高等数学英文版课件PPT 15 Differential equations

合集下载

高等数学课程大纲英文

高等数学课程大纲英文

高等数学课程大纲英文1. Matrices and Determinants2. Vector Calculus3. Multivariable Calculus4. Differential Equations5. Fourier Analysis6. Complex Analysis7. Applications of Differential Equations8. Partial Differential Equations9. Laplace Transform10. Numerical Methods1. In the Matrices and Determinants unit, students will learn how to manipulate matrices and evaluate determinants to solve systems of linear equations.(在矩阵和行列式单元中,学生将学习如何操作矩阵和评估行列式以解决线性方程组。

)2. The Vector Calculus unit will cover topics such as the gradient, divergence, and curl of vector fields, as well as line and surface integrals.(向量微积分单元将涵盖向量场的梯度、散度、旋度,以及线性和曲面积分等主题。

)3. The Multivariable Calculus unit will introduce students to functions of several variables, partial derivatives, and the gradient vector.(多元微积分单元将向学生介绍多元函数、偏导数和梯度矢量等概念。

)4. The Differential Equations unit will teach students how to solve differential equations, including first-order linear and nonlinear equations and higher-order linear equations.(微分方程单元将教授学生如何解决微分方程,包括一阶线性和非线性方程以及高阶线性方程。

(高等数学英文课件)4.1 Indefinite Integrals Differential Equations and Modeling

(高等数学英文课件)4.1 Indefinite Integrals Differential Equations and Modeling

9) cscxcotxdx cs x c C
10) exdx exC
11) axdx a x C ln a
目录 上页 下页 返回 结束
4.1.2
Initial Value Problems (初值问题)
目录 上页 下页 返回 结束
y f x f x0 y0
The combination of a differential equation and an initial condition is called an initial value problem (初值问题).
Chapter 4 Integration
4.1 Indefinite Integrals, Differential Equations, and Modeling
4.2 Integral Rules, Integration by Substitution 4.3 Estimating with Finite Sums 4.4 Riemann Sums and Definite Integrals 4.5 The Mean Value and Fundamental Theorems 4.6 Substitution in Definite Integrals 4.7 Numerical Integration
sinx1cosx,x .
sinx+1 is also an antiderivative of cosx.
Supposed x xfx,x I, then
xx C
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
Example.
x2dx
1 3
x3
C
sinx1dx cosxxC

高等数学-微积分第1章(英文讲稿)

高等数学-微积分第1章(英文讲稿)

高等数学-微积分第1章(英文讲稿)C alc u lus (Fifth Edition)高等数学- Calculus微积分(双语讲稿)Chapter 1 Functions and Models1.1 Four ways to represent a function1.1.1 ☆Definition(1-1) function: A function f is a rule that assigns to each element x in a set A exactly one element, called f(x), in a set B. see Fig.2 and Fig.3Conceptions: domain; range (See fig. 6 p13); independent variable; dependent variable. Four possible ways to represent a function: 1)Verbally语言描述(by a description in words); 2) Numerically数据表述(by a table of values); 3) Visually 视觉图形描述(by a graph);4)Algebraically 代数描述(by an explicit formula).1.1.2 A question about a Curve represent a function and can’t represent a functionThe way ( The vertical line test ) : A curve in the xy-plane is the graph of a function of x if and only if no vertical line intersects the curve more than once. See Fig.17 p 171.1.3 ☆Piecewise defined functions (分段定义的函数)Example7 (P18)1-x if x ≤1f(x)=﹛x2if x>1Evaluate f(0),f(1),f(2) and sketch the graph.Solution:1.1.4 About absolute value (分段定义的函数)⑴∣x∣≥0;⑵∣x∣≤0Example8 (P19)Sketch the graph of the absolute value function f(x)=∣x∣.Solution:1.1.5☆☆Symmetry ,(对称) Even functions and Odd functions (偶函数和奇函数)⑴Symmetry See Fig.23 and Fig.24⑵①Even functions: If a function f satisfies f(-x)=f(x) for every number x in its domain,then f is call an even function. Example f(x)=x2 is even function because: f(-x)= (-x)2=x2=f(x)②Odd functions: If a function f satisfie s f(-x)=-f(x) for every number x in its domain,thenf is call an odd function. Example f(x)=x3 is even function because: f(-x)=(-x)3=-x3=-f(x)③Neither even nor odd functions:1.1.6☆☆Increasing and decreasing function (增函数和减函数)⑴Definition(1-2) increasing and decreasing function:① A function f is called increasing on an interval I if f(x1)<f(x2) whenever x1<x2 in I. ①A function f is called decreasing on an interval I if f(x1)>f(x2) whenever x1<x2 in I.See Fig.26. and Fig.27. p211.2 Mathematical models: a catalog of essential functions p251.2.1 A mathematical model p25A mathematical model is a mathematical description of a real-world phenomenon such as the size of a population, the demand for a product, the speed of a falling object, the concentration of a product in a chemical reaction, the life expectancy of a person at birth, or the cost of emission reduction.1.2.2 Linear models and Linear function P261.2.3 Polynomial P27A function f is called a polynomial ifP(x) =a n x n+a n-1x n-1+…+a2x2+a1x+a0Where n is a nonnegative integer and the numbers a0,a1,a2,…,a n-1,a n are constants called the coefficients of the polynomial. The domain of any polynomial is R=(-∞,+∞).if the leading coefficient a n≠0, then the degree of the polynomial is n. For example, the function P(x) =5x6+2x5-x4+3x-9⑴Quadratic function example: P(x) =5x2+2x-3 二次函数(方程)⑵Cubic function example: P(x) =6x3+3x2-1 三次函数(方程)1.2.4Power functions幂函数P30A function of the form f(x) =x a,Where a is a constant, is called a power function. We consider several cases:⑴a=n where n is a positive integer ,(n=1,2,3,…,)⑵a=1/n where n is a positive integer,(n=1,2,3,…,) The function f(x) =x1/n⑶a=n-1 the graph of the reciprocal function f(x) =x-1 反比函数1.2.5Rational function有理函数P 32A rational function f is a ratio of two polynomials:f(x)=P(x) /Q(x)1.2.6Algebraic function代数函数P32A function f is called algebraic function if it can be constructed using algebraic operations ( such as addition,subtraction,multiplication,division,and taking roots) starting with polynomials. Any rational function is automatically an algebraic function. Examples: P 321.2.7Trigonometric functions 三角函数P33⑴f(x)=sin x⑵f(x)=cos x⑶f(x)=tan x=sin x / cos x1.2.8Exponential function 指数函数P34The exponential functions are the functions the form f(x) =a x Where the base a is a positive constant.1.2.9Transcendental functions 超越函数P35These are functions that are not a algebraic. The set of transcendental functions includes the trigonometric,inverse trigonometric,exponential,and logarithmic functions,but it also includes a vast number of other functions that have never been named. In Chapter 11 we will study transcendental functions that are defined as sums of infinite series.1.2 Exercises P 35-381.3 New functions from old functions1.3.1 Transformations of functions P38⑴Vertical and Horizontal shifts (See Fig.1 p39)①y=f(x)+c,(c>0)shift the graph of y=f(x) a distance c units upward.②y=f(x)-c,(c>0)shift the graph of y=f(x) a distance c units downward.③y=f(x+c),(c>0)shift the graph of y=f(x) a distance c units to the left.④y=f(x-c),(c>0)shift the graph of y=f(x) a distance c units to the right.⑵ V ertical and Horizontal Stretching and Reflecting (See Fig.2 p39)①y=c f(x),(c>1)stretch the graph of y=f(x) vertically bya factor of c②y=(1/c) f(x),(c>1)compress the graph of y=f(x) vertically by a factor of c③y=f(x/c),(c>1)stretch the graph of y=f(x) horizontally by a factor of c.④y=f(c x),(c>1)compress the graph of y=f(x) horizontally by a factor of c.⑤y=-f(x),reflect the graph of y=f(x) about the x-axis⑥y=f(-x),reflect the graph of y=f(x) about the y-axisExamples1: (See Fig.3 p39)y=f( x) =cos x,y=f( x) =2cos x,y=f( x) =(1/2)cos x,y=f( x) =cos(x/2),y=f( x) =cos2xExamples2: (See Fig.4 p40)Given the graph y=f( x) =( x)1/2,use transformations to graph y=f( x) =( x)1/2-2,y=f( x) =(x-2)1/2,y=f( x) =-( x)1/2,y=f( x) =2 ( x)1/2,y=f( x) =(-x)1/21.3.2 Combinations of functions (代数组合函数)P42Algebra of functions: Two functions (or more) f and g through the way such as add, subtract, multiply and divide to combined a new function called Combination of function.☆Definition(1-2) Combination function: Let f and g be functions with domains A and B. The functions f±g,f g and f /g are defined as follows: (特别注意符号(f±g)( x) 定义的含义)①(f±g)( x)=f(x)±g( x),domain =A∩B②(f g)( x)=f(x) g( x),domain =A∩ B③(f /g)( x)=f(x) /g( x),domain =A∩ B and g( x)≠0Example 6 If f( x) =( x)1/2,and g( x)=(4-x2)1/2,find functions y=f(x)+g( x),y=f(x)-g( x),y=f(x)g( x),and y=f(x) /g( x)Solution: The domain of f( x) =( x)1/2 is [0,+∞),The domain of g( x) =(4-x2)1/2 is interval [-2,2],The intersection of the domains of f(x) and g( x) is[0,+∞)∩[-2,2]=[0,2]Thus,according to the definitions, we have(f+g)( x)=( x)1/2+(4-x2)1/2,domain [0,2](f-g)( x)=( x)1/2-(4-x2)1/2,domain [0,2](f g)( x)=f(x) g( x) =( x)1/2(4-x2)1/2=(4 x-x3)1/2domain [0,2](f /g)( x)=f(x)/g( x)=( x)1/2/(4-x2)1/2=[ x/(4-x2)]1/2 domain [0,2)1.3.3☆☆Composition of functions (复合函数)P45☆Definition(1-3) Composition function: Given two functions f and g the composite func tion f⊙g (also called the composition of f and g ) is defined by(f⊙g)( x)=f( g( x)) (特别注意符号(f⊙g)( x) 定义的含义)The domain of f⊙g is the set of all x in the domain of g such that g(x) is in the domain of f . In other words, (f⊙g)(x) is defined whenever both g(x) and f (g (x)) are defined. See Fig.13 p 44 Example7 If f (g)=( g)1/2 and g(x)=(4-x3)1/2find composite functions f⊙g and g⊙f Solution We have(f⊙g)(x)=f (g (x) ) =( g)1/2=((4-x3)1/2)1/2(g⊙f)(x)=g (f (x) )=(4-x3)1/2=[4-((x)1/2)3]1/2=[4-(x)3/2]1/2Example8 If f (x)=( x)1/2 and g(x)=(2-x)1/2find composite function s①f⊙g ②g⊙f ③f⊙f④g⊙gSolution We have①f⊙g=(f⊙g)(x)=f (g (x) )=f((2-x)1/2)=((2-x)1/2)1/2=(2-x)1/4The domain of (f⊙g)(x) is 2-x≥0 that is x ≤2 {x ︳x ≤2 }=(-∞,2]②g⊙f=(g⊙f)(x)=g (f (x) )=g (( x)1/2 )=(2-( x)1/2)1/2The domain of (g⊙f)(x) is x≥0 and 2-( x)1/2x ≥0 ,that is( x)1/2≤2 ,or x ≤ 4 ,so the domain of g⊙f is the closed interval[0,4]③f⊙f=(f⊙f)(x)=f (f(x) )=f((x)1/2)=((x)1/2)1/2=(x)1/4The domain of (f⊙f)(x) is [0,∞)④g⊙g=(g⊙g)(x)=g (g(x) )=g ((2-x)1/2 )=(2-(2-x)1/2)1/2The domain of (g⊙g)(x) is x-2≥0 and 2-(2-x)1/2≥0 ,that is x ≤2 and x ≥-2,so the domain of g⊙g is the closed interval[-2,2]Notice: g⊙f⊙h=f (g(h(x)))Example9Example10 Given F (x)=cos2( x+9),find functions f,g,and h such that F (x)=f⊙g⊙h Solution Since F (x)=[cos ( x+9)] 2,that is h (x)=x+9 g(x)=cos x f (x)=x2Exercise P 45-481.4 Graphing calculators and computers P481.5 Exponential functions⑴An exponential function is a function of the formf (x)=a x See Fig.3 P56 and Fig.4Exponential functions increasing and decreasing (单调性讨论)⑵Lows of exponents If a and b are positive numbers and x and y are any real numbers. Then1) a x+y=a x a y2) a x-y=a x / a y3) (a x)y=a xy4) (ab)x+y =a x b x⑶about the number e f (x)=e x See Fig. 14,15 P61Some of the formulas of calculus will be greatly simplified if we choose the base a .Exercises P 62-631.6 Inverse functions and logarithms1.6.1 Definition(1-4) one-to-one function: A function f iscalled a one-to-one function if it never takes on the same value twice;that is,f (x1)≠f (x2),whenever x1≠x2( 注解:不同的自变量一定有不同的函数值,不同的自变量有相同的函数值则不是一一对应函数) Example: f (x)=x3is one-to-one function.f (x)=x2 is not one-to-one function, See Fig.2,3,4 ☆☆Definition(1-5) Inverse function:Let f be a one-to-one function with domain A and range B. Then its inverse function f -1(y)has domain B and range A and is defined byf-1(y)=x f (x)=y for any y in Bdomain of f-1=range of frange of f-1=domain of f( 注解:it says : if f maps x into y, then f-1maps y back into x . Caution: If f were not one-to-one function,then f-1 would not be uniquely defined. )Caution: Do not mistake the-1 in f-1for an exponent. Thus f-1(x)=1/ f(x) Because the letter x is traditionally used as the independent variable, so when we concentrate on f-1(y) rather than on f-1(y), we usually reverse the roles of x and y in Definition (1-5) and write as f-1(x)=y f (x)=yWe get the following cancellation equations:f-1( f(x))=x for every x in Af (f-1(x))=x for every x in B See Fig.7 P66Example 4 Find the inverse function of f(x)=x3+6Solution We first writef(x)=y=x3+6Then we solve this equation for x:x3=y-6x=(y-6)1/3Finally, we interchange x and y:y=(x-6)1/3That is, the inverse function is f-1(x)=(x-6)1/3( 注解:The graph of f-1 is obtained by reflecting the graph of f about the line y=x. ) See Fig.9、8 1.6.2 Logarithmic function If a>0 and a≠1,the exponential function f (x)=a x is either increasing or decreasing and so it is one-to-one function by the Horizontal Line Test. It therefore has an inverse function f-1,which is called the logarithmic function with base a and is denoted log a,If we use the formulation of an inverse function given by (See Fig.3 P56)f-1(x)=y f (x)=yThen we havelogx=y a y=xThe logarithmic function log a x=y has domain (0,∞) and range R.Usefully equations:①log a(a x)=x for every x∈R②a log ax=x for every x>01.6.3 ☆Lows of logarithms :If x and y are positive numbers, then①log a(xy)=log a x+log a y②log a(x/y)=log a x-log a y③log a(x)r=r log a x where r is any real number1.6.4 Natural logarithmsNatural logarithm isl og e x=ln x =ythat is①ln x =y e y=x② ln(e x)=x x∈R③e ln x=x x>0 ln e=1Example 8 Solve the equation e5-3x=10Solution We take natural logarithms of both sides of the equation and use ②、③ln (e5-3x)=ln10∴5-3x=ln10x=(5-ln10)/3Example 9 Express ln a+(ln b)/2 as a single logarithm.Solution Using laws of logarithms we have:ln a+(ln b)/2=ln a+ln b1/2=ln(ab1/2)1.6.5 ☆Change of Base formula For any positive number a (a≠1), we havel og a x=ln x/ ln a1.6.6 Inverse trigonometric functions⑴Inverse sine function or Arcsine functionsin-1x=y sin y=x and -π/2≤y≤π / 2,-1≤x≤1 See Fig.18、20 P72Example13 ① sin-1 (1/2) or arcsin(1/2) ② tan(arcsin1/3)Solution①∵sin (π/6)=1/2,π/6 lies between -π/2 and π / 2,∴sin-1 (1/2)=π/6② Let θ=arcsin1/3,so sinθ=1/3tan(arcsin1/3)=tanθ=s inθ/cosθ=(1/3)/(1-s in2θ)1/2=1/(8)1/2Usefully equations:①sin-1(sin x)=x for -π/2≤x≤π / 2②sin (sin-1x)=x for -1≤x≤1⑵Inverse cosine function or Arccosine functioncos-1x=y cos y=x and 0 ≤y≤π,-1≤x≤1 See Fig.21、22 P73Usefully equations:①cos-1(cos x)=x for 0 ≤x≤π②cos (cos-1x)=x for -1≤x≤1⑶Inverse Tangent function or Arctangent functiontan-1x=y tan y=x and -π/2<y<π / 2 ,x∈R See Fig.23 P73、Fig.25 P74Example 14 Simplify the expression cos(ta n-1x).Solution 1 Let y=tan-1 x,Then tan y=x and -π/2<y<π / 2 ,We want find cos y but since tan y is known, it is easier to find sec y first:sec2y=1 +tan2y sec y=(1 +x2 )1/2∴cos(ta n-1x)=cos y =1/ sec y=(1 +x2)-1/2Solution 2∵cos(ta n-1x)=cos y∴cos(ta n-1x)=(1 +x2)-1/2⑷Other Inverse trigonometric functionscsc-1x=y∣x∣≥1csc y=x and y∈(0,π / 2]∪(π,3π / 2]sec-1x=y∣x∣≥1sec y=x and y∈[0,π / 2)∪[π,3π / 2]cot-1x=y x∈R cot y=x and y∈(0,π)Exercises P 74-85Key words and PhrasesCalculus 微积分学Set 集合Variable 变量Domain 定义域Range 值域Arbitrary number 独立变量Independent variable 自变量Dependent variable 因变量Square root 平方根Curve 曲线Interval 区间Interval notation 区间符号Closed interval 闭区间Opened interval 开区间Absolute 绝对值Absolute value 绝对值Symmetry 对称性Represent of a function 函数的表述(描述)Even function 偶函数Odd function 奇函数Increasing Function 增函数Increasing Function 减函数Empirical model 经验模型Essential Function 基本函数Linear function 线性函数Polynomial function 多项式函数Coefficient 系数Degree 阶Quadratic function 二次函数(方程)Cubic function 三次函数(方程)Power functions 幂函数Reciprocal function 反比函数Rational function 有理函数Algebra 代数Algebraic function 代数函数Integer 整数Root function 根式函数(方程)Trigonometric function 三角函数Exponential function 指数函数Inverse function 反函数Logarithm function 对数函数Inverse trigonometric function 反三角函数Natural logarithm function 自然对数函数Chang of base of formula 换底公式Transcendental function 超越函数Transformations of functions 函数的变换Vertical shifts 垂直平移Horizontal shifts 水平平移Stretch 伸张Reflect 反演Combinations of functions 函数的组合Composition of functions 函数的复合Composition function 复合函数Intersection 交集Quotient 商Arithmetic 算数。

(高等数学英文课件)3.2 The Mean Value Theorem and Differential Equations

(高等数学英文课件)3.2 The Mean Value Theorem and Differential Equations

令x=0,得

故所证等式在定义域
(常数) 上成立.
欲证 x I 时 f (x) C0, 只需证在 I 上 f (x) 0,
且 x0 I , 使 f (x0 ) C0.
目录 上页 下页 返回 结束
目录 上页 下页 返回 结束
Example 3. Find the function
whose derivative is
证: 设 f (t) ln(1 t) ,
中值定理条件, 因此应有
即 因为 故
目录 上页 下页 返回 结束
Relation of Rolle and Lagrange Theorem
目录 上页 下页 返回 结束
例. 设 f (x) C[ 0, π ], 且在 ( 0, π )内可导, 证明至少存
目录 上页 下页 返回 结束
The hypotheses of Theorem 3 are essential. If they fail, the result may not holds.
目录 上页 下页 返回 结束
Example 1. Show that the equation has exactly one real root.
Chapter 3 Applications of Derivatives
3.1 Extreme Values of Functions 3.2 The Mean Value Theorem and Differential
Equations 3.3 The Shape of a Graph 3.4 Graphical Solutions of Autonomous
Differential Equations 3.5 Modeling and Optimization 3.6 Linearization and Differentials 3.7 Newton’s Method

(高等数学英文课件)3.1 Extreme Values of Functions

(高等数学英文课件)3.1 Extreme Values of Functions

1
4x2
3 2
2x
2
1. Critical point x 0
2. Endpoint
f 0 1 max or min?
2
目录 上页 下页 返回 结束
Example 7. Find the absolute maximum and minimum
values of f t8tt4on the interval 2 ,1 .
目录 上页 下页 返回 结束
12220y2x2
x 14420y2
c5 0 0 0 0x3 0 0 0 0y
cy 5 0 0 0 01 4 4 2 0 y2 3 0 0 0 0 y, y0,20.
Our goal now is to find the minimum value of c(y).
Critical point
y0,y20
Endpoint
c01,166,190 c201,200,000
c111,080,000
目录 上页 下页 返回 结束
The least expensive connection costs 1,080,000 dollars, and we achieve it by running the line underwater to the point on shore y=11 mi from the refinery.
Differential Equations 3.5 Modeling and Optimization 3.6 Linearization and Differentials 3.7 Newton’s Method
目录 上页 下页 返回 结束
3.1
Extreme Values of Functions

高数英文版课件

高数英文版课件

4 2
3 2 3 2
5(1) 3(1)
42((5252))3522
1 0
0 1
A1A 132
252
4 2
5 3
(3214)4(252)22
(3215)5(252)33
1 0
0 1
Determinant of a Matrix
• The quantity ad – bc that appears in the rule for calculating the inverse of a 2 x 2 matrix is called the determinant of the matrix.
• Here, we investigate division of matrices.
– With this operation, we can solve equations that involve matrices.
• The Inverse of a Matrix
Identity Matrices
b d
Matrices - Operations
When the original matrix is square, transposition does not affect the elements of the main diagonal
Aac
b d
AT
a b
c d
The identity matrix, I, a diagonal matrix D, and a scalar matrix, K, are equal to their transpose since the diagonal is unaffected.

第七章 常微分方程 (Differential Equation)

第七章 常微分方程 (Differential Equation)

第七章 常微分方程 (Differential Equation)第四节 二阶线性微分方程 (Differential Equation of Second Order) 教学目的:1.理解二阶微分方程解的结构2.熟练掌握二阶常系数齐次线性微分方程的通解表达式3.熟练掌握自由项为()()x n f x P x e λ=的二阶常系数非齐次线性微分方 程的解法4.会解简单的自由项()cos f x A x β=或()sin f x A x β=的二阶常系数 非齐次线性微分方程教学内容:1.线性方程解的结构定理2.二阶常系数线性齐次微分方程的通解3.二阶常系数线性非齐次微分方程的特解教学重点:1.二阶微分方程解的结构2.二阶常系数齐次线性微分方程的通解表达式3.自由项为()()x n f x P x e λ=的二阶常系数非齐次线性微分方程的解法 教学难点:自由项为()()x n f x P x e λ=的二阶常系数非齐次线性微分方程的解法 教 具:多媒体课件教学方法:精讲:重点讲清以上微分方程的解法。

多练:在讲授后,通过练习、讨论和分析归纳帮助学生自我消化、自我提高,从而培养学生的计算能力。

教学过程:在工程及物理问题中,遇到得高阶方程很多都是线性方程,或者可简化为线性方程。

二阶线性方程得一般形式为 )()()(x f y x q y x p y =+'+'' (1)其中,)(),(x q x p 及)(x f 是已知函数,)(),(x q x p 叫做系数函数,)(x f 叫做自由项。

当)(),(x q x p 为常数时,方程)(x f qy y p y =+'+'' (2)叫做二阶常系数线性微分方程。

一、线性方程解的结构定理以上所述二阶线性微分方程得解得结构定理,是以常系数线性微分方程(2)为例,其所有结论,对方程(1)都成立。

在方程(2)中,若0)(≡x f ,则方程0=+'+''qy y p y (3)叫做二阶常系数线性齐次微分方程,相应的0)(≠x f 时,方程(2)叫做二阶常系数线性非齐次微分方程。

高等数学方明亮版课件111微分方程的基本概念培训课件

高等数学方明亮版课件111微分方程的基本概念培训课件
12 (C1 e1x C2 e2x ) 0 右边. 所以函数 y 是该方程的解.
注意到,本例中的函数 y C1 e1x C2 e2x 中有两个常数 C1 , C2 ,它们可以取不同的实数,从而可得到微分方程
y (1 2 ) y 12 y 0 的无穷多个解.一般地,我们有以
下概念:
2020/8/3
定义 6 确定了通解中的任意常数后的解叫做微分方程的特解.
定义 7 求微分方程的解的过程叫做解微分方程.
2020/8/3
7
目录
上页
下页
返回
例 2 确定函数 y C1 sin(x C2 ) 中所含的参数 C1,C2 ,使 函数满足初始条件 y x 1 , y x 0 .
解:对函数 y C1 sin(x C2 ) 两边求导,得
2k
2
(k Z ),
C1 1,
2020/8/3
8
目录
上页
下页
返回

C1 1,

C2 2k 2 (k Z )C1 1,C2 2k 2 (k Z ),
所以,所求函数为 y cos x .
课外练习
习题11-1 1; 2(奇数题);3(1); 4; 5(奇数题)
2020/8/3
x2 y ( y)6 4xy5 7x10 是三阶微分方程
定义 4 满足微分方程的函数称为微分方程的解.
例 1 验证:函数
y C1 e1x C2 e2x (其中, C1 , C2 , 1 , 2 为常数)
是微分方程
的解.
y (1 2 ) y 12 y 0
2020/8/3
5
目录
上页
下页
高等数学多媒体课件
牛顿(Newton)

《微积分英文》课件 (2)

《微积分英文》课件 (2)
Methods for finding limits using algebra
Types of Limits
One-sided limits
Limits approached
from one direction
Limits at infinity
Behavior of functions at
infinity
● 02
第2章 Limits and Continuity
01 Definition of a limit
Explanation of what a limit is
02 Properties of limits
Key characteristics of limits
03 Calculating limits algebraically
Graphing functions by analyzing their derivatives and key points
Higher Order Derivatives
Second derivative
Rate of change of the rate of
change
nth derivative
● 03
第3章 Differentiation
Derivatives and Rates of
Change
A derivative is defined as the rate of change of a function at a given point. Notation for derivatives includes symbols such as f'(x) or dy/dx. Derivatives can be interpreted as rates of change in various realworld applications.

高等数学英文版课件 15 Differential equations

高等数学英文版课件 15 Differential equations

where P, Q, R, and G are continuous functions.
If G(x) = 0 for all x, such equations are called secondorder homogeneous linear equations. (This use of the word homogeneous has nothing to do with the meaning given in Section 15.1.)
Example 3 Solve the equation 4 y 12y 9 y 0
Case 3 b2 4ac 0
In this case the roots r1 and r2 of the auxiliary equation are complex numbers, we can write
a(2rerx r 2 xerx ) b(erx rxerx ) cxerx
(2ar b)erx (ar 2 br c)xerx
0(erx ) 0(xerx ) 0
Since y1 erx and y2 xerx are linearly independent solutions, Theorem 4 provides us with the general solution:
(11) If the roots of auxiliary equation ar 2 br c 0
are the complex numbers r1 i , r2 i , then the general solution of ay by cy 0 is
y ex (c1 cos x c2 sin x)
P(x) y Q(x) y R(x) y

《微积分英文版》课件

《微积分英文版》课件
Properties: Continuity, differentiation, integrity, etc
Limits and continuity
Definition: A limit is the value that a function approaches as the input approaches a certain point Continuity means that the function doesn't have any breaks or jumps at any point
Course structure
03
The course is divided into several modules, each focusing on a specific topic in calculus Learners can complete the course at their own pace and in any order of the modules
Properties: One side limits, absolute continuity, uniform continuity, etc
Differentiation
Definition: The derivative of a function at a point is the slope of the tangent line to the graph of the function at that point It can be used to find the rate of change of a function
Integral definition: The integral of a function is a measure of the area under its curve It is calculated by finding the limit of the sum of areas of rectangles under the curve as the width of the rectangles approaches zero

《高等数学课件-全英文版(英语思维篇)》

《高等数学课件-全英文版(英语思维篇)》
Fundamental Theorem of Calculus
Discover the Fundamental Theorem of Calculus and its significance in integration.
Riemann Sums
Explore Riemann sums as a method for approximating definite integrals.
Functions and Graphs
Types of Functions
Discover the different types of functions and their graphical representations.
Graph Plotting
Learn how to plot and analyze functions using mathematical tools and software.
Differentiation
1
Derivative Definition
Learn the definition and basic rules
Chain Rule
2
of differentiation.
Discover how to differentiate
composite functions using the
Work and Energy
Explore how integration is used to calculate work and energy in various scenarios.
Differential Equations
1
Introduction to Differential

微积分英文版课件

微积分英文版课件

极限和连续性的关系:极限是连续 的必要条件,但不是充分条件
添加标题
添加标题
添加标题
添加标题
连续性:函数在某点或某区间上的 连续性
极限和连续性的应用:在微积分中, 极限和连续性是解决许多问题的基 础
导数:函数在 某一点的斜率, 表示函数在该
点的变化率
微分:函数在 某一点的增量, 表示函数在该
点的变化量
定义:含有两个未知函数 及其导数的方程
形式:ax^2+bx+c=0
解:通过求解特征方程得 到
应用:广泛应用于物理、 工程等领域
高阶微分方程:含有未知函数及其高阶导数的方程 线性微分方程组:含有未知函数及其导数的线性方程组 求解方法:包括积分法、幂级数法、拉普拉斯变换法等 应用领域:广泛应用于物理、化学、工程等领域
级数的形式
应用:在微积 分、数学分析、 物理等领域有
广泛应用
例子:泰勒级 数在求解微分 方程、积分方 程、傅里叶变 换等方面有重
要应用
感谢您的观看
汇报人:PPT
物理概念:力、速度、加速度、质量、能量等
几何概念:直线、平面、曲线、曲面、体积、面积等
物理和几何的结合:力与运动的关系、力与能量的关系、力与几何形状的关系等
微积分在物理和几何中的应用:微积分在力学、光学、电磁学等领域的应用,以及在几何学、 拓扑学等领域的应用。
微积分基本概念
极限:函数在某点或某区间上的极 限值
微积分在物理中 的应用:微积分 在物理中的应用 广泛,如力学、 电磁学、热力学 等
微积分在工程中 的应用:微积分 在工程中的应用 广泛,如建筑、 机械、电子等
微分方程
定义:含有一个未 知函数和一个未知 函数的导数的方程

微积分英文版课件

微积分英文版课件

Applications of Derivatives
Local Extrema
Discover how derivatives help identify local maximums and minimums of functions.
Mean Value Theorem
Explore the mean value theorem and its applications in calculus.
Gradients and Directional Derivatives
2
derivatives and their applications in multivariable calculus.
Learn about gradients and
directional derivatives for
Derivatives
1
Definition of a Derivative
Uncover the definition and
Differentiability and Continuity
2
fundamental properties of derivatives.
Understand the relationship
Discover the conditions for a function to be continuous and its implications.
Explore the different types of discontinuities and their characteristics.
Conclusion
Review of Key Concepts

高等数学【线性代数】英文版课件5

高等数学【线性代数】英文版课件5

(4) BERNOULLI
Standard form: y + p(x)y = q(x)yα change of variables u = y1−α =⇒ reduces the equation to a linear one
f (x) dx
.
2
There exists an integrating factor that depends only on y if and only if (My − Nx )/M = g(y), a function of y only. In such a case, an integrating factor is I(y) = e−
Review: Solution techniques for y = f (x, y)
(3) FIRST-ORDER HOMOGENEOUS
Standard form: y = f (x, y), where f (tx, ty) = f (x, y) Technique: Change variables: y = xV(x), and reduce to a separable equation
We can verify that a potential function for Equation (1.8.15) is 1 u(x, y) = x−2 y2 − 2x−1 , 2 and hence the general solution to (1.8.14) is given implicitly by 1 −2 2 x y − 2x−1 = C, 2 or equivalently, y2 − 4x = Cx2 , where C is an arbitrary constant.

微分方程(differential equations)

微分方程(differential equations)

1、definition: general form as
(2-5.1) 2、solution (2-5.1): (a) if g(y)=0, then (b)
(2-5.2)
Notice: (1)
may be included in the general solution. (2) C must make the solution meaningful.
2、 nonlinear differential equations:不是线性的
方程
e.g:
13
1-5 Solution of Differential Equations 1、general solution and specific solution
注:(1)n阶方程通常必含有n个任意常数 (2)通解并不是方程的所有解或一切解,特解 未必包含在通解中(e.g: singular solution奇解)
(3) initial-value problem :即求方程(1.1)满足
初值条件的解称为初值问题,又称Cauchy problem. example: 注意:n阶的方程就有n个初值条件
(4)boundary-value problem
15
16
3、explicit and implicit solution (显式和隐式解)
example 1: example 2: example 3:
26
3、solution (2-5.2): (1) separation of variables (2) Notice: (1)
(2) test the specific solution are included in the general solution

高等数学【线性代数】英文版课件1

高等数学【线性代数】英文版课件1
1 2 3 4
dy 2 dx + y = x d2 y = −k2 y dx2 2y 5 d3 y + d 2 + cos x = dx3 dx dy sin dx + tan−1 y = 1
0
Ordinary Differential Equations Lecture Notes
Definition (1.2.3) The order of the highest derivative occurring in a differential equation is called the order of the differential equation. In Example 1.2.2
Ordinary Differential Equations Lecture Notes
School of Physical and Mathematical Sciences Nanyang Technological University
August 2010
Ordinary Differential Equations Lecture Notes
Ordinary Differential Equations Lecture Notes
1.2. Basic Ideas and Terminology
Begin with a very general definition of a differential equation. Definition (1.2.1) A differential equation is an equation involving one or more derivatives of an unknown function. Examples (1.2.2) The following are all differential equations.

高数双语课件section1_5.pptx

高数双语课件section1_5.pptx

kind [第一类间断点] of the function; all other discontinuous points are called discontinuity of the second kind[第二类间断点].
y
y
O
x
First kind
x O
Second Kind
11
The Classification of Discontinuous Points
Finish.
7
The Continuity of Function
2x 1, 1 x 0
Example
Prove
f
(
x
)
x
2
3,
0 x1
does not continuous at
x0 .
Proof Since f (0) 3 and
xlim0 f ( x) xlim0( x2 3) 3 f (0)
x) sin( x0)
2cos
x0
x 2
sin
x 2
then
lim
x0
y
2
lim cos
x0
x0
x 2
sin
x 2
0.
Hence sin x is continuous at x x0. Since, x0 is arbitrary point
in the interval (,), we have sin x C(,) .
(
x0
)
x x0
lim
x x0
f (x) f (x)
f ( x0)
.
f ( x0)
4
The Continuity of Function
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)
It is not hard to think of some likely candidates for particular solutions of Equation 5. For example, the exponential function y erx because its derivatives are constants multiple of itself: y rerx, y r 2erx . Substitute these expression into Equation 5
机动 目录 上页 下页 返回 结束
15.5 Second-Order Linear Equations
A second-order linear differential equation has the form
(1) P(x) d 2 y Q(x) dy R(x) y G(x)
dx 2
dx
is also a solution of Equation 2.
Thus
is a solution of Equation 2.
y c1y1 [P(x) y1 Q(x) y1 R(x) y1] c2[P(x) y2 Q(x) y2 R(x) y2 ] P(x)(c1 y1 c2 y2) Q(x)(c1 y1 c2 y2 ) R(x)(c1 y1 c2 y2 ) P(x)(c1 y1 c2 y2 ) Q(x)(c1 y1 c2 y2 ) R(x)(c1 y1 c2 y2 )
(4)Theorem If y1 and y2 are linearly independent
solutions of Equation 2 , then the general solution is given by
where c1 and c2 are arbitrary constants.
f (x) x2 and g(x) 5x2 are linearly dependent, but f (x) e x and g(x) xe x are linearly independent.
The second theorem says that the general solution of a homogeneous linear equation is a linear combination of two linearly independent solutions.
y(x) c1y1(x) c2 y2 (x)
ay by cy 0
In general, it is not easy to discover particular solutions to a second-order linear equation. But it is always possible to do so if the coefficient functions P, Q and R are constant functions, that is, if the differential equation has the form
Differential equations
Chapter 15
15.1 Basic concepts, separable and homogeneous equations
15.2 First-order linear equations 15.3 Exact equations 15.4 Strategy for solving first-order equations
where P, Q, R, and G are continuous functions.
If G(x) = 0 for all x, such equations are called secondorder homogeneous linear equations. (This use of the word homogeneous has nothing to do with the meaning given in Section 15.1.)
solutions y1 and y2 of such an equation, then the linear
combination
is also a solution.
y(x) c1y1(x) c2 y2 (x) y c1y1 c2 y2
(3)Theorem If y1(x) and y2 (x) are both solutions of the linear equation (2) and c1 and c2 are any constants, then the function
(2) P(x) d 2 y Q(x) dy R(x) y 0
dx 2
dx
If G(x) 0 for some x, Equation 1 is nonhomogeneous.
Two basic facts enable us to solve homogeneous linear
equations. The first of these says that if we know two
P(x) y Q(x) y R(x) y
P(x) y2 Q(x) y2 R(x) y2 0
P(x) y1 Q(x) y1 R(x) y1 0
Proof Since y1 and y2 are solutions of Equation 2, we have and
Therefore
Let x and y are two variables, if neither x nor y is a constant multiple of the other, we say x and y are two linearly independent variables. For instance, the function
相关文档
最新文档