨论环节,鼓励学生主动参与,提出问题并进行交流和讨论。

4.课后作业:布置随堂练习和课后作业,巩固学生对所学内容的理解和运用能力。

五、教学评价1.平时成绩:包括作业完成情况、课堂表现等。

2.期中考试:考查学生对基本概念和性质的掌握。

3.期末考试:综合考查学生对整个课程的理解和应用能力。

六、参考教材1. Sheldon M. Ross,《随机过程学》2.吴建平,李荣华,李云龙,《随机过程与应用》七、教学时长本课程共计48学时,其中理论课程36学时,实践课程12学时。

随机过程教学大纲

随机过程教学大纲

随机过程教学大纲一、引言(100字)1.1随机过程的概念和应用1.2随机过程与确定性过程的区别1.3随机过程的分类和性质二、概率论回顾(200字)2.1概率空间和随机变量2.2概率分布函数和密度函数2.3数学期望和方差2.4大数定律和中心极限定理三、随机过程的基本概念(200字)3.1随机过程的定义和性质3.2随机过程的样本函数3.3有限维分布和联合分布3.4随机过程的平稳性四、马尔可夫过程(250字)4.1马尔可夫过程的定义和性质4.2离散时间和连续时间马尔可夫过程4.3马尔可夫链的平稳分布4.4马尔可夫链的转移概率矩阵五、泊松过程(250字)5.1泊松过程的定义和性质5.2泊松过程的计数过程和插值过程5.3泊松过程的有限维分布5.4泊松过程在实际应用中的例子六、连续时间马尔可夫链(200字)6.1连续时间马尔可夫链的定义和性质6.2连续时间马尔可夫链的转移概率矩阵6.3连续时间马尔可夫链的平稳分布6.4连续时间马尔可夫链的生成函数七、布朗运动(250字)7.1布朗运动的定义和性质7.2布朗运动的性质和假设7.3布朗运动的微分方程表示和伊藤引理7.4布朗运动的应用八、维纳过程(200字)8.1维纳过程的定义和性质8.2维纳过程的性质和应用8.4维纳过程的泛函九、马尔可夫跳跃过程(250字)9.1马尔可夫跳跃过程的定义和性质9.2马尔可夫跳跃过程的转移概率矩阵9.3马尔可夫跳跃过程的数学期望和方差9.4马尔可夫跳跃过程的应用十、随机过程的极限定理(200字)10.1大数定律的随机过程版本10.2中心极限定理的随机过程版本10.3随机过程的强、弱和均方收敛十一、应用案例分析(200字)11.1金融领域中的随机过程应用11.2通信领域中的随机过程应用11.3生物医学领域中的随机过程应用11.4工程领域中的随机过程应用十二、总结与展望(100字)12.1随机过程的关键概念和理论12.2随机过程的应用前景12.3随机过程进一步学习的方向以上是一份关于随机过程教学大纲的简要介绍。

《应用随机过程》-课程教学大纲

《应用随机过程》-课程教学大纲

《应用随机过程》课程教学大纲一、课程基本信息课程代码:16055502课程名称:应用随机过程英文名称:Applied Stochastic Processes课程类别:专业课学时:32学分: 2适用对象:财经类专业本科生考核方式:考试先修课程:微积分、线性代数、概率论二、课程简介中文简介紧抓课程改革核心环节,不断提升教学质量,将“课程思政”作为融合德育与智育的融合主渠道,是逐步实现“立德树人”的综合教育理念的前进方向。

《应用随机过程》是面向经济统计专业三年级学生开设的一门必修课,随机过程通常被视为概率论的动态部分,即研究的是随机现象的动态特征,着重对随时间和空间变化的随机现象提出各种不同的模型并研究其内在的性质与相互联系。

具有较强的理论性。

该学科在社会科学、自然科学、经济和管理等各个领域中都有广泛的应用,培养学生的科学精神,探索自然和人类的奥秘。

英文简介The course Applied Stochastic Processes is one of the compulsory courses for the junior undergraduates majoring in Economic Statistics,which is usually viewed as the dynamic part of probability theories. It focuses on the dynamic feature of stochastic phenomena and emphasizes modeling the stochastic phenomena varying with time and space .Moreover,it explores the inner property and relationship among various models and it is quite theoretical and widely used in social science,natural science,Economic and management science etc.三、课程性质与教学目的本课程是经济统计专业一门应用性很强的专业课。

《应用随机过程》课程教学大纲 - 南京财经大学教务处

《应用随机过程》课程教学大纲 - 南京财经大学教务处

《随机过程》课程教学大纲适用专业:数学与应用数学执笔人:肖丽华审定人:王宏勇系负责人:张从军南京财经大学应用数学系《随机过程》课程教学大纲课程代码:300069英文名:Stochastic Processes课程类别:专业选修课适用专业:数学与应用数学前置课:数学分析、线性代数、概率论、数理统计后置课:学分:2学分课时:54课时主讲教师:孙春燕等选定教材:刘次华,随机过程(第二版)[M],武汉:华中科技大学出版社,2001.课程概述:随机过程是数学与应用数学专业继数学分析、线性代数、概率论、数理统计后的一门专业课程。

随机过程是研究客观世界中随机演变过程的规律性,是以概率论为基础且是概率论的深入与发展的一门学科。

它在控制、经济、金融和管理等方面应用极为广泛。

教学目的:通过随机过程理论知识的学习,达到培养学生解决实际问题,特别是解决具体随机规律现象的问题能力,学生学习这门课程应该达到三个目标。

(1)建立随机过程的思维方法。

(2)掌握随机问题的统计特性及数学模型。

(3)通过经济、金融及管理等专业相关例题的讨论,初步掌握应用随机过程理论来分析问题和解决问题的能力。

教学方法:本课程采用“引出问题,建立模型,理论分析,课堂讨论,实际应用,总结提高”的教学方式,使学生在掌握随机过程基本理论、思想和方法的基础上,力求活跃思考,理论结合实际地进行学习、分析、归纳、提炼和解决问题,提高他们的数学素质和数学修养,提升他们开展科技活动和社会实践的能力以及开展科研工作的能力。

各章教学要求及教学要点第一章预备知识学时分配:6学时教学要求:补充和加强概率论知识。

理解母函数的概念,掌握母函数的方法;掌握特征函数的定义及性质,了解特征函数与分布函数一一对应的关系。

教学内容:第一节概率空间一、随机试验。

二、样本空间。

三、事件及概率空间的定义。

第二节随机变量及其分布一、分布函数。

二、联合分布函数及其性质。

第三节随机变量的数字特征一、随机变量的数学期望及其性质。

教学大纲_随机过程

教学大纲_随机过程

教学大纲_随机过程一、课程名称:随机过程二、教学目标:1.了解随机过程的基本概念和特性;2.掌握随机过程的数学表示和描述方法;3.能够分析和应用随机过程的统计特性和性质;4.能够熟练运用随机过程解决实际问题;5.培养学生的分析和解决问题的能力。

三、教学内容:1.随机过程的基本概念a.随机过程的定义与分类;b.随机过程的样本函数和样本空间;c.随机过程的状态集合和转移概率。

2.随机过程的数学表示a.随机变量序列和随机过程的关系;b.随机过程的独立增量和平稳性;c.随机过程的马尔可夫性质。

3.随机过程的统计特性a.随机过程的均值和方差;b.随机过程的相关函数和自相关函数;c.随机过程的功率谱密度。

4.随机过程的性质与分析方法a.马尔可夫链和马尔可夫过程;b.稳态与瞬态分析方法;c.随机过程的极限性质。

5.随机过程在实际问题中的应用a.随机过程模型的建立;b.排队论中的应用;c.通信系统中的应用;d.金融风险评估中的应用。

四、教学方法:1.理论讲授:通过授课的方式,向学生介绍随机过程的基本概念、数学表示、统计特性和性质,并分析其应用。

2.示例分析:通过实例,引导学生分析和应用随机过程解决实际问题,提高学生的问题分析和解决能力。

3.研讨讲解:组织学生讨论、交流和分享相关的案例和经验,加深对随机过程的理解和应用。

4.实践操作:引导学生运用相关的数学工具和计算机软件,进行随机过程的建模和分析,培养学生的实际操作能力。

五、教材和参考书籍:。

应用随机过程-教学大纲

应用随机过程-教学大纲

《应用随机过程》教学大纲“Applied Stochastic Process” Course Outline课程编号:152063A课程类型:专业选修课总学时:48 讲课学时:48 实验(上机)学时:0学分:3适用对象:经济学、管理学、统计学、金融学等先修课程:概率论与数理统计、线性代数、微积分Course Code: 152063ACourse Type: Discipline basic coursePeriods: 48 Lecture: 48 Experiment (Computer): 0Credits: 3Applicable Subjects:Economics, Management, Statistics, Finance etc.Preparatory Courses: Probability and Mathematical Statistics, Linear Algebra, Mathematical Analysis一、课程的教学目标这是一门向经济学和管理学相关专业本科生介绍随机过程的理论方法和实际应用的专业选修课程。

本课程在学生已经扎实掌握概率论和数理统计基础知识的前提下,介绍随机过程中的基本概念和结果。

本课程主要训练学生的如下能力:(1)灵活组合运用微积分,线性代数和概率论解决数学问题的能力;(2)进一步的抽象思维和符号运算能力;(3)把实际问题抽象为理论模型,再把理论结果结合实际情况进行解释的能力;(4)利用计算机和MATLAB软件解决复杂计算问题和无解析解的问题的能力。

学习完本课程后,学生们能对随机过程及其应用有基本的认识,并且具有今后进一步学习高级随机过程理论,现代金融工程和随机控制理论和从事相关工作的专业基础。

The course of Applied Stochastic Process introduces theory and application of stochastic process to undergraduate students. Students are assumed to have already finished their study of undergraduate level probability and statistics. Students train thefollowing abilities this course: (1) methodologically applying calculus, linear algebra and probability theory to new mathematical problems; (2) advanced logical reasoning and symbol handling; (3) building mathematical models from real world problems, and then translating mathematical results back to fit the original question; (4) employing computers and MATLAB software to solve computationally complexed problems and/or problems without closed form solution. Upon finishing the course, students can gain a basic understanding of the theory and application of stochastic process, and build a foundation for studying advanced stochastic process theory, modern financial engineering and stochastic control theory, as well as performing relevant work.二、教学基本要求本课程讲述随机过程的基础理论结果及其应用。

随机过程教学大纲

随机过程教学大纲

《随机过程》课程教学大纲一 课程说明1.课程基本情况课程名称:应用随机过程英文名称:Applications Random Process课程编号:2411223开课专业:数学与应用数学专业开课学期:第6学期学分/周学时:3/3课程类型:专业方向选修课2.课程性质(本课程在该专业的地位作用)《应用随机过程》是面向数学与应用数学专业(应用数学方向)三年级学生开设的一门任选课,随机过程通常被视为概率论的动态部分,即研究的是随机现象的动态特征。

着重对随时间和空间变化的随机现象提出各种不同的模型并研究其内在的性质与相互联系,具有较强的理论性。

该学科在社会科学、自然科学、经济和管理等各个领域中都有广泛的应用。

3.本课程的教学目的和任务通过本课程的学习,使学生能较深刻地理解随机过程的基本理论、思想和方法,并能应用其解决实践中遇到的随机问题,从而提高学生的数学素质,加强学生开展科研工作和解决实际问题的能力。

提高学生在建立随机数学模型、分析和解决问题方面的水平和能力,为进一步自学有关专业应用理论课程作好准备。

4.本课程与相关课程的关系、教材体系特点及具体要求先修课程:微积分、概率论。

掌握随机过程及其有限维分布、数字特征、几种重要的随机过程等基本概念;掌握马尔可夫过程的定义及性质、马氏链的状态分类、平稳性和遍历性及连续时间马氏链的基本理论;理解平稳过程的概念、相关函数的性质,掌握遍历性定理、相关函数的谱分解、平稳过程的预报.了解维纳过程、了解均方微分、积分等概念和方法;Ito公式;初步领会随机微分方程在金融中的应用.5.教学时数及课时分配章(专题)主要内容学时安排第一部分预备知识5第二部分随机过程的基本概念6第三部分 平稳过程5第四部分Possion过程10第五部分更新过程4第六部分Markov链18第七部分Brown运动与随机积分简介6合计学时54二 教材及主要参考书1、张波,商豪. 应用随机过程(第二版). 中国人民大学出版社,20092、张波 编著. 应用随机过程. 中国人民大学出版社, 2001钱敏平、龚光鲁 著. 应用随机过程. 北京大学出版社, 19984、方兆本、缪柏其 著. 随机过程. 中国科技大学出版社, 1993王寿仁 编著. 概率论基础和随机过程. 北京科学出版社, 1997三 教学方法和教学手段说明本课程虽然归属理论课,但具有很强的应用性,在教学过程中应注意引导学生从传统的确定性思维模式进入随机性思维模式,注意理论联系实际,从实际问题出发,通过抽象、概括,引出新概念、新方法。

应用随机过程教学大纲

应用随机过程教学大纲

应用随机过程教学大纲一、课程概述(150字)本课程是关于随机过程的基础教育课程,旨在介绍随机过程的基本概念、特性和应用。

通过本课程的学习,学生将掌握随机过程的基本理论,了解其在不同领域的应用,并具备分析和解决相关问题的能力。

本课程将包括理论课讲授、案例分析和实践操作等学习环节,以帮助学生理论与实践相结合,提高综合能力。

二、教学目标(200字)1.理解随机过程的基本概念和分类,掌握随机过程的数学模型和描述方法;2.掌握随机变量和随机过程的性质及其在实际问题中的应用;3.理解马尔可夫性和马尔可夫链的概念,能进行马尔可夫链的分析和应用;4.学习常见的随机过程,如泊松过程、布朗运动等,了解其特性和应用;5.培养学生的数理思维和解决问题的能力,提高其应用随机过程的能力。

三、教学内容(500字)1.随机过程的基本概念1.1随机试验和随机事件1.2随机变量和随机过程的关系1.3随机过程的分类和性质1.4随机过程的数学模型和描述方法2.马尔可夫链2.1马尔可夫性和马尔可夫链的定义2.2马尔可夫链的平稳分布和转移概率矩阵2.3马尔可夫链的有限性和无爆炸性2.4马尔可夫链的应用实例3.常见随机过程3.1泊松过程的定义和性质3.2随机过程的二阶性质和功率谱密度3.3随机过程的自相关和互相关3.4布朗运动的定义和应用4.应用案例分析4.1随机过程在金融领域的应用4.2随机过程在通信系统的应用4.3随机过程在生物系统的应用4.4随机过程在工程控制领域的应用四、教学方法(150字)1.理论讲授:通过课堂讲授,介绍随机过程的基本概念和理论,讲解数学模型和描述方法,并配以实例进行说明,以帮助学生建立起正确的理论基础。

2.案例分析:通过具体案例分析,将理论知识与实际问题相结合,让学生能够将所学的知识应用于实际,提高解决问题的能力。

3.实践操作:利用仿真软件和编程工具,进行随机过程的模拟和分析,培养学生的实际操作能力和数据分析能力。

应用随机过程教学大纲

应用随机过程教学大纲

遵义师范学院课程教学大纲应用随机过程教学大纲(试行)课程编号:280020 适用专业:统计学学时数:48 学分数:执笔人:黄建文审核人:系别:数学教研室:统计学教研室编印日期:二〇一五年七月课程名称:应用随机过程课程编码:学分:总学时:48课堂教学学时:32实践学时:16适用专业:统计学先修课程:高等数学、线性代数、概率论、测度论或者实变函数(自学)一、课程的性质与目标:(一)该课程的性质《应用随机过程》课程是普通高等学校统计学专业必修课程。

它是在学生掌握了数学分析、线性代数和概率论等一定的数学专业理论知识的基础上开设的,要求学生掌握随机过程的基本理论和及其研究方法。

(二)该课程的教学目标(1)从生活中的需要出发,结合研究随机现象客观规律性的特点,并根据随机过程的内容和知识结构,着重从随机过程的基本理论和基本方法出发,就实际应用中的典型随机过程做应用研究,并在理论、观点和方法上予以总结、提高及应用。

(2)对各个章节的教学,随机过程侧重于基本思想和基本方法的探讨,介绍随机过程的基本概念,建立以分布函数等研究相关问题概率的实际应用思路,寻求解决统计和随机过程问题的方法。

着重基本思想及方法的培养和应用。

(3)结合学生实际,利用生活中的实例进行分析,培养学生的辩证唯物主义观点。

二、教学进程安排课外学习时数原则上按课堂教学时数1:1安排。

三、教学内容与要求 第一章 预备知识 【教学目标】通过本章的学习,复习并扩展概率论课程的内容,为学习随机过程打下良好的基础,提供必备的数学工具。

【教学内容和要求】随机过程以概率论为其主要的基础知识,为此,本章主要对概率空间;随机变量与分布函数;随机变量的数字特征、矩母函数与特征函数;独立性和条件期望;随机变量序列的收敛性与极限定理等常用到的概率论基本知识作简要的回顾和扩展。

其中概率空间,矩母函数和特征函数的定义及性质、条件期望、收敛性、极限定理等既是本章的重点,又是本章的难点。

随机过程教学大纲

随机过程教学大纲

随机过程教学大纲随机过程教学大纲随机过程是概率论和数理统计中的一个重要分支,它研究的是随机变量随时间的演化规律。

在现代科学和工程领域中,随机过程的应用广泛而深入。

为了更好地教授随机过程,以下是一个可能的教学大纲。

第一部分:基础概念和定义1. 随机变量回顾- 随机变量的定义和性质- 离散随机变量和连续随机变量- 期望和方差的计算2. 随机过程的引入- 随机过程的定义和基本概念- 样本函数和样本空间- 时域和状态空间的描述3. 随机过程的分类- 马尔可夫性质和马尔可夫链- 随机过程的平稳性质- 随机过程的连续性和间断性第二部分:随机过程的分析方法1. 随机过程的数学描述- 随机过程的概率密度函数和概率分布函数- 随机过程的联合分布和条件分布- 随机过程的矩和生成函数2. 随机过程的统计特性- 平均值和自相关函数- 协方差和互相关函数- 自相关函数和互相关函数的性质3. 随机过程的时间平均和集合平均- 时间平均和集合平均的定义- 强大数定律和中心极限定理- 时间平均和集合平均的关系第三部分:常见的随机过程模型1. 马尔可夫链- 离散时间马尔可夫链的定义和性质- 连续时间马尔可夫链的定义和性质- 马尔可夫链的平稳分布和转移概率矩阵2. 随机游走- 离散时间和连续时间随机游走的定义 - 随机游走的平稳分布和转移概率- 随机游走的应用举例3. 泊松过程- 泊松过程的定义和性质- 泊松过程的计数过程和间隔时间- 泊松过程的应用举例第四部分:随机过程的应用领域1. 通信系统中的随机过程- 随机过程在通信信号中的应用- 随机过程在信道建模中的应用- 随机过程在通信系统性能分析中的应用2. 金融市场中的随机过程- 随机过程在金融市场模型中的应用- 随机过程在期权定价中的应用- 随机过程在风险管理中的应用3. 生物系统中的随机过程- 随机过程在遗传学研究中的应用- 随机过程在生物网络建模中的应用- 随机过程在生物进化分析中的应用结语:通过本教学大纲,学生将能够全面了解随机过程的基础概念和定义,掌握随机过程的分析方法,熟悉常见的随机过程模型,并了解随机过程在不同领域的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遵义师范学院课程教学大纲应用随机过程教学大纲(试行)课程编号:280020 适用专业:统计学学时数:48 学分数:____________ 2.5_______执笔人:黄建文审核人:_____________________系别:数学教研室:统计学教研室编印日期:二◦一五年七月课程名称:应用随机过程课程编码:学分:2.5 总学时:48 课堂教学学时:32 实践学时:16 适用专业:统计学先修课程:高等数学、线性代数、概率论、测度论或者实变函数(自学)一、课程的性质与目标:(一)该课程的性质《应用随机过程》课程是普通高等学校统计学专业必修课程。

它是在学生掌握了数学分析、线性代数和概率论等一定的数学专业理论知识的基础上开设的,要求学生掌握随机过程的基本理论和及其研究方法。

(二)该课程的教学目标(1)从生活中的需要出发,结合研究随机现象客观规律性的特点,并根据随机过程的内容和知识结构,着重从随机过程的基本理论和基本方法出发,就实际应用中的典型随机过程做应用研究,并在理论、观点和方法上予以总结、提高及应用。

(2)对各个章节的教学,随机过程侧重于基本思想和基本方法的探讨,介绍随机过程的基本概念,建立以分布函数等研究相关问题概率的实际应用思路,寻求解决统计和随机过程问题的方法。

着重基本思想及方法的培养和应用。

(3)结合学生实际,利用生活中的实例进行分析,培养学生的辩证唯物主义观点。

二、教学进程安排三、教学内容与要求第一章预备知识【教学目标】通过本章的学习,复习并扩展概率论课程的内容,为学习随机过程打下良好的基础,提供必备的数学工具。

【教学内容和要求】随机过程以概率论为其主要的基础知识,为此,本章主要对概率空间;随机变量与分布函数;随机变量的数字特征、矩母函数与特征函数;独立性和条件期望;随机变量序列的收敛性与极限定理等常用到的概率论基本知识作简要的回顾和扩展。

其中概率空间,矩母函数和特征函数的定义及性质、条件期望、收敛性、极限定理等既是本章的重点,又是本章的难点。

【课外阅读资料】《应用随机过程》,林元烈编,清华大学出版社。

【作业】0, x W01. 已知连续型随机变量X的分布函数为F(x) = *Aarcsinx, 0<xv1,1, x纣(1)求常数A ;(2)求P(1/2乞X「3/2);(3)求X的概率密度函数f (x).2. 已知二维连续型随机变量(X,Y)的联合概率密度函数为f(x,y「,0其J y,I 0, 其它(1) 求概率P (x •丫乞1);(2) 分别求出(X,Y )关于X 、Y 的边缘密度函数f x (x )、f Y (y ),并判断X,Y 是否 独立。

3.已知一母鸡所下蛋的个数 X 服从参数为■的泊松分布,即 X 的分布律为-k二P (X 二k ) e , k =0,1,2,川,而每个鸡蛋能够孵化成小鸡的概率为p .证明:k!这只母鸡后代(小鸡)的个数丫服从参数为■ p 的泊松分布,即4. 玻璃杯成箱出售,每箱20只,设每箱含0,1,2只残品的概率分别为0.8, 0.1, 0.1.顾客购买时,售货员随意取一箱,而顾客随意查看四只,若无残品,则买下,否则,退回。

现售货员随意取一箱玻璃杯,求顾客买下的概率 有效数字)5. 已知连续型随机变量X 的概率密度函数为1(1) 求概率 P (0 <X c1/2) ;( 2)求 E ()X完成方式:独立 第二章随机过程的基本概念和基本类型【教学目标】通过本章学习,使学生理解随机过程的定义,了解随机过程的例子,理解并 掌握随机过程的有限维分布函数族和数字特征,了解随机过程的分类方式及分 类,掌握几种典型的随机过程,及其基本性质。

【教学内容和要求】本章主要内容包括随机过程的基本概念和例子; 随机过程的有限维分布函数 族和数字特征;随机过程的分类和几种典型随机过程及其性质的介绍。

其中随机 过程的概念,有限维分布族,柯尔莫哥洛夫存在定理是本章的重点和难点。

【课外阅读资料】《应用随机过程》,林元烈编,清华大学出版社 【作业】1. 设{X(t),t ・T }是一、二阶矩存在的随机过程.试证明它是宽平稳的当且仅P(Y 二r)二('p)r r!(结果保留3个f(x)3 鈔0,0 ::x :: 1= 0,1,2 川.当E[X(s)]与E[X(s)X(s t)]都不依赖于s.2. 设乙,Z2是独立同分布的随机变量,服从均值为0,为实数,方差为二2的正态分布.求过程{X (t), t T},其中X (t)=乙cos t • Z2 sin ■ t的均值函数和方差函数.它是宽平稳的吗?3. 试证,若Z。

,乙,|||为独立同分布随机变量,定义X n=Z°乙川-Z n,则{X「n —0}是独立增量过程.4. 已知随机过程{X(t),r T}的均值函数\(t)和协方差函数X(t1,t2),设(t)是一个非随机的函数,试求随机过程{Y(t)二X(tr (t)}的均值函数和协方差函数.完成方式:独立第三章Poisson过程【教学目标】通过本章的学习,使学生了解计数过程,理解掌握Possion过程的定义与基本性质,了解泊松过程的实际背景,熟悉它的若干推广及应用。

【教学内容和要求】本章主要讲解Possion过程的定义及性质,与Possion过程相联系的若干分布,Possion过程的若干推广和应用。

其中Possion过程理解、应用是本章的重点;Possion过程两个定义的等价性是本章的难点。

【课外阅读资料】《应用随机过程》,林元烈编,清华大学出版社。

【作业】1. 设N1(t )和叫(t )分别是强度为入1和入2的相互独立的齐次泊松过程,1) 证明X(t)=N1(t) +N2(t), t >0,是强度为入[+入2的泊松过程.2) 证明X(t)=Nj(t)—叫仁),t>0,不是泊松过程.2. {X t ,t _0}是具有参数为■的泊松过程,S是相邻事件发生的时间间隔。

证明:P{S x +半沙} =P{S2}.3. {X t ,t _0}是具有参数为■的泊松过程,W n是第n个事件发生的时间,证明:1 EW n2 DW n2/u /u4. { N( t ),t >0}是强度为入的泊松过程,E n, n=1,2,…相互独立且同为参数为p的(0-1 )分布,证明X(t) ::八n是参数为入P的泊松过程过程•完成方式:独立第四章更新过程【教学目标】通过本章的学习,使学生掌握更新过程的定义与基本性质、更新函数、更新方程,熟悉更新定理及其应用,了解更新过程的若干推广及应用。

【教学内容和要求】本章主要内容包括更新过程定义及若干分布,更新方程、更新定理及更新理论的应用,更新过程的若干推广。

其中更新过程理解及应用是本章的重点;更新定理及应用是本章的难点。

【课外阅读资料】《应用随机过程》,林元烈编,清华大学出版社。

【作业】1. 判断下列命题是否正确(1)N(t) :: n = T n t;(2)N(t)乞n =人—t;(3)N(t) n = T n:: t.2. 对于Poisson过程,验证定理4.1.3. 设P{X i =1} =1/3,P{X j =2} =2/3,计算P{ N( 1 ) k }P, N{ 和kP{N(1)=k}, P{N(2) =k}, P{N(3) -k}.完成方式:独立第五章Markov链【教学目标】本章是本课程的重点,通过教学要使学生掌握离散时间Markov链的基本概念,熟练掌握转移概率、状态分类与性质,极限分布和平稳分布,熟悉马尔可夫链的应用,了解连续时间的Markov链的定义及应用。

【教学内容和要求】本章主要内容包括离散时间Markov链的定义、例子及应用,转移概率及其计算,C-K方程,Markov链状态的分类及性质,常返性的判断,Markov链的极限情况和平稳Markov链的有关性质,连续时间Markov链及性质。

其中Markov (n) 链的定义,转移概率及其渐近性质是本章的重点;常返性的判别及性质,P j的渐近性质与平稳分布是本章的难点。

【课外阅读资料】《应用随机过程》,林元烈编,清华大学出版社。

【作业】1•假设一个修鞋匠有四把椅子,其中一把椅子为修鞋时顾客使用,另外三把椅子共顾客等待使用•当三把椅子全都被使用时,新到的顾客将会去其他地方寻找服务•假设该修鞋匠服务每一位顾客恰好都是10分钟•完成方式:独立2. 考虑一个三状态的Markov链{X n},其转移概率矩阵为:0 10 0P = 1 p q r ,2^0 0 1 一其中p, q, r>0, p+q+r=1.这一Markov链从状态1出发,一旦进入状态0或2就被吸收了.求:(1) 过程从状态1出发被状态0吸收的概率;(2) 需要多长时间过程会进入吸收状态.完成方式:独立3. 某市场上只有A, B, C三种啤酒.A种啤酒改变广告方式后经市场调查发现:买啤酒的顾客每两个月平均转移率如下:0.8 0.1 0.1A > A A >B A > C0.2 0.7 0.1B—; A B— B B—; C0.3 0.2 0.5C- A Cr B c— C设A, B, C三种啤酒的目前市场份额为25%, 40%, 35%,求半年后A种啤酒的市场份额•完成方式:独立第六章鞅【教学目标】通过本章的学习,复习并扩展概率论课程的内容,为学习随机过程打下良好的基础,提供必备的数学工具。

【教学内容和要求】基本概念,鞅的停时定理,停时定理、Doob极大不等式、停时定理的应用一关于期权值的界,一致可积性,鞅收敛定理,连续鞅。

理解鞅的基本概念(包括上鞅和下鞅) ;掌握停时的概念、Doob极大不等式、鞅的停时定理及其应用一一期权值的界;了解一致可积性;理解鞅收敛定理;掌握连续鞅的定义积相关性质。

【课外阅读资料】《应用随机过程》,林元烈编,清华大学出版社。

【作业】1. 考虑一个掷骰子的试验.设甲乙两人同时掷骰子,以X记甲掷出的点数,Y 表示甲乙二人掷出的点数之和,给出不同丫值下的所有E(X|Y)(y)值.完成方式:独立2. 设X「X2,川是独立同分布随机变量,令m(t)二E(e%),固定t并假定m(t)「:,令S o =0,S n =X! Ill X n , -n o.证明{M^m(『『是关于人公2,|||的鞅•完成方式:独立3. 令X o,XJH表示分支过程各代的个体数,X o =1,任意一个个体生育后代的分布有均值J.证明{M^ ^X n}是一个关于X o’XjH的鞅.完成方式:独立四、学习过程记录和考核要求1. 本课程考试采用开卷方式,总成绩包括卷面成绩和平时成绩。

其中,卷面成绩占50%平时成绩占50%平时成绩由任课老师根据每个学生的课后作业、考勤情况综合评定。

相关文档
最新文档