有理数的减法(1)

合集下载

有理数的减法(1)

有理数的减法(1)

有理数的减法(1)一、选择题1、差是-7.2,被减数是0.8,减数是( ) A 、-8 B 、8 C 、6.4 D 、-6.42、下列结论中正确的是 ( )A 、两个有理数的和一定大于其中任何一个加数B 、两个有理数的差一定小于被减数C 、两个负数相减,差为负数D 、负数减去正数,差为负数 3、下列说法,其中正确的有 ( )①减去一个负数等于加上这个数的相反数;②正数减负数,差为正数;③零减去一个数,仍得这个数;④两数相减,差一定小于被减数;⑤两个数相减,差不一定小于被减数;⑥互为相反数两数相减得零. A 、2个 B 、3个 C 、4个 D 、5个4、若0a >,且a b >,则a b -是 ( ) A 、正数 B 、正数或负数 C 、负数 D 、05、算式-4-5不能读作( ) A 、-4与5的差 B 、-4与-5的和 C 、-4与-5的差 D 、-4减去5的差6、-3,-14,7的和比它们的绝对值的和小 ( ) A 、-34 B 、-10 C 、10 D 、347、计算2-(-3)的结果是( ) A .-5 B .5 C .-1 D .18、某市某日的气温是-2℃~6℃,则该日的温差是( ) A .8℃ B .6℃ C .4℃ D .-2℃ 9、计算1-|-2|结果正确的是 ( ) A .3 B .1 C .-1 D .-310、某市2005年的最高气温为39℃,最低气温为零下7℃,则计算2005年温差列式正确的是( ) A .(+39)-(-7) B .(+39)+(+7) C .(+39)+(-7) D .(+39)-(+7) 11、计算12--的结果是( ) A 、3- B 、2- C 、1- D 、312、a ,b 在数轴上的对应点的位置如图,则( )A 、a +b =0 B 、a +b >0 C 、a -b <0 D 、a -b >0二、填空题1、温度6℃比-6℃高________;从海拔350米处下降到海拔-100米,下降了_____米。

1.3.2 有理数的减法(1)

1.3.2 有理数的减法(1)

=(-2.5)+(-5.9) =1.9+(+0.6)
=5
=-8.4
=2.5
2 计算
(1)比2℃低8℃的温度
(2)比-3℃低6℃的温度
解: 2-8=-6
比2℃低8℃的温度是-6 ℃
解 -3-6=-9
比-3℃低6℃的温度是-9 ℃
探索:输入-1,按图所示的程序运算,并写出
输出的结果。
解:当输入为-1时
5
1 ) 4
8
3 4
例6、 全班学生分为五个组进行游 戏,每组的基本分为100分,答对 一题加50分,答错一题扣50分,游 戏结束时,各组的分数如下:
第一组 第二组 第三组 第四组 第五组
100 150 -400 350 -100
(1) 第一名超出第二名多少分?
(2) 第二名超出第五名多少分?
解: 由上表可以看出,第一名得了 350分,第二名得了150分,第五名 得了- 400分
4-(-3)=7 ①
另一方面,我们知道 4+(+3)=7 ②
由①②有
4-(-3)=4+(+3) ③
4
7
0
-3
探究 减一个负数等于加上这个数的相反数
4-(-3)=4+(+3)③
从③式能看出减-3相当于加哪个数吗? 减-3相当于加-3的相反数
把4换成0,-1,-5,用上面的方法考虑
0-(-3) =3 0+3 =3 (-1)-(-3) =2 -1+3 =2
果加上20分的加分,她的成绩应该是 692。”吴老师说,何旋考出好成绩的秘 诀是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区

有理数的减法教学设计(1)

有理数的减法教学设计(1)
基本信息 课题 作者及工作 单位
人教版七年级数学上有理数的减法(1)
河南省济源市轵城镇实验中学 赵玉荣 教材分析
本节是在学习了正负数、相反数、有理数加法运算之后,以初中代数第一 册 的有理数减法法则及有理数减法运算的例 1、例 2 为课堂教学内容。有理数的减 法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并 对解决实际问题都有十分重要的作用。
学生口述解题过 程,教师板书做示 范,从中培养学生 严谨的学风和良 好的学习习惯.例 1(2)题是 0 减去一 个数,学生在开始 学时很容易出错, 这里作为例题是 为引起学生的重 视.(3)(4)两 题是简单的变式 题目,意在说明有 理数减法法则不 但适用于整数,也 适用于分数、小 数,即有理数.
组织学生自己编题, 学 教师与学生以平 等身份参与教学, 生回答. (小组交流合 放手让学生自己 作) 编拟有理数减法 的题目,其目的是 让学生巩固已学 知识.这样做,一 方面可以活跃学 生的思维,培养学 生的表达能力.另 一方面通过出题, 相互解答,互相纠 正,能增强学生学 习的主动性和参 与意识.同时,教 师可以获取学生 掌握知识的反馈 信息,对于存在的 问题及时回授.
3、
作为初一新生,学生的学习惯还尚未培养,虽然学习积极性较高,探索欲 望也较强,但交流合作意识不强,自主探索的效率也较低,自我管理能力 也很差。 教学目标
1、经历探索有理数减法法则的过程。
2、理解探索有理数减法法则,渗透化归思想。 3、能较为熟练地进行两个有理数减法的运算。 4、能解决简单的实际问题,体会数学与现实生活的联系。
先请同桌两位同学互 相交流,然后请 2—3 个同学发言 学生思考后回答: 减- 2 等于加+2
.允许学生从不同 角度观察得出温 差,采用温度计从 5 数到零下 2 度, 只要学生的方法 合理,都应鼓励。 此处先让学生回 顾加法与减法互 为逆运算关系,有 助于学生理解 5-(-2)=7 教师发挥主导作 用,注重学生的参 与意识,充分发展 学生的思维能力, 让学生通过尝试, 自己认识减法可 以转化为加法计 算。 由于学生刚刚接 触有理数减法运 算难度较大,为面 向全体,通过变换 题给予学生进一 步观察比较的机 会,学生自己总 结、归纳、思考, 此时学生的思维 活跃,易于充分发 挥学生的学习主 动性,同时也培养 了学生分析问题 的能力,达到能力 培养的目标

教案(有理数减法(1) 教学设计)

教案(有理数减法(1) 教学设计)
方法总结:此类问题如果是填空或选择题,可以采用“特殊值”法进行判断,若是解答题,可以将减法转化为加法通过运算法则来解答.
四、课堂小测
有理数减法基础练习1
五、课堂小结
1、有理数的减法法则:a-b=a+(-b)
2、注意两变
六、布置作业
1、完成课本20面练习题;
2、完成新课程《第3课时 有理数的减法》;
3、完成洋葱数学《有理数的减法 基础练习1》
重点
有理数减法法则及运用
难点
有理数减法法则的推导
教法
启发引导、讲授和讨论结合等
学法
归纳、合作、识记、练习
教学手段
多媒体、微课
课时安排
1课时
教学过程
设计意图
一、复习引入
有理数加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加;
2、绝对值不相等的异号两数相加,取绝对值较大的加数的的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3、一个数同0相加,仍得这个数。
二、讲解错题
1、洋葱数)》第5、8、9、10题;《有理数加法(2)》6、7、8、9题。
三、讲授新课
探究点:有理数的减法法则
1、有理数减法法则的直接运用
例1:计算:(1)7.2-(-4.8);(2)-3 -5 .
解析:判断a,b差的符号,可能不好理解,不妨把它转化为加法a-b=a+(-b),利用加法法则进行判定.
解:因为b<0,所以-b>0.又因为a<0,a-b=a+(-b),所以a与-b是异号两数相加,那么它们和的符号由绝对值较大的加数的符号决定,因为|a|>|b|,即|a|>|-b|,所以取a的符号,而a<0,因此a-b的符号为负号.

有理数减法(1)

有理数减法(1)
1 1
口算:
(1)3 – 5 ; (3)( – 3) – 5; (2)3 – ( – 5);
(4)( – 3) – ( –5);
(5)–6 –( –6); (6) – 7 – 0; (7)0 – ( –7) ;(8 )( – 6) – 6 (9)9 – ( –11)
习题、计算: (1)0-8
1 5 (4) 5 8 7 7
当a-b=0时,比较a,b的大小。 当a-b<0时,比较a,b的大小。 4、若a<b,b<0且|a|>|b|,那么a-b是 ( A、正数 B、负数 C、0
)
D、以上都有可能
5、(1)10-(______)=15 (3)(____)-(+8)=-4
(2)-7-(_____)=+5 (4)(____)-(-1.2)=-2.4
1.3.2 有理数减法(1)
-6 1、( 5 ) ( 1) ___
-4 2、( 8 ) ( 4 ) ______
0 3、( 205 ) 205 ____ 4、0 1999


-1999
___
35 5、 1 . 5 36 . 5 ________
1、-2的相反数是_________,+0.3的相反数是_________。
2、相反数是它的本身的数是_______,________的相反数 大于0。 3、绝对值是它本身的数是_______. 4、计算: 2 (1)10-8=____ 8 (3) 21-13=___ 2 (2) 10+(-8)=_____ 8 (4) 21+(-13)=_____
课堂小结
1、本课学习了有理数的减法运算,在进行 有理数减法运算时,我们先把减法运算转 化为加法,然后再根据加法运算的法则进 行。 2、在进行有理数减法运算时,要注意两变一不 变,“两变”即减号变成加号,减数的符号要改 变;“不变”是指被减数不变。

有理数的减法(1)

有理数的减法(1)
⑸ 0-(-1.8) ⑹(-3.5)-(-3.5) ⒉冬季某天的最高气温是2℃,最低气 温是-9℃,求这天的温度差. ⒊珠穆朗玛峰的海拔高度为8844米, 吐鲁番盆地的海拔高度为-155米,求 两地的高度差.
想一想:15℃比5℃高多少?
15℃比-5℃高多少? 解: 15 – 5 = 10 15 –(–5)= 20 答:15º C比5º C高10º C,15º C比–5º C高20º C.
你发现了什么?
(2)减数变为它 的相反数
5 (-3)-(-5)=(-3)+___
有有理数减法法则理数的减法法 则:
减去一个数练习:
⒈计算:
⑴(-11)-(-13) ⑵(-3.4)-(-2.7) ⑶(+5)-(-11) ⑷ (-13)-(+25)
想一想:15℃比5℃高多少?
15℃比-5℃高多少?
20
10


七年级 (上)
1.3.2 有理数的减法
学习目标:
会将有理数的减法转换成 有理数的加法进行运算.
自学指导:
认真看P.21-22. ⑴换几个数完成探究
⑵理解有理数减法的法则;
⑶看例题时思考每一步的依据.
试一试:
(-5) (-3)-5=(-3)+___ (1)减号变为加 5 3-(-5)=3+___ 号 (-5) 3-5=3+___
小结与回顾
请你计算以下各城市的日温差
北京
0~8℃
天津
-2~9℃
沈阳
长春
哈尔滨
-7~2℃ -10~1℃ -14~ -5℃
课堂作业
.必做题 : P.25 3 , 4 选做题: 1.一架直升飞机在海 平面上方80米处记作+80米,一

2.2有理数的减法(1)——黄有宇

2.2有理数的减法(1)——黄有宇

这一天内 杭州的温差 是多少呢?
4
4 3 2 1 0 -1 -2 -3 -4
-
(-3)
4 3 2 1 0 -1 -2 -3 -4
= 7 ?
4 3 2 1 0 -1 -2 -3 -4
4
-
=
3
4 +3= 7
观察
这两个式子有什么相同
和不同的地方?
4 -(-3)=7
4 + (+3)=7
计算下列各题:
30 50 20 _____,
一个数与它的相反数的差是什么 数?你能举例加以说明吗?
在数轴上,点A、B、C、D表示的有理 数分别是+1,+5,-2,-3,请问以下 两点间的距离是多少:
(1)A、B两点;
(2)C、D两点; (3)A、D两点;
两点所表示的 有理数的差与 两点间的距离 有什么关系吗?
已知有理数 a, b在数轴上对应点的位置 如图所示。 化简: b a b b a a
本分为100分,答对一题加50分,答错一题扣50
分,游戏结束时,各组的分数如下:
第一组 第二组
第三组 第四组 第五组 -400 350 -100
100
150
(1) 第一名超出第二名多少分? (2) 第二名超出第五名多少分?
受台风“莫拉克”的影响,8月8号, 钱塘江水位超过警戒线10厘米,8月9号 由于暴雨,江水继续上涨20厘米,截至 11号,水位开始下降,比警戒线低了16 厘米,求最高水位比最低水位高多少?
30-(-16)=30+16=46
1. 填空:
(1)温度3℃比-8℃高 11 ℃ ;
(2)温度-9℃比-1℃低 8℃ ;
160m (3) 海 拔 高 度 -20m 比 -180m 高 ; 72m

2.2 有理数的减法(1)

2.2 有理数的减法(1)
减数变成它的相反数
有理数减法法则 减去一个数,等于加上这 个数的相反数
a-b=a+(-b)
范例
(1)0-(-3) (2)(-5)-3 (3)13-(-13)
例1
计算: (1) 5 - (-5);
(2) 0 - 7 - 5 ;
(3) (-1.3)- (-2.1);
1 1 (4) 1 2 ; 3 2
小结:
1.有理数的减法一般是将其先转化 为加法,再来计算的。 2.转化的法则是:减去一个数,等 于加上这个数的相反数。(被减数 永远不变)
下表列出了外国几个城市与北京的时间差。 (带正号的数表示同一时刻比北京时间早的数值, 带负号的数表示同一时刻比北京时间晚的数值。 单位:小时)
城市 时差 东京 纽约 巴黎 芝加哥

+1
-13
-7
-14
(1)如果现在的北京时间是7:00,那么现在的 纽约时间是多少? (2)远在巴黎的姑妈,在当地时间是7:00时 想给芝加哥的舅妈打电话,你认为合适吗?
解:-392-(-155)=-392+155=-237(米) 答:两者相比,死海的湖面更低, 比吐鲁番盆地最低点低237米。
1、口算:
8 -2 (1)3-5=___;( 2)3-(-5)=___; 2 -8 ;(4)(-3)-(-5)=____ (3)(-3)-5=______ ; 0 -7 (5)-6-(-6)=____ __;(6)-7-0=___; -12 ; (7)0-(-7)=______;(8)(-6)- 6=_____ 20 (9) 9 -(-11)=___; 7
2、下列说法中正确的是( B ) A、两个数的差一定小于被减数 B、若两个数的差为0,则这两数必 相等 C、零减去一个数一定得负数 D、一个负数减去一个负数结果仍 是负数

1.3.2有理数的减法(1)

1.3.2有理数的减法(1)

填空: 填空: (1)温度3℃比-8 ℃高 温度3℃比 ℃高 3℃ ℃低 (2)温度-9 ℃比-1 ℃低 温度- ℃比 (3)海拔-20m比-30m高 海拔-20m比 30m高 (4)从海拔22m到-10m,下降了 从海拔22m到 10m, 22m ; ; ; ;
全班学生分为五个组进行游戏, 全班学生分为五个组进行游戏,每组的基本 分为100 100分 答对一题加50 50分 答错一题扣50 分为100分,答对一题加50分,答错一题扣50 游戏结束时,各组的分数如下: 分。游戏结束时,各组的分数如下:
7℃
1 0 —1
-2
-3 -4 -5 -6
-2
-3 -4 -5 -6
比较这两个式子,你能发现什么? 比较这两个式子,你能发现什么? 不变
变成相反数
4 -(- 3)= 7 ( )
减号变加号
4+ 3=7
结果相同
计算下列各式: 计算下列各式:
•50 - 20 = ? 50 •50 - 10 =? 50 =? •50 – 0 =? 50 =? •50 -(-10)= ? 50 10) •50 -(-20)=? 50 20)
(3) 一个数与 相 一个数与0相 仍得这个数. 加,仍得这个数.
全国北方主要城市天气预报
城市
天气 最高温 最低温
7 5 -3 0 -2 -3 -3 ……….. ………..
温差
15 多云 郑州 9 小雨 西安 3 小雪 哈尔滨 -1 小雪 银川 5 小雪 沈阳 -1 呼和浩特 雨夹雪 4 晴 乌鲁木齐 …………. ……….. ………. …………. ……….. ……….
第1组 第2组 第3组 第4组 第5组 100 150 -400 350 -100

2.2 有理数的减法(1)

2.2 有理数的减法(1)
厦门
9
哈尔滨
9
9
9
0
0

0
0
=
0
0
}
}
9 7
-7
-7Leabharlann -7-7有理数减法法则: 有理数减法法则: 减去一个数 等于加上这个数的相反数。 减去一个数,等于加上这个数的相反数。 一个 加上这个数的相反数 有理数减法法则的实质是把减法转化为加法 有理数减法法则的实质是把减法转化为加法 减法转化为 把减法运算变为加法运算的思想方法就是转化思想 注意:(1)把减法变加法的同时,必须把减数变成它的 注意: 把减法变加法的同时, 相反数。( 。(2 被减数符号始终不变. 相反数。(2)被减数符号始终不变. 减法变加法: 减法变加法: + 2 3+(- _; (-5 __ +2)=-1+(-2) )=__ (1)3-5=3+(-5) (2) -1-(+2)=__ (-_; 0+(-2) (4)(-3)-(-5)=___ +(+5_; +(-2 ; __; ) _; (3)0-2=___ __ 3)- 5)= -3+ +5) ) (-6 (5)(+8)-(+6)= (+8)+(-6) )(+8) +8 +6) 。
更上一层楼
已知两数的和是最大的负整数, 已知两数的和是最大的负整数,其中一个加数是最小 的正整数,求另一个加数. 的正整数,求另一个加数.
完成书本第31页课内练习3,作业题5,6, 完成书本第31页课内练习3 作业题5 31页课内练习
学习了本节课你有哪些收获? 学习了本节课你有哪些收获?
知识点

§1.3.2有理数的减法(1)

§1.3.2有理数的减法(1)
活动2简单计算
探索有理数的减法法则.
活动3解决问题
应用迁移、巩固提高,培养学生的理解能力、计算能力.
活动4小结、作业
培养学生的归纳能力,巩固新知.
教学过程设计
问题与情境
师生行为
设计意图
[活动1]
问题1:(出示本书引言中的图片)这是北京某一天的天气情况:白天的最高气温是3℃,夜晚的最低温度是-3℃.请问这一天的温差怎么计算呢?
问题2:计算下列各题,你能发现什么?
(1)4-(-2);
(2)10―(―2);
(3)(-3)-(-2);
(4)0-(-2).
学生按照上述思路进行思考,逐个计算结果,然后观察结果发现,减去-2相当于加上2,即加上它的相反数,是否普遍成立呢?学生可以再举出一些例子进行验证,最后归纳出减法法则.
一般地,如果a-b=c,那么c+b=a,所以c=a+(-b),即a-b=a+(-b).
§1.3.2有理数的减法(第1课时)
教学任务分析
教学目标
知识技能
1.解掌握有理数的减法法则;
2.会进行有理数的减法运算,能够把有理数的减法运算转化为加法运算,进而写成省略括号和加号的形式.
数学思考
1.通过把减法运算转化为加法运算,向学生渗透转化思想;
2.通过有理数减法法则的推导,发展学生的逻辑思维能力;
3.通过有理数的减法运算,培养学生的运算能力.
解决问题
正确利用加法法则进行减法计算;
情感态度
通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辨证唯物主义思想.
重点
有理数减法法则的探索和应用.
难点
有理数减法法则的推导.
教学流程安排
活动流程图
活动内容和目的

有理数减法(6种题型)(解析版)

有理数减法(6种题型)(解析版)

有理数减法(6种题型)【知识梳理】一.有理数的减法(1)有理数减法法则:减去一个数,等于加上这个数的相反数.即:a﹣b=a+(﹣b)(2)方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数);【注意】:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律.减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算.二.有理数的加减混合运算(1)有理数加减混合运算的方法:有理数加减法统一成加法.(2)方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.三、有理数加减法混合运算技巧(1)把算式中的减法转化为加法;(2)去括号时注意符号,能省掉的“+”号要省掉;(3)多观察,巧妙利用运算律简便计算.【考点剖析】题型一:有理数减法法则的直接运用例1、计算:(1)(-32)-(+5);(2)(+2)-(-25).【答案与解析】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27【变式1】计算:(1)7.2-(-4.8); (2)-312-514.解:(1)7.2-(-4.8)=7.2+4.8=12;(2)-312-514=-312+(-514)=-(312+514)=-834.【变式2】(1)2-(-3); (2)0-(-3.72)-(+2.72)-(-4); (3)41373⎛⎫+−⎪⎝⎭.【答案与解析】本题可直接利用有理数的减法法则进行计算.(1)2-(-3)=2+3=5 (2)原式=0+3.72+(-2.72)+4=(0+4)+(3.72-2.72)=4+1=5(3)原式=411416(3)(3)2 733721 +−=−−=−题型二:有理数减法的实际应用例2.上海某天的最高气温为6℃,最低气温为-1℃,则这一天的最高气温与最低气温的差为( ) A.5℃ B.6℃ C.7℃ D.8℃解析:由题意得6-(-1)=6+1=7(℃),故选C.【变式1】如果家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么冷冻室的温度是()A.18℃B.﹣26℃C.﹣22℃D.﹣18℃【解答】解:根据题意得:4﹣2218(℃),则这台电冰箱冷冻室的温度为﹣18℃.故选:D.题型三:应用有理数减法法则判定正负性例3.已知有理数a<0,b<0,且|a|>|b|,试判定a-b的符号.解:因为b<0,所以-b>0.又因为a<0,a-b=a+(-b),所以a与-b是异号两数相加,那么它们和的符号由绝对值较大的加数的符号决定,因为|a|>|b|,即|a|>|-b|,所以取a的符号,而a<0,因此a-b的符号为负号.【变式1】若|a|=4,|b|=2,且a+b的绝对值与相反数相等,则a﹣b的值是()A.﹣2B.﹣6C.﹣2或﹣6D.2或6【解答】解:∵|a|=4,|b|=2,∴a=±4,b=±2,又∵a+b的绝对值与相反数相等,∴a+b≤0,∴a=﹣4,b=2或a=﹣4,b=﹣2,当a=﹣4,b=2时,a﹣b=﹣4﹣2=﹣6,当a=﹣4,b=﹣2时,a﹣b=﹣4﹣(﹣2)=﹣2,综上,a﹣b的值为﹣2或﹣6,故选:C.题型四:加减混合运算统一成加法运算例4.将下列式子写成省略括号和加号的形式,并用两种读法将它读出来.(-13)-(-7)+(-21)-(+9)+(+32)解:(-13)-(-7)+(-21)-(+9)+(+32)=-13+7-21-9+32.读法①:负13、正7、负21、负9、正32的和;读法②:负13减去负7减去21减去9加上32.题型五:有理数的加减混合运算例5.计算:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|;(2)-1423+11215-(-1223)-14+(-11215);(3)23-18-(-13)+(-38).解:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|=-9.2+7.4+9.2+(-6.4)+(-4)+|-3|=-9.2+7.4+9.2-6.4-4+3=(-9.2+9.2)+(7.4-6.4)-4+3=0+1-4+3=0;(2)-1423+11215-(-1223)-14+(-11215)=-1423+11215+1223-14-11215=(-1423+1223)+(11215-11215)-14=-2+0-14=-16;(3)23-18-(-13)+(-38)=23-18+13-38=(23+13)+(-18-38)=1+(-12)=12.【变式1】计算,能用简便方法的用简便方法计算.(1) 26-18+5-16 ;(2)(+7)+(-21)+(-7)+(+21)(3) ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111 -1+1++7+-2+-8 32432(4) (5)(6)【答案与解析】 (1) 26-18+5-16=(+26)+(-18)+5+(-16) →统一成加法 =(26+5)+[(-18)+(-16)] →符号相同的数先加 = 31+(-34)=-3(2)(+7)+(-21)+(-7)+(+21)=[ (+7)+(-7) ] +[(-21)+(+21)] →互为相反数的两数先加 =0(3)→同分母的数先加(4) →统一成加法→整数、小数、分数分别加(5)→统一同一形式(小数或分数),把可凑整的放一起113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫−−+−++−+−+ ⎪ ⎪⎝⎭⎝⎭132.2532 1.87584+−+1355354624618−++−⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦21111-1+-2+1+-8+733224()()⎡⎤=⎢⎥⎣⎦1-4+-7+74=3-34113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫−−+−++−+−+ ⎪ ⎪⎝⎭⎝⎭113.5875573( 1.587)24⎛⎫⎛⎫=++−++−+− ⎪ ⎪⎝⎭⎝⎭11[3.587( 1.587)](57)5324⎡⎤⎛⎫⎛⎫=+−+++−+− ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦312128544⎛⎫=++−= ⎪⎝⎭132.2532 1.87584+−+(2.25 2.75)(3.125 1.875)=−++(6)→整数,分数分别加【变式2】计算:(1)-3.72-1.23+4.18-2.93-1.25+3.72;(2)11-12+13-15+16-18+17; (3)1113.7639568 4.7621362−−+−−+ (4)51133.464 3.872 1.54 3.376344+−−−+++ (5)1355354624618−++−; (6)132.2532 1.87584+−+【答案与解析】(1)观察各个加数,可以发现-3.72与3.72互为相反数,把它们分为一组; 4.18、-2.93与-1.25的和为0,把它们分为一组可使计算简便. 解:-3.72-1.23+4.18-2.93- =(-3.72+3.72)+(4.18-2.93-1.25)-1.23 =0+0-1.23=-1.23(2)把正数和负数分别分为一组. 解:11-12+13-15+16-18+17 =(11+13+16+17)+(-12-15-18) =57+(-45)=12(3)仔细观察各个加数,可以发现两个小数的和是-1,两个整数的和是29,三个分数通分后也不难算.故把整数、分数、小数分别分为一组.解:1113.76395684.7621362−−+−−+ 111(3.76 4.76)(521)(3968)362=−+−++−+1(6)2922=−+−+= 0.55 4.5=−+=1355354624618−++−1355354624618=−−++++−−1355(3546)()24618=−++−+−++−18273010036−++−=+2936=(4)3.46和1.54的和为整数,把它们分为一组;-3.87与3.37的和为-0.5,把它们分为一组;546与13−易于通分,把它们分为一组;124−与34同分母,把它们分为一组.解:51133.464 3.872 1.54 3.376344+−−−+++5113(3.46 1.54)( 3.87 3.37)(4)(2)6344=++−++−+−+115(0.5)4(1) 4.537.522=+−++−=+=(5)先把整数分离后再分组.解:1355354624618−++− 1355354624618=−−++++−−1355(3546)()24618=−++−+−++−182********−++−=+2936=113322−=−−.(6)如果按小数、整数分组,效果似乎不是很好.可先将小数和分数统一后再考虑分组.解:132.2532 1.87584+−+(2.25 2.75)(3.125 1.875)=−++ 0.55 4.5=−+=题型六:利用有理数加减运算解决实际问题例6.下表是某水位站记录的潮汛期某河流一周内的水位变化情况(“+”号表示水位比前一天上升,“-”号表示水位比前一天下降,上周末的水位恰好达到警戒水位.单位:米).(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?解:(1)以警戒水位为基准,前两天的水位是上升的,星期一的水位是+0.20米;星期二的水位是+0.20+0.81=1.01米;星期三的水位是+1.01-0.35=+0.66米;星期四的水位是:+0.66+0.13=0.79米;星期五的水位是:0.79+0.28=1.07米;星期六的水位是:1.07-0.36=0.71米;星期日的水位是:0.71-0.01=0.7米;则水位最低的一天是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米;则本周末河流的水位是上升了0.7米. 【变式1】小虫从点O 出发在一条直线上来回爬行,向右爬行的路程记为正,向左爬行的路程记为负,爬行的各段路程依次为:+5,-3,+10,-8,-6,+12,-10.(单位:cm ) (1) 小虫最后是否回到出发地O ?为什么? (2) 小虫离开O 点最远时是多少?(3) 在爬行过程中,如果每爬行1 cm 奖励1粒芝麻,则小虫一共可以得到多少粒芝麻? 【答案与解析】解:(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10) =(5+10+12)+(-3-8-6-10)=27-27=0 0表示最后小虫又回到了出发点O 答:小虫最后回到了出发地O. (2) (+5)+(-3)=+2; (+5)+(-3)+(+10)=+12; (+5)+(-3)+(+10)+(-8)=+4; (+5)+(-3)+(+10)+(-8)+(-6)=-2; (+5)+(-3)+(+10)+(-8)+(-6)+(+12)=+10; (+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0.因为绝对值最大的是+12,所以小虫离开O 点最远时是向右12cm; (3)(cm ), 所以小虫爬行的总路程是54 cm ,531086121054++−+++−+−+++−=由 (粒) 答:小虫一共可以得到54粒芝麻.【变式2】某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自A 地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5. (1)问收工时距A 地多远?(2)若每千米路程耗油0.2升,问从A 地出发到收工时共耗油多少升? 解:(1) (+10)+(-3)+(+4)+(+2)+(-8)+(+13)+(-2)+(+12)+(+8)+(+5) =[+2+(-2)]+[(-8)+(+8)]+(+10+4+13+12+5)+(-3) =0+0+44+(-3)=41(千米);(2)要求耗油量,需求出汽车共行走的路程,即求各数的绝对值之和,然后乘以0.2升即可. (|+10|+|-3|+|+4|+|+2|+|-8|+|+13|+|-21|+|+12|+|+8|+|+5|)×0.2=67×0.2=13.4(升). 答:收工时在A 地前面41千米,从A 地出发到收工时共耗油13.4升.【过关检测】一、单选题【答案】C【分析】由最高温度减去最低温度可求解. 【详解】解:由题意,这天的温差是()()527℃−−=,故选:C .【点睛】本题考查有理数减法的应用,理解题意,正确得出算式是解答的关键. 2.(2023·浙江·七年级假期作业)计算(3)(5)−−−的结果是( ) A .8− B .2−C .8D .2【答案】D【分析】直接利用有理数的减法运算法则计算得出答案. 【详解】解:(3)(5)(3)(5)2−−−=−++=,15454⨯=故选:D .【点睛】此题主要考查了有理数的减法,正确掌握有理数减法法则是解题关键.3.(2022秋·七年级单元测试)不改变原式的值,把()()()7561−−+−−+−写成省略加号的和的形式为( )A .7561−−+−B .7561−++−C .7561−+−D .7561−+−−【答案】A【分析】根据有理数减法法则计算即可. 【详解】()()()75617561−−+−−+−=−−+−,故选A .【点睛】本题考查了有理数减法法则,熟练掌握法则是解题的关键.4.(2023·浙江·七年级假期作业)给出下列计算:①()()321−−−=−②()()422−−−=③()()532−−−=−④()()725+−+=,其中正确的个数为( )A .1B .2C .3D .4【答案】C【分析】分别求出各个式子的值,然后进行判断即可. 【详解】解:①()()13322=−−+−=−−,故①正确;②()()42422−−−=−+=−,故②错误;③()()53532−−−=−+=−,故③正确;④()()72725+−+=−=,故④正确;综上分析可知,正确的有3个,故C 正确. 故选:C .【点睛】本题主要考查了有理数减法运算,解题的关键是熟练掌握有理数加减运算法则,准确计算. 5.(2022秋·山东临沂·七年级校考阶段练习)计算()()32−−−的结果等于( ) A .5− B .1−C .5D .1【答案】B【分析】利用有理数的减法法则计算即可.【详解】()()()32321−=−−−+=−,故选:B .【点睛】本题考查有理数的减法运算,把减法变成加法是解题的关键. 6.(2023·浙江·七年级假期作业)算式35−−的结果对应图中的( )A .aB .bC .cD .d【答案】A【分析】根据有理数的减法进行计算,然后在数轴上找到8−,即可求解. 【详解】解:∵35−−8=−, ∴算式35−−的结果对应图中的a , 故选:A .【点睛】本题考查了有理数的减法运算,在数轴上表示有理数,掌握有理数的减法运算,数形结合是解题的关键.【答案】C【分析】根据有理数的加减,逐项进行判断即可求解. 【详解】解:A 、比3−大的负数有无数个,故答案错误; B 、231−+=,则比2−大3的数是1,故答案错误; C 、253−=−,则比2小5的数是3−,故答案正确; D 、325−−=−,则比3−小2的数是5−,故答案错误. 故选:C .【点睛】本题考查了有理数的加减运算,熟练掌握有理数的加减运算是解题的关键.8.(2023·江苏·七年级假期作业)若a b c d=+−−,则的值是()−A.2B.4−C.10D.10【答案】B【分析】根据题干中的运算规则,计算求解即可.=+−−=−,【详解】解:由题意得,12344故选:B.【点睛】本题考查了有理数的加减运算.理解题干的运算规则是解决问题的关键.+−−++−−+++−−值为()9.(2022秋·全国·七年级期末)计算123456782017201820192020A.0B.﹣1C.2020D.-2020【答案】D【分析】根据加法的结合律四个四个一组结合起来,每一组的和都等于-4,共505组,计算即可.【详解】解:1+2-3-4+5+6-7-8+9+10-11-12+……+2017+2018-2019-2020=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+……+(2017+2018-2019-2020)=(-4)+(-4)+(-4)+(-4)+……+(-4)=(-4)×505=-2020.故选D.【点睛】本题考查了有理数的加减混合运算,观察出规律是解题的关键.10.(2023春·广西南宁·七年级南宁二中校考开学考试)如图,在探究“幻方”、“幻圆”的活动课上,学生们−−−−−这12 个数填入“六角感悟到我国传统数学文化的魅力.一个小组尝试将数字5,4,3,2,1,0,1,2,3,4,5,6幻星”图中,使6条边上四个数之和都相等.部分数字已填入圆圈中,则a的值为()A.4−B.3−C.3D.4【答案】B【分析】共有12个数,每一条边上4个数的和都相等,共有六条边,所以每个数都加了两遍,这12个数共加了两遍后和为12,所以每条边的和为2,然后利用这个原理将剩余的数填入圆圈中,即可得到结果.【详解】解:因为共有12个数,每一条边上4个数的和都相等,共有六条边,所以每个数都加了两遍,这12个数共加了两遍后和为12,所以每条边的和为2,所以5,1,5−−这一行最后一个圆圈数字应填3,则a所在的横着的一行最后一个圈为3,2,1,1−−这一行第二个圆圈数字应填4,目前数字就剩下4,3,0,6−−,1,5这一行剩下的两个圆圈数字和应为4−,则取4,3,0,6−−中的4,0−,2,2−这一行剩下的两个圆圈数字和应为2,则取4,3,0,6−−中的4,6−,这两行交汇处是最下面那个圆圈,应填4−,所以1,5这一行第三个圆圈数字应为0,则a所在的横行,剩余3个圆圈里分别为2,0,3,要使和为2,则a为3−故选:B【点睛】本题主要考查了幻方的应用,找到每一行的规律并正确进行填数是解题的关键.二、填空题【答案】1【分析】根据有理数的加减法进行求解即可.【详解】()45=45=1−−−−+,故答案为1.【点睛】本题考查了有理数的加减法,掌握有理数的加减法是解题的关键.【答案】8【分析】由最高气温减去最低气温确定出该日的日温差即可.【详解】解:根据题意得:()()628C −−=︒,则该日的日温差是8C ︒.故答案为:8.【点睛】此题考查了有理数的减法的实际应用,熟练掌握减法法则是解本题的关键. 13.(2023·浙江·七年级假期作业)大米包装袋上标注着“净含量:10kg 100g ±”,则该袋大米的净含量最低值是 kg .【答案】9.9【分析】根据正负数的意义计算即可.【详解】∵100g=0.1kg ,∴该袋大米的净含量最低值是10kg 0.1kg=9.9kg −.故答案为:9.9.【点睛】本题考查了有理数的减法,正负数的意义,注意单位的一致性是解题的关键.【答案】16/6【分析】先将小数化为分数,再计算括号内的,最后计算减法.【详解】解:213 5.75334⎛⎫−− ⎪⎝⎭ 231353344⎛⎫=−− ⎪⎝⎭213232=−116=.故答案为:116. 【点睛】本题考查了分数的减法运算,解题的关键是掌握运算法则.15.(2022秋·七年级单元测试)数轴上点A 表示的数是3−,将点A 在数轴上平移7个单位长度得到点B ,则平移后点B 表示的数是 .【答案】10−或4【分析】根据数轴上有理数的表示及有理数的加减法可进行求解.【详解】解:当点A 在数轴上向左平移7个单位长度得到点B ,则平移后点B 表示的数是3710−−=−; 当点A 在数轴上向右平移7个单位长度得到点B ,则平移后点B 表示的数是374−+=;故答案为10−或4.【点睛】本题主要考查数轴上有理数的表示及有理数的加减法,熟练掌握数轴上有理数的表示及有理数的加减法是解题的关键. 16.(2022秋·河南南阳·七年级统考期中)把()()()()1213149−−−+−−+写成省略加号的和的形式是 .【答案】1213149−+−−【分析】先把原式统一为加法运算,再省略括号与括号前面的加号,从而可得答案.【详解】解:()()()()1213149−−−+−−+()()()()1213149=−+++−+− 1213149=−+−−故答案为:1213149−+−−.【点睛】本题考查的是把加减运算统一为加法运算,再写成省略“+”的和的形式,掌握“减去一个数,等于加上这个数的相反数”是解题的关键.【答案】10− 【分析】由41133=+,7111234=+,9112045=+,11113056=+,13114267=+,15115678=+,17117289=+,可得n 的值,即可求出负倒数.【详解】∵479111315173122030425672n =−+−+−+11111111111111()()()+()()()3344556677889=+−+++−++−+++11111111111111+3344556677889=+−−++−−+−−++119=+ 109=,∴n 的负倒数是910−. 故答案为:910−. 【点睛】本题考查了有理数的加减混合运算,认真审题,找出规律是解决此题的关键. 18.(2023春·湖南衡阳·七年级校考期末)如果x 是一个有理数,我们把不超过x 的最大整数记作[]x .例如,[]3.2=3,[]5=5,[ 2.1]3−=−.那么,[]x x a =+,其中01a ≤<.例如,[]3.2 3.20.2=+,[]550=+, 2.1 2.10.9[]−=+-.现有[]31a x =+,则x 的值为 .【答案】1−或13或213【分析】根据[]x 为不超过x 的最大整数且[]31a x =+,可知3a 是整数,根据01a ≤<,得到a 为0或13或23,根据[]x x a =+,得到41x a =−,得到x 为1−或13或213.【详解】∵不超过x 的最大整数为[]x ,[]31a x =+,∴3a 是整数,∵01a ≤<,∴a 为0或13或23, ∵[]x x a =+, ∴[]x x a =−,∴31a x a =−+,41x a =−,∴x 为1−或13或213.故答案为:1−或13或213.【点睛】本题主要考查了新定义“不超过x 的最大整数[]x ”,解决问题的关键是熟练掌握任意一个有理数都可以看作一个整数和一个正小数或0的和,进行分类讨论.三、解答题19.(2023·全国·七年级假期作业)计算:()()()()0.5 3.2 2.8 6.5−−−++−+.【答案】1−【分析】按照有理数的加减法运算法则和运算律进行计算.【详解】解:原式0.5 3.2 2.8 6.5=−++−()()0.5 6.5 3.2 2.8=−−++ ()76=−+1=−. 【点睛】本题考查了有理数的加减混合运算,解题的关键是掌握有理数的加减法运算法则和运算律.【答案】(1)10− (2)6 【分析】(1(2)根据有理数加减计算法则求解即可.【详解】(1)原式201257=−++−10=−;(2)原式1121322332=++− 1112322233⎛⎫⎛⎫=−++ ⎪ ⎪⎝⎭⎝⎭ 33=+6=.【点睛】本题主要考查了有理数的加减计算,熟知相关计算法则是解题的关键.【答案】8【分析】先去括号和绝对值,然后按有理数加减混合运算法则解答即可.【详解】解:()()() 219812−−−+−−−219812=−+++12812=−++8=.【点睛】本题主要考查了有理数加减混合运算、去括号、去绝对值等知识点,掌握去括号、去绝对值成为解答本题的关键.22.(2022秋·广东茂名·七年级校考期中)如图,在数轴上有A、B、C三个点,请回答下列问题.(1)A、B两点间距离是,B、C两点间距离是,A、C两点间距离是.(2)若将点A向右移动5个单位到点D,B、C、D这三点所表示的数哪个最大?最大数比最小数大多少?【答案】(1)3 ;4;7(2)C点表示的数最大,最大数比最小数大4【分析】(1(2)求出点D表示的数,然后再进行比较即可.【详解】(1)解:点A表示的数为4−,点B表示的数为1−,点C表示是数为3,则()14143 AB=−−−=−+=,()31314BC=−−=+=,()34347AC=−−=+=,故答案为:3;4;7.(2)解:将点A向右移动5个单位到点D,则点D表示是数为451−+=,点B表示的数为1−,点C表示是数为3,∵311>>−,∴表示最大数的是点C,表示最小数的是点B()31314−−=+=,∴最大数比最小数大4.【点睛】本题主要考查了用数轴上点表示有理数,数轴上两点之间的距离,解题的关键是数形结合找出点A 、B 、C 在数轴上所表示的有理数.与9月30日相比,10月7日的客流量是上升了还是下降了,变化了多少【答案】与9月30日相比,10月7日的客流量是上升了.上升了24万人【分析】将表格数据相加即可得出结果.【详解】解:10月7日的客流量与9月30日相比:20310329324+−−+++=+万人,答:与9月30日相比,10月7日的客流量是上升了.上升了24万人.【点睛】本题考查有理数的混合运算、正数和负数,解答本题的关键是明确题意,写出相应的算式.【答案】37级【分析】根据题意,结合数轴,确定原点,可以求出梯子的最高点距中点的级数,进而求出梯子的总级数.【详解】解:把梯子的中点确定为原点用0表示,规定向上为正,则梯子的最高的距原点的距离为:03738918−+−++=级,即梯子中点以上有18级,因此梯子的总级数为182137⨯+=级.【点睛】本题考查数轴的应用,有理数的加减运算,理解数轴表示数的意义以及正负数的意义是解决问题的关键.25.(2023秋·内蒙古巴彦淖尔·七年级统考期末)一只蚂蚁在一根横木上从某点出发,以笔直的线路来回爬行,规定向右爬行记为正,爬行轨迹记录如下:647961210+−−+−+−,,,,,,(单位:厘米). (1)蚂蚁最后是否回到了出发点O ?(2)蚂蚁离开出发点最远是______厘米?(3)在爬行过程中,如果蚂蚁每爬行1厘米奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻?【答案】(1)蚂蚁最后回到了出发点O(2)小虫离开出发点O最远是10厘米(3)小虫共可得到芝麻108粒【分析】(1)把爬行记录相加,然后根据正负数的意义解答;(2)根据正负数的意义分别求出各记录时与出发点的距离,然后判断即可;(3)求出所有爬行记录的绝对值的和,继而可得答案.【详解】(1)()()()() 6479612100 ++−+−++−++−=,∴蚂蚁最后回到了出发点O;(2)根据记录,小虫离开出发点O的距离分别为66+=642+−=6475+−−=64794+−−+=647962+−−+−=647961210+−−+−+=()()()()6479612100++−+−++−++−=∴故小虫离开出发点O最远是10厘米;(3)爬行距离64796121054++++++=(厘米),则小虫共可得到芝麻542108⨯=(粒).【点睛】此题考查正数和负数以及有理数的混合运算,此题的关键是读懂题意,理清正数和负数的意义.【答案】(1)5;(2)6或4;(3)1−(4)3;2−,1−,0,1;(5)2023【分析】(1)根据题意可得3与2−的两点之间的距离是()32−−,计算即可; (2)51x −=表示x 到5的距离为1,据此可解;(3)|1||3|x x −=+表示x 到1的距离和到3−的距离相等,据此可解;(4)根据绝对值的意义可知|2||1|x x ++−表示x 到2−的距离与x 到1的距离之和,根据点在数轴上的位置求解即可;(5)根据绝对值的意义可知10125041011x x x ++++−表示x 到1012−的距离,x 到504−的距离与x 到1011的距离之和,根据点在数轴上的位置求解即可.【详解】(1)解:由题意可得:()325−−=, 故答案为:5;(2)解:51x −=表示x 到5的距离为1,根据数轴可得,到数轴上表示5的数距离为1的点表示的数为6或4故答案为:6或4;(3)解:|1||3|x x −=+表示x 到1的距离和到3−的距离相等,根据数轴上点的位置可得到1的距离和到3−的距离相等的点表示的数为3112−+=−,即=1x −,故答案为:1−;(4)解:根据绝对值的意义可知|2||1|x x ++−表示x 到2−的距离与x 到1的距离之和,∵表示2−的数与表示1的数之间的距离为213−−=,根据数轴可知,当<2x −时,|2||1|3x x ++−>,当21x −≤≤时,|2||1|3x x ++−=,当1x >时,|2||1|3x x ++−>,综上,当21x −≤≤时,|2||1|x x ++−有最小值为3,且此时整数x 的值为2−,1−,0,1;故答案为:3;2−,1−,0,1;(5)解:如图,根据绝对值的意义可知10125041011x x x ++++−表示x 到1012−的距离,x 到504−的距离与x 到1011的距离之和,∵表示1012−的数与表示1011的数之间的距离为101210112023−−=, 根据数轴可知,当1012x <−时,101250410112531x x x ++++−>, 当x −1012≤<−504时,101250410112023x x x ++++−>, 当x =−504时,101250410112023x x x ++++−=, 当x −504<≤1011时,101250410112023x x x ++++−>, 当x >1011时,101250410113538x x x ++++−>,综上,当504x =−时,10125041011x x x ++++−有最小值为2023,故答案为:2023. 【点睛】本题主要考查了绝对值及数轴,解题的关键是理解两点间的距离表达式,注意数形结合思想的应用.。

1.3.2有理数的减法(1)

1.3.2有理数的减法(1)

8
11
11
10
11 10
12
星期日的温差最大; 星期一的温差最小.
课堂达标 6; (1)3-(-3)=___ -13 ; (2)(-11)-2=______ (3)0-(-6)=___; -15; (4)(-7)-(+8)=_____ -7 ; (5)-12-(-5)=______ -2 ; (6)3比5大_______ (7)-8比-2小______ 6 ; (8)-4-( -14 )=10; 正号 ; (9)如果 a>0,b<0,则 a-b 的符号是 ______ (10)A地的海拔高度是34米,B地的海拔高度是-10米,A B 44 米 两地海拔高度相差_______
1.3.2 有理数的减法(1)
课前复习
一 计算下列各式: 1. 23 +(-17) 2. (-0.9)+1.5 3. (-13)+(-8) 4. -7+ 0 二 填空: 1. ( )+3=7 2. 12+( )= 21 3. ( )+(-3)=9
学习目标: 1、掌握有理数减法法则; 2、能够运用减法法则进行有理数 减法运算;
比一比,议一议:
先请同学们计算以下两个式子: (1)4 -( –3); (2)4 + 3
=7Biblioteka =7比较上面的式子,能说说你发现的规律吗?
符号相反
4 – (– 3) = 7
减变加
4 + 3 = 7
有理数减法法则
减去一个数,等于加上这个数的相反数 a – b = a +(- b)
50 - 20=50+ (-20) 50 - (-10)=50+ (+10)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姜卫红课堂实录
2.2 有理数的减法(1)
师:前面两节课我们已经学习了有理数的加法,下面先请同学几个同学口答,并说明理由。

(1)(-15)+0= (2)(-2) + (-5)= (3)-6 + (+2)= (4)+ 6 + (-2)= (5)(-2)+2= 生1:-15,理由:一个数同0相加,仍得这个数。

生2:-7,理由:同号两数相加,取与加数相同的符号,并把绝对值相加。

生3:-4 ,理由:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

生4:4,理由:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

生5:0,理由:互为相反数的两个数相加得0.
师:很好,下面再看一个题
根据昨晚中央电视台的天气预报,今天宁波的最低温度为+13℃,而北国哈尔滨的最低气温为—5℃,那么今天宁波比哈尔滨的最低气温高多少?
列式13—(—5)=□
这就是今天我们要学习有理数的减法,我们知道减法是加法的逆运算,下面请一些同学来口答:
(1)∵(-7)+16= ∴ -(-7)=16 ;
9+(+7)=
(2)∵50+(-10)= ∴–50 = -10 ;
40+(-50)=
(3)50 –0 = 50 + 0 = ;
(4)50 –(-20)= 50+(+20)= ;
想一想:你能得出什么结论?
生1:(1)∵(-7)+16= 9∴ 9 -(-7)=16 ;
9+(+7)= 16
生2:(2)∵50+(-10)= :40 ∴40 –50 = -10 ;
40+(-50)=-10
生3:(3)50 –0 = 50 50 + 0 = 50
生4:(4)50 –(-20)= 70 50+(+20)= 70 ;
生5:减去一个数,等于加上这个数的相反数
师:这就是减法法则
教师板书
有理数的减法法则:减去一个数,等于加上这个数的相反数
师:注意在减号变加号时,减数一定要变成相反数。

例1:计算
(1) 5 – (-5)
(2) 0-7- 5
(3) (-1.3) – (-2.1)
(4) (-51) + (-2.2) – (-10.8)
板书
解:(1)5 – (-5)=5+5=10
(2) 0-7- 5 =0+(-7)+(-5)=(-7)+(-5)= -12
(3) (-1.3) – (-2.1) =(-1.3)+2.1=2.1-1.3=0.8
(4) (-51) + (-2.2) – (-10.8) = -53.2+10.8= -42.4
师:注意,在计算时将减法先改成加法,再利用加法法则和加法运算律进行计算,减号改加号时,减数要变相反数,但是加号后面的加数不要也变成相反数。

练一练
1. 下列括号内各应填什么数?
(1)(-2)-(-3)=(-2)+();
(2)0 - (-4)= 0 +();
(3)(-6)- 3 =(-6)+();
(4)1-(+39)= 1 +()
学生口答
2. 计算:
(1)(+3)-(-2);(2)(-1.3)-(+2.1);
(3)0 -3;(4)23- 27;
(5)(-23.6)-(-12.4);(6)(-2/3)- ( - 5/6)
请六位学生到黑板上板演
生1:(1)原式=3+2=5 生2:原式= -1.3+2.1=0.8
生3:原式= 3 生4:原式=23+(-27)= -4
生5:原式= (-23.6)+12.4=11.2 生6:原式=(-2/3)+(+ 5/6)=1/6
师:大家检查一下上面同学是否有错,有错,请指出错误原因
生7:第2题错,减数没有变相反数,答案应该是-3.4
生8:第3题错,减数没有变相反数,答案应该是-3
师:我们可以从第3题得出一个结论,零减去一个数等于这个数的相反数。

生9:第5题错,加法算错,漏掉负号。

师:很好,在做计算题时,我们一定要小心,负号不要忘记,减号改加号时,减数要变相反数。

下面再看一个题目
例2、我国吐鲁番盆地最低点的海拔是-154米,死海湖面的海拔是-392米,哪里的海拔更低?低多少?
这个题目上次我们碰到过,是比较高低,现在要算低多少,用减法,哪个作为被减数,哪个作减数?
生1:解-392 - (-154)= -392+154= -238(米)答:死海的湖面海拔更低,低238米。

生2:解-154> -392-154- (-392)= -154+392=238(米)答:死海的湖面海拔更低,低238米.
师:这两种方法都对,第一种方法中负号表示低。

下面我们再来做练习
3. 填空:
(1)温度3℃比-8 ℃高;
(2)温度-9 ℃比-1 ℃低;
(3)海拔-20m比-30m高;
(4)从海拔22m到-10m,下降了
请一组同学口答
生1:11℃,
生2:8℃,
生3:10米,
生4:32米,
师:很好,全对,再看下一题
4:全班学生分成两个组进行游戏,答对一题加50分,答错一题扣50分,游戏结束时,各组分数如下:
(1)第一名超过第二名多少分?
(2)第一名超过第5名多少分?
生1: 解350-150=200(分)350-(-400)=750(分)答:第一名超过第二名200分,第一名超过第5名750分.
师:这个题应先比较各数的大小,再计算。

5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大,哪一天的温差最小?
生2:解:-1-(-7)=6;5-(-3)=8;6-(-4)=10;8-(-1)=9;11-2=9
答:第三天的温差最大,第一天的温差最小。

6.数轴上-4和4.5所对应的两点之间的距离是多少?数轴上-9和-5所对应的两点之间的距离是多少?数轴上7和4.5所对应的两点之间的距离是多少?数轴上m和n所对应的两点之间的距离是多少?
生:4.5-(-4)=8.5;-5-(-9)=4;7-4.5=2.5;m-n;
师:我们知道数轴上右边的点表示的数总比左边的大,所以只要右边的数减去左边的数,但是m,n这两个数没有告诉我们大小,而距离是正的,所以为了保证是正的,我们只要加个绝对值,即︱m-n︱.
通过本节课的探讨学习,你获得哪些新知识?
生1:减法法则:减去一个数,等于加上这个数的相反数
生2:会减法运算
生3:知道两点间距离的求法
师:大家在做减法运算时一定要注意减号改加号时,减数要变相反数。

作业:作业本和作业优化中2.2(1)。

相关文档
最新文档