浪涌保护器的设计选型(新)

合集下载

浪涌保护器的设计选型

浪涌保护器的设计选型

浪涌保护器设计目录1 总则 (1)3建筑物防雷分类 (1)4 建筑物的防雷措施 (2)5 防雷装置(略) (6)6 防雷击电磁脉冲 (7)6.1基本规定 (7)6.2 防雷区和防雷击电磁脉冲 (7)6.3 屏蔽、接地和等电位连接的要求 (9)6.4 安装和选择电涌保护器的要求 (21)电涌保护器的有效电压保护水平值的选取 (22)选用S P D举例 (23)OBO的SPD典型配置 (24)【SPD的安装接线】 (26)1 总则(1)为使建(构)筑物防雷设计因地制宜地采取防雷措施,防止或减少雷击建筑物所发生的人身伤亡和文物、财产损失,以及雷击电磁脉冲引发的电气和电子系统损坏或错误运行,做到安全可靠、技术先进、经济合理,制定本规范。

(2)本规范适用于新建、扩建、改建建筑物的防雷设计。

(3)建(构)筑物防雷设计,应在认真调查地理、地质、土壤、气象、环境等条件和雷电活动规律,以及被保护物的特点等的基础上,详细研究并确定防雷装置的形式及其布置。

(4)建(构)筑物防雷设计,除应符合本规范外,尚应符合国家现行有关标准的规定。

3建筑物防雷分类表3-1 防雷分类对比4 建筑物的防雷措施4.1 基本规定表中k c—分流系数,单根引下线时为1,2根引下线及接闪器不成闭合环的多根引下线时为0.66,接闪器成闭合环或网状的多根引下线应为0.44。

l x—引下线上需考虑隔距的计算点到最近的等电位联结点(即金属物或电气/电子线路与防雷装置之间直接或通过SPD相连接之点)的长度,m。

R i—接地装置的冲击接地电阻,Ω;h x—被保护物或计算点的高度,m。

h —接闪线或接闪网的支柱高度,m;l—接闪线的水平长度,m。

l1—从接闪网中间最低点沿导体至最近支柱的距离,m;n —从接闪网中间最低点沿导体至最近不同支柱并有同一距离l1的个数,但至少应取2。

表4-2 防闪电感应的措施表4-3 防反击和闪电电涌侵入的措施5 防雷装置(略)6 防雷击电磁脉冲6.1基本规定(1)在工程的设计阶段不明确电子系统规模和具体位置的情况下,若预计将来会有需要防雷击电磁脉冲的电气和电子系统,应在设计时应将建筑物的金属支撑物、金属框架或钢筋混凝土的钢筋等自然构件、金属管道、配电的保护接地系统等与防雷装置组成一个共用接地系统,并应在需要之处预埋等电位连接板。

浪涌保护器选型标准

浪涌保护器选型标准

浪涌保护器选型标准浪涌保护器是电子设备中非常重要的一部分,它可以有效地保护设备不受电压浪涌的影响。

在选择浪涌保护器时,需要考虑一些标准,以确保选择到适合的产品,下面将介绍浪涌保护器选型的一些标准。

首先,需要考虑的是浪涌保护器的工作电压。

根据设备所在的环境和工作电压的特点,选择合适的工作电压范围是非常重要的。

通常来说,浪涌保护器的工作电压应该略高于设备的工作电压,以确保在电压浪涌时能够有效地保护设备。

其次,需要考虑的是浪涌保护器的额定放电电流。

额定放电电流是指浪涌保护器在正常工作条件下能够承受的最大浪涌电流。

在选择浪涌保护器时,需要根据设备的特点和所在环境的电压波动情况来确定合适的额定放电电流,以确保浪涌保护器能够有效地抵御电压浪涌的影响。

另外,还需要考虑浪涌保护器的响应时间。

浪涌保护器的响应时间越短,就能越快地对电压浪涌做出响应并保护设备。

因此,在选择浪涌保护器时,需要尽量选择响应时间较短的产品,以提高设备的保护效果。

此外,还需要考虑浪涌保护器的容量。

浪涌保护器的容量需要根据设备的功率和电压波动情况来确定,以确保浪涌保护器能够有效地保护设备不受电压浪涌的影响。

最后,需要考虑的是浪涌保护器的安装方式。

根据设备的特点和所在环境的实际情况,选择合适的安装方式是非常重要的。

通常来说,浪涌保护器可以分为并联型和串联型两种安装方式,需要根据实际情况来选择合适的安装方式。

总之,选择合适的浪涌保护器对于保护设备不受电压浪涌的影响是非常重要的。

在选择浪涌保护器时,需要考虑工作电压、额定放电电流、响应时间、容量和安装方式等标准,以确保选择到适合的产品,从而保护设备的安全运行。

浪涌保护器的设计选型

浪涌保护器的设计选型

(1)考察建筑物所处地理位置及供电进线方式首先要了解建筑物的环境及供电进线是架空或埋地,目的是选择浪涌保护器的通流容量。

推荐选择第一级浪涌保护器的最大通流量应大于以下标准值:高山站(架空进线):100KA(8/20μs)或12.5KA(10/350μs)郊区(架空进线):60KA(8/20μs)或12.5KA(10/350μs)城市内(埋地进线):40KA(8/20μs)第二级浪涌保护器的最大通流量应选择大于20~40KA(8/20μs);第三级浪涌保护器要求的最大通流容量应大于10~20KA(8/20μs)。

(2)检查建筑物内供电系统的类别•单相、三相及直流供电系统在220V单相供电系统中,只需选用两片保护模块组合。

如FRD-20-2A,FRD-40-2A。

在380V三相供电系统中,则需根据不同的供电接地系统选择三片或四片保护模块组合。

在直流供电系统中,需要根据直流电压值来选择浪涌保护器,浪涌保护器的最大持续工作电压(Uc)值在直流电压值的1.5倍~2.2倍之间选取。

一般只需选用两片保护模块组合,如FRD-20-2A-DC(48),FRD-40-2A-DC(48)。

首先要搞清楚防雷器用在什么地方,按照GB18802.1三级防雷保护原理,电源和设备所需要的保护措施被分为三个等级。

在建筑物进线柜安装第一级防雷器,选择相对通流容量大的T1级电源防雷器,波形为10/350us,冲击放电电流Iimp为12.5kA~50kA;然后在下属的区域配电箱处安装二级电源防雷器,波形8/20us,最大放电电流为Imax为40KA,最后在设备前端安装三级电源防雷器,波形为8/20us,最大放电电流20kA。

其次是供电系统的类别,建筑物内的供电系统是单相供电还是三相供电,单相供电系统需要选择2P电源防雷器,TT系统选择3P+1的电源防雷器,TN-C三相四线系统选择3P 电源防雷器,TN-S三相五线系统选择4P电源防雷器。

(新规范)ABB浪涌保护器选型指南

(新规范)ABB浪涌保护器选型指南

照明/动力(第Ⅱ级) 后备保护
S203-C32 XLP00+3× OFAFC00GG125 S203-C32 XLP00+3× OFAFC00GG125 S203-C32
说明
后备保护
S203-C25 S203-C25 S203-C25 S203-C25 S203-C25
低压电源进线或使用避雷针(网/带)建筑 总配电(第Ⅰ级)和分配电箱(第Ⅱ级)可组合为一个电涌 保护器,即Ⅰ+Ⅱ级(B+C级)组合式电涌保护器 有线路引出本建筑物 总配电(第Ⅰ级)和分配电箱(第Ⅱ级)可组合为一个电涌 保护器,即Ⅰ+Ⅱ级(B+C级)组合式电涌保护器 无线路引出本建筑物
ABB电涌保护器OVR系列快速
依据《建筑物防雷设计规范》 GB50057-2010
保护对象 低压电源线路 低压电源线路引入建筑物
3×OVT T1+2 25-255 TS+OVR T1 100N 或 OVR T1+2 3N 15-255-7 OVR T1 3N 25-255 TS XLP00+3×OFAFC00GG125 OVR BT2 3N 40-320μ s) 装设户外型电涌保护器或户内型电涌保护器+IP54箱体 室外进入户内设有绝缘段时,应在绝缘段处跨接SPD 室外进入户内设有绝缘段时,应在绝缘段处跨接SPD
OVR TC系列 OVR BT2 3N 20-320 P
室外金属线路引入至终端箱处安装D1类SPD 室外光缆线路引入至终端箱处的电气线路侧安装B2类SPD
OVR T1 100 N P OVR T1 100 N P
器OVR系列快速选型表
送出的配电线路/户箱(第Ⅲ级) Ⅱ级或Ⅲ级试验电涌保护 器(8/20μ s)

浪涌保护器(SPD)的选型

浪涌保护器(SPD)的选型
压敏电阻的最大特点是当加在它上面的电压低于它的阀值“UN”时, 流过它的电流极小,相当于一只关死的阀门,当电压超过UN时,流过 它的电流激增,相当于阀门打开。利用这一功能,可以抑制电路中经 常出现的异常过电压,保护电路免受过电压的损害。
2.1 放电管
2.2 放电管
它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻 璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内 还有助触发剂。这种充气放电管有二极型的,也有三极型的 。 气体放电管具有载流能力大、响应时间快、电容小、体积小、成本 低、性能稳定及寿命长等特点;缺点是点燃电压高,在直流电压下不 能恢复截止状态,不能用于保护低压电路,每次经瞬变 电压作用后, 性能还会下降。
-----C\D级(M-40/M-20)
产品特点:
◆插拔式设计,更换方便 ◆核心器件采用高质量压敏电阻 (MOV),通流容量 大,输出残压低, 响应速度快
◆脱扣装置隔仓式设计,确保保 护器因过热过流、击穿失效时, 自动脱离电网
◆外壳采用高阻燃性材料,符合电气安 全要求 ◆可附加声光报警遥信模块
1.3.3 参数对比
4. 直流电源防雷器
适用范围: 本系列产品适用于防雷区域LPZ2 区至LPZ3区(D级或III级)直流 电源线路的雷电及电涌防护。可 用于直流5V、12V、24V、48V、 110V设备的防护,如通信机房、 电力调度、铁路信号、医疗精密 设备、工厂自动化控制的低压配 电系统.
5.1 计算机防雷器
6.2 控制线防雷器
适用范围: 本系列产品用途广泛,适用于多种信号线路的雷电及电涌防 护,如4~20mA电流环,RS485,RS422,V.24/RS232C,令 牌环,工业总线,SDLC,V.11 ,X.27等等。

浪涌保护器选型

浪涌保护器选型

浪涌保护器选型1. 概述浪涌保护器是一种用于保护电气设备免受浪涌电压影响的装置。

在电力系统中,由于雷击、开关操作、电网故障等原因,会产生瞬时的过电压,这种过电压被称为浪涌电压。

浪涌电压会对电气设备产生破坏性的影响,因此需要采取措施来保护设备免受浪涌电压的影响。

本文将介绍浪涌保护器选型的相关内容。

2. 浪涌保护器的分类根据浪涌保护器的工作原理和应用场景,可以将其分为以下几类:1.瞬态电压抑制器:也称为TVS管(TransientVoltage Suppressor),主要用于抑制浪涌电压的瞬时冲击。

它基于电压响应机制,当检测到电压超过设定阈值时,会迅速导通,将多余的电压引流到地线上,从而保护被保护设备。

2.旁路型浪涌保护器:也称为GDT(Gas DischargeTube)或气体放电管,主要用于抑制持续性的过电压。

它通过气体导电放电来实现对过电压的短接,将过电压导向地线。

3.光电耦合型浪涌保护器:是一种将光电耦合器与MOV(Metal Oxide Varistor)结合起来的浪涌保护器。

它能在保护环路中断位的情况下,将浪涌电压引入地线。

3. 浪涌保护器选型的考虑因素在选型浪涌保护器时,需要考虑以下几个因素:3.1. 浪涌电压等级首先需要确定被保护设备所能承受的最大浪涌电压等级。

根据设备所在的电力系统,可以确定所需的浪涌电压等级范围。

3.2. 频率响应不同类型的浪涌保护器在频率响应上可能存在差异。

需要根据被保护设备的特点和工作环境,选择适合的浪涌保护器类型。

3.3. 限流能力浪涌保护器的限流能力是评估其性能的重要指标。

限流能力表示保护器能够承受的最大浪涌电流,即其额定耐受电流。

3.4. 阻抗匹配浪涌保护器与被保护设备之间的阻抗匹配也是选型的重要考虑因素。

保护器的阻抗应该与设备的阻抗相匹配,以确保浪涌电压能够得到有效的引导。

3.5. 抗气候环境能力根据设备所处的环境条件,选择具有合适抗气候环境能力的浪涌保护器。

MTL浪涌保护器选型手册

MTL浪涌保护器选型手册

通道
单通道 单通道 双通道 单通道 单通道 单通道 双通道 单通道 单通道 双通道 单通道 单通道 单通道 单通道 单通道 单通道 单通道
安装
DIN DIN DIN DIN DIN DIN DIN DIN DIN DIN DIN DIN DIN DIN DIN DIN 安装附件
最 大 抗 浪 工作电压
保护方式
涌能力
MA15/D/2/SI 18KA
220 单相
L-N
N-E
L-E
以上产品都有热保护和短路保护 详细参数见 MA15 系列技术规格书
浪涌保护技术
信号浪涌保护器选型
产品型号 SD32X
最大抗浪 工作电压 涌能力
20KA
24V DC
通道 适用
单通道 AI/AO DI/DO
最大抗浪涌能 力 10KA 20KA 20KA 3KA 20KA 20KA 20KA 20KA 20KA 20KA 20KA 20KA 20KA 20KA 1KA 3KA 10KA
接口
可插拔端子 端子 可插拔端子 可插拔端子 端子 端子 可插拔端子 端子 端子 可插拔端子 可插拔端子 端子 端子 端子 RJ45 RJ11 BNC
ZB24542
10KA
TP48-N -I -G
TP48-3-N -I -G
20KA 20KA
24V DC 三通道 DI/DO
48V DC 48V DC
2 线制变 送器/流 量计 3 线制变 送器/流 量计
浪涌保护技术
TP48-3-N -I -G
20KA
48V DC
4 线制变 送器/流 量计
网络、通讯、视频浪涌保护器选型
SD32T3 IOP32 SDRTD SLP32D

浪涌保护器选型标准

浪涌保护器选型标准

浪涌保护器选型标准
浪涌保护器是一种用于保护电子设备免受电力系统中的浪涌干
扰的重要装置。

在选择合适的浪涌保护器时,需要考虑多种因素,
以确保设备能够有效地抵御浪涌干扰。

以下是浪涌保护器选型标准
的一些重要考虑因素。

首先,需要考虑的是设备的额定电压和电流。

浪涌保护器的额
定电压和电流应与被保护设备的额定电压和电流相匹配,以确保在
浪涌干扰发生时能够有效地保护设备。

其次,需要考虑浪涌保护器的响应时间。

浪涌保护器应能够在
浪涌干扰发生时迅速响应并启动保护措施,以最大程度地减少对设
备的损害。

另外,还需要考虑浪涌保护器的耐受能力。

浪涌保护器应能够
在长期、高强度的浪涌干扰下保持稳定可靠的工作,以确保设备长
时间内不受干扰。

此外,浪涌保护器的安装位置也是一个重要的考虑因素。

浪涌
保护器应尽可能靠近被保护设备,以最大程度地减少连接线路长度,
从而减小浪涌干扰的影响。

最后,还需要考虑浪涌保护器的可维护性和可靠性。

浪涌保护器应易于维护和检修,并且具有较高的可靠性,以确保长期稳定地保护设备。

综上所述,选择合适的浪涌保护器需要考虑设备的额定电压和电流、响应时间、耐受能力、安装位置、可维护性和可靠性等多个因素。

只有综合考虑这些因素,才能选择到最适合的浪涌保护器,从而有效地保护设备免受浪涌干扰的影响。

浪涌保护器选型标准

浪涌保护器选型标准

浪涌保护器选型标准浪涌保护器是电气系统中非常重要的一部分,它可以有效地保护电气设备免受电压浪涌的影响。

在选择浪涌保护器时,需要考虑一系列的标准和因素,以确保所选的浪涌保护器能够满足系统的需求并且具有良好的性能。

以下是浪涌保护器选型的一些标准和建议。

首先,需要考虑的是浪涌保护器的额定电压。

在选择浪涌保护器时,需要确保其额定电压能够覆盖整个系统的工作电压范围,以保护系统免受电压浪涌的影响。

此外,还需要考虑系统中可能出现的过电压情况,以确定浪涌保护器的最大工作电压。

其次,浪涌保护器的额定电流也是一个重要的考虑因素。

在选择浪涌保护器时,需要确保其额定电流能够满足系统中可能出现的电流浪涌情况,以保护系统中的电气设备免受电流过载的影响。

此外,还需要考虑系统中可能出现的短路电流情况,以确定浪涌保护器的最大工作电流。

另外,浪涌保护器的响应时间也是一个需要考虑的因素。

在选择浪涌保护器时,需要确保其响应时间足够快,以在电压浪涌出现时能够及时地引导电流流向地,保护系统中的电气设备免受损坏。

通常情况下,浪涌保护器的响应时间应该在纳秒级别。

此外,浪涌保护器的容量和耐受能力也需要考虑。

在选择浪涌保护器时,需要确保其具有足够的容量和耐受能力,以应对系统中可能出现的大功率电压浪涌情况,保护系统中的电气设备免受损坏。

最后,还需要考虑浪涌保护器的安装和维护便利性。

在选择浪涌保护器时,需要确保其安装和维护便利,以降低系统的维护成本和提高系统的可靠性。

综上所述,浪涌保护器选型的标准包括额定电压、额定电流、响应时间、容量和耐受能力、安装和维护便利性等因素。

在选择浪涌保护器时,需要综合考虑这些因素,以确保所选的浪涌保护器能够满足系统的需求并且具有良好的性能。

浪涌保护器的设计选型

浪涌保护器的设计选型

(1)考察建筑物所处地理位置及供电进线方式首先要了解建筑物的环境及供电进线是架空或埋地,目的是选择浪涌保护器的通流容量。

推荐选择第一级浪涌保护器的最大通流量应大于以下标准值:高山站(架空进线):100KA(8/20μs)或12.5KA(10/350μs)郊区(架空进线):60KA(8/20μs)或12.5KA(10/350μs)城市内(埋地进线):40KA(8/20μs)第二级浪涌保护器的最大通流量应选择大于20~40KA(8/20μs);第三级浪涌保护器要求的最大通流容量应大于10~20KA(8/20μs)。

(2)检查建筑物内供电系统的类别•单相、三相及直流供电系统在220V单相供电系统中,只需选用两片保护模块组合。

如FRD-20-2A,FRD-40-2A。

在380V三相供电系统中,则需根据不同的供电接地系统选择三片或四片保护模块组合。

在直流供电系统中,需要根据直流电压值来选择浪涌保护器,浪涌保护器的最大持续工作电压(Uc)值在直流电压值的1.5倍~2.2倍之间选取。

一般只需选用两片保护模块组合,如FRD-20-2A-DC(48),FRD-40-2A-DC(48)。

首先要搞清楚防雷器用在什么地方,按照GB18802.1三级防雷保护原理,电源和设备所需要的保护措施被分为三个等级。

在建筑物进线柜安装第一级防雷器,选择相对通流容量大的T1级电源防雷器,波形为10/350us,冲击放电电流Iimp为12.5kA~50kA;然后在下属的区域配电箱处安装二级电源防雷器,波形8/20us,最大放电电流为Imax为40KA,最后在设备前端安装三级电源防雷器,波形为8/20us,最大放电电流20kA。

其次是供电系统的类别,建筑物内的供电系统是单相供电还是三相供电,单相供电系统需要选择2P电源防雷器,TT系统选择3P+1的电源防雷器,TN-C三相四线系统选择3P 电源防雷器,TN-S三相五线系统选择4P电源防雷器。

浪涌保护器选型

浪涌保护器选型
区别:3N为3P+NPE。由三个防雷模块和一个NPE模块组成。也就是4P中一个芯片换成NPE芯片。用途:浪涌保护器模块有压敏电阻模块及放电间隙。1、3P:表示由三个压敏电阻模块构成的浪涌保护器。用三个压敏电阻模块保护三根火线,适用于IT系统及TN-C系统;2、3P+N:表示由三个压敏电阻模块及一个放电间隙构成的浪涌保护器。三个压敏电阻模块并在火线与零线之间,放电间隙并在零线于地线之间,保护供电线路,适用于TT系统(安装于剩余保护器前端)及TN-S系统;3、4P:表示由四个压敏电阻构成的浪涌保护器。四个压敏电阻模块保护供电线路,适用于TT系统(安装于剩余保护器后端)及TN-S系统。注意事项:接地比什么都重要!一定要接好地TN-S选3P+N或者4P都可以TN-C系统内的PEN线兼起PE线和N线的作用,可节省一根导线,比较经济。TN-CTN-STN-C-S之间的原理与设计参见下面链接:/view/555f156825c52cc58bd6be21.htmlTN-S选3P+N和选4P有什么区别呢?两者都是四极的。唯一区别是:4P的漏电断路器的N极带有脱扣器,P+N的漏电断路器N极不带脱扣器。如果你不希望三相太不平衡,可以采用4P的,当N线电流过大时可跳闸。如果你不想管三相是不是太不平衡,就用3P+N。我可不可以理解为:相线选用“P”零线选用“P”或者“N”都可以PEN线不用浪涌保护?接线方法下面链接给的很详细了:/CHN/News_Show.asp?ID=185

浪涌保护器(SPD)的选择与使用

浪涌保护器(SPD)的选择与使用

住宅配电系统中的浪涌保护需求
由于住宅配电系统可能受到雷电、开关操作等引 起的浪涌影响,因此需要安装浪涌保护器来保护 电器设备和人身安全。
SPD的选型与配置
根据住宅配电系统的规模和需求,选择合适的浪 涌保护器型号和配置方式,如多级保护、模块化 设计等。
效果分析
安装浪涌保护器后,可以有效降低电器设备损坏 的风险,提高供电可靠性,同时保障居民的人身 安全。
安装固定
将SPD固定在指定位置,确保其稳 定、牢固,并按照接地要求连接接 地线。
使用与维护
定期检查
定期检查SPD的工作状态,查看是否有异常现象,如变色、发热 等。
清洁保养
定期清理SPD表面灰尘,保持其良好的散热性能。
更换周期
根据使用环境和频率,确定合理的更换周期,确保SPD始终处于良 好工作状态。
效果分析结论
根据实际应用案例的效果评估,可以得出浪涌保护器在各个领域中都具有显著的保护效果和实 际应用价值,能够有效降低因浪涌引起的设备损坏和故障风险。
THANKS
感谢观看
01 测试电源
提供稳定的电源,用于测 试SPD的性能。
03 浪涌发生器
用于模拟雷电和电气过载
等浪涌现象,对SPD进行
测试。
02 示波器
用于观测和记录SPD的响
应和动作波形。
04 万用表
用于测量SPD的电气参数,
如导通电阻、漏电流等。
05
SPD的应用案例与效果分析
应用案例一:住宅配电系统
1 2 3
验收流程与要求
检查产品合格证和认证标识
确保SPD符合相关标准和规定,具有有效 的认证标识。
检查安装指南和注意事项
确认SPD的安装指南和注意事项,确保正 确安装和使用。

浪涌保护器大小怎么选 浪涌保护器如何选型

浪涌保护器大小怎么选 浪涌保护器如何选型

浪涌保护器大小怎么选浪涌保护器如何选型在选择浪涌保护器的大小的时候,一般需要根据浪涌保护器的实际安装位置来进行选择,也就是根据电源来进行选择。

若浪涌保护器是被安装在变压器的低压侧面位置的话,那么就应该选择使用高于60KA的浪涌保护器,一般可以选择使用120KA或者是100KA,10/350US 型的浪涌保护器。

有关“浪涌保护器大小怎么选浪涌保护器如何选型”的详细说明。

1.浪涌保护器大小怎么选1、在选择浪涌保护器的大小的时候,一般需要根据浪涌保护器的实际安装位置来进行选择,也就是根据电源来进行选择。

若浪涌保护器是被安装在变压器的低压侧面位置的话,那么就应该选择使用高于60KA的浪涌保护器,一般可以选择使用120KA或者是100KA,10/350US 型的浪涌保护器。

2、若浪涌保护器是被安装在配电柜的进线侧面位置的话,那么就应该选择使用高于40KA的浪涌保护器,一般可以选择使用80KA或者是60KA,8/20US型的浪涌保护器。

若浪涌保护器是被安装在配电箱的进线侧面位置的话,那么就应该选择使用高于20KA的浪涌保护器,一般可以选择使用20KA或者是40KA,8/20型的的浪涌保护器。

3、家中若要安装空开的话,那么就是根据浪涌保护器的放电电流来选择空开大小的,一般情况下,浪涌保护器的放电电流若是60KA的话,则应该选择63A的空开,浪涌保护器的放电电流若是40KA的话,则应该选择40A的空开,浪涌保护器的放电电流若是20KA的话,则应该选择25A的空开。

4、市面上的浪涌保护器品牌有很多家,质量也参差不齐,建议大家一定要选择由大型的、知名的、正规的品牌所生产的浪涌保护器,这样产品质量和售后服务也会更有保障,千万不要为了贪便宜而选择劣质的浪涌保护器。

2.浪涌保护器如何选型1、在选型的时候,一般都是根据电源类型和安装位置来进行选择的,若浪涌保护器是安装在变压器到总电柜位置的话,那么用户就应该选择60KA及以上的浪涌保护器。

浪涌保护器选型,如何选择浪涌保护器

浪涌保护器选型,如何选择浪涌保护器

L1/L2/L3-PE
环境温度:-40℃~+85℃; 相对湿度:≤95%
安装在 35mm 导轨上
故障指示:正常/绿色 故障/红色
10-25mm²
90×145×69mm 4
90×145×69mm 4
90×72×69mm 阻燃/红色
IP20 2
90×72×69mm 2
90×108×69mm 3
版权所有,侵权必究
L1/L2/L3-PE
环境温度:-40℃~+85℃; 相对湿度:≤95%
安装在 35mm 导轨上
故障指示:正常/绿色 故障/红色
6-25mm²
90×72×69mm 4
90×72×69mm 4
90×36×69mm 阻燃/红色
电源浪涌保护器选型表
一、 电源浪涌保护器命名规格
型号:AM40A/440
代码 A M 40 A 440
说明 ANSUN(安迅)品牌标志 模块式电源浪涌保护器代号 最大放电电流,单位为 kA 保护方式代码 最大持续工作电压,如为 385V 则不标
保护方式代码对照表 保护方式 L1,L2,L3,N-PE
(4P)
代码
A
L1,L2,L3-N N-PE (3+NPE) B
L,N-PE (2P)
C
L-N.N-PE (1+NPE)
D
L1,L2,L3-PE (3P)
3P
版权所有,侵权必究
第 1 页 共 11 页
电源浪涌保护器选型表
二、 防雷分级
一、通流容量选择 应根据国家标准 GB50057-94《建筑物防雷设计规范》(2000 版)和 GB50343-2004《建筑物 电子信息系统防雷技术规范》中规定的建筑物防雷等级要求进行选用。 电源线路浪涌保护器标称放电电流参数值

浪涌保护器(SPD)的选型-文档资料

浪涌保护器(SPD)的选型-文档资料
5> 双绞线信号SPD 6> 控制线信号SPD 7> 监控系统SPD
8> 天馈SPD 13
1.1.1开关型电源防雷器 ------MG-50B
产品特点:
◆主材采用多层石墨间隙和高耐 热的特氟纶隔环 ◆无漏流、无续流,可安装在电 表前端 ◆无需额外加装电路熔断保护装 置 ◆泄放能量大 ◆使用寿命长
14
15
1.1.3 参数对比
16
1.2.1复合型电源防雷器
----MGBC-30
• 产品特点:
• ◆主材采用多层放电管,用 压敏点火,通流容量大,输 出残压低
• ◆解决B级、C级之间安装空 间达不到规范要求的问题, 适合小机房、基站等
• ◆并联安装,无工作瓶颈
17
1.2.2 MGBC-30 技术参数
它是以ZnO为主要成分的金属氧化物半导体非线性电阻,当作用在其 两端的电压达到一定数值后,电阻对电压十分敏感。它的工作原理相 当于多个半导体 P-N的串并联。压敏电阻的特点是非线性特性好 (I=CUα中的非线性系数α),通流容量大(~2KA/cm2),常态泄 漏电流小(10-7~10-6A),残压低(取决于压敏电阻的工作电压和通 流容量),对瞬时过电压响应时间快(~10-8s),无续流。 压敏电阻的最大特点是当加在它上面的电压低于它的阀值“UN”时, 流过它的电流极小,相当于一只关死的阀门,当电压超过UN时,流过 它的电流激增,相当于阀门打开。利用这一功能,可以抑制电路中经 常出现的异常过电压,保护电路免受过电压的损害。
18
1.2.3 德国DEHN同类产品
---CSP100
19
1.3.1 限压型电源防雷器
-----B级(M-100\M-80)
产品特点:

浪涌保护器的设计选型

浪涌保护器的设计选型

(1)考察建筑物所处地理位置及供电进线方式首先要了解建筑物的环境及供电进线是架空或埋地,目的是选择浪涌保护器的通流容量。

推荐选择第一级浪涌保护器的最大通流量应大于以下标准值:高山站(架空进线):100KA(8/20μs)或(10/350μs)郊区(架空进线):60KA(8/20μs)或(10/350μs)城市内(埋地进线):40KA(8/20μs)第二级浪涌保护器的最大通流量应选择大于20~40KA(8/20μs);第三级浪涌保护器要求的最大通流容量应大于10~20KA(8/20μs)。

(2)检查建筑物内供电系统的类别•单相、三相及直流供电系统在220V单相供电系统中,只需选用两片保护模块组合。

如FRD-20-2A,FRD-40-2A。

在380V三相供电系统中,则需根据不同的供电接地系统选择三片或四片保护模块组合。

在直流供电系统中,需要根据直流电压值来选择浪涌保护器,浪涌保护器的最大持续工作电压(Uc)值在直流电压值的倍~倍之间选取。

一般只需选用两片保护模块组合,如FRD-20-2A-DC(48),FRD-40-2A-DC(48)。

首先要搞清楚防雷器用在什么地方,按照三级防雷保护原理,电源和设备所需要的保护措施被分为三个等级。

在建筑物进线柜安装第一级防雷器,选择相对通流容量大的T1级电源防雷器,波形为10/350us,冲击放电电流Iimp为~50kA;然后在下属的区域配电箱处安装二级电源防雷器,波形8/20us,最大放电电流为Imax为40KA,最后在设备前端安装三级电源防雷器,波形为8/20us,最大放电电流20kA。

其次是供电系统的类别,建筑物内的供电系统是单相供电还是三相供电,单相供电系统需要选择2P电源防雷器,TT系统选择3P+1的电源防雷器,TN-C三相四线系统选择3P 电源防雷器,TN-S三相五线系统选择4P电源防雷器。

下面是防雷器的几个重要参数:(1)标称电压Un:被保护系统的额定电压,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。

浪涌保护器(SPD)的设计要点和选型原则

浪涌保护器(SPD)的设计要点和选型原则

浪涌保护器(SPD)的设计要点和选型原则当前随着科技发展,电子产品种类越来越多,应用领域也越来越广广泛。

但是这些电子产品耐冲击电压水平一般都低于低压配电装置。

因此它们很容易受到电压波动-即浪涌电压-的损害,所谓浪涌又称瞬态过电压,是在电路中出现的一种瞬时的电压波动,在电路中通常可以持续约百万分之一秒,比如在雷电天气中,雷电脉冲可能会在电路中产生电压波动。

220V电路系统中会产生持续瞬间可达到5000或10000V的电压波动,也就是浪涌或者瞬态过电压。

我国的雷电区较多,而雷电又作为在线路中产生浪涌电压的一个重要因素,因此加强在低压配电系统中的防雷电保护就显得十分必要。

浪涌保护器既过电压保护器,工作原理是当电力线、信号传输线出现瞬时过电压时,浪涌保护器就会将过电压泄流来将电压限制在设备所能承受的电压范围内,从而保护设备不受电压冲击。

浪涌保护器在正常情况时,处于高电阻状态,不发生漏流;当电路中出现过电压时,浪涌保护器就会在极短时间内被触发,将过电压的能量漏流,保护设备;过电压消失后,浪涌保护器恢复高阻状态,完全不会影响电源的正常供电。

一、浪涌保护器的设计(1)SPD设计的不足目前,SPD的设计还存在很多不足的地方,在实际的施工中造成了很多问题,甚至造成工程延期,具体如下:1)对设计的描述太过简单,意思表达不清晰,安装要求也不够具体,施工时容易造成很多的不确定性,可能会使要被保护的电子设备受到破坏或经济损失。

2)浪涌保护器的设计不够灵活,有时甚至直接套用固定的防雷施工图,没有根据配电系统的接地制式进行针对性的设计,可能会导致SPD在具体接线安装时出现错误。

3)在配电系统图中,SPD的设计参数不够完整,如电压保护水平UP、是否防爆、最大运行电压Uc等重要参数未设计或部分设计,又或者部分参数不准确,造成浪涌保护器实际运行中出现故障或对电子设备的损坏。

4)设计说明书不详细。

一般地,要有针对SPD设计进行详细说明的设计说明书,如建设项目概况、设计的依据、是否包含有电子信息系统、SPD设计的防护等级等。

浪涌保护器选型

浪涌保护器选型

浪涌保护器(SPD)的选择
一、SPD作用
(1)电力系统无电时:SPD对其所应用的系统工作无明显影响;
(2)电力系统出现电涌时:SPD呈现低电阻,电涌电流通过SPD泄漏,把电压限制到其保护水平,电涌可能引起工频续流用过SPD;
(3)电力系统出现电涌后:SPD在电涌及任何可能出现的工频续流熄灭后,恢复到高阻状态;
(4)当电涌大于设计最大吸收能力和发电电流时,SPD可能失效或损坏。

SPD的失效模式分为开路模式和短路模式;
(5)在开路模式下,被保护系统不再被保护,因为失效的SPD对系统影响很小,所以不易被发现。

为保证下一个电涌到来之前,更换失效的SPD,就需要有一个指示;
(6)在短路模式下,失效的SPD严重影响系统,系统中短路电流失效的SPD,短路电流导通时能使能量过度释放,可能引起火灾,故使用短路失效模式的SPD 需配备一个合适的断路器或熔断器。

一、SPD的选型
1.1类别的选择
表1-1 SPD类别选择原则
1.2规格的选择
表1-2 SPD规格选择原则
二、SPD前熔断器或断路器选型
表2-1 SPD前断路器或熔断器选择。

MTL-防雷选型

MTL-防雷选型

MTL-防雷选型MTL浪涌保护器选型室内部分:应用情况1AI/AO, DI/DO SD32X (单通道,20kA)SLP32D(双通道,20kA)ZB91333(3通道,10kA)( 负载电流≤ 400 mA )( 备注:负载电流≤ 1500 mA )( 备注:负载电流≤ 1500 mA)适用于: AI,AO,DI,DO适用于: AI,AO,DI,DOSD32 (单通道,20kA)ZB24547(10KA,0.5A)负载电流≤ 250 mA,50mA)双通道,4+2 Shield适用于: AI,AO,DI,DO特点:附带回路熔断保险AI/AO, DI/DO IOP32D(双通道,20kA)ZB24542(3通道,10kA)IOP32 (单通道,20kA)( 负载电流≤ 500 mA)( 负载电流≤ 670 mA )适用于: DI,DOIOPHC32(20kA,5A)适用于: DI,DO,AI,AORS4855VDC 信号SD07R(单通道,20kA)SLP07D(双通道,20kA)ZB24518(单通道, 10kA) ( 负载电流≤ 400 mA )12VDC信号SD16R(单通道,20kA)SLP16D(双通道,20kA)RS232IP70010(9针,公头)脉冲量信号(10KHz)12VDC信号SD16X (单通道,20kA)SLP16D(双通道,20kA)24VDC信号SD32X (单通道,20kA)SLP32D(双通道,20kA)ZB24539(单通道, 10kA) 三线制仪表SD32T3(提供全模式保护)三线制热电阻RTD SDRTD(插入精度损耗:≤0.1%)两线制热电偶THC SD07SLP07DSD07X224V电源ZB24580(单通道,10kA,10A)3220VAC MA15/D/2TT/L220VAC 18KA导轨安装ZD16809(220V,80KA)UL认证220V 80KA UL认证非导轨安装MA3145-230-2-O220VAC 45KA导轨安装MA30/D/2/SI220VAC 18KA导轨安装。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)考察建筑物所处地理位置及供电进线方式
首先要了解建筑物的环境及供电进线是架空或埋地,目的是选择浪涌保护器的通流容量。

推荐选择第一级浪涌保护器的最大通流量应大于以下标准值:
高山站(架空进线):100KA(8/20μs)或12.5KA(10/350μs)
郊区(架空进线):60KA(8/20μs)或12.5KA(10/350μs)
城市内(埋地进线):40KA(8/20μs)
第二级浪涌保护器的最大通流量应选择大于20~40KA(8/20μs);
第三级浪涌保护器要求的最大通流容量应大于10~20KA(8/20μs)。

(2)检查建筑物内供电系统的类别
•单相、三相及直流供电系统
在220V单相供电系统中,只需选用两片保护模块组合。

如FRD-20-2A,FRD-40-2A。

在380V三相供电系统中,则需根据不同的供电接地系统选择三片或四片保护模块组合。

在直流供电系统中,需要根据直流电压值来选择浪涌保护器,浪涌保护器的最大持续工作电压(Uc)值在直流电压值的1.5倍~2.2倍之间选取。

一般只需选用两片保护模块组合,如FRD-20-2A-DC(48),FRD-40-2A-DC(48)。

首先要搞清楚防雷器用在什么地方,按照GB18802.1三级防雷保护原理,电源和设备所需要的保护措施被分为三个等级。

在建筑物进线柜安装第一级防雷器,选择相对通流容量大的T1级电源防雷器,波形为10/350us,冲击放电电流Iimp为12.5kA~50kA;然后在下属的区域配电箱处安装二级电源防雷器,波形8/20us,最大放电电流为Imax为40KA,最后在设备前端安装三级电源防雷器,波形为8/20us,最大放电电流20kA。

其次是供电系统的类别,建筑物内的供电系统是单相供电还是三相供电,单相供电系统需要选择2P电源防雷器,TT系统选择3P+1的电源防雷器,TN-C三相四线系统选择3P 电源防雷器,TN-S三相五线系统选择4P电源防雷器。

下面是防雷器的几个重要参数:
(1)标称电压Un:被保护系统的额定电压,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。

(2)最大持续工作电压Uc:长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压值。

(3)标称通流容量In:给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。

(4)最大放电电流Imax:给保护器施加波形8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。

(5)冲击放电电流Iimp:给保护器施加波形10/350μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。

(6)电压保护级别Up:保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。

加空开(或熔断器)的目的只是保护浪涌保护器不被持续由过电压导致的过电流损坏,所以你加的空开小于等于浪涌也可以,但要大幅高于浪涌保护器约几十毫安的额定放电电流(MOV材质的浪涌保护器有弱放电现象。

相关文档
最新文档