人教版_2021年珠海市中考数学试卷及答案解析

合集下载

2021年广东省珠海市数学中考试题(含答案)

2021年广东省珠海市数学中考试题(含答案)

2021年珠海市初中毕业生学业考试数 学一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.2的倒数是A .2B .-2C .D .2.计算的结果为A .B .C .D .3.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为.二月份白菜价格最稳定的市场是A .甲B .乙C .丙D .丁4、下列图形中不是中心对称图形的是 A.矩形 B.菱形 C.平行四边形 D.正五边形5.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为A .30°B .45°C .60°D .90°二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.计算.7.使有意义的取值范围是.8.如图,矩形OABC 的顶点A 、C 分别在轴、轴正半轴上,B 点坐标为(3,2),OB 与AC 交于点P,D 、E 、F、G 分别是线段OP 、AP 、BP 、CP 的中点,则四边形DEFG 的周长为.9.不等式组的解集是 .10E,如果三、解答题(一)(本大题5小题,每小题6分,共30分)2121-222a a +-a 3-a -23a -2a -4.7S 1.10S 5.2S 5.82222====丁丙乙甲,,,S 3π=-21312-x x x y ⎩⎨⎧+≤>+23412x x xx11.(本小题满分6分)计算:.12.(本小题满分6分)先化简,再求值:,其中.13.(本小题满分6分)如图,在△ABC 中,AB=AC,AD是高,AM 是△ABC 外角∠CAE 的平分线.(1)用尺规作图方法,作∠ADC 的平分线DN 。

(保留作图痕迹,不写作法和证明)(2)设DN 与AM 交于点F,判断△ADF 的形状.(只写结果)14.(本小题满分6分)已知关于的一元二次方程.(1)当m=3时,判断方程的根的情况。

2021年广东省珠海市中考数学一模试卷有答案

2021年广东省珠海市中考数学一模试卷有答案

2021年广东省珠海市中考数学一模试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________ 1. 2020的相反数是( )A.2020B.−2020C.12020D.−120202. 在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3. 新冠病毒(COVID−19)肆虐全球,截止4月17日,全球约有2180000人感染新冠病毒,将2180000用科学记数法可表示为()A.218×104B.21.8×105C.2.18×106D.0.218×1074. 已知直线y=x+b经过第一、三、四象限,则b的值可能是()A.−1B.0C.23D.35. 下列计算正确的是()A.a2+a2=a4B.a6÷a2=a4C.(a2)3=a5D.(a−b)2=a2−b26. 一组数据2,x,4,3,3的平均数是3,则这组数据的中位数和众数分别是()A.3,3B.2,3C.3,4D.3,27. 对角线互相平分且垂直的四边形是()A.平行四边形B.矩形C.菱形D.等腰梯形8. 若关于x的一元二次方程kx2−2x+1=0有两个不相等的实数根,则实数k的取值范围是()A.k>1B.k<1C.k>1且k≠0D.k<1且k≠09. 如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则BE的长为( )A.2B.4C.6D.810. 如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠OPM=40∘,则∠AOB=()A.40∘B.45∘C.50∘D.55∘11. 使√x−2有意义的x的取值范围是________.12. 因式分解:m2−4n2=________.13. 若正多边形的一个内角等于150∘,则这个正多边形的边数是________.14. 有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字−1,−2和−3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x, y),点Q落在直线y=x−3上的概率为________.15. 计算:2x−4+6−x4−x=________.16. 如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30∘,测得底部C的俯角为60∘,此时航拍无人机与该建筑物的水平距离AD为60米,那么该建筑物的高度BC约为________米.17. 观察下列一组图形:它们是按一定规律排列的,依照此规律,第n个图形中共有________个★.18. 计算:√12−4×|−√32|−(π−1)0+2−1.19. 解方程组:{x−y=32x+y=3.20. 如图,在Rt△ABC中,∠ACB=90∘.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹)(2)连接AP,当∠B为________度时,AP平分∠CAB.21. 某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?22. 如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G 处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≅△FGC.(x>0)的图象交于点A,C,23. 如图,平行于y轴的直尺(一部分)与反比例函数y=mx与x轴交于点B,D,连接AC.点A,B的刻度分别为5,2,直尺的宽度BD为2,OB=2,设直线AC的解析式为y=kx+b.(1)请结合图象直接写出不等式kx+b>m的解集;x(2)求直线AC的解析式;(3)平行于y轴的直线x=n(2<n<4)与AC交于点E,与反比例函数图象交于点F,,求n的值.当这条直线左右平移时,线段EF的长为1424. 如图,已知CE是圆O的直径,点B在圆O上由点E顺时针向点C运动(点B不与点E、C重合),弦BD交CE于点F,且BD=BC,过点B作弦CD的平行线与CE的延长线交于点A.(1)若圆O的半径为2,且点D为弧EC的中点时,求圆心O到弦CD的距离;(2)在(1)的条件下,当DF⋅DB=CD2时,求∠CBD的大小;(3)若AB=2AE,且CD=12,求△BCD的面积.25. 如图,已知,抛物线y=x2+bx+c与x轴交于A(−1, 0),B(4, 0)两点,过点A的直线y=kx+k与该抛物线交于点C,点P是该抛物线上不与A,B重合的动点,过点P作PD⊥x轴于D,交直线AC于点E.(1)求抛物线的解析式;(2)若k=−1,当PE=2DE时,求点P坐标;(3)当(2)中直线PD为x=1时,是否存在实数k,使△ADE与△PCE相似?若存在请求出k的值;若不存在,请说明你的理由.参考答案与试题解析2021年广东省珠海市中考数学一模试卷一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】相反数【解析】直接利用相反数的定义得出答案.【解答】解:根据相反数的定义可知,2020的相反数是:−2020.故选B.2.【答案】C【考点】轴对称图形【解析】根据轴对称图形与中心对称图形的概念求解.【解答】A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.3.【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.【解答】解:用科学记数法表示一个大于10的正数,这个正数的整数部分有n位数时,就记作a×10n−1(1≤a<10),即10的指数比原数的整数位数少1.2180000=2.18×106.故选C.4.【答案】A【考点】一次函数图象与系数的关系根据一次函数的性质得出b<0,再得出选项即可.【解答】∵直线y=x+b经过第一、三、四象限,∴b<0,∴符合的只有选项A,选项B、C、D都不符合,5.【答案】B【考点】同底数幂的除法完全平方公式幂的乘方与积的乘方合并同类项【解析】直接利用合并同类项、同底数幂的除法、幂的乘方以及完全平方公式的知识求解即可求得答案.【解答】解:A、a2+a2=2a2,故本选项错误;B、a6÷a2=a4,故本选项正确;C、(a2)3=a6,故本选项错误;D、(a−b)2=a2−2ab+b2,故本选项错误.故选B.6.【答案】A【考点】众数算术平均数中位数【解析】根据一组数据2,x,4,3,3的平均数是3,可以求得x的值,从而可以求得这组数据的中位数和众数.【解答】∵一组数据2,x,4,3,3的平均数是3,∴2+x+4+3+3=3×5,解得,x=3,∴这组数据是2,3,4,3,3,按照从小大排列是:2,3,3,3,4,∴这组数据的中位数和众数分别是:3,3,7.【答案】C多边形等腰梯形的性质平行四边形的性质与判定【解析】根据菱形的判定方法判断即可.【解答】对角线互相平分且垂直的四边形是菱形,8.【答案】D【考点】一元二次方程的定义【解析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(−2)2−4×k×1>0,然后解不等式即可得到k的取值范围.【解答】∵关于x的一元二次方程kx2−2x+1=0有两个不相等的实数根,∴k≠0且△>0,即(−2)2−4×k×1>0,解得k<1且k≠0.∴k的取值范围为k<1且k≠0.9.【答案】B【考点】勾股定理垂径定理【解析】根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE.【解答】解:∵CE=2,DE=8,∴⊙O的直径为10,∴OB=5,∴OE=3.∵AB⊥CD,∴在Rt△OBE中,BE=√OB2−OE2=√52−32=4.故选B.10.【答案】C【考点】轴对称——最短路线问题【解析】作P关于OA,OB的对称点P,P.连接OP,OP.则当M,N是P P与OA,OB的交OP2=OP,根据等腰三角形的性质即可求解.【解答】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=40∘同理,∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M=40∘,∴∠P1OP2=180∘−2×40∘=100∘,∴∠AOB=50∘,二、填空题(本题共计 7 小题,每题 3 分,共计21分)11.【答案】x≥2【考点】二次根式有意义的条件【解析】当被开方数x−2为非负数时,二次根式才有意义,列不等式求解.【解答】解:根据二次根式的意义,得x−2≥0,解得x≥2.故答案为:x≥2.12.【答案】(m+2n)(m−2n)【考点】因式分解-运用公式法平方差公式提公因式法与公式法的综合运用【解析】先将所给多项式变形为m2−(2n)2,然后套用公式a2−b2=(a+b)(a−b),再进一步分解因式.【解答】m2−4n2,=m2−(2n)2,=(m+2n)(m−2n).13.【答案】12【考点】多边形内角与外角【解析】解:∵正多边形的一个内角等于150∘,∴它的外角是:180∘−150∘=30∘,∴它的边数是:360∘÷30∘=12.故答案为:12.14.【答案】13【考点】一次函数图象上点的坐标特点列表法与树状图法【解析】先画树状图展示所有6种等可能的结果数,再根据一次函数图象上点的坐标特征,找出点(1, −2),(2, −1)在直线y=x−3上,然后根据概率公式求解.【解答】画树状图为:共有6种等可能的结果数,其中有(1, −2),(2, −1)落在直线y=x−3上,所以点Q落在直线y=x−3上的概率=26=13.15.【答案】1【考点】分式的加减运算【解析】根据同分母分式的加减法法则计算即可.同分母分式相加减,分母不变,分子相加减.【解答】2 x−4+6−x 4−x=2−6−x=2−(6−x)x−4=x−4 x−4=1.16.【答案】80√3【考点】解直角三角形的应用-仰角俯角问题【解答】由题意可得:tan30∘=BDAD =BD60=√33,解得:BD=20√3(米),tan60∘=DCAD =DC60=√3,解得:DC=60√3(米),故该建筑物的高度为:BC=BD+DC=80√3(米)17.【答案】3n+1【考点】规律型:图形的变化类规律型:点的坐标规律型:数字的变化类【解析】把五角星分成两部分,顶点处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第n个图形中五角星的个数的关系式.【解答】观察发现,第1个图形五角星的个数是:1+3=4,第2个图形五角星的个数是:1+3×2=7,第3个图形五角星的个数是:1+3×3=10,第4个图形五角星的个数是:1+3×4=13,…依此类推,第n个图形五角星的个数是:1+3×n=3n+1.三、解答题(本题共计 8 小题,每题 10 分,共计80分)18.【答案】原式=2√3−2√3−1+12=−12.【考点】负整数指数幂零指数幂实数的运算【解析】直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质分别化简得出答案.【解答】原式=2√3−2√3−1+12=−12.19.【答案】{x−y=32x+y=3,①+②得:3x=6,解得:x=2,把x=2代入①得:y=−1,则方程组的解为{x=2y=−1.【考点】二元一次方程组的解加减消元法解二元一次方程组代入消元法解二元一次方程组【解析】方程组利用加减消元法求出解即可.【解答】{x−y=32x+y=3,①+②得:3x=6,解得:x=2,把x=2代入①得:y=−1,则方程组的解为{x=2y=−1.20.【答案】如图,30【考点】线段垂直平分线的性质作图—基本作图【解析】(1)运用基本作图方法,中垂线的作法作图,(2)求出∠PAB=∠PAC=∠B,运用直角三角形解出∠B.【解答】如图,如图,∵PA=PB,∴∠PAB=∠B,如果AP是角平分线,则∠PAB=∠PAC,∴∠PAB=∠PAC=∠B,∵∠ACB=90∘,∴∠PAB=∠PAC=∠B=30∘,∴∠B=30∘时,AP平分∠CAB.故答案为:30.21.【答案】每轮感染中平均一台电脑会感染3台电脑;4轮感染后机房内所有电脑都被感染【考点】一元二次方程的应用一元一次不等式的运用一元一次不等式的实际应用【解析】(1)设每轮感染中平均一台会感染x台电脑,则第一轮后共有(1+x)台被感染,第二轮后共有(1+x)+x(1+x)即(1+x)2台被感染,利用方程即可求出x的值即可;(2)结合(1)得出n轮后共有(1+x)n台被感染,进而求出即可.【解答】设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=16,整理得(1+x)2=16,则x+1=4或x+1=−4,解得x1=3,x2=−5(舍去).答:每轮感染中平均一台电脑会感染3台电脑;∵n轮后,有(1+x)n台电脑被感染,故(1+3)n=4n,∵n=3时,43=64,n=4时,44=256.答:4轮感染后机房内所有电脑都被感染.22.【答案】∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD−∠ECF=∠ECG−∠ECF,∴∠ECB=∠FCG;∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≅△FGC(ASA).【考点】平行四边形的性质翻折变换(折叠问题)全等三角形的判定【解析】(1)依据平行四边形的性质,即可得到∠A=∠BCD,由折叠可得,∠A=∠ECG,即可得到∠ECB=∠FCG;(2)依据平行四边形的性质,即可得出∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,即可得到∠B=∠G,BC=CG,进而得出△EBC≅△FGC.【解答】∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD−∠ECF=∠ECG−∠ECF,∴∠ECB=∠FCG;∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴ ∠B =∠G ,BC =CG ,又∵ ∠ECB =∠FCG ,∴ △EBC ≅△FGC(ASA).23.【答案】根据图象可知:不等式kx +b >m x 的解集为:2<x <4; 将A 点坐标(2, 3)代入y =m x ,得:m =xy =2×3=6,∴ y =6x ;又OD =4,∴ C(4, 1.5),将A(2, 3)和C(4, 1.5)分别代入y =kx +b ,得{2k +b =34k +b =1.5, 解得{k =−34b =92 , ∴ 直线AC 的解析式为y =−34x +92;当x =n 时,点E 的纵坐标为−34n +92, 点F 的坐标为6n ,依题意,得:−34n +92−6n =14,解得n =83或n =3.【考点】反比例函数与一次函数的综合【解析】(1)结合图象即可写出不等式kx +b >m x 的解集;(2)由OB 与AB 的长,及A 位于第一象限,确定出A 的坐标,将A 坐标代入反比例解析式中求出k 的值,确定出反比例解析式,由OB +BD 求出OD 的长,即为C 的横坐标,代入反比例解析式中求出CD 的长,确定出C 坐标,设直线AC 解析式为y =kx +b ,将A 与C 坐标代入求出k 与b 的值,即可确定出直线AC 的解析式;(3)根据题意画出线段EF ,根据线段EF 的长为14,即可求n 的值.【解答】根据图象可知:不等式kx +b >m x 的解集为:2<x <4;将A 点坐标(2, 3)代入y =m x ,得:m =xy =2×3=6,∴ y =6x ;又OD =4,∴ C(4, 1.5),将A(2, 3)和C(4, 1.5)分别代入y =kx +b ,得{2k +b =34k +b =1.5, 解得{k =−34b =92, ∴ 直线AC 的解析式为y =−34x +92;当x =n 时,点E 的纵坐标为−34n +92,点F 的坐标为6n ,依题意, 得:−34n +92−6n =14, 解得n =83或n =3.24.【答案】如图,过O 作OH ⊥CD 于H ,∵ 点D 为弧EC 的中点,∴ 弧ED =弧CD ,∴ ∠OCH =45∘,∴ OH =CH ,∵ 圆O 的半径为2,即OC =2,∴ OH =√2;∵当DF⋅DB=CD2时,FDCD =CDBD,又∵∠CDF=∠BDC,∴△CDF∽△BDC,∴∠DCF=∠DBC,由(1)可得∠DCF=45∘,∴∠DBC=45∘;注:也可以由点D为弧EC的中点,可得弧ED=弧CD,即可得出∠DCF=∠DBC=45∘;如图,连接BE,BO,DO,并延长BO至H点,∵BD=BC,OD=OC,∴BH垂直平分CD,又∵AB // CD,∴∠ABO=90∘=∠EBC,∴∠ABE=∠OBC=∠OCB,又∵∠A=∠A,∴△ABE∽△ACB,∴AEAB =ABAC,即AB2=AE×AC,∴AC=AB2AE,设AE=x,则AB=2x,∴AC=4x,EC=3x,∴OE=OB=OC=32x,∵CD=12,∴CH=6,∵AB // CH,∴△AOB∽△COH,∴AOCO =BOHO=ABCH,即x+32x32x=32xOH=2x6,解得x=5,OH=4.5,OB=7.5,∴BH=BO+OH=12,∴△BCD的面积=12×12×12=72.【考点】圆周角定理等腰三角形的性质相似三角形的性质与判定垂径定理【解析】(1)过O作OH⊥CD于H,根据点D为弧EC的中点,可得∠OCH=45∘,进而得出OH=CH,再根据圆O的半径为2,即可得到OH=√2;(2)先判定△CDF∽△BDC,可得∠DCF=∠DBC,再根据∠DCF=45∘,即可得出∠DBC=45∘;(3)连接BE,BO,DO,并延长BO至H点,依据∠ABE=∠OBC=∠OCB,∠A=∠A,判定△ABE∽△ACB,即可得到AC=AB 2AE,设AE=x,再根据△AOB∽△COH,可得AO CO =BOHO=ABCH,即x+32x32x=32xOH=2x6,解得x=5,OH=4.5,OB=7.5,即可得到△BCD的面积=12×12×12=72.【解答】如图,过O作OH⊥CD于H,∵点D为弧EC的中点,∴弧ED=弧CD,∴∠OCH=45∘,∴OH=CH,∵圆O的半径为2,即OC=2,∴OH=√2;∵当DF⋅DB=CD2时,FDCD =CDBD,又∵∠CDF=∠BDC,∴△CDF∽△BDC,∴∠DCF=∠DBC,由(1)可得∠DCF=45∘,∴∠DBC=45∘;注:也可以由点D为弧EC的中点,可得弧ED=弧CD,即可得出∠DCF=∠DBC=45∘;如图,连接BE,BO,DO,并延长BO至H点,∵BD=BC,OD=OC,∴BH垂直平分CD,又∵AB // CD,∴∠ABO=90∘=∠EBC,∴∠ABE=∠OBC=∠OCB,又∵∠A=∠A,∴△ABE∽△ACB,∴AEAB =ABAC,即AB2=AE×AC,∴ AC =AB 2AE , 设AE =x ,则AB =2x ,∴ AC =4x ,EC =3x ,∴ OE =OB =OC =32x , ∵ CD =12,∴ CH =6,∵ AB // CH ,∴ △AOB ∽△COH ,∴ AO CO =BO HO =AB CH ,即x+32x32x =32x OH =2x6,解得x =5,OH =4.5,OB =7.5,∴ BH =BO +OH =12,∴ △BCD 的面积=12×12×12=72.25.【答案】将点A(−1, 0),B(4, 0)代入y =x 2+bx +c ,得,{1−b +c =016+4b +c =0, 解得,{b =−3c =−4, ∴ 抛物线的解析式为y =x 2−3x −4;当k =−1时,直线AC 的解析式为y =−x −1, 设P(x, x 2−3x −4),则E(x, −x −1),D(x, 0), 则PE =|x 2−3x −4−(−x −1)|=|x 2−2x −3|,DE =|x +1|, ∵ PE =2ED ,∴ |x 2−2x −3|=2|x +1|,当x 2−2x −3=2(x +1)时,解得,x 1=−1(舍去),x 2=5,∴ P(5, 6);当x 2−2x −3=−2(x +1)时,解得,x 1=−1(舍去),x 2=1,∴ P(1, −6);综上所述,点P 的坐标为(5, 6)或(1, −6); 存在,理由如下;∵ ∠AED =∠PEC ,∴ 要使△ADE 与△PCE 相似,必有∠EPC =∠ADE =90∘或∠ECP =∠ADE =90∘, ①当∠EPC =∠ADE =90∘时,如图1,CP // x 轴,∵ P(1, −6),根据对称性可得C(2, −6), 将C(2, −6),代入直线AC 解析式中,得2k +k =−6,解得,k =−2;②当∠ECP =∠ADE =90∘时,如图2,过C 点作CF ⊥PD 于点F ,则有∠FCP =∠PEC =∠AED ,则△PCF ∽△AED ,∴ CF DE =PFAD ,在直线y =kx +k 上,当x =1时,y =2k , ∴ E(1, 2k),∴ DE =−2k ,由{y =x 2−3x −4y =kx +k, 得{x =−1y =0 或{x =k +4y =k 2+5k, ∴ C(k +4, k 2+5k),∴ F(1, k 2+5k),∴ CF =k +3,FP =k 2+5k +6,∴ k+3−2k =k 2+5k+62,解得,k 1=k 2=−1,k 3=−3(此时C 与P 重合,舍去), 综上,当k =−2或−1时,△ADE 与△PCE 相似.【考点】二次函数综合题【解析】(1)将点A ,B 的坐标代入y =x 2+bx +c 即可;(2)写出直线AC 的解析式,设P(x, x 2−3x −4),则E(x, −x −1),D(x, 0),写出PE ,DE 的长度,利用PE =2ED 这一等量关系列出方程即可;(3)存在,因为∠AED =∠PEC ,所以要使△ADE 与△PCE 相似,必有∠EPC =∠ADE =90∘或∠ECP =∠ADE =90∘,分两种情况进行讨论,由相似三角形的性质可分别求出k 的值.【解答】将点A(−1, 0),B(4, 0)代入y =x 2+bx +c ,得,{1−b +c =016+4b +c =0, 解得,{b =−3c =−4, ∴ 抛物线的解析式为y =x 2−3x −4;当k =−1时,直线AC 的解析式为y =−x −1,设P(x, x 2−3x −4),则E(x, −x −1),D(x, 0),则PE =|x 2−3x −4−(−x −1)|=|x 2−2x −3|,DE =|x +1|,∵ PE =2ED ,∴ |x 2−2x −3|=2|x +1|,当x 2−2x −3=2(x +1)时,解得,x 1=−1(舍去),x 2=5,∴ P(5, 6);当x 2−2x −3=−2(x +1)时,解得,x 1=−1(舍去),x 2=1,∴ P(1, −6);综上所述,点P 的坐标为(5, 6)或(1, −6);存在,理由如下;∵ ∠AED =∠PEC ,∴ 要使△ADE 与△PCE 相似,必有∠EPC =∠ADE =90∘或∠ECP =∠ADE =90∘,①当∠EPC =∠ADE =90∘时,如图1,CP // x 轴,∵ P(1, −6),根据对称性可得C(2, −6), 将C(2, −6),代入直线AC 解析式中, 得2k +k =−6,解得,k =−2;②当∠ECP =∠ADE =90∘时,如图2,过C 点作CF ⊥PD 于点F ,则有∠FCP =∠PEC =∠AED ,则△PCF ∽△AED ,∴ CF DE =PFAD ,在直线y =kx +k 上,当x =1时,y =2k , ∴ E(1, 2k),∴ DE =−2k ,由{y =x 2−3x −4y =kx +k, 得{x =−1y =0 或{x =k +4y =k 2+5k, ∴ C(k +4, k 2+5k),∴ F(1, k 2+5k),∴ CF =k +3,FP =k 2+5k +6,∴ k+3−2k =k 2+5k+62,解得,k 1=k 2=−1,k 3=−3(此时C 与P 重合,舍去), 综上,当k =−2或−1时,△ADE 与△PCE 相似.。

079--2021年广东省珠海市2021年中考数学试题(解析版)

079--2021年广东省珠海市2021年中考数学试题(解析版)

2021年广东省珠海市中考数学试卷一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑1.(3分)(2013•珠海)实数4的算术平方根是()A.﹣2 B.2C.±2 D.±42.(3分)(2013•珠海)如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.120°3.(3分)(2013•珠海)点(3,2)关于x轴的对称点为()A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,﹣3)4.(3分)(2013•珠海)已知一元二次方程:①x2+2x+3=0,②x2﹣2x﹣3=0.下列说法正确的是()A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解5.(3分)(2013•珠海)如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A.36°B.46°C.27°D.63°A.﹣2 B.2C.±2 D.±4考点:算术平方根.分析:根据算术平方根的定义解答即可.解答:解:∵22=4,∴4的算术平方根是2,即=2.故选B.点评:本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.A.30°B.45°C.60°D.120°考点:平行线的性质.分析:由a∥b,根据两直线平行,同位角相等,即可求得∠3=∠1=60°,又由对顶角相等,即可求得答案.解答:解:∵a∥b,∴∠3=∠1=60°,∴∠2=∠3=60°.故选C.点评:此题考查了平行线的性质.此题比较简单,注意掌握数形结合思想的应用.A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,﹣3)考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接写出答案.解答:解:点(3,2)关于x轴的对称点为(3,﹣2),故选:A.点评:此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解考点:根的判别式.分析:求出①、②的判别式,根据:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.即可得出答案.解答:解:方程①的判别式△=4﹣12=﹣8,则①没有实数解;方程②的判别式△=4+12=20,则②有两个实数解.故选B.点评:本题考查了根的判别式,解答本题的关键是掌握跟的判别式与方程根的关系.A.36°B.46°C.27°D.63°考点:圆周角定理;平行四边形的性质.分析:根据BE是直径可得∠BAE=90°,然后在▱ABCD中∠ADC=54°,可得∠B=54°,继而可求得∠AEB的度数.解答:解:∵四边形ABCD是平行四边形,∠ADC=54°,∴∠B=∠ADC=54°,∵BE为⊙O的直径,∴∠BAE=90°,∴∠AEB=90°﹣∠B=90°﹣54°=36°.故选A.点评:本题考查了圆周角定理及平行四边形的性质,解答本题的关键是根据平行四边形的性质得出∠B=∠ADC.考点:二次根式有意义的条件.分析:二次根式的被开方数是非负数.解答:解:根据题意,得2x+1≥0,解得,x≥﹣.故答案是:x≥﹣.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.考点:一次函数图象上点的坐标特征.分析:分别把点A(﹣1,y1),点B(﹣2,y2)代入函数y=3x,求出点y1,y2的值,并比较出其大小即可.解答:解:∵点A(﹣1,y1),点B(﹣2,y2)是函数y=3x上的点,∴y1=﹣3,y2=﹣6,∵﹣3>﹣6,∴y1>y2.故答案为:>.点评:本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.考点:圆锥的计算.专题:计算题.分析:先计算出圆锥底面圆的周长2π×3,再根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式计算即可.解答:解:圆锥的测面展开图的面积=×2π×3×5=15π(cm2).故答案为15π.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了扇形的面积公式.考点:完全平方公式.专题:计算题.分析:将a+b=3两边平方,利用完全平方公式化简,将ab的值代入计算,即可求出所求式子的值.解答:解:将a+b=3两边平方得:(a+b)2=a2+2ab+b2=9,把ab=2代入得:a2+4+b2=9,则a2+b2=5.故答案为:5.点评:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.考点:中点四边形.专题:规律型.分析:根据题意,利用中位线定理可证明顺次连接正方形ABCD四边中点得正方形A1B1C1D1的面积为正方形ABCD面积的一半,根据面积关系可得周长关系,以此类推可得正方形A6B6C6D6的周长.解答:解:顺次连接正方形ABCD四边的中点得正方形A1B1C1D1,则得正方形A1B1C1D1的面积为正方形ABCD面积的一半,即,则周长是原来的;顺次连接正方形A1B1C1D1中点得正方形A2B2C2D2,则正方形A2B2C2D2的面积为正方形A1B1C1D1面积的一半,即,则周长是原来的;顺次连接正方形A2B2C2D2得正方形A3B3C3D3,则正方形A3B3C3D3的面积为正方形A2B2C2D2面积的一半,即,则周长是原来的;顺次连接正方形A3B3C3D3中点得正方形A4B4C4D4,则正方形A4B4C4D4的面积为正方形A3B3C3D3面积的一半,则周长是原来的;…以此类推:第六个正方形A6B6C6D6周长是原来的,∵正方形ABCD的边长为1,∴周长为4,∴第六个正方形A6B6C6D6周长是.故答案为:.点评:本题考查了利用了三角形的中位线的性质,相似图形的面积比等于相似比的平方的性质.进而得到周长关系.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:根据零指数幂与负整数指数幂得到原式=3﹣1+﹣,然后化为同分母后进行加减运算.解答:解:原式=3﹣1+﹣=.点评:本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了零指数幂与负整数指数幂.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x(x+2)﹣1=x2﹣4,去括号得:x2+2x﹣1=x2﹣4,解得:x=﹣,经检验x=﹣是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.考点:条形统计图;扇形统计图.分析:(1)由七年级“勤洗手”的人数除以所占的百分比,求出全校“勤洗手”的人数,进而求出八年级“勤洗手”的人数,补全条形统计图;求出九年级“勤洗手”人数所占的百分比,补全扇形统计图即可;(2)求出三个年级“勤洗手”人数所占的百分比,比较大小即可.解答:解:(1)根据题意得:300÷25%=1200(人),则八年级“勤洗手”人数为1200×35%=420(人),(2)七年级“勤洗手”学生人数占本年级学生人数的比例为×100%=50%;八年级“勤洗手”学生人数占本年级学生人数的比例为×100%=60%;九年级“勤洗手”学生人数占本年级学生人数的比例为×100%=80%,则九年级“勤洗手”学生人数占本年级学生人数的比例最大.点评:此题考查了条形统计图,以及扇形统计图,弄清题意是解本题的关键.考点:全等三角形的判定与性质.专题:证明题.分析:先求出∠ACB=∠ECD,再利用“角边角”证明△ABC和△EDC全等,然后根据全等三角形对应边相等证明即可.解答:证明:∵∠BCE=∠DCA,∴∠BCE+∠ACE=∠DCA+∠ACE,即∠ACB=∠ECD,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴BC=DC.点评:本题考查了全等三角形的判定与性质,求出相等的角∠ACB=∠ECD是解题的关键,也是本题的难点.考点:一元二次方程的应用.专题:增长率问题.分析:解答此题利用的数量关系是:2010年平均每次捕鱼量×(1﹣每次降价的百分率)2=2012年平均每次捕鱼量,设出未知数,列方程解答即可.解答:解:设2010年﹣2012年每年平均每次捕鱼量的年平均下降率x,根据题意列方程得,10×(1﹣x)2=8.1,解得x1=0.1,x2=﹣1.9(不合题意,舍去).答:2010年﹣2012年每年平均每次捕鱼量的年平均下降率为10%.点评:本题考查的下降的百分率也就是增长率问题,两年前是10吨,下降后现在是8.1吨,求每年的下降的百分率,可列式求解.考点:解直角三角形的应用-仰角俯角问题.分析:首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角△ADC 中,利用三角函数即可求解.解答:解:∵∠ADC=∠B+∠BAD,∴∠BAD=∠ADC﹣∠B=60°﹣30°=30°,∴∠B=∠BAD,∴AD=BD=62(米).在直角△ACD中,AC=AD•sin∠ADC=62×=31≈31×1.7=52.7≈53(米).答:小岛的高度是53米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.考点:切线的判定与性质;菱形的性质.分析:(1)连结OA、OB、OC、BD,根据切线的性质得OA⊥AB,即∠OAB=90°,再根据菱形的性质得BA=BC,然后根据“SSS”可判断△ABC≌△CBO,则∠BOC=∠OAC=90°,于是可根据切线的判定方法即可得到结论;(2)由△ABC≌△CBO得∠AOB=∠COB,则∠AOB=∠COB,由于菱形的对角线平分对角,所以点O在BD上,利用三角形外角性质有∠BOC=∠ODC+∠OCD,则∠BOC=2∠ODC,由于CB=CD,则∠OBC=∠ODC,所以∠BOC=2∠OBC,根据∠BOC+∠OBC=90°可计算出∠OBC=30°,然后利用∠ABC=2∠OBC计算即可.解答:(1)证明:连结OA、OB、OC、BD,如图,∵AB与⊙切于A点,∴OA⊥AB,即∠OAB=90°,∵四边形ABCD为菱形,∴BA=BC,在△ABC和△CBO中,∴△ABC≌△CBO,∴∠BOC=∠OAC=90°,∴OC⊥BC,∴BC为⊙O的切线;(2)解:∵△ABC≌△CBO,∴∠AOB=∠COB,∵四边形ABCD为菱形,∴BD平分∠ABC,CB=CD,∴点O在BD上,∵∠BOC=∠ODC+∠OCD,而OD=OC,∴∠ODC=∠OCD,∴∠BOC=2∠ODC,而CB=CD,∴∠OBC=∠ODC,∴∠BOC=2∠OBC,∵∠BOC+∠OBC=90°,∴∠OBC=30°,∴∠ABC=2∠OBC=60°.点评:本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线为圆的切线;圆的切线垂直于过切点的半径.也考查了全等三角形相似的判定与性质以及菱形的性质.考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两个小球上的数字互为倒数的情况,再利用概率公式即可求得答案;(2)由概率为,可得这两个小球上的数字互为倒数的有5种情况,继而可求得答案.解答:解:(1)画树状图得:∵共有20种等可能的结果,这两个小球上的数字互为倒数的有4种情况,∴这两个小球上的数字互为倒数的概率为:=;(2)∵当B袋中标有的小球上的数字变为、、、时(填写所有结果),∴这两个小球上的数字互为倒数的有5种情况,∴这两个小球上的数字互为倒数的概率为:=.故答案为:、、、.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)过点M作MC⊥x轴,MD⊥y轴,根据M为AB的中点,MC∥OB,MD∥OA,利用平行线分线段成比例得到点C和点D分别为OA与OB的中点,从而得到MC=MD,设出点M的坐标代入反比例函数解析式中,求出a的值即可得到点M的坐标;(2)根据(1)中求出的点M的坐标得到MC与MD的长,从而求出OA与OB的长,得到点A与点B的坐标,设出一次函数的解析式,把点A与点B的坐标分别代入解析式中求出k与b的值,确定出直线AB的表达式.解答:解:(1)过点M作MC⊥x轴,MD⊥y轴,∵AM=BM,∴点M为AB的中点,∵MC⊥x轴,MD⊥y轴,∴MC∥OB,MD∥OA,∴点C和点D分别为OA与OB的中点,∴MC=MD,则点M的坐标可以表示为(﹣a,a),把M(﹣a,a)代入函数y=中,解得a=2,则点M的坐标为(﹣2,2);(2)∵则点M的坐标为(﹣2,2),∴MC=2,MD=2,∴OA=OB=2MC=4,∴A(﹣4,0),B(0,4),设直线AB的解析式为y=kx+b,把点A(﹣4,0)和B(0,4)分别代入y=kx+b中得,解得:.则直线AB的解析式为y=x+4.点评:此题考查了反比例函数与一次函数的交点问题,平行线分线段成比例,以及中位线定理,用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.考点:分式的混合运算.专题:阅读型.分析:(1)由分母为﹣x2+1,可设﹣x4﹣6x2+8=(﹣x2+1)(x2+a)+b,按照题意,求出a和b 的值,即可把分式拆分成一个整式与一个分式(分子为整数)的和的形式;(2)对于x2+7+当x=0时,这两个式子的和有最小值,最小值为8,于是求出的最小值.解答:解:(1)由分母为﹣x2+1,可设﹣x4﹣6x2+8=(﹣x2+1)(x2+a)+b则﹣x4﹣6x2+8=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=7,b=1,∴===x2+7+这样,分式被拆分成了一个整式x2+7与一个分式的和.(2)由=x2+7+知,对于x2+7+当x=0时,这两个式子的和有最小值,最小值为8,即的最小值为8.点评:本题主要考查分式的混合运算等知识点,解答本题的关键是能熟练的理解题意,此题难度不是很大.考点:全等三角形的判定与性质;角平分线的性质;勾股定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P,再根据等角的余角相等证明即可;(2)过点P作PD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CP=DP,然后求出∠P AD=∠AP′E,利用“角角边”证明△APD和△P′AE全等,根据全等三角形对应边相等可得AE=DP,从而得证;(3)设CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EPP′相似,根据相似三角形对应边成比例列式求出P′A=AB,然后在Rt△ABP′中,利用勾股定理列式求解即可.解答:(1)证明:∵AP′是AP旋转得到,∴AP=AP′,∴∠APP′=∠AP′P,∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,又∵∠BPC=∠APP′(对顶角相等),∴∠CBP=∠ABP;(2)证明:如图,过点P作PD⊥AB于D,∵∠CBP=∠ABP,∠C=90°,∴CP=DP,∵P′E⊥AC,∴∠EAP′+∠AP′E=90°,又∵∠P AD+∠EAP′=90°,∴∠P AD=∠AP′E,在△APD和△P′AE中,,∴△APD≌△P′AE(AAS),∴AE=DP,∴AE=CP;(3)解:∵=,∴设CP=3k,PE=2k,则AE=CP=3k,AP′=AP=3k+2k=5k,在Rt△AEP′中,P′E==4k,∵∠C=90°,P′E⊥AC,∴∠CBP+∠BPC=90°,∠EP′P+∠P′PE=90°,∵∠BPC=∠EPP′(对顶角相等),∴∠CBP=∠P′PE,又∵∠BAP′=∠P′EP=90°,∴△ABP′∽△EPP′,∴=,即=,解得P′A=AB,在Rt△ABP′中,AB2+P′A2=BP′2,即AB2+AB2=(5)2,解得AB=10.点评:本题考查了全等三角形的判定与性质,旋转的性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DP 并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出P′A=AB是解题的关键.考点:二次函数综合题.分析:(1)设抛物线l的解析式为y=ax2+bx+c,将A、D、M三点的坐标代入,运用待定系数法即可求解;(2)设AD与x轴交于点M,过点A′作A′N⊥x轴于点N.根据轴对称及平行线的性质得出DM=OM=x,则A′M=2m﹣x,OA′=m,在Rt△OA′M中运用勾股定理求出x,得出A′点坐标,运用待定系数法得到直线OA′的解析式,确定E点坐标(4m,﹣3m),根据抛物线l与线段CE相交,列出关于m的不等式组,求出解集即可;(3)根据二次函数的性质,结合(2)中求出的实数m的取值范围,即可求解.解答:解:(1)设抛物线l的解析式为y=ax2+bx+c,将A(0,m),D(2m,m),M(﹣1,﹣1﹣m)三点的坐标代入,得,解得,所以抛物线l的解析式为y=﹣x2+2mx+m;(2)设AD与x轴交于点M,过点A′作A′N⊥x轴于点N.∵把△OAD沿直线OD折叠后点A落在点A′处,∴△OAD≌△OA′D,OA=OA′=m,AD=A′D=2m,∠OAD=∠OA′D=90°,∠ADO=∠A′DO,∵矩形OABC中,AD∥OC,∴∠ADO=∠DOM,∴∠A′DO=∠DOM,∴DM=OM.设DM=OM=x,则A′M=2m﹣x,在Rt△OA′M中,∵OA′2+A′M2=OM2,∴m2+(2m﹣x)2=x2,解得x=m.∵S△OA′M=OM•A′N=OA′•A′M,∴A′N==m,∴ON==m,∴A′点坐标为(m,﹣m),易求直线OA′的解析式为y=﹣x,当x=4m时,y=﹣×4m=﹣3m,∴E点坐标为(4m,﹣3m).当x=4m时,﹣x2+2mx+m=﹣(4m)2+2m•4m+m=﹣8m2+m,即抛物线l与直线CE的交点为(4m,﹣8m2+m),∵抛物线l与线段CE相交,∴﹣3m≤﹣8m2+m≤0,∵m>0,∴﹣3≤﹣8m+1≤0,解得≤m≤;(3)∵y=﹣x2+2mx+m=﹣(x﹣m)2+m2+m,≤m≤,∴当x=m时,y有最大值m2+m,又∵m2+m=(m+)2﹣,∴当≤m≤时,m2+m随m的增大而增大,∴当m=时,顶点P到达最高位置,m2+m=()2+=,故此时抛物线l顶点P到达最高位置时的坐标为(,).点评:本题是二次函数的综合题,其中涉及到运用待定系数法求一次函数、二次函数的解析式,轴对称的性质,勾股定理,两个函数交点坐标的求法,二次函数、矩形的性质,解不等式组等知识,综合性较强,有一定难度.(2)中求出A′点的坐标是解题的关键.。

2021年广东省中考数学试题含答案解析

2021年广东省中考数学试题含答案解析

2021年广东省中考数学试题含答案解析2021年广东省中考数学试卷;;一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.;1.(3分)四个实数0、、3.14、2中,最小的数是()a.0b.c.3.14d.22.(3分)据有关部门统计,2021年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()a.1.442×107b.0.1442×107c.1.442×108d.0.1442×1083.(3分后)例如图,由5个相同正方体组合而成的几何体,它的主视图就是()a.b.c.d.4.(3分后)数据1、5、7、4、8的中位数就是()a.4b.5c.6d.75.(3分后)以下所述图形中,就是轴对称图形但不是中心对称图形的就是()a.圆b.菱形c.平行四边形d.等腰三角形;;6.(3分后)不等式3x1≥x+3的边值问题就是()a.x≤4b.x≥4c.x≤2d.x≥27.(3分后)在△abc中,点d、e分别为边ab、ac的中点,则△ade与△abc的面积之比是()a.b.c.d.8.(3分后)例如图,ab∥cd,则∠dec=100°,∠c=40°,则∠b的大小就是()a.30°b.40°c.50°d.60°9.(3分后)关于x的一元二次方程x23x+m=0存有两个不成正比的实数根,则实数m的值域范围就是()a.m<b.m≤c.m>d.m≥10.(3分后)例如图,点p就是菱形abcd边上的一动点,它从点a启程沿在a→b→c→d路径匀速运动至点d,设立△pad的面积为y,p点的运动时间为x,则y关于x的函数图象大致为()a.b.c.d.二、填空题(共6小题,每小题3分,满分18分)11.(3分后)同圆中,未知弧ab面元的圆心角就是100°,则弧ab面元的圆周角就是.12.(3分)分解因式:x22x+1=.13.(3分后)一个正数的平方根分别就是x+1和x5,则x=.14.(3分后)未知+|b1|=0,则a+1=.15.(3分后)例如图,矩形abcd中,bc=4,cd=2,以ad为直径的半圆o与bc切线于点e,相连接bd,则阴影部分的面积为.(结果留存π)16.(3分)如图,已知等边△oa1b1,顶点a1在双曲线y=(x>0)上,点b1的座标为(2,0).过b1作b1a2∥oa1交双曲线于点a2,过a2作a2b2∥a1b1交x轴于点b2,获得第二个等边△b1a2b2;过b2作b2a3∥b1a2交双曲线于点a3,过a3作a3b3∥a2b2交x轴于点b3,获得第三个等边△b2a3b3;以此类推,…,则点b6的座标为.三、解答题(一)17.(6分后)排序:|2|20210+()118.(6分后)先化简,再表达式:,其中a=.19.(6分后)例如图,bd就是菱形abcd的对角线,∠cbd=75°,(1)请用尺规作图法,作ab的垂直平分线ef,垂足为e,交ad于f;(不要求写作法,保留作图痕迹)(2)在(1)条件下,相连接bf,谋∠dbf的度数.20.(7分)某公司购买了一批a、b型芯片,其中a型芯片的单价比b型芯片的单价少9元,已知该公司用3120元购买a型芯片的条数与用4200元购买b型芯片的条数相等.(1)求该公司出售的a、b型芯片的单价各就是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条a型芯片?21.(7分后)某企业工会积极开展“一周工作量顺利完成情况”调查活动,随机调查了部分员工一周的工作量余下情况,并将调查结果统计数据后绘制董阳图1和图2右图的不能完备统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业存有员工10000人,恳请估算该企业某周的工作量顺利完成情况为“剩下少量”的员工存有多少人?22.(7分)如图,矩形abcd中,ab>ad,把矩形沿对角线ac所在直线折叠,使点b落在点e处,ae交cd于点f,连接de.(1)求证:△ade≌△ced;(2)求证:△def是等腰三角形.23.(9分后)例如图,未知顶点为c(0,3)的抛物线y=ax2+b(a≠0)与x轴处设a,b两点,直线y=x+m过顶点c和点b.(1)谋m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上与否存有点m,使∠mcb=15°?若存有,谋出点m的座标;若不存有,恳请表明理由.24.(9分)如图,四边形abcd中,ab=ad=cd,以ab为直径的⊙o经过点c,连接ac,od交于点e.(1)证明:od∥bc;(2)若tan∠abc=2,证明:da与⊙o切线;(3)在(2)条件下,连接bd交于⊙o于点f,连接ef,若bc=1,求ef的长.25.(9分后)未知rt△oab,∠oab=90°,∠abo=30°,斜边ob=4,将rt△oab绕点o顺时针转动60°,例如题图1,相连接bc.(1)填空题:∠obc=°;(2)如图1,连接ac,作o p⊥ac,垂足为p,求op的长度;(3)例如图2,点m,n同时从点o启程,在△ocb边上运动,m沿o→c→b路径匀速运动,n沿o→b→c路径匀速运动,当两点碰面时运动暂停,未知点m的运动速度为1.5单位/秒,点n的运动速度为1单位/秒,设立运动时间为x秒,△omn的面积为y,求当x 为何值时y获得最大值?最大值为多少?2021年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、3.14、2中,最小的数是()a.0b.c.3.14d.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得3.14<0<<2,所以最小的数是3.14.故选:c.【评测】此题主要考查了实数大小比较的方法,必须熟练掌握,答疑此题的关键就是必须明晰:正实数>0>正数实数,两个正数实数绝对值小的反而大.2.(3分)据有关部门统计,2021年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()a.1.442×107b.0.1442×107c.1.442×108d.0.1442×108【分析】根据科学记数法的则表示方法可以将题目中的数据用科学记数法则表示,本题以求化解.【解答】解:14420000=1.442×107,故选:a.【评测】本题考查科学记数法则表示很大的数,答疑本题的关键就是明晰科学记数法的则表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()a.b.c.d.【分析】根据主视图是从物体正面看所得到的图形解答即可.【答疑】求解:根据主视图的定义所述,此几何体的主视图就是b中的图形,故挑选:b.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分后)数据1、5、7、4、8的中位数就是()a.4b.5c.6d.7【分析】根据中位数的定义推论即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:b.【评测】本题考查了确认一组数据的中位数的能力.中位数就是将一组数据从小到大(或从小至大)重新排列后,最中间的那个数(最中间两个数的平均数),叫作这组与数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()a.圆b.菱形c.平行四边形d.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【答疑】求解:a、就是轴对称图形,也就是中心对称图形,故此选项错误;b、就是轴对称图形,也就是中心对称图形,故此选项错误;c、不是轴对称图形,就是中心对称图形,故此选项错误;d、就是轴对称图形,不是中心对称图形,故此选项恰当.故挑选:d.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分后)不等式3x1≥x+3的边值问题就是()a.x≤4b.x≥4c.x≤2d.x≥2【分析】根据求解不等式的步骤:①移项;②分拆同类项;③化系数为1即可得.【答疑】求解:移项,得:3xx≥3+1,分拆同类项,得:2x≥4,系数化成1,得:x≥2,故挑选:d.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分后)在△abc中,点d、e分别为边ab、ac的中点,则△ade与△abc的面积之比是()a.b.c.d.【分析】由点d、e分别为边ab、ac的中点,可以得出结论de为△abc的中位线,进而可以得出结论de∥bc及△ade∽△abc,再利用相近三角形的性质即可谋出来△ade与△abc的面积之比.【解答】解:∵点d、e分别为边ab、ac的中点,∴de为△abc的中位线,∴de∥bc,∴△ade∽△abc,∴=()2=.故挑选:c.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出de∥bc是解题的关键.8.(3分后)例如图,ab∥cd,则∠dec=100°,∠c=40°,则∠b的大小就是()a.30°b.40°c.50°d.60°【分析】依据三角形内角和定理,可以得∠d=40°,再根据平行线的性质,即可获得∠b=∠d=40°.【解答】解:∵∠dec=100°,∠c=40°,∴∠d=40°,又∵ab∥cd,∴∠b=∠d=40°,故选:b.【评测】本题考查了平行线性质的应用领域,运用两直线平行,内错角成正比就是解题的关键.9.(3分)关于x的一元二次方程x23x+m=0有两个不相等的实数根,则实数m的取值范围是()a.m<b.m≤c.m>d.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【答疑】求解:∵关于x的一元二次方程x23x+m=0存有两个不成正比的实数根,∴△=b24ac=(3)24×1×m>0,∴m<.故挑选:a.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.10.(3分后)例如图,点p就是菱形abcd边上的一动点,它从点a启程沿在a→b→c→d路径匀速运动至点d,设立△pad的面积为y,p点的运动时间为x,则y关于x的函数图象大致为()a.b.c.d.【分析】设立菱形的低为h,即为就是一个定值,再分点p在ab上,在bc上和在cd 上三种情况,利用三角形的面积公式列式谋出来适当的函数关系式,然后挑选答案即可.【解答】解:分三种情况:①当p在ab边上时,如图1,设菱形的高为h,y=ap?h,∵ap随x的减小而减小,h维持不变,∴y随x的减小而减小,故选项c不恰当;②当p在边bc上时,如图2,y=ad?h,ad和h都不变,∴在这个过程中,y维持不变,故选项a不恰当;③当p在边cd上时,如图3,y=pd?h,∵pd随x的减小而增大,h维持不变,∴y随x的减小而增大,∵p点从点a出发沿在a→b→c→d路径匀速运动到点d,∴p在三条线段上运动的时间相同,故选项d不正确;故选:b.【评测】本题考查了动点问题的函数图象,菱形的性质,根据点p的边线的相同,分后三段谋出来△pad的面积的表达式就是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分后)同圆中,未知弧ab面元的圆心角就是100°,则弧ab面元的圆周角就是50°.【分析】直接利用圆周角定理求解.【答疑】求解:弧ab面元的圆心角就是100°,则弧ab面元的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分后)水解因式:x22x+1=(x1)2.【分析】轻易利用全然平方公式水解因式即可.【答疑】求解:x22x+1=(x1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分后)一个正数的平方根分别就是x+1和x5,则x=2.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x5=0,解得:x=2,故答案为:2.【评测】本题主要考查的就是平方根的定义和性质,熟练掌握平方根的定义和性质就是解题的关键.14.(3分)已知+|b1|=0,则a+1=2.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵∴b1=0,ab=0,解得:b=1,a=1,故a+1=2.故答案为:2.【评测】此题主要考查了为负数的性质以及绝对值的性质,恰当得出结论a,b的值就是解题关键.15.(3分)如图,矩形abcd中,bc=4,cd=2,以ad为直径的半圆o与bc相切于点e,连接bd,则阴影部分的面积为π.(结果保留π)+|b1|=0,【分析】连接oe,如图,利用切线的性质得od=2,oe⊥bc,易得四边形oecd为正方形,先利用扇形面积公式,利用s正方形oecds扇形eod计算由弧de、线段ec、cd所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.。

中考数学专题《一元一次方程的应用数轴与几何问题》(人教版)

中考数学专题《一元一次方程的应用数轴与几何问题》(人教版)

专题3.14一元一次方程的应用:数轴与几何问题大题专项提升训练(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·民大附中海南陵水分校七年级期中)将一个周长为42cm 的长方形的长减少3cm ,宽增加2cm ,能得到一个正方形.若设长方形的长为x cm ,根据题意可列方程为( )A .()2423x x +=--B .()3422x x -=-+C .()2213x x +=--D .()3212x x -=-+2.(2021·四川省南充市高坪中学七年级期中)如图,宽为50cm 的长方形图案由10个形状大小完全相同的小长方形拼成,其中一个小长方形的面积为( )A .2400cmB .2500cmC .2600cmD .24000cm3.(2022·广东·龙门县平陵中学七年级期中)数轴上标出若干个整数点,每相邻两点相距一个单位,点M ,N ,P ,Q 分别表示整数m ,n ,p ,q ,且q ﹣2m =10,则原点O 在点( )的位置.A .点MB .点NC .点PD .点Q4.(2022·重庆黔江·七年级期末)如图为甲、乙、丙三根笔直的钢管平行摆放在地面上的情形.已知乙有一部分只与甲重叠,其余部分只与丙重叠,甲没有与乙重叠的部分的长度为2m ,丙没有与乙重叠的部分的长度为3m .若乙的长度最长且甲、乙的长度相差m x ,乙、丙的长度相差m y ,则乙的长度为( ).(用含有x 、y 的代数式表示).A .(5)m x y ++B .(5)m x y -+C .(25)m x y +-D .(25)m x y +-5.(2022·内蒙古鄂尔多斯·七年级阶段练习)如图,长方形ABCD 中,3cm AB =,2cm BC =,点P 从A 出发,以1cm/s 的速度沿A B C →→运动,最终到达点C ,在点P 运动了3秒后点Q 开始以2cm/s 的速度从D 运动到A ,在运动过程中,设点P 的运动时间为t ,则当APQ ∆的面积为22cm 时,t 的值为( )A .2或103B .2或113C .2或4D .2或1336.(2022·全国·七年级课时练习)如图,数轴上点A 和点B 表示的数分别是-6和4,动点M 从A 点以每秒3cm 的速度匀速向右移动,动点N 同时从B 点以每秒1cm 的速度匀速向右移动.设移动时间为t 秒,当动点N 到原点的距离是动点M 到原点的距离的2倍时,t 的值为( )A .87B .127C .87或165D .127或1657.(2021·山东烟台·期中)如图,线段AB =8cm ,点P 在射线AB 上从点A 开始以每秒2cm 的速度沿着射线AB 的方向匀速运动,则当PB =13AB 时,运动时间为( )A .83秒或163秒B .83秒C .3秒D .163秒或323秒 8.(2022·全国·七年级课时练习)一条数轴上有点A 、B ,点C 在线段AB 上,其中点A 、B 表示的数分别是-8,6,现以点C 为折点,将数轴向右对折,若点A '落在射线CB 上,并且A 'B =4,则C 点表示的数是( )A .1B .-1C .1或-2D .1或-39.(2022·重庆市第一一〇中学校九年级期中)在原点为O 的数轴上,从左到右依次排列的三个动点A ,M ,B ,满足MA MB =,将点A ,M ,B 表示的数分别记为a ,m ,b .下列说法正确的个数有( )①当2m =时,4b a =-;①当5m =时,若a 为奇数,且58b <≤,则3a =或5;①若8b =,3BM OM =,则2m =;①当3m =,4b =时,将点B 水平右移3个单位至点1B ,再将点1B 水平右移3个单位至点2B ,以此类推,…且满足n n MA MB =,则数轴上与2022B 对应的点2022A 表示的数为6064.A .1B .2C .3D .410.(2022·福建龙岩·七年级期末)如图,A 点的初始位置在数轴上表示1的点上,先对A 做如下移动:第一次向右移动3个单位长度到达点B ,第二次从B 点出发向左移动6个单位长度到达点C ,第三次从C 点出发向右移动9个单位长度到达点D ,第四次从D 点出发向左移动12个单位长度到达点E ,…….以此类推,按照以上规律第( )次移动到的点到原点的距离为20A .7B .10C .14D .19二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022·全国·九年级专题练习)如图,一个长方形被划分成大小不等的6个正方形,已知中间的最小的正方形的面积为1平方厘米,则这个长方形的面积为__平方厘米.12.(2022·黑龙江·哈尔滨市松雷中学校七年级阶段练习)如图,长方形土地ABCD 的长AB 为230m ,宽AD为100m,据以往的统计资料,甲、乙两种作物的单位面积产值的比为6:17,在AB上取一点E作EF①DC 于点F,将长方形ABCD分成两个长方形,现要在长方形AEFD和长方形BEFC上分别种植甲、乙两种作物,要使甲、乙两种作物的总产值相等.则AE的长为_______m.13.(2022·浙江·七年级专题练习)如图,长方形ABCD中,AB=8cm,BC=6cm,点P从A出发,以1cm/s 的速度沿A→B→C运动,最终到达点C,在点P运动了8秒后,点Q开始以2cm/s的速度从D运动到A,在运动过程中,设点P的运动时间为t秒,当①APQ的面积为4cm2时,t的值为________14.(2022·四川·岳池县兴隆中学七年级阶段练习)已知数轴上两点A、B对应的数分别为﹣2与2.点P从A点出发,以每秒2个单位长度的速度沿数轴的正方向匀速运动;同时点Q从B点出发,以每秒1个单位长度沿数轴匀速运动.设P、Q两点的运动时间为t秒,当PQ12=AB时,t=________.15.(2022·全国·七年级专题练习)如图,一个长方形征好分成A、B、C、D、E、F这6个正方形,其中最小的正方形A边长为1,则这个长方形的面积是_____________.16.(2022·河南新乡·七年级阶段练习)如图,已知线段AB=50cm.动点P从点A出发以每秒3cm的速度向点B运动,同时动点Q从点B出发以每秒2cm的速度向点A运动,有一个点到达终点时另一点也随之停止运动.当PQ =10cm 时,则运动时间为________秒.17.(2022·全国·七年级专题练习)一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时水箱中水面高12cm ,放入一个棱长为20cm 的正方体实心铁块后,水箱中的水面仍然低于铁块的顶面,则此时铁块在水箱中露出水面部分的体积为 _____cm 3.18.(2022·河南南阳·七年级期中)如图,数轴上A ,B 两点对应的数分别为10,-3,点P 和点Q 同时从原点出发,点P 以每秒1个单位长度的速度沿数轴正方向运动,点Q 以每秒3个单位长度的速度先沿数轴负方向运动,到达B 点后再沿数轴正方向运动,当点Q 到达点A 后,两个点同时结束运动.设运动时间为t 秒,当P ,Q 两点距离为2个单位长度时,t 的值为___________.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022·黑龙江·哈尔滨市第四十七中学七年级阶段练习)将长为1,宽为a 的长方形纸片(0.51a <<)如图折叠,剪下一个边长等于长方形的宽度的正方形(称为第一次操作);再把剩下的长方形如图折叠,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n 次操作后剩下的长方形恰好为正方形,则操作终止.(1)第一次操作后,剩下的长方形周长为_________________;(2)若第二次操作后,剩下的长方形的周长恰好是1.3,求a 的值;(3)若第三次操作后,剩下的长方形恰好是正方形,求a 的值.20.(2022·江苏·文林中学七年级阶段练习)如图在数轴上A 点表示数a ,B 点表示数b ,a 、b 满足|a +2|+|b -4|=0;(1)点A 表示的数为______;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以3个单位/秒的速度向相反的方向运动,设运动的时间为t(秒);①当t=1时,甲小球与乙小球的距离为______;①当t=______时,甲小球与乙小球的距离为4.5;①当t=______时,甲小球与乙小球到原点的距离相等.21.(2021·辽宁·葫芦岛市实验中学七年级阶段练习)如图,在长方形ABCD中,AB=CD=10,AD=BC=6.动点P从点A出发,每秒1个单位长度的速度沿A→B匀速运动,到B点停止运动;同时点Q从点C出发,以每秒2个单位长度的速度沿C→B→A匀速运动,到A点停止运动.设P点运动的时间为t秒(t>0).(1)点P在AB上运动时,P A=______,PB=______,点Q在AB上运动时,BQ=______,QA=______(用含t的代数式表示);(2)求当t为何值时,AP=BQ;(3)当P,Q两点在运动路线上相距3个单位长度时,请直接写出t的值.22.(2021·广东·珠海市文园中学七年级阶段练习)如图,一个点从数轴上的原点开始,先向左运动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,数轴上一个单位长度表示1cm.(1)在数轴A、B、C点表示的数分别为、、.(2)把点A到点C的距离记为AC,则AC=.(3)若数轴上点D表示的数为x,且满足|x﹣3.5|=5.5,则x的值为.(4)若点B沿数轴以每秒3cm匀速向右运动,经过几秒后,点B到点C的距离为3cm?23.(2020·北京市陈经纶中学分校七年级期中)在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的13倍,我们就把点C叫做【A,B】的理想点.例如:图中,点A表示的数为-1,点B表示的数为3.表示数0的点C到点A的距离是1,到点B的距离是3,那么点C是【A,B】的理想点;又如,表示数2的点D到点A的距离是3,到点B的距离是1,那么点D就不是【A,B】的理想点,但点D是【B,A】的理想点.(1)当点A表示的数为-1,点B表示的数为7时,①若点C表示的数为1,则点C(填“是”或“不是”)【A,B】的理想点;①若点D是【B,A】的理想点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为-2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止.请直接写出点C运动多少秒时,C,A,B中恰有一个点为其余两点的理想点?24.(2021·河北·原竞秀学校七年级期中)如图,甲乙两人(看成点)分别在数轴﹣10和10对应的位置上,沿着数轴做向东、向西移动的游戏,移动游戏规则如下:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏;10次游戏结束后,甲猜对了m次,乙猜对了n次.(1)甲猜对了m次,则甲猜错了(________)次.(用含m的代数式表示)乙猜对了n次,则乙猜错了(________)次.(用含n的代数式表示)(2)当游戏结束时,分别求出甲乙两人在数轴上的位置上的点代表的数;(用含m或n的代数式表示)(3)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好距离10个单位,则乙猜对的次数为________次.。

广东省珠海市2021版中考数学试卷B卷

广东省珠海市2021版中考数学试卷B卷

广东省珠海市2021版中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2015七上·宜昌期中) 相反数是2的数是()A . ﹣2B .C . 2D . -2. (2分)若使式子在实数范围内有意义,则x的取值范围是()。

A .B .C .D .3. (2分)(2017·泰兴模拟) 口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A . 随机摸出1个球,是白球B . 随机摸出1个球,是红球C . 随机摸出1个球,是红球或黄球D . 随机摸出2个球,都是黄球4. (2分) (2018八上·腾冲期中) 图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A . l1B . l2C . l3D . l45. (2分)(2019·潮南模拟) 如图是由几个相同的小正方体堆砌成的几何体,它的左视图是()A .B .C .D .6. (2分)(2018·广州) 甲袋中装有2个相同的小球,分别写有数字1和2,乙袋中装有2个相同的小球,分别写有数字1和2,从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A .B .C .D .7. (2分) (2020九下·北碚月考) 下列命题中,是真命题的是()A . 将函数y= x+1向右平移2个单位后所得函数的解析式为y= xB . 若一个数的平方根等于其本身,则这个数是0和1C . 对函数y=,其函数值y随自变量x的增大而增大D . 直线y=3x+1与直线y=﹣3x+2一定互相平行8. (2分)(2020·丰南模拟) 一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内即进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为()A . 5LB . 3.75LC . 2.5LD . 1.25L9. (2分) (2019八上·农安期末) 如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A . 48B . 6C . 76D . 8010. (2分)(2018·绍兴模拟) 我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2 ,P2P3 , P3P4 ,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A . (﹣6,24)B . (﹣6,25)C . (﹣5,24)D . (﹣5,25)二、填空题 (共6题;共6分)11. (1分) (2018九上·定安期末) 计算: =________.12. (1分)(2020·常德模拟) 个正整数中,中位数是,唯一的众数是则这个数的和的最大值为________.13. (1分) (2020八上·常德期末) 计算: ________.14. (1分) (2017八下·大石桥期末) 如图,在口ABCD中, , E是AD的中点,若CE=4,则BC 的长是________.15. (1分)(2020·连云港模拟) 如图,抛物线y=x2+bx+c(c>0)与y轴交于点C,顶点为A,抛物线的对称轴交x轴于点E,交BC于点D,tan∠AOE=.直线OA与抛物线的另一个交点为B.当OC=2AD时,c的值是________.16. (1分)如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是________ 度.三、解答题 (共8题;共91分)17. (5分)计算:(1);(2);(3);(4)先化简,再求值:,其中x=-1,y=2.18. (5分) (2020七下·高新期末) 如图,∠EBC+∠EFA=180°,∠A=∠C。

2021年广东省珠海市中考数学模拟试卷及答案解析

2021年广东省珠海市中考数学模拟试卷及答案解析
“掌握新技术,走进数时代”信息技术应用大赛成绩频数分布统计表
组别
成绩x(分)
人数
A
60≤x<70
10
B
70≤x<80
m
C
80≤x<90
16
D
90≤x≤100
4
请观察上面的图表,解答下列问题:
(1)统计表中m=;统计图中n=;B组的圆心角是度.
(2)D组的4名学生中,有2名男生和2名女生.从D组随机抽取2名学生参加5G体验活动,请你画出树状图或用列表法求:
五、解答题(三)(本大题2小题,每小题10分,共20分)
24.(10分)如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且AD•AO=AM•AP.
(1)连接OP,证明:△ADM∽△APO;
(2)证明:PD是⊙O的切线;
(3)若AD=12,AM=MC,求PB和DM的值.
(2)在(1)的条件下,连接BF,求∠DBF的度数.
四、解答题(二)(本大题3小题,每小题8分,共24分)
21.(8分)电子政务、数字经济、智慧社会……一场数字革命正在神州大地激荡,在第二届数字中国建设峰会召开之际,某校举行了第二届“掌握新技术,走进数时代”信息技术应用大赛,将该校八年级参加竞赛的学生成绩统计后,绘制成如下统计图表(不完整):
16.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为.
17.如图,平面直角坐标系中,点A1的坐标为(1,2),以O为圆心,OA1长为半径画弧,交直线y 于点B1.过点B1作B1A2∥y轴交直线y=2x于点A2,以O为圆心,OA2长为半径画弧,交直线y═ x于点B2;过点B2作B2A3∥y轴交直线y=2x于点A3,以点O为圆心,OA3长为半径画弧,交直线y x于点B3;……按如此规律进行下去,点B2020的坐标为.

广东省2021年中考数学真题试卷(含详细解析)

广东省2021年中考数学真题试卷(含详细解析)
A. B. C. D.1
二、填空题
11.二元一次方程组 的解为___.
12.把抛物线 向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为___.
13.如图,等腰直角三角形 中, .分别以点B、点C为圆心,线段 长的一半为半径作圆弧,交 、 、 于点D、E、F,则图中阴影部分的面积为____.
【详解】
列表如下:
1
2
3
4
5
6
1
2
3
4
5
6
7
2
3
4
5
6
7
8
3
4
5
6
7
8
9
4
5
6
7
8
9
10
5
6
7
8
9
10
11
6
7
8
9
10
11
12
由表知,两枚骰子向上的点数之和所有可能的结果数为36种,两枚骰子向上的点数之和为7的结果数为6,故两枚骰子向上的点数之和为7的概率是:
故选:B.
【点睛】
本题考查了用列表法或树状图求等可能事件的概率,用列表法或树状图可以不重不漏地把事件所有可能的结果数及某一事件的结果数表示出来,具有直观的特点.
4.D
【分析】
利用同底数幂乘法逆用转换求 ,
∴故选:D.
【点睛】
本题主要考查同底数幂乘法的逆用,熟练掌握其运算法则即表现形式是解题关键.
5.B
【分析】
根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a、b的值,从而可求得ab的值.
(1)求证: ;

2021年中考数学真题试卷(28)(解析版)

2021年中考数学真题试卷(28)(解析版)

2021年中考数学真题试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1. 有理数-8的立方根为()A. -2B. 2C. ±2D. ±4【答案】A【解析】【分析】利用立方根定义计算即可得到结果.【详解】解:有理数-8的立方根为38 =-2故选A.【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.2. 在下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、不是轴对称图形,是中心对称图形;D、是轴对称图形,是中心对称图形.故选D.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3. 小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,搜索到与之相关的结果条数为608000,这个数用科学记数法表示为()A. 60.8×104 B. 6.08×105 C. 0.608×106 D. 6.08×107 【答案】B【解析】【分析】 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:608000,这个数用科学记数法表示为6.08×105.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A. m n >B. ||n m ->C. ||m n ->D. ||||m n <【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数,且m <n ,由此逐项分析得出结论即可.【详解】解:因为m 、n 都是负数,且m <n ,|m|>|n|,A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选C .【点睛】此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.5. 正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( ) A. B. C. D.【答案】A【解析】【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选A.【点睛】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y 轴的交点坐标为(0,b).6. 下列说法中不正确的是()A. 四边相等的四边形是菱形B. 对角线垂直的平行四边形是菱形C. 菱形的对角线互相垂直且相等D. 菱形的邻边相等【答案】C【解析】【分析】根据菱形的判定与性质即可得出结论.【详解】解:A.四边相等的四边形是菱形;正确;B.对角线垂直的平行四边形是菱形;正确;C.菱形的对角线互相垂直且相等;不正确;D.菱形的邻边相等;正确;故选C.【点睛】本题考查了菱形的判定与性质以及平行四边形的性质;熟记菱形的性质和判定方法是解题的关键.7. 某企业1-6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是()A. 1-6月份利润的众数是130万元B. 1-6月份利润的中位数是130万元C. 1-6月份利润的平均数是130万元D. 1-6月份利润的极差是40万元【答案】D【解析】【分析】先从统计图获取信息,再对选项一一分析,选择正确结果.【详解】解:A、1-6月份利润的众数是120万元;故本选项错误;B、1-6月份利润的中位数是125万元,故本选项错误;C、1-6月份利润的平均数是16(110+120+130+120+140+150)=3353万元,故本选项错误;D、1-6月份利润的极差是150-110=40万元,故本选项正确.故选D.【点睛】此题主要考查了折线统计图的运用,中位数和众数等知识,正确的区分它们的定义是解决问题的关键.8. 如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A. 15°B. 30°C. 45°D. 60°【答案】B【解析】【分析】根据角平分线的定义得到∠EBM=12∠ABC、∠ECM=12∠ACM,根据三角形的外角性质计算即可.【详解】解:∵BE是∠ABC的平分线,∴∠EBM=12∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=12∠ACM,则∠BEC=∠ECM-∠EBM=12×(∠ACM-∠ABC)=12∠A=30°,故选B.【点睛】本题考查的是三角形的外角性质、角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.9. —个“粮仓”的三视图如图所示(单位:m),则它的体积是()A. 21πm3B. 30πm3C. 45πm3D. 63πm3【答案】C【解析】【分析】首先根据三视图判断该几何体的形状,然后根据其体积计算公式计算即可.【详解】解:观察发现该几何体为圆锥和圆柱的结合体,其体积为:32π×4+13×32π×3=45πm 3, 故选C . 【点睛】考查了由三视图判断几何体的知识,解题的关键是首先判断几何体的形状,难度不大. 10. 如图,在正方形ABCD 中,边长AB =1,将正方形ABCD 绕点A 按逆时针方向旋转180°至正方形AB 1C 1D 1,则线段CD 扫过的面积为( )A. 4πB. 2πC. πD. 2π【答案】B【解析】【分析】根据中心对称的性质得到CC 1=2AC=2×2AB=22,根据扇形的面积公式即可得到结论.【详解】解:∵将正方形ABCD 绕点A 按逆时针方向旋转180°至正方形AB 1C 1D 1,∴CC 1=2AC=2×22,∴线段CD 扫过的面积=12×2)2•π-12×π=12π, 故选B .【点睛】本题考查了扇形的面积的计算,正方形的性质,熟练掌握扇形的面积公式是解题的关键. 二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11. 计算:53x x ÷=_______.【答案】2x【解析】【分析】【详解】根据同底幂相除,底数不变,指数相减计算即可:53532x x x x -÷==.12. 分解因式:22a b ab a b -+-=_________.【答案】(1)()ab a b -+【解析】【分析】先分组,再利用提公因式法分解因式即可.【详解】解:22()()(1)()a b ab a b ab a b a b ab a b +--=+-+=-+故答案为(ab-1)(a+b )【点睛】本题主要考查了分组分解法和提取公因式法分解因式,熟练应用提公因式法是解题关键. 13. 一个不透明的口袋中共有8个白球、5个黄球、5个绿球、2个红球,这些球除颜色外都相同.从口袋中随机摸出一个球,这个球是白球的概率是____. 【答案】25 【解析】【分析】先求出袋子中球的总个数及确定白球的个数,再根据概率公式解答即可.【详解】解:袋子中球的总数为8+5+5+2=20,而白球有8个, 则从中任摸一球,恰为白球的概率为820=25 . 故答案为25. .【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.14. 如图,在△ABC中,D、E分别是BC,AC的中点,AD与BE相交于点G,若DG=1,则AD=________.【答案】3.【解析】【分析】先判断点G为△ABC的重心,然后利用三角形重心的性质求出AG,从而得到AD的长.【详解】解:∵D、E分别是BC,AC的中点,∴点G为△ABC的重心,∴AG=2DG=2,∴AD=AG+DG=2+1=3.故答案为3.【点睛】本题考查了三角形重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1.15. 归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_______.【答案】3n+2.【解析】【分析】根据题意和图形,可以发现图形中棋子的变化规律,从而可以求得第n个“T”字形需要的棋子个数.【详解】解:由图可得,图①中棋子的个数为:3+2=5,图②中棋子的个数为:5+3=8,图③中棋子的个数为:7+4=11,……则第n个“T”字形需要的棋子个数为:(2n+1)+(n+1)=3n+2,故答案为3n+2.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中棋子的变化规律,利用数形结合的思想解答.16. 我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a 、b ,那么2()a b 的值是____.【答案】1.【解析】【分析】根据勾股定理可以求得a 2+b 2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab 的值,然后根据(a-b )2=a 2-2ab+b 2即可求解.【详解】解:根据勾股定理可得a 2+b 2=13,四个直角三角形的面积是:12ab×4=13-1=12,即:2ab=12, 则(a-b )2=a 2-2ab+b 2=13-12=1.故答案为1.【点睛】本题考查勾股定理,以及完全平方式,正确根据图形的关系求得a 2+b 2和ab 的值是关键. 17. 已知x =4是不等式ax -3a -1<0的解,x =2不是不等式ax -3a -1<0的解,则实数a 的取值范围是____.【答案】a ≤-1.【解析】【分析】根据x=4是不等式ax-3a-1<0的解,x=2不是不等式ax-3a-1<0的解,列出不等式,求出解集,即可解答.【详解】解:∵x=4是不等式ax-3a-1<0的解,∴4a-3a-1<0,解得:a <1,∵x=2不是这个不等式的解,∴2a-3a-1≥0,解得:a≤-1,∴a≤-1,故答案为a≤-1.【点睛】本题考查了不等式的解集,解决本题的关键是求不等式的解集.18. 如图,抛物线214y x p(p >0),点F (0,p ),直线l :y =-p ,已知抛物线上的点到点F 的距离与到直线l 的距离相等,过点F 的直线与抛物线交于A ,B 两点,AA 1⊥l ,BB 1⊥l ,垂足分别为A 1、B 1,连接A 1F ,B 1F ,A 1O ,B 1O .若A 1F =a ,B 1F =b 、则△A 1OB 1的面积=____.(只用a ,b 表示).【答案】4ab . 【解析】【分析】 根据题意可知S ∆A1OB1=12S ∆A1B1F,=14ab ,从而得到本题的结果. 【详解】解:∵AA 1⊥l ,y 轴⊥l ,∴AA 1∥y 轴.∴∠AA 1F=∠A 1FO.∵AF=AA 1,∴∠AA 1F=∠A 1FA .∴∠A 1FO=∠A 1FA.同理可证:∠B 1FO=∠B 1FB.∴∠A 1FB 1=90°. ∴△A 1FB 1面积=12A 1F B 1F=12ab .∵抛物线上的点到点F 的距离与到直线l 的距离相等,∴O 到到点F 的距离与到直线l 的距离相等,∴△A 1OB 1的面积=12△A 1FB 1的面积=4ab . 【点睛】本题考查了平行线的判定、等腰三角形的性质、直角三角形的判定、三角形的面积计算公式等知识,抛物线在此是一个干扰条件,正确辨别和理解题意是解题的关键.三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. 计算:0(2019)1360sin π-+--︒. 【答案】32. 【解析】【分析】直接利用特殊角的三角函数值、绝对值的性质、零指数幂的性质分别化简得出答案.【详解】()033201913sin60131π-+-︒=+-= 【点睛】此题主要考查了实数运算,正确化简各数是解题关键.20. 已知:ab =1,b =2a -1,求代数式12a b -的值. 【答案】-1.【解析】【分析】根据ab=1,b=2a-1,可以求得b-2a 的值,从而可以求得所求式子的值.【详解】∵ab =1,b =2a -1,∴b -2a =-1,∴122111b a a b ab ---===- 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21. 某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450机器所需时间相同,求该工厂原来平均每天生产多少台机器?【答案】该工厂原来平均每天生产150台机器.【解析】【分析】设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】设该工厂原来平均每天生产x台机器,则现在平均每天生产(x+50)台机器.根据题意得60045050x x=+,解得x=150.经检验知x=150是原方程的根.答:该工厂原来平均每天生产150台机器.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22. 如图,一艘船由A港沿北偏东60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C两港之间的距离(结果保留到0.1km,参考数据:2≈1.414,3≈1.732);(2)确定C港在A港的什么方向.【答案】(1)A、C两地之间的距离为14.1km;(2)C港在A港北偏东15°的方向上.【解析】【分析】(1)根据方位角的定义可得出∠ABC=90°,再根据勾股定理可求得AC的长为14.1.(2)由(1)可知△ABC为等腰直角三角形,从而得出∠BAC=45°,求出∠CAM=15°,所而确定C港在A港什么方向.【详解】(1)由题意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴AC22AB BC+=2≈14.1.答:A、C两地之间的距离为14.1km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,∴C港在A港北偏东15°的方向上.【点睛】本题考查了方位角的概念及勾股定理及其逆定理,正确理解方位角是解题的关键.23. 某校为了解七年级学生的体重情况,随机抽取了七年级m 名学生进行调查,将抽取学生的体重情况绘制如下不完整的频数分布表和扇形统计图. 组别体重(千克) 人数 A37.5≤x <42.5 10 B42.5≤x <47.5 n C47.5≤x <52.5 40 D52.5≤x <57.5 20 E 57.5≤x <62.5 10请根据图表信息回答下列问题:(1)填空:①m =_____,②n =_____,③在扇形统计图中,C 组所在扇形的圆心角的度数等于_______度; (2)若把每组中各个体重值用这组数据的中间值代替(例如:A 组数据中间值为40千克),则被调查学生的平均体重是多少千克?(3)如果该校七年级有1000名学生,请估算七年级体重低于47.5千克的学生大约有多少人?【答案】(1)①100,②20,③144;(2)被被抽取同学的平均体重为50千克;(3)七年级学生体重低于47.5千克的学生大约有300人.【解析】【分析】(1)①m=20÷20%=100,②n=100-10-40-20-10=20,③c=40100×360°=144°; (2)被抽取同学的平均体重为: 4010452050405520601050100⨯+⨯+⨯+⨯+⨯=.(千克); (3)七年级学生体重低于47.5千克学生1000×30%=300(人).【详解】(1)①100,②20,③144;(2)被抽取同学的平均体重为:4010452050405520601050100⨯+⨯+⨯+⨯+⨯=. 答:被抽取同学的平均体重为50千克.(3)301000300100⨯=. 答:七年级学生体重低于47.5千克的学生大约有300人.【点睛】本题考查的是频数分布表和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.频数分布表能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24. 如图,反比例函数2m y x=和一次函数y =kx -1的图象相交于A (m ,2m ),B 两点. (1)求一次函数的表达式; (2)求出点B 的坐标,并根据图象直接写出满足不等式21m kx x <-的x 的取值范围.【答案】(1)y =3x -1;(2)203x -<<或x >1. 【解析】【分析】 (1)把A (m ,2m )代入2m y x=,求得A 的坐标为(1,2),然后代入一次函数y=kx-1中即可得出其解析式; (2)联立方程求得交点B 的坐标,然后根据函数图象即可得出结论.【详解】(1)∵A (m ,2m )在反比例函数图象上,∴22m m m=,∴m =1,∴A (1,2). 又∵A (1,2)在一次函数y =kx -1的图象上,∴2=k -1,即k =3,∴一次函数的表达式为:y =3x -1.(2)由231y x y x ⎧=⎪⎨⎪=-⎩解得B (23-,-3) ∴由图象知满足21m kx x <-的x 取值范围为203x -<<或x >1. 【点睛】本题考查的是反比例函数的图象与一次函数图象的交点问题,根据题意利用数形结合求出不等式的解集是解答此题的关键.25. 如图,在矩形ABCD 中,AB =3,BC =4.M 、N 在对角线AC 上,且AM =CN ,E 、F 分别是AD 、BC 的中点.(1)求证:△ABM ≌△CDN ;(2)点G 是对角线AC 上的点,∠EGF =90°,求AG 的长.【答案】(1)见解析;(2)AG 的长为1或4.【解析】【分析】(1)根据四边形的性质得到AB ∥CD ,求得∠MAB=∠NCD .根据全等三角形的判定定理得到结论;(2)连接EF ,交AC 于点O .根据全等三角形的性质得到EO=FO ,AO=CO ,于是得到结论.【详解】(1)证明∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠MAB = ∠NCD .在△ABM 和△CDN 中,AB CD MAB NCD AM CN =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△CDN ;(2)解:如图,连接EF ,交AC 于点O .在△AEO 和△CFO 中,AE CF EOA FOC EAO FCO =⎧⎪∠=∠⎨⎪∠=∠⎩∴△AEO≌△CFO,∴EO=FO,AO=CO,∴O为EF、AC中点.∵∠EGF=90°,1322OG EF==,∴AG=OA-OG =1或AG=OA+OG=4,∴AG的长为1或4.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,熟练正确全等三角形的判定和性质是解题的关键.26. 如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC交AC于点E,连接BE,设动点D运动的时间为x(s),AE的长为y(cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?【答案】(1)362y x=-+(0<x<4);(2)当x=2时,S△BDE最大,最大值为6cm2.【解析】【分析】(1)根据已知条件DE∥BC可以判定△ADE∽△ABC;然后利用相似三角形的对应边成比例求得AD AEAB AC=;最后用x、y表示该比例式中的线段的长度;(2)根据∠A=90°得出S△BDE=12•BD•AE,从而得到一个面积与x的二次函数,从而求出最大值;【详解】(1)动点D运动x秒后,BD=2x.又∵AB=8,∴AD=8-2x.∵DE∥BC,∴AD AEAB AC=,∴()6823682xAE x-==-,∴y 关于x 的函数关系式为362y x =-+(0<x <4). (2)解:S △BDE =11326222BD AE x x ⎛⎫⋅⋅=⨯-- ⎪⎝⎭=2362x x -+(0<x <4). 当62322x =-=⎛⎫⨯- ⎪⎝⎭时,S △BDE 最大,最大值为6cm 2. 【点睛】本题主要考查相似三角形的判定与性质、三角形的面积列出二次函数关系式,利用二次函数求最值问题,建立二次函数模型是解题的关键.27. 如图,⊙O 是△ABC 的外接圆,AB 是直径,D 是AC 中点,直线OD 与⊙O 相交于E ,F 两点,P 是⊙O 外一点,P 在直线OD 上,连接P A ,PC ,AF ,且满足∠PCA =∠ABC .(1)求证:P A 是⊙O 的切线;(2)证明:24EF OD OP =⋅;(3)若BC =8,tan ∠AFP =23,求DE 的长.【答案】(1)见解析;(2)见解析;(3)DE =325. 【解析】【分析】(1)先判断出PA=PC ,得出∠PAC=∠PCA ,再判断出∠ACB=90°,得出∠CAB+∠CBA=90°,再判断出∠PCA+∠CAB=90°,得出∠CAB+∠PAC=90°,即可得出结论;(2)先判断出Rt △AOD ∽Rt △POA ,得出OA 2=OP•OD ,进而得出214EF OP OD =⋅,,即可得出结论; (3)在Rt △ADF 中,设AD=a ,得出DF=3a .142OD BC ==,AO=OF=3a-4,最后用勾股定理得出OD 2+AD 2=AO 2,即可得出结论.【详解】(1)证明∵D 是弦AC 中点,∴OD ⊥AC ,∴PD 是AC 的中垂线,∴P A =PC ,∴∠P AC =∠PCA . ∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CAB +∠CBA =90°.又∵∠PCA =∠ABC ,∴∠PCA +∠CAB =90°,∴∠CAB +∠P AC =90°,即AB ⊥P A ,∴P A 是⊙O 的切线; (2)证明:由(1)知∠ODA =∠OAP =90°,∴Rt △AOD ∽Rt △POA ,∴AO DO PO AO =,∴2OA OP OD =⋅. 又12OA EF =,∴214EF OP OD =⋅,即24EF OP OD =⋅. (3)解:在Rt △ADF 中,设AD =a ,则DF =3a .142OD BC ==,AO =OF =3a -4. ∵222OD AD AO +=,即()222434a a +=-,解得245a =,∴DE =OE -OD =3a -8=325. 【点睛】此题是圆的综合题,主要考查了切线的判定,相似三角形的判定和性质,勾股定理,判断出Rt △AOD ∽Rt △POA 是解本题的关键.28. 如图,抛物线2y x bx c =++的对称轴为直线x =2,抛物线与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(-1,0).(1)求抛物线的函数表达式;(2)将抛物线2y x bx c =++图象x 轴下方部分沿x 轴向上翻折,保留抛物线在x 轴上的点和x 轴上方图象,得到的新图象与直线y =t 恒有四个交点,从左到右四个交点依次记为D ,E ,F ,G .当以EF 为直径的圆过点Q (2,1)时,求t 的值;(3)在抛物线2y x bx c =++上,当m ≤x ≤n 时,y 的取值范围是m ≤y ≤7,请直接写出x 的取值范围.【答案】(1)245y x x =--;(2)t 的值为1332+;(3)x 的取值范围是227x -≤≤或53562x +≤≤. 【解析】【分析】 (1)抛物线的对称轴是x=2,且过点A (-1,0)点,∴()22110b b c ⎧-=⎪⎨⎪+⨯-+=⎩,即可求解; (2)翻折后得到的部分函数解析式为:y=-(x-2)2+9=-x 2+4x+5,(-1<x <5),新图象与直线y=t 恒有四个交点,则0<t <9,由245y t y x x =⎧⎨=-++⎩解得:解得129x t =-,229x t =-,即可求解; (3)分m 、n 在函数对称轴左侧、m 、n 在对称轴两侧、m 、n 在对称轴右侧时,三种情况分别求解即可.【详解】(1)抛物线的对称轴是x =2,且过点A (-1,0)点,∴()22110b b c ⎧-=⎪⎨⎪+⨯-+=⎩,解得:45b c =⎧⎨=-⎩, ∴抛物线的函数表达式为:245y x x =--;(2)解:∵()224529y x x x =--=--,∴x 轴下方图象翻折后得到的部分函数解析式为:245y x x =-++=()229x --+(-1<x <5),其顶点为(2,9).∵新图象与直线y =t 恒有四个交点,∴0<t <9.设E (x 1,y 1),F (x 2,y 2).由245y t y x x =⎧⎨=-++⎩得2450x x t -+-=, 解得129x t =--,229x t =+-∵以EF 为直径的圆过点Q (2,1),∴2121EF t x x =-=-,即2921t t -=-,解得1332t ±=. 又∵0<t <9,∴t 的值为1332+;(3)x 的取值范围是:227x -≤≤-5356x +≤≤. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、圆的基本性质性质、图形的翻折等,其中(3),要注意分类求解,避免遗漏.。

2021年广东省珠海市中考数学试卷及解析(真题样卷)

2021年广东省珠海市中考数学试卷及解析(真题样卷)

2021年广东省珠海市中考数学试卷一、选择题(本大题共5小题,每小题3分,共15分)1.(3分)(2021•珠海)的倒数是()A.B.C.2D.﹣22.(3分)(2021•珠海)计算﹣3a2×a3的结果为()A.﹣3a5B.3a6C.﹣3a6D.3a53.(3分)(2021•珠海)一元二次方程x2+x+=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定根的情况4.(3分)(2021•珠海)一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()A.B.C.D.5.(3分)(2021•珠海)如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD 的度数是()A.25°B.30°C.40°D.50°二、填空题(本大题共5小题,每小题4分,共20分)6.(4分)(2021•珠海)若分式有意义,则x应满足.7.(4分)(2021•珠海)不等式组的解集是.8.(4分)(2021•珠海)填空:x2+10x+=(x+)2.9.(4分)(2021•珠海)用半径为12cm,圆心角为90°的扇形纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为cm.10.(4分)(2021•珠海)如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为.三、解答题(一)(共5小题,每小题6分,共30分)11.(6分)(2021•珠海)计算:﹣12﹣2+50+|﹣3|.12.(6分)(2021•珠海)先化简,再求值:(﹣)÷,其中x=.13.(6分)(2021•珠海)如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.14.(6分)(2021•珠海)某校体育社团在校内开展“最喜欢的体育项目(四项选一项)”调查,对九年级学生随机抽样,并将收集的数据绘制成如图两幅不完整的统计图,请结合统计图解答下列问题:(1)求本次抽样人数有多少人?(2)补全条形统计图;(3)该校九年级共有600名学生,估计九年级最喜欢跳绳项目的学生有多少人?15.(6分)(2021•珠海)白溪镇2021年有绿地面积57。

珠海市2021版中考数学试卷A卷

珠海市2021版中考数学试卷A卷

珠海市2021版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分)在-(-2),,(-2)2 , -2这4个数中,负数的个数是()A . 1B . 2C . 3D . 42. (2分) (2015八下·绍兴期中) 函数的自变量x的取值范围是()A . x>1B . x>1且x≠3C . x≥1D . x≥1且x≠33. (2分)(2016·永州) 下列式子错误的是()A . cos40°=sin50°B . tan15°•tan75°=1C . sin225°+cos225°=1D . sin60°=2sin30°4. (2分)(2020·云南模拟) 某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个)678人数(人)152210表中表示零件个数的数据中,众数、中位数分别是()A . 7个、7个B . 6个、7个C . 5个、6个D . 8个、6个5. (2分)(2020·深圳) 下列图形中既是轴对称图形,也是中心对称图形的是()A .B .C .D .6. (2分)(2020·椒江模拟) 如图,四边形ABCD是半圆的内接四边形,AB是直径, = .若∠C=110°,则∠ABC的度数等于()A . 55°B . 60°C . 65°D . 70°7. (2分) (2019九上·武汉月考) 一圆锥的高与母线的夹角为30°,则它的侧面展开图的圆心角的度数是()A . 120°B . 150°C . 180°D . 210°8. (2分)下面性质中,菱形不一定具备的是()A . 四条边都相等B . 每一条对角线平分一组对角C . 邻角互补D . 对角线相等9. (2分)方程|2x﹣1|=2的解是()A . x=B . x=-C . x=-或x=﹣D . x=﹣10. (2分) (2018七下·来宾期末) 如图,将△ABC绕点A逆时针旋转一定的角度,得到△ADE,且AD⊥BC.若∠CAE=65°,∠E=60°,则∠BAC的大小为()A . 60°B . 75°C . 85°D . 95°二、填空题: (共8题;共8分)11. (1分)(2017·湖州模拟) 分解因式: =________.12. (1分)(2016·十堰模拟) 据第六次全国人口普查统计,我国人口总数约有1 370 000 000人,用科学记数法表示为________人.13. (1分) (2015八上·大石桥期末) 若方程无解,则k的值为________.14. (1分) (2018九上·平顶山期末) 已知同一个反比例函数图象上的两点P1(x1 , y1)、P2(x2 , y2),若x2=x1+2,且,则这个反比例函数的解析式为________.15. (1分)把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为________16. (1分)如图,把矩形纸片沿着过点的直线折叠,使得点落在边上的点处,若,则∠DAE=________17. (1分) (2017八下·柯桥期中) 已知在平面直角坐标系中,点A、B、C、D的坐标依次为(﹣1,0),(m,n),(﹣1,10),(﹣9,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是________.18. (1分)若直线a与⊙O交于A,B两点,O到直线a的距离为6,AB=16,则⊙O的半径为________.三、解答题: (共10题;共87分)19. (10分) (2018九下·江都月考) 计算题(1)计算:(-4)0+()-1-2cos30°-;(2)解不等式组:20. (10分)解下列方程组和不等式组(1)(2)(并把解集在数轴上表示出来)21. (5分) (2017八上·信阳期中) 已知:如图, .求证:.22. (10分)尺规作图.如图,在Rt△ABC中,∠C=Rt∠,BC=6,AC=8.(1)求作线段AB的中垂线交AC于点D,连接DB;(2)求AD的长.23. (13分) (2019七下·许昌期末) 共享经济与我们的生活息息相关,其中,共享单车的使用给我们的生活带来了很多便利,但在使用过程中出现一些不文明现象.某市记者为了解“使用共享单车时的不文明行为”,随机抽查了该市部分市民,并对调查结果进行了整理,绘制了如下两幅尚不完整的统计图表(每个市民仅持有一种观点).请根据以上信息,解答下列问题:(1)填空: a=________ ; b=________ ; m=________ ;(2)求扇形图中B组所在扇形的圆心角度数;(3)若该市约有100万人,请你估计其中持有D组观点的市民人数.24. (5分)如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.25. (8分) (2017八下·抚宁期末) 如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题:(1)当行驶8千米时,收费应为________元;(2)从图象上你能获得哪些信息(请写出2条);①________;②________;(3)求出收费y(元)与行使x(千米)(x≥3)之间的函数关系式.26. (10分)如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s 的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.27. (10分) (2020九上·昭平期末) 如图,在口ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE= CD(1)求证:△ABF∽△CEB(2)若△DEF的面积为2,求△CEB的面积28. (6分)如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)在图中确定该圆弧所在圆的圆心D点的位置,D点坐标为________.(2)连接AD、CD,求⊙D的半径及弧的长.参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题: (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题: (共10题;共87分)19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、23-2、23-3、24-1、25-1、25-2、25-3、26-1、27-1、27-2、28-1、28-2、。

广东省珠海市2021年中考数学试卷(I)卷

广东省珠海市2021年中考数学试卷(I)卷

广东省珠海市2021年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·江阴模拟) 3的相反数是()A .B .C . ﹣3D . ﹣12. (2分)(2012·遵义) 下列运算中,正确的是()A . 3a﹣a=3B . a2+a3=a5C . (﹣2a)3=﹣6a3D . ab2÷a=b23. (2分)(2017·抚州模拟) 神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A . 2.8×103B . 28×103C . 2.8×104D . 0.28×1054. (2分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A .B .C .D .5. (2分)化简:﹣ =()A . 0B . 1C . xD .6. (2分)在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A . (4,-3)B . (-4,3)C . (0,-3)D . (0,3)7. (2分)(2018·青羊模拟) 下列说法正确的是()A . 对角线相等的四边形是矩形B . 有两边及一角对应相等的两个三角形全等C . 对角线互相垂直的矩形是正方形D . 平分弦的直径垂直于弦8. (2分)圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为().A . 36πB . 48πC . 72πD . 144π9. (2分)观察如表,回答问题:序号123…图形…第()个图形中“△”的个数是“○”的个数的5倍.A . 5B . 10C . 20D . 4010. (2分) (2017九上·商水期末) 将宽为2cm的长方形纸条折叠成如图所示的形状,那么折痕PQ的长是()A . cmB . cmC . cmD . 2cm二、填空题 (共6题;共6分)11. (1分)(2016·葫芦岛) 分解因式:a3﹣4a=________.12. (1分) (2019八下·嘉兴开学考) 把足球垂直地面向上踢,t(秒)后该足球的高度h(米)适用公式,经________秒后足球回到地面.13. (1分)(2017·平顶山模拟) 袋子里放着小颖刚买的花、白两种色彩的手套各1双(除颜色外其余都相同),小颖在看不见的情况下随机摸出两只手套,它们恰好同色的概率是________.14. (1分)如图是一辆慢车与一辆快车沿相同路线从A地到B地所行的路程与时间之间的函数图象,已知慢车比快车早出发2小时,则A、B两地的距离为________km.15. (1分)(2017·靖远模拟) 如下图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD于点E,则线段DE的长为________.16. (1分)(2012·河南) 如图,点A、B在反比例函数y= (k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为________.三、解答题 (共8题;共85分)17. (5分)(2017·蜀山模拟) 计算:tan30°cos60°+tan45°cos30°.18. (10分)(2016·贵港) 如图,在▱ABCD中,AC为对角线,AC=BC=5,AB=6,AE是△ABC的中线.(1)用无刻度的直尺画出△ABC的高CH(保留画图痕迹);(2)求△ACE的面积.19. (10分)为了方便行人,市政府打算修建如图所示的过街天桥,桥面AD平行于地面BC,立柱AE⊥BC于点E,立柱DF⊥BC于点F,若AB=10 米,tanB= ,∠C=30°.(1)因受地形限制,决定对天桥进行改建,使CD斜面的坡度变陡,将30°坡角改为40°,改建后斜面为DG,试计算此次改建节省路面宽度CG大约是多少?(结果精确到0.1米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.732)(2)在该天桥修建工程中,某工程队每天修建若干米,为了尽量减少施工对周边环境的影响,该队提高施工效率,实际工作效率比原计划每天提高了20%,结果提前两天完成,求原计划几天完成该工程?20. (15分)为选派一名学生参加全市实践活动技能竞赛,A、B两位同学在学校实习基地现场进行加工直径为20mm的零件的测试,他俩各加工的10个零件的相关数据依次如下图表所示(单位:mm) 21世纪教育网版权所有平均数方差完全符合要求个数A 200.026 2B 20 SB2 5根据测试得到的有关数据,试解答下列问题:(1)考虑平均数与完全符合要求的个数,你认为谁的成绩好些;(2)计算出SB2的大小,考虑平均数与方差,说明谁的成绩好些;(3)考虑图中折线走势及竞赛中加工零件个数远远超过10个的实际情况,你认为派谁去参赛较合适?说明你的理由.21. (5分)如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE 的延长线上,且GA=GE.(1)求证:AG与⊙O相切.(2)若AC=6,AB=8,BE=3,求线段OE的长.22. (15分) (2017九下·万盛开学考) 在中,,为射线上一点,,为射线上一点,且,连接.(1)如图,若,,求的长;(2)如图,若,连接并延长,交于点,求证:;(3)如图,若,垂足为点,求证:.23. (10分)(2017·如皋模拟) 若抛物线L:y=ax2+bx+c(a,b,c是常数,a≠0)的顶点P在直线l上,则称该抛物线L与直线l具有“”一带一路关系,此时,抛物线L叫做直线l的“带线”,直线l叫做抛物线L的“路线”.(1)求“带线”L:y=x2﹣2mx+m2+m﹣1(m是常数)的“路线”l的解析式;(2)若某“带线”L:y= x2+bx+c的顶点在二次函数y=x2+4x+1的图象上,它的“路线”l的解析式为y=2x+4.①求此“带线”L的解析式;②设“带线”L与“路线”l的另一个交点为Q,点R在PQ之间的“带线”L上,当点R到“路线”l的距离最大时,求点R的坐标.24. (15分)(2017·集宁模拟) 如图,△ABC的顶点坐标分别为A(﹣6,0),B(4,0),C(0,8),把△ABC 沿直线BC翻折,点A的对应点为D,抛物线y=ax2﹣10ax+c经过点C,顶点M在直线BC上.(1)证明四边形ABCD是菱形,并求点D的坐标;(2)求抛物线的对称轴和函数表达式;(3)在抛物线上是否存在点P,使得△PBD与△PCD的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共85分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、。

人教版_2021年珠海市中考数学试卷解析

人教版_2021年珠海市中考数学试卷解析

人教版_2021年珠海市中考数学试卷解析2021年广东省珠海市中考数学试卷一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑1.(3分)(2021?珠海)实数4的算术平方根是()A.﹣2 B.2C.±2 D.±42.(3分)(2021?珠海)如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.120°3.(3分)(2021?珠海)点(3,2)关于x轴的对称点为()A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,﹣3)4.(3分)(2021?珠海)已知一元二次方程:①x2+2x+3=0,②x2﹣2x﹣3=0.下列说法正确的是() A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解5.(3分)(2021?珠海)如图,?ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A.36°B.46°C.27°D.63°二、填空题(本大题5小题,每小题4分,共20分)请将行李各题的正确答案填写在答题卡相应的位置上。

6.(4分)(2021?珠海)使式子有意义的x的取值范围是_________.7.(4分)(2021?珠海)已知,函数y=3x的图象经过点A(﹣1,y1),点B(﹣2,y2),则y1_________y2(填“>”“<”或“=”) 8.(4分)(2021?珠海)若圆锥的母线长为5cm,地面半径为3cm,则它的测面展开图的面积为_________cm2(结果保留π)9.(4分)(2021?珠海)已知a、b满足a+b=3,ab=2,则a2+b2=_________.10.(4分)(2021?珠海)如图,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1,由顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2…,以此类推,则第六个正方形A6B6C6D6周长是_________.三、解答题(一)(本大题5小题,每小题6分,共30分)11.(6分)(2021?珠海)计算:﹣()0+||12.(6分)(2021?珠海)解方程:.13.(6分)(2021?珠海)某初中学校对全校学生进行一次“勤洗手”的问卷调查,学校七、八、九三个年级学生人数分别为600人、700人、600人,经过数据整理将全校的“勤洗手”调查数据绘制成统计图.(1)根据统计图,计算八年级“勤洗手”学生人数,并补全下列两幅统计图.(2)通过计算说明那个年级“勤洗手”学生人数占本年级学生人数的比例最大?14.(6分)(2021?珠海)如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.15.(6分)(2021?珠海)某渔船出海捕鱼,2021年平均每次捕鱼量为10吨,2021年平均每次捕鱼量为8.1吨,求2021年﹣2021年每年平均每次捕鱼量的年平均下降率.四、解答题(二))(本大题4小题,每小题7分,共28分)16.(7分)(2021?珠海)一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:)17.(7分)(2021?珠海)如图,⊙O经过菱形ABCD的三个顶点A、C、D,且与AB相切于点A(1)求证:BC为⊙O的切线;(2)求∠B的度数.18.(7分)(2021?珠海)把分别标有数字2、3、4、5的四个小球放入A袋内,把分别标有数字、、、、的五个小球放入B袋内,所有小球的形状、大小、质地完全相同,A、B两个袋子不透明、(1)小明分别从A、B两个袋子中各摸出一个小球,求这两个小球上的数字互为倒数的概率;(2)当B袋中标有的小球上的数字变为_________时(填写所有结果),(1)中的概率为.19.(7分)(2021?珠海)已知,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,OA=OB,函数y=的图象与线段AB交于M点,且AM=BM.(1)求点M的坐标;(2)求直线AB的解析式.五、解答题(三)(本大题3小题,每小题9分,共27分)20.(9分)(2021?珠海)阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式.(2)试说明的最小值为8.21.(9分)(2021?珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A 顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.22.(9分)(2021?珠海)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x 轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m 的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.2021年广东省珠海市中考数学试卷参考答案与试题解析一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑1.(3分)(2021?珠海)实数4的算术平方根是()A.﹣2 B.2C.±2 D.±4考点: 算术平方根.分析:根据算术平方根的定义解答即可.解答:解:∵22=4,∴4的算术平方根是2,即=2.故选B.点评:本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.2.(3分)(2021?珠海)如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.120°考点: 平行线的性质.分析:由a∥b,根据两直线平行,同位角相等,即可求得∠3=∠1=60°,又由对顶角相等,即可求得答案.解答:解:∵a∥b,∴∠3=∠1=60°,∴∠2=∠3=60°.故选C.点评:此题考查了平行线的性质.此题比较简单,注意掌握数形结合思想的应用.3.(3分)(2021?珠海)点(3,2)关于x轴的对称点为()A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,﹣3)考点: 关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接写出答案.解答:解:点(3,2)关于x轴的对称点为(3,﹣2),故选:A.点评:此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.4.(3分)(2021?珠海)已知一元二次方程:①x2+2x+3=0,②x2﹣2x﹣3=0.下列说法正确的是() A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解考点: 根的判别式.分析:求出①、②的判别式,根据:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.即可得出答案.解答:解:方程①的判别式△=4﹣12=﹣8,则①没有实数解;方程②的判别式△=4+12=20,则②有两个实数解.故选B.点评:本题考查了根的判别式,解答本题的关键是掌握跟的判别式与方程根的关系.5.(3分)(2021?珠海)如图,?ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A.36°B.46°C.27°D.63°考点: 圆周角定理;平行四边形的性质.分析:根据BE是直径可得∠BAE=90°,然后在?ABCD中∠ADC=54°,可得∠B=54°,继而可求得∠AEB的度数.解答:解:∵四边形ABCD是平行四边形,∠ADC=54°,∴∠B=∠ADC=54°,∵BE为⊙O的直径,∴∠BAE=90°,∴∠AEB=90°﹣∠B=90°﹣54°=36°.故选A.点评:本题考查了圆周角定理及平行四边形的性质,解答本题的关键是根据平行四边形的性质得出∠B=∠ADC.二、填空题(本大题5小题,每小题4分,共20分)请将行李各题的正确答案填写在答题卡相应的位置上。

2021年广东省中考地理真题(解析版)

2021年广东省中考地理真题(解析版)

2021年广东省中考数学试卷(解析版)一、选择题:本大题共30题,每题2分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

如图为某河流上游局部地区等高线地形图。

该河上游地区森林茂密,植被覆盖率高,人口密度小,是当地的饮用水水源地。

据此完成下列1~3小题。

1.甲、乙两地的相对高度可能是()A.240米B.380米C.470米D.560米【分析】相对高度是指地面某个地点高出另一个地点的垂直距离,即两个地点之间的高度差。

【解答】解:结合图示来看,图中等高距是50米。

甲地海拔高度是550﹣﹣600米,乙地海拔高度是150﹣﹣200米,两地的相对高度是350﹣﹣450米,故B符合题意。

故选:B。

【点评】本题考查相对高度的计算,结合图示判断出两地的海拔高度解答即可。

2.该河上游地区适宜()A.矿山开采B.小麦种植C.生态旅游D.水产养殖【分析】图示位于南方地区,为亚热带季风气候;图示河流上游地形崎岖、植被茂密,人口密度小,适宜发展旅游业。

据此作答。

【解答】解:由题干信息可知,该河上游地区森林茂密,植被覆盖率高,人口密度小,是当地的饮用水水源地;结合图示信息可知,该河上游地区地形崎岖,气候湿热(亚热带季风气候),适宜发展生态旅游,不适宜矿山开采、小麦(北方地区的主要粮食作物)种植、水产养殖,故C符合题意。

故选:C。

【点评】本题考查等高线地形图的判读,在把握图示信息的基础上,理解解答即可。

3.该地区易发生的气象灾害是()A.滑坡B.洪涝C.寒潮D.泥石流【分析】中国是气象灾害严重的国家,主要气象灾害有洪涝、干旱、寒潮、梅雨、台风、沙尘暴等。

【解答】解:根据经纬度判断,该地位于我国南方地区,该地区易发生的气象灾害是洪涝,寒潮主要发生在北方和西北地区,滑坡和泥石流属于地质灾害。

故选:B。

【点评】考查经纬网的判读和影响我国的主要气象灾害,读图解答即可。

毛泽东在1933年重过江西省瑞金大柏地时,作词《菩萨蛮•大柏地》:“赤橙黄绿青蓝紫,谁持彩练当空舞?雨后复斜阳,关山阵阵苍。

2021年珠海市中考数学试卷(解析版)

2021年珠海市中考数学试卷(解析版)

2012年珠海市中考数学试卷(解析版)一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2012•湛江)2的倒数是()A. 2 B.﹣2 C.D.﹣考点:倒数。

分析:直接根据倒数的定义进行解答即可.解答:解:∵2×=1,∴2的倒数是.故选C.点评:本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.(2012•珠海)计算﹣2a2+a2的结果为()A.﹣3a B.﹣a C.﹣3a2D.﹣a2考点:合并同类项。

专题:推理填空题。

分析:根据合并同类项法则(把同类项的系数相加作为结果的系数,字母和字母的指数不变)相加即可得出答案.解答:解:﹣2a2+a2,=﹣a2,故选D.点评:本题考查了合并同类项法则的应用,注意:系数是﹣2+1=﹣1,题目比较好,难度也不大,但是一道比较容易出错的题目.3.(2012•珠海)某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为.二月份白菜价格最稳定的市场是()A.甲B.乙C.丙D.丁考点:方差。

分析:据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,即可得出答案.解答:解:因为甲、乙、丙、丁四个市场的方差分别为,乙的方差最小,所以二月份白菜价格最稳定的市场是乙.故选B.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.(2012•珠海)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A. 30°B. 45°C. 60°D. 90°考点:弧长的计算。

2021年珠海市中考数学试题及答案

2021年珠海市中考数学试题及答案

2021年珠海市初中毕业生学业考试数学一、选择题(本小题5分,每小题3分,共15分)1.-5的相反数是( ) AA.5B.-5C.51D.51- 2.某校乒乓球训练队共有9名队员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,13,15,则他们年龄的众数为( ) BA.12B.13C.14D.153.在平面直角坐标系中,将点P(-2,3)沿x 轴方向向右平移3个单位得到点Q ,则点Q 的坐标是( ) DA.(-2,6)B.(-2,0)C.(-5,3)D.(1,3)4.现有如图1所示的四张牌,若只将其中一张牌旋转180后得到图2,则旋转的牌是( )B图1 图2A. B C D5.如图,PA 、PB 是O 的切线,切点分别是A 、B ,如果∠P =60°,那么∠AOB 等于( ) DA.60°B.90°C.120°D.150°二、填空题(本大题5分,每小题4分,共20分)6.分解因式22ay ax -=________________. a(x+y)(x-y) 7.方程组 7211=-=+y x y x 的解是__________. 56==y x 8.一天,小青在校园内发现:旁边一颗树在阳光下的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示).如果小青的峰高为1.65米,由此可推断出树高是_______米. 3.39.如图,P 是菱形ABCD 对角线BD 上一点,PE ⊥AB 于点E ,PE =4cm ,则点P 到BC 的距离是_____cm. 410.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:5104212021)101(0122=++=⨯+⨯+⨯=1121212021)1011(01232=⨯+⨯+⨯+⨯=按此方式,将二进制(1001)2换算成十进制数的结果是_______________. 9三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:92|21|)3(12-+---- 解:原式=6321219=-+- 12.如图,在梯形ABCD 中,AB ∥CD(1)用尺规作图方法,作∠DAB 的角平分线AF(只保留作图痕迹,不写作法和证明)(2)若AF 交CD 边于点E ,判断△ADE 的形状(只写结果)解:(1)所以射线AF 即为所求(2)△ADE 是等腰三角形.13.2021年亚运会即将在广州举行,广元小学开展了“你最喜欢收看的亚运五项球比赛(只选一项)”抽样调查.根据调查数据,小红计算出喜欢收看排球比赛的人数占抽样人数的6%,小明则绘制成如下不完整的条形统计图,请你根据这两位同学提供的信息,解答下面的问题:(1)将统计补充完整;(2)根据以上调查,试估计该校1800名学生中,最喜欢收看羽毛球的人数.解:(1)抽样人数20006.012=(人) (2)喜欢收看羽毛球人数20020×1800=180(人)14.已知:正比例函数y=k 1x 的图象与反比例函数xk y 2=(x>0)的图象交于点M(a,1),MN ⊥x 轴于点N(如图),若△OMN 的面积等于2,求这两个函数的解析式.解:∵MN ⊥x 轴,点M(a ,1)∴S △OMN=a 21=2 ∴a=4∴M(4,1)∵正比例函数y=k 1x 的图象与反比例函数xk y 2=(x>0)的图象交于点M(4,1) ∴ 414121k k == 解得 44121==k k ∴正比例函数的解析式是x y 41=,反比例函数的解析式是xy 4=15.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π) 解:∵弦AB 和半径OC 互相平分∴OC ⊥AB OM=MC=21OC=21OA 在Rt △OAM 中,sinA=21=OA OM ∴∠A=30°又∵OA=OB ∴∠B=∠A=30° ∴∠AOB=120°∴S 扇形=33601120ππ=⋅⋅ 四、解答题(二)(本大题4小题,每小题7分,共28分) 16.已知x 1=-1是方程052=-+mx x 的一个根,求m 的值及方程的另一根x 2。

2021-2022学年广东省珠海市第十一中学中考适应性考试数学试题含解析

2021-2022学年广东省珠海市第十一中学中考适应性考试数学试题含解析

2021-2022中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .02.若正比例函数y =mx (m 是常数,m≠0)的图象经过点A (m ,4),且y 的值随x 值的增大而减小,则m 等于( )A .2B .﹣2C .4D .﹣43.如图,空心圆柱体的左视图是( )A .B .C .D .4.已知抛物线y =ax 2+bx +c (a <0)与x 轴交于点A (﹣1,0),与y 轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n ),则下列结论:①4a +2b <0; ②﹣1≤a ≤23-; ③对于任意实数m ,a +b ≥am 2+bm 总成立;④关于x 的方程ax 2+bx +c =n ﹣1有两个不相等的实数根.其中结论正确的个数为( )A .1个B .2个C .3个D .4个 5.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )A .B .C .D .6.一、单选题如图中的小正方形边长都相等,若△MNP ≌△MEQ ,则点Q 可能是图中的( )A .点AB .点BC .点CD .点D7.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用x 张铝片制作瓶身,则可列方程( )A .1645(100)x x =-B .1645(50)x x =-C .21645(100)x x ⨯=-D .16245(100)x x =⨯-8.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A .5.6×10﹣1 B .5.6×10﹣2 C .5.6×10﹣3 D .0.56×10﹣19.制作一块3m×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )A .360元B .720元C .1080元D .2160元 10.函数y =4x 和y =1x 在第一象限内的图象如图,点P 是y =4x 的图象上一动点,PC ⊥x 轴于点C ,交y =1x的图象于点B .给出如下结论:①△ODB 与△OCA 的面积相等;②PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④CA =13AP .其中所有正确结论的序号是( )A.①②③B.②③④C.①③④D.①②④11.一元二次方程3x2-6x+4=0根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.有两个实数根 D.没有实数根12.一组数据8,3,8,6,7,8,7的众数和中位数分别是( )A.8,6 B.7,6 C.7,8 D.8,7二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是_____.14.在直径为的圆柱形油槽内装入一些油后,截面如图所示如果油面宽,那么油的最大深度是_________.15.已知m、n是一元二次方程x2+4x﹣1=0的两实数根,则11m n+=_____.16.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,则可列方程为__________.17.反比例函数y=2mx-的图象是双曲线,在每一个象限内,y随x的增大而减小,若点A(–3,y1),B(–1,y2),C(2,y3)都在该双曲线上,则y1、y2、y3的大小关系为__________.(用“<”连接)18.若实数m、n在数轴上的位置如图所示,则(m+n)(m-n)________ 0,(填“>”、“<”或“=”)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简(31a+-a+1)÷2441a aa-++,并从0,-1,2中选一个合适的数作为a的值代入求值.20.(6分)如图,已知与抛物线C1过A(-1,0)、B(3,0)、C(0,-3). (1)求抛物线C1的解析式.(2)设抛物线的对称轴与 x 轴交于点 P ,D 为第四象限内的一点,若△CPD 为等腰直角三角形,求出 D 点坐标.21.(6分)如图,AB 是⊙O 的直径,D 、D 为⊙O 上两点,CF ⊥AB 于点F ,CE ⊥AD 交AD 的延长线于点E ,且CE=CF.(1)求证:CE 是⊙O 的切线;(2)连接CD 、CB ,若AD=CD=a ,求四边形ABCD 面积.22.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.23.(8分)如图,在▱ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙O 相交于点F .若EF 的长为2,则图中阴影部分的面积为_____.24.(10分)如图,在△AOB 中,∠ABO=90°,OB=1,AB=8,反比例函数y=k x在第一象限内的图象分别交OA ,AB于点C和点D,且△BOD的面积S△BOD=1.求反比例函数解析式;求点C的坐标.25.(10分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若DE=3,sin∠BDE=13,求AC的长.26.(12分)解不等式组2102323xx x+>⎧⎪-+⎨≥⎪⎩并在数轴上表示解集.27.(12分)反比例函数kyx=的图象经过点A(2,3).(1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k =1不合题意,故舍去,当k =−1时,34450∆=-++=>,符合题意,∴k =−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.2、B【解析】利用待定系数法求出m ,再结合函数的性质即可解决问题.【详解】解:∵y =mx (m 是常数,m≠0)的图象经过点A (m ,4),∴m 2=4,∴m =±2,∵y 的值随x 值的增大而减小,∴m <0,∴m =﹣2,故选:B .本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 3、C【解析】根据从左边看得到的图形是左视图,可得答案.【详解】从左边看是三个矩形,中间矩形的左右两边是虚线,故选C .【点睛】本题考查了简单几何体的三视图,从左边看得到的图形是左视图.4、C【解析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误;②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c ,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确;③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥ax 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.【详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴-2b a=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0),∴a-b+c=3a+c=0,∴a=-3c . 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点),∴2≤c≤3,∴-1≤a≤-23,结论②正确; ③∵a <0,顶点坐标为(1,n ),∴n=a+b+c ,且n≥ax 2+bx+c ,∴对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,又∵a <0,∴抛物线开口向下,∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.故选C .【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.5、D【解析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a >0, ∵对称轴为直线02b x a=->, ∴b <0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.6、D【解析】根据全等三角形的性质和已知图形得出即可.【详解】解:∵△MNP ≌△MEQ ,∴点Q 应是图中的D 点,如图,故选:D .【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.7、C【解析】设用x 张铝片制作瓶身,则用()100x -张铝片制作瓶底,可作瓶身16x 个,瓶底()45100x -个,再根据一个瓶身和两个瓶底可配成一套,即可列出方程.【详解】设用x 张铝片制作瓶身,则用()100x -张铝片制作瓶底,依题意可列方程()21645100x x ⨯=-故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.8、B【解析】0.056用科学记数法表示为:0.056=-25.610⨯,故选B.9、C【解析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.10、C【解析】解:∵A、B是反比函数1yx=上的点,∴S△OBD=S△OAC=12,故①正确;当P的横纵坐标相等时PA=PB,故②错误;∵P是4yx=的图象上一动点,∴S矩形PDOC=4,∴S四边形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣12﹣12=3,故③正确;连接OP,212POCOACS PCS AC∆∆===4,∴AC=14PC,PA=34PC,∴PAAC=3,∴AC=13AP;故④正确;综上所述,正确的结论有①③④.故选C.点睛:本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.11、D【解析】根据∆=b2-4ac,求出∆的值,然后根据∆的值与一元二次方程根的关系判断即可.【详解】∵a=3,b=-6,c=4,∴∆=b2-4ac=(-6)2-4×3×4=-12<0,∴方程3x2-6x+4=0没有实数根.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.12、D【解析】试题分析:根据中位数和众数的定义分别进行解答即可.把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7考点:(1)众数;(2)中位数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、(3,2).【解析】根据题意得出y轴位置,进而利用正多边形的性质得出E点坐标.【详解】解:如图所示:∵A(0,a),∴点A在y轴上,∵C,D的坐标分别是(b,m),(c,m),∴B,E点关于y轴对称,∵B的坐标是:(﹣3,2),∴点E的坐标是:(3,2).故答案为:(3,2).【点睛】此题主要考查了正多边形和圆,正确得出y轴的位置是解题关键.14、2m【解析】本题是已知圆的直径,弦长求油的最大深度其实就是弧AB的中点到弦AB的距离,可以转化为求弦心距的问题,利用垂径定理来解决.【详解】解:过点O作OM⊥AB交AB与M,交弧AB于点E.连接OA.在Rt△OAM中:OA=5m,AM=AB=4m.根据勾股定理可得OM=3m,则油的最大深度ME为5-3=2m.【点睛】圆中的有关半径,弦长,弦心距之间的计算一般是通过垂径定理转化为解直角三角形的问题.15、1【解析】先由根与系数的关系求出m•n及m+n的值,再把11m n化为m+nmn的形式代入进行计算即可.【详解】∵m 、n 是一元二次方程x 2+1x ﹣1=0的两实数根,∴m +n =﹣1,m •n =﹣1, ∴11m n+=m+n mn =-4-1 =1. 故答案为1.【点睛】本题考查的是根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系为:x 1+x 2=﹣b a ,x 1•x 2=c a . 16、8374x x -=+【解析】根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程,本题得以解决【详解】解:由题意可设有x 人,列出方程:8374x x +﹣=,故答案为8374x x +﹣=.【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.17、y 2<y 1<y 1.【解析】先根据反比例函数的增减性判断出2-m 的符号,再根据反比例函数的性质判断出此函数图象所在的象限,由各点横坐标的值进行判断即可.【详解】∵反比例函数y=2-m x的图象是双曲线,在每一个象限内,y 随x 的增大而减小, ∴2−m>0,∴此函数的图象在一、三象限,∵−1<−1<0,∴0>y 1>y 2,∵2>0,∴y 1>0,∴y 2<y 1<y 1.故答案为y 2<y 1<y 1.【点睛】本题考查的知识点是反比例函数图像上点的坐标特征,解题的关键是熟练的掌握列反比例函数图像上点的坐标特征.18、>【解析】根据数轴可以确定m 、n 的大小关系,根据加法以及减法的法则确定m +n 以及m−n 的符号,可得结果.【详解】解:根据题意得:m<1<n,且|m|>|n|,∴m+n<1,m−n<1,∴(m+n)(m−n)>1.故答案为>.【点睛】本题考查了整式的加减和数轴,熟练掌握运算法则是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、1.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a aa a-++⨯+-=2(2)(2)11(2)a a aa a-+-+⨯+-=22aa+--;当a=0时,原式=1.考点:分式的化简求值.20、(1)y = x2-2x-3,(2)D1(4,-1),D2(3,- 4),D3 ( 2,- 2 )【解析】(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入即可求出解析式; (2)根据题意作出图形,根据等腰直角三角形的性质即可写出坐标. 【详解】(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入得-3=a×(-3)×1 解得a=1,∴解析式为y= x2-2x-3,(2)如图所示,对称轴为x=1,过D1作D1H⊥x轴,∵△CPD为等腰直角三角形,∴△OPC≌△HD1P,∴PH=OC=3,HD1=OP=1,∴D1(4,-1)过点D2F⊥y轴,同理△OPC≌△FCD2,∴FD2=3,CF=1,故D2(3,- 4)由图可知CD1与PD2交于D3,此时PD3⊥CD3,且PD3=CD3,PC=22,∴PD3=CD3=513=10故D3 ( 2,- 2 )∴D1(4,-1),D2(3,- 4),D3 ( 2,- 2 ) 使△CPD 为等腰直角三角形.【点睛】此题主要考察二次函数与等腰直角三角形结合的题,解题的关键是熟知二次函数的图像与性质及等腰直角三角形的性质.21、(1)证明见解析;(2)【解析】(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.【详解】(1)证明:连接OC,AC.∵CF⊥AB,CE⊥AD,且CE=CF.∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA.∴∠CAE=∠OCA.∴OC∥AE.∴∠OCE+∠AEC=180°,∵∠AEC=90°,∴∠OCE =90°即OC ⊥CE ,∵OC 是⊙O 的半径,点C 为半径外端,∴CE 是⊙O 的切线.(2)解:∵AD =CD ,∴∠DAC =∠DCA =∠CAB ,∴DC ∥AB ,∵∠CAE =∠OCA ,∴OC ∥AD ,∴四边形AOCD 是平行四边形,∴OC =AD =a ,AB =2a ,∵∠CAE =∠CAB ,∴CD =CB =a ,∴CB =OC =OB ,∴△OCB 是等边三角形,在Rt △CFB 中,CF = ,∴S 四边形ABCD = (DC +AB )•CF =【点睛】本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.22、共有7人,这个物品的价格是53元.【解析】根据题意,找出等量关系,列出一元一次方程.【详解】解:设共有x 人,这个物品的价格是y 元,83,74,x y x y -=⎧⎨+=⎩解得7,53,x y =⎧⎨=⎩ 答:共有7人,这个物品的价格是53元.【点睛】本题考查了二元一次方程的应用.23、S 阴影=2﹣2π. 【解析】 由切线的性质和平行四边形的性质得到BA ⊥AC ,∠ACB=∠B=45°,∠DAC=∠ACB=45°=∠FAE ,根据弧长公式求出弧长,得到半径,即可求出结果.【详解】如图,连接AC ,∵CD 与⊙A 相切,∴CD ⊥AC ,在平行四边形ABCD 中,∵AB=DC,AB ∥CD ∥BC ,∴BA ⊥AC ,∵AB=AC,∴∠ACB=∠B=45°,∵AD ∥BC,∴∠FAE=∠B=45°,∴∠DAC=∠ACB=45°=∠FAE ,∴EF EC =∴EF 的长度为45=1802R ππ 解得R=2, S 阴=S △ACD-S 扇形=2214522-=2-23602ππ⨯⨯【点睛】此题主要考查圆内的面积计算,解题的关键是熟知平行四边形的性质、切线的性质、弧长计算及扇形面积的计算.24、(1)反比例函数解析式为y=8x ;(2)C 点坐标为(2,1) 【解析】(1)由S △BOD =1可得BD 的长,从而可得D 的坐标,然后代入反比例函数解析式可求得k ,从而得解析式为y=8x;(2)由已知可确定A 点坐标,再由待定系数法求出直线AB 的解析式为y=2x ,然后解方程组82y x y x⎧=⎪⎨⎪=⎩即可得到C 点坐标.【详解】(1)∵∠ABO=90°,OB=1,S △BOD =1,∴OB×BD=1,解得BD=2,∴D (1,2)将D (1,2)代入y=k x, 得2=4k , ∴k=8,∴反比例函数解析式为y=8x; (2)∵∠ABO=90°,OB=1,AB=8, ∴A 点坐标为(1,8),设直线OA 的解析式为y=kx ,把A (1,8)代入得1k=8,解得k=2,∴直线AB 的解析式为y=2x ,解方程组82y x y x⎧=⎪⎨⎪=⎩得24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩, ∴C 点坐标为(2,1).25、(1)证明见解析;(2)1.【解析】(1)根据切线的性质和平行线的性质解答即可;(2)根据直角三角形的性质和三角函数解答即可.【详解】(1)连接OD ,∵OD=OE ,∴∠ODE=∠OED .∵直线BC 为⊙O 的切线,∴OD⊥BC.∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)连接AD,∵AE是⊙O的直径,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE,在Rt△ADF中,DFAF=sin∠DAF=sin∠BDE=13,∴AF=3DF=9,在Rt△CDF中,CFDF=sin∠CDF=sin∠BDE=13,∴CF=13DF=1,∴AC=AF﹣CF=1.【点睛】本题考查了切线的性质,解直角三角形的应用,等腰三角形的判定等,综合性较强,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.26、﹣12<x≤0,不等式组的解集表示在数轴上见解析.【解析】先求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式2x+1>0,得:x >﹣12, 解不等式2323x x -+≥,得:x≤0, 则不等式组的解集为﹣12<x≤0, 将不等式组的解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”.27、(1)y=6x (2)点B(1,6)在这个反比例函数的图象上 【解析】(1)设反比例函数的解析式是y=k x,只需把已知点的坐标代入,即可求得函数解析式; (2)根据反比例函数图象上点的坐标特征进行判断.【详解】()1设反比例函数的解析式是k y x=, 则32k -=, 得6k =-. 则这个函数的表达式是6y x =-; ()2因为1666⨯=≠-,所以B 点不在函数图象上.【点睛】本题考查了待定系数法求反比例函数解析式:设出含有待定系数的反比例函数解析式y=k x(k 为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数图象上点的坐标特征.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省珠海市2021年中考数学试卷一、选择题(本大题5小题,每小题3分,共15分)在毎小题列出的四个选项中,只有一个是正确的,请把答题卡上对应題目所选的选项涂黑.1.(3分)(2021•珠海)﹣的相反数是()A.2B.C.﹣2 D.﹣考点: 相反数.专题: 计算题.分析:根据相反数的定义,只有符号不同的两个数是互为相反数,﹣的相反数为.解答:解:与﹣符号相反的数是,所以﹣的相反数是;故选B.点评:本题主要相反数的意义,只有符号不同的两个数互为相反数,a的相反数是﹣a.2.(3分)(2021•珠海)边长为3cm的菱形的周长是()A.6cm B.9cm C.12cm D.15cm考点: 菱形的性质.分析:利用菱形的各边长相等,进而求出周长即可.解答:解:∵菱形的各边长相等,∴边长为3cm的菱形的周长是:3×4=12(cm).故选:C.点评:此题主要考查了菱形的性质,利用菱形各边长相等得出是解题关键.3.(3分)(2021•珠海)下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a考点: 合并同类项;幂的乘方与积的乘方.分析:根据合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.解答:解:A、不是同类二次根式,不能加减,故本选项错误;B、(3a3)2=9a6≠6a6,故本选项错误;C、不是同类二次根式,不能加减,故本选项错误;D、﹣3a+2a=﹣a正确故选:D.点评:本题主要考查了合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;熟记计算法则是关键.4.(3分)(2021•珠海)已知圆柱体的底面半径为3cm,髙为4cm,则圆柱体的侧面积为()A.24πcm2B.36πcm2C.12cm2D.24cm2考点: 圆柱的计算.分析:圆柱的侧面积=底面周长×高,把相应数值代入即可求解.解答:解:圆柱的侧面积=2π×3×4=24π.故选A.点评:本题考查了圆柱的计算,解题的关键是弄清圆柱的侧面积的计算方法.5.(3分)(2021•珠海)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD 等于()A.160°B.150°C.140°D.120°考点: 圆周角定理;垂径定理.分析:利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.解答:解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.点评:此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.二、填空题(本大题5小题,毎小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(4分)(2021•珠海)比较大小:﹣2>﹣3.考点: 有理数大小比较分析:本题是基础题,考查了实数大小的比较.两负数比大小,绝对值大的反而小;或者直接想象在数轴上比较,右边的数总比左边的数大.解答:解:在两个负数中,绝对值大的反而小,可求出﹣2>﹣3.点评:(1)在以向右方向为正方向的数轴上两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.7.(4分)(2021•珠海)填空:x2﹣4x+3=(x﹣2)2﹣1.考点: 配方法的应用.专题: 计算题.分析:原式利用完全平方公式化简即可得到结果.解答:解:x2﹣4x+3=(x﹣2)2﹣1.故答案为:2点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.8.(4分)(2021•珠海)桶里原有质地均匀、形状大小完全一样的6个红球和4个白球,小红不慎遗失了其中2个红球,现在从桶里随机摸出一个球,则摸到白球的概率为.考点: 概率公式.分析:由桶里原有质地均匀、形状大小完全一样的6个红球和4个白球,小红不慎遗失了其中2个红球,直接利用概率公式求解即可求得答案.解答:解:∵桶里原有质地均匀、形状大小完全一样的6个红球和4个白球,小红不慎遗失了其中2个红球,∴现在从桶里随机摸出一个球,则摸到白球的概率为:=.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.9.(4分)(2021•珠海)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,則它的对称轴为直线x=2.考点: 二次函数的性质分析:点(1,0),(3,0)的纵坐标相同,这两点一定关于对称轴对称,那么利用两点的横坐标可求对称轴.解答:解:∵点(1,0),(3,0)的纵坐标相同,∴这两点一定关于对称轴对称,∴对称轴是:x==2.故答案为:直线x=2.点评:本题主要考查了抛物线的对称性,图象上两点的纵坐标相同,则这两点一定关于对称轴对称.10.(4分)(2021•珠海)如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA4的长度为8.考点: 等腰直角三角形专题: 规律型.分析:利用等腰直角三角形的性质以及勾股定理分别求出各边长,进而得出答案.解答:解:∵△OAA1为等腰直角三角形,OA=1,∴AA1=OA=1,OA1=OA=;∵△OA1A2为等腰直角三角形,∴A1A2=OA1=,OA2=OA1=2;∵△OA2A3为等腰直角三角形,∴A2A3=OA2=2,OA3=OA2=2;∵△OA3A4为等腰直角三角形,∴A3A4=OA3=2,OA4=OA3=8.故答案为:8.点评:此题主要考查了等腰直角三角形的性质以及勾股定理,熟练应用勾股定理得出是解题关键.三、解答题(一)(本大题5小题,毎小题6分,共30分>11.(6分)(2021•珠海)计算:()﹣1﹣(﹣2)0﹣|﹣3|+.考点: 实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负指数幂、绝对值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣1﹣3+2=2﹣1﹣3+2=0.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、负指数幂、绝对值、二次根式化简等考点的运算.12.(6分)(2021•珠海)解不等式组:.考点: 解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>﹣2,由②得,x≤﹣1,故此不等式组的解集为:﹣2<x≤﹣1.点评:本题解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.13.(6分)(2021•珠海)化简:(a2+3a)÷.考点: 分式的混合运算.专题: 计算题.分析:原式第二项约分后,去括号合并即可得到结果.解答:解:原式=a(a+3)÷=a(a+3)×=a.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.14.(6分)(2021•珠海)某市体育中考共设跳绳、立定跳远、仰卧起坐三个项目,要求毎位学生必须且只需选考其中一项,该市东风中学初三(2)班学生选考三个项目的人数分布的条形统计图和扇形统计图如图所示.(1)求该班的学生人数;(2)若该校初三年级有1000人,估计该年级选考立定供远的人数.考点: 条形统计图;扇形统计图专题: 计算题.分析:(1)根据跳绳的人数除以占的百分比,得出学生总数即可;(2)求出立定跳远的人数占总人数的百分比,乘以1000即可得到结果.解答:解:(1)根据题意得:30÷60%=50(人),则该校学生人数为50人;(2)根据题意得:1000×=100(人),则估计该年级选考立定供远的人数为100人.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.15.(6分)(2021•珠海)如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹)(2)连结AP,当∠B为30度时,AP平分∠CAB.考点: 作图—基本作图;线段垂直平分线的性质分析:(1)运用基本作图方法,中垂线的作法作图,(2)求出∠PAB=∠PAC=∠B,运用直角三角形解出∠B.解答:解:(1)如图,(2)如图,∵PA=PB,∴∠PAB=∠B,如果AP是角平分线,则∠PAB=∠PAC,∴∠PAB=∠PAC=∠B,∵∠ACB=90°,∴∠PAB=∠PAC=∠B=30°,∴∠B=30°时,AP平分∠CAB.故答案为:30.点评:本题主要考查了基本作图,角平分线的知识,解题的关键是熟记作图的方法及等边对等角的知识.四、解答题(二)(本大题4小题,毎小题7分,共28分>16.(7分)(2021•珠海)为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?考点: 一次函数的应用分析:(1)根据两种购物方案让利方式分别列式整理即可;(2)分别把x=5880,代入(1)中的函数求得数值,比较得出答案即可.解答:解:(1)方案一:y=0.95x;方案二:y=0.9x+300;(2)当x=5880时,方案一:y=0.95x=5586,方案二:y=0.9x+300=5592,5586<5592所以选择方案一更省钱.点评:此题考查一次函数的运用,根据数量关系列出函数解析式,进一步利用函数解析式解决问题.17.(7分)(2021•珠海)如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(结果用根号表示);(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时).(参考数据:≈1.41,≈1.73,≈2.45)考点: 解直角三角形的应用-方向角问题.分析:(1)过点M作MD⊥AB于点D,根据∠AME的度数求出∠AMD=∠MAD=45°,再根据AM的值求出和特殊角的三角函数值即可求出答案;(2)在Rt△DMB中,根据∠BMF=60°,得出∠DMB=30°,再根据MD的值求出MB的值,最后根据路程÷速度=时间,即可得出答案.解答:解:(1)过点M作MD⊥AB于点D,∵∠AME=45°,∴∠AMD=∠MAD=45°,∵AM=180海里,∴MD=AM•cos45°=90(海里),答:渔船从A到B的航行过程中与小岛M之间的最小距离是90海里;(2)在Rt△DMB中,∵∠BMF=60°,∴∠DMB=30°,∵MD=90海里,∴MB==60,∴60÷20=3=3×2.45=7.35≈7.4(小时),答:渔船从B到达小岛M的航行时间约为7.4小时.点评:本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.18.(7分)(2021•珠海)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF 与BC交于点H.(1)求BE的长;(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.考点: 切线的性质;扇形面积的计算;平移的性质专题: 计算题.分析:(1)连结OG,先根据勾股定理计算出BC=5,再根据平移的性质得AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°,由于EF与半圆O相切于点G,根据切线的性质得OG⊥EF,然后证明Rt△EOG∽Rt△EFD,利用相似比可计算出OE=,所以BE=OE ﹣OB=;(2)求出BD的长度,然后利用相似比例式求出DH的长度,从而求出△BDH,即阴影部分的面积.解答:解:(1)连结OG,如图,∵∠BAC=90°,AB=4,AC=3,∴BC==5,∵Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,∴AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°,∵EF与半圆O相切于点G,∴OG⊥EF,∵AB=4,线段AB为半圆O的直径,∴OB=OG=2,∵∠GEO=∠DEF,∴Rt△EOG∽Rt△EFD,∴=,即=,解得OE=,∴BE=OE﹣OB=﹣2=;(2)BD=DE﹣BE=4﹣=.∵DF∥AC,∴,即,解得:DH=2.∴S阴影=S△BDH=BD•DH=××2=,即Rt△ABC与△DEF重叠(阴影)部分的面积为.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了平移的性质、勾股定理和相似三角形的判定与性质.19.(7分)(2021•珠海)如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,直线BD与反比例函数y=的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.考点: 反比例函数与一次函数的交点问题.分析:(1)根据正方形的边长,正方形关于y轴对称,可得点A、B、D的坐标,根据待定系数法,可得函数解析式;(2)根据两个函数解析式,可的方程组,根据解方程组,可得答案.解答:解:(1)边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,∴A(1,0),D(﹣1,0),B(1,﹣2).∵反比例函数y=的图象过点B,∴,m=﹣2,∴反比例函数解析式为y=﹣,设一次函数解析式为y=kx+b,∵y=kx+b的图象过B、D点,∴,解得.直线BD的解析式y=﹣x﹣1;(2)∵直线BD与反比例函数y=的图象交于点E,∴,解得∵B(1,﹣2),∴E(﹣2,1).点评:本题考查了反比例函数与一次函数的交点问题,利用待定系数法求解析式,利用方程组求交点坐标.五、解答题(三)(本大题3小题,毎小题9分,共27分)20.(9分)(2021•珠海)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2又∵x>1,∵y+2>1.∴y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是1<x+y<5.(2)已知y>1,x<﹣1,若x﹣y=a成立,求x+y的取值范围(结果用含a的式子表示).考点: 一元一次不等式组的应用.专题: 阅读型.分析:(1)根据阅读材料所给的解题过程,直接套用解答即可;(2)理解解题过程,按照解题思路求解.解答:解:(1)∵x﹣y=3,∴x=y+3,又∵x>2,∴y+3>2,∴y>﹣1.又∵y<1,∴﹣1<y<1,…①同理得:2<x<4,…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5;(2)∵x﹣y=a,∴x=y+a,又∵x<﹣1,∴y+a<﹣1,∴y<﹣a﹣1,又∵y>1,∴1<y<﹣a﹣1,…①同理得:a+1<x<﹣1,…②由①+②得1+a+1<y+x<﹣a﹣1+(﹣1),∴x+y的取值范围是a+2<x+y<﹣a﹣2.点评:本题考查了一元一次不等式组的应用,解答本题的关键是仔细阅读材料,理解解题过程,难度一般.21.(9分)(2021•珠海)如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连结EF与边CD相交于点G,连结BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;(3)求证:=.考点: 四边形综合题分析:(1)根据有一组对边平行且相等的四边形是平行四边形即可判定.(2)先确定三角形GCF是等腰直角三角形,得出CG=AE,然后通过△BAE≌△BCG,得出BE=BG=EG,即可求得.(3)因为三角形BEG是等边三角形,∠ABC=90°,∠ABE=∠CBG,从而求得∠ABE=15°,然后通过求得△AHB∽△FGB,即可求得.解答:解:(1)∵四边形ABCD是正方形,∴AD∥BF,∵AE=CF,∴四边形ACFE是平行四边形,∴EF∥AC,(2)连接BG,∵EF∥AC,∴∠F=∠ACB=45°,∵∠GCF=90°,∴∠CGF=∠F=45°,∴CG=CF,∵AE=CF,∴AE=CG,在△BAE与△BCG中,,∴△BAE≌△BCG(SAS)∴BE=BG,∵BE=EG,∴△BEG是等边三角形,∴∠BEF=60°,(3)∵△BAE≌△BCG,∴∠ABE=∠CBG,∵∠BAC=∠F=45°,∴△AHB∽△FGB,∴======,∵∠EBG=60°∠ABE=∠CBG,∠ABC=90°,∴∠ABE=15°,∴=.点评:本题考查了平行四边形的判定及性质,求得三角形的判定及性质,正方形的性质,相似三角形的判定及性质,连接BG是本题的关键.22.(9分)(2021•珠海)如图,矩形OABC的顶点A(2,0)、C(0,2).将矩形OABC绕点O逆时针旋转30°.得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH.(1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为:y=x2﹣x;(2)如果四边形OHMN为平行四边形,求点D的坐标;(3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R、E两点之间(不含点R、E)运动,设△PQH的面积为s,当时,确定点Q的横坐标的取值范围.考点: 二次函数综合题分析:(1)求解析式一般采用待定系数法,通过函数上的点满足方程求出.(2)平行四边形对边平行且相等,恰得MN为OF,即为中位线,进而横坐标易得,D为x轴上的点,所以纵坐标为0.(3)已知S范围求横坐标的范围,那么表示S是关键.由PH不为平行于x轴或y轴的线段,所以考虑利用过动点的平行于y轴的直线切三角形为2个三角形的常规方法来解题,此法底为两点纵坐标得差,高为横坐标的差,进而可表示出S,但要注意,当Q在O点右边时,所求三角形为两三角形的差.得关系式再代入,求解不等式即可.另要注意求解出结果后要考虑Q本身在R、E之间的限制.解答:解:(1)如图1,过G作GI⊥CO于I,过E作EJ⊥CO于J,∵A(2,0)、C(0,2),∴OE=OA=2,OG=OC=2,∵∠GOI=30°,∠JOE=90°﹣∠GOI=90°﹣30°=60°,∴GI=sin30°•GO==,IO=cos30°•GO==3,JO=cos30°•OE==,JE=sin30°•OE==1,∴G(﹣,3),E(,1),设抛物线解析式为y=ax2+bx+c,∵经过G、O、E三点,∴,解得,∴y=x2﹣x.(2)∵四边形OHMN为平行四边形,∴MN∥OH,MN=OH,∵OH=OF,∴MN为△OGF的中位线,∴x D=x N=•x G=﹣,∴D(﹣,0).(3)设直线GE的解析式为y=kx+b,∵G(﹣,3),E(,1),∴,解得,∴y=﹣x+2.∵Q在抛物线y=x2﹣x上,∴设Q的坐标为(x,x2﹣x),∵Q在R、E两点之间运动,∴﹣<x<.①当﹣<x<0时,如图2,连接PQ,HQ,过点Q作QK∥y轴,交GE于K,则K(x,﹣x+2),∵S△PKQ=•(y K﹣y Q)•(x Q﹣x P),S△HKQ=•(y K﹣y Q)•(x H﹣x Q),∴S△PQH=S△PKQ+S△HKQ=•(y K﹣y Q)•(x Q﹣x P)+•(y K﹣y Q)•(x H﹣x Q)=•(y K﹣y Q)•(x H﹣x P)=•[﹣x+2﹣(x2﹣x)]•[0﹣(﹣)]=﹣x2+.②当0≤x<时,如图2,连接PQ,HQ,过点Q作QK∥y轴,交GE于K,则K(x,﹣x+2),同理S△PQH=S△PKQ﹣S△HKQ=•(y K﹣y Q)•(x Q﹣x P)﹣•(y K﹣y Q)•(x Q﹣x H)=•(y K﹣y Q)•(x H﹣x P)=﹣x2+.综上所述,S△PQH=﹣x2+.∵,∴<﹣x2+≤,解得﹣<x<,∵﹣<x<,∴﹣<x<.点评:本题考查了一次函数、二次函数性质与图象,直角三角形及坐标系中三角形面积的表示等知识点.注意其中“利用过动点的平行于y轴的直线切三角形为2个三角形的常规方法来表示面积”是近几年中考的考查热点,需要加强理解运用.。

相关文档
最新文档