《量子力学》课程教学大纲
量子力学教学大纲
《量子力学》教学大纲一、课程信息课程名称(中文):量子力学课程名称(英文):Quantum mechanics课程类别:专业基础课课程性质:必修计划学时:48(其中课内学时:48,课外学时:0)计划学分:3先修课程:大学物理、高等数学等选用教材:“Introduction to Quantum Mechanics”, 2nd edition, D. J. Griffiths开课院部:理学院适用专业:光电信息科学与工程课程负责人:陈相柏课程网站:无二、课程简介(中英文)量子力学是描述微观物质的理论,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论。
量子力学与相对论一起构成现代物理学的理论基础。
本课程的目的是使学生学习并深入了解量子力学的基本概念和原理,同时培养学生分析问题和解决问题的能力。
Quantum mechanics explains the behavior of matter and its interactions with energy on the scale of atoms and subatomic particles. Quantum mechanics together with relativity theory are the foundations of modern physics. The objective of this course is to provide students with the basic principles of quantum mechanics, and how to use quantum physics to solve problems.三、课程教学要求序号专业毕业要求课程教学要求关联程度1 理论知识深入了解波函数、统计诠释、波动方程、测不准关系等量子力学原理。
H2 问题分析能通过量子力学分析解决实际物理问题。
《量子力学》课程教学大纲
《量子力学》课程教学大纲课程编号: 11122616课程名称:量子力学英文名称: Quantum Mechanics课程类型: 专业核心课总学时: 72 讲课学时: 72 实验学时:0学分: 5适用对象: 物理专业本科学生先修课程:高等数学、线性代数、原子物理学、数学物理方法、理论力学、电动力学等课程执笔人:李淑红审定人:孙长勇一、课程性质、目的和任务量子力学是物理专业的一门重要的专业基础理论课。
该课程是研究微观粒子运动规律的基础理论。
该课程的主要目的和任务:1、使学生了解微观粒子的运动规律,初步掌握量子力学的基本原理和处理具体问题的一些重要基本方法,为进一步学习和今后从事教学和科学研究打下必要的基础;2、使学生适当地了解量子力学在现代物理学中的应用和新进展,深化和扩大学生在普通物理学(特别是原子物理学)中所学过的有关内容,以适应现代物理学发展的状况和今后教学及科研工作的需要。
二、课程教学和教改基本要求量子力学是20世纪二十年代人们在总结了大量实验事实和旧量子论的基础上,通过一代物理学家的共同努力而建立起来的;它的基本概念除了与经典力学不同之外,还视量子力学的各种表述形式的不同而各异。
根据本课程的特点和计划学时,编制了适合学生水平的PPT教学课件,采用多媒体教学,增加课时容量;同时,注意到学生的接受情况,把传统教学和多媒体教学的优点结合起来,利用启发式教学方法;教学过程中介绍一些相关的前沿科研内容和动向,扩大学生的知识面,从而激发学生的学习兴趣。
通过课堂教学、自学、作业等环节使学生掌握所学内容,提高分析、归纳、推理的能力,为以后从事现代物理学研究打下坚实的理论基础。
三、课程各章重点与难点、教学要求与教学内容按照教育部颁布的量子力学教学大纲,本课程总学时为72学时,本大纲安排课堂讲授66学时,习题课6学时。
下面大纲中加带“*”号的为选讲内容,在教学过程中可视具体情况和总学时的多少,略讲或不讲,而以学生自学为主。
《量子力学》课程教学大纲
《量子力学》课程教学大纲第一篇:《量子力学》课程教学大纲《量子力学》课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称:量子力学所属专业:物理学专业课程性质:专业基础课学分:4(二)课程简介、目标与任务;课程简介:量子理论是20世纪物理学取得的两个(相对论和量子理论)最伟大的进展之一,以研究微观物质运动规律为基本出发点建立的量子理论开辟了人类认识客观世界运动规律的新途径,开创了物理学的新时代。
本课程着重介绍《量子力学》(非相对论)的基本概念、基本原理和基本方法。
课程分为两大部分:第一部分主要是讲述量子力学的基本原理(公设)及表述形式。
在此基础上,逐步深入地让学生认识表述原理的数学结构,如薛定谔波动力学、海森堡矩阵力学以及抽象表述的希尔伯特空间的代数结构。
本部分的主要内容包括:量子状态的描述、力学量的算符、量子力学中的测量、运动方程和守恒律、量子力学的表述形式、多粒子体系的全同性原理。
第二部分主要是讲述量子力学的基本方法及其应用。
在分析清楚各类基本应用问题的物理内容基础上,掌握量子力学对一些基本问题的处理方法。
本篇主要内容包括:一维定态问题、氢原子问题、微扰方法对外场中的定态问题和量子跃迁的处理以及弹性散射问题。
课程目标与任务:1.掌握微观粒子运动规律、量子力学的基本假设、基本原理和基本方法。
2.掌握量子力学的基本近似方法及其对相关物理问题的处理。
3.了解量子力学所揭示的互补性认识论及其对人类认识论的贡献。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;本课程需要学生先修《电磁学》、《光学》、《原子物理》、《数学物理方法》和《线性代数》等课程。
《电磁学》和《光学》中的麦克斯韦理论最终统一了光学和电磁学;揭示了任意温度物体都向外辐射电磁波的机制,它是19世纪末人们研究黑体辐射的基本出发点,对理解本课程中的黑体辐射实验及紫外灾难由于一定的帮助。
《原子物理》中所学习的关于原子结构的经典与半经典理论及其解释相关实验的困难是导致量子力学发展的主要动机之一。
量子力学教学大纲
量子力学教学大纲云南师范大学物理与电子信息学院物理/应用物理专业《量子力学》课程教学大纲【课程名称】量子力学(Quantum Mechanics)【课程编码】09B005050【课程类别】专业基础课/必修课【课时】72【学分】 4.0【课程性质、目标和要求】(课程性质)本课程为物理类本科生的专业基础课和必修课。
(教学目标)1、使学生了解微观世界矛盾的特殊性和微观粒子的运动规律,初步掌握量子力学的原理和基本方法;2、本课程的内容与前沿课题有广泛的联系,可以培养学生的研究兴趣和能力,为今后深入学习打下基础;3、使学生了解量子力学在近代物理中的广泛应用,深入和扩大在普通物理中学到的有关内容,以适应今后中学物理教学的需要;4、通过学习培养学生辩论唯物注意世界观及独立分析问题解决问题的能力。
(教学要求)1、教师在教学中可选择教材,但教材及教学内容必须覆盖本大纲要求及安排;2、教学中应抓住本课程基本概念,规律,基本方法,突出重点及难点,讲清逻辑关系并形成系统的知识体系;3、应积极探索启发式,讨论式等多种授课模式;4、根据需要使用现代教学手段,但应考虑实际效果。
【教学时间安排】本课程计 4.0学分,72学时, 学时分配如下:章次课程内容课时备注(教学形式)1 绪论 4 课堂教学2 波函数和Schr?dinger方程12 课堂教学3 一维势场中的粒子14 课堂教学4 力学量用算符表达12 课堂教学5 力学量随时间的演化与对称性10 课堂教学6 中心力场8 课堂教学7 自旋 4 课堂教学8 微扰论 4 课堂教学9 学期复习 4 课堂教学合计72【教学内容要点】第一章绪论一、学习目的要求1、使学生了解量子物理发展简史,量子力学的研究对象及特点;2、掌握微观粒子的波粒二象性的实验事实及解释二、主要教学内容1、黑体辐射与普郎克的量子假说2、光电效应与爱因斯坦的光量子假说3、原子光谱与玻尔的量子论4、德布罗意物质波假说三、课堂讨论选题1、从黑体辐射的发现中,体会科学发现的过程及特点(唯象理论的特点)2、从光电效应的发现中,体会科学发现的过程及特点(唯象理论的特点)3、从玻尔量子论的发现中,体会科学发现的过程及特点(唯象理论的特点)四、课外作业选题1、曾谨言《量子力学(卷I)》(第二版)第一章习题1、2、3、4第二章波函数和Schr?dinger方程一、学习目的要求通过本章的学习使学生掌握波函数的物理意义,薛定愕方程的建立过程及简单的运用。
量子力学教学大纲
量子力学教学大纲量子力学教学大纲引言量子力学是现代物理学中的一门重要学科,它研究微观世界的粒子行为和能量转移规律。
量子力学的发展为我们理解原子、分子、固体和光学等领域提供了重要的理论基础。
为了更好地教授量子力学,制定一份合理的教学大纲是必要的。
本文将探讨量子力学教学大纲的内容和结构。
一、量子力学基础1.1 量子力学的起源和发展- 描述量子力学的历史背景和重要里程碑- 介绍量子力学的基本概念和原理1.2 波粒二象性- 解释波粒二象性的概念和实验观测- 探讨波函数和粒子性质的关系1.3 不确定性原理- 阐述不确定性原理的基本思想和数学表达- 解释不确定性原理对测量和观测的影响二、量子力学的数学基础2.1 波函数和薛定谔方程- 介绍波函数的定义和性质- 推导薛定谔方程及其解的物理意义2.2 算符和测量- 解释算符的概念和作用- 讨论测量在量子力学中的意义和方法2.3 变换和对称性- 探讨变换和对称性在量子力学中的重要性- 介绍旋转、平移和时间平移等变换的量子力学描述三、量子力学的应用领域3.1 原子物理学- 讨论量子力学在描述原子结构和光谱学中的应用 - 介绍原子核和电子的量子力学模型3.2 分子物理学- 探讨量子力学在分子结构和化学反应中的应用- 介绍分子振动、转动和电子结构等的量子力学描述3.3 固体物理学- 解释量子力学在固体材料中的应用和理解- 介绍晶格、能带和电子输运等的量子力学模型四、实验方法和技术4.1 量子力学实验基础- 介绍量子力学实验的基本原理和装置- 探讨实验技术在验证量子力学理论中的作用4.2 量子计算和量子通信- 介绍量子计算和量子通信的基本原理- 探讨量子技术在信息科学中的前沿应用结论量子力学教学大纲的制定需要综合考虑学生的背景知识和学习能力,以及量子力学的核心概念和应用领域。
通过合理的教学大纲,可以帮助学生系统地学习和理解量子力学的基本原理和数学工具,培养学生的物理思维和实验技能。
《量子力学》教学大纲
《量子力学》课程教学大纲一、课程基本信息英文名称 Quantum Mechanics 课程代码 PHYS3004课程性质 专业必修课程 授课对象 物理学学 分 4学分 学 时 72学时主讲教师 修订日期 2021.9指定教材 曾谨言,《量子力学教程》,科学出版社,2000年二、课程目标(一)总体目标:本课程的知识目标:了解量子力学的实验基础和发展史、应用和前沿,及其对现代科学技术的支撑作用;系统掌握量子力学的基本概念、基本原理及处理量子系统实际问题的计算方法。
能力目标:掌握微观体系的物理研究方法和前沿进展,提高解决交叉学科领域量子问题的能力,锤炼科学思维能力和科研创新能力。
素质目标:掌握辩证唯物主义基本原理,建立科学的世界观和方法论;富有科学精神,勇于在物理学前沿及交叉领域探索、创新与攀登。
(二)课程目标:课程目标1:了解量子力学的发展简史,量子力学理论发展中的著名物理实验及其地位和作用;了解量子力学的诠释及适用范围;了解量子力学实验和理论研究的前沿进展和应用前景;使学生认识到量子力学理论在现代科学研究领域的重要性,掌握辩证唯物主义基本原理,建立科学的世界观和方法论。
课程目标2:掌握量子力学基本原理和基本计算方法,学会运用量子力学理论对一维定态若干问题,以及中心力场氢原子等问题的分析和处理;训练学生运用理论公式求解并分析量子系统的能力,培养和提高学生的抽象思维能力和解决交叉学科领域量子问题的能力。
课程目标3:掌握定态微扰论的近似计算方法,掌握利用含时微扰理论处理近代物理实验量子跃迁等的方法,掌握自旋及全同粒子体系的处理方法;培养和提高学生对非精确求解、自旋纠缠态等复杂系统的求解能力,掌握对近似解的误差分析和数据处理等基本技能,锤炼科学思维能力和科研创新能力。
(三)课程目标与毕业要求、课程内容的对应关系表1:课程目标与课程内容、毕业要求的对应关系表课程目标对应课程内容对应毕业要求课程目标1 第一章 波函数和薛定谔方程第四章 中心力场第六章 自旋与全同粒子第七章 微扰论与量子跃迁毕业要求3:了解物理学前沿和发展动态,新技术中的物理思想,熟悉物理学新发现、新理论、新技术对社会的影响。
《量子力学》课程教学大纲
《量子力学》课程教学大纲课程名称:量子力学课程类别:专业必修课适用专业:物理学考核方式:考试总学时、学分:56学时 3.5 学分其中实验学时:0 学时一、课程性质、教学目标《量子力学》是物理专业开设的一门重要专业核心课。
它反映微观粒子(电子、原子、原子核、基本粒子等)运动规律的理论。
本课程的目的是使学生掌握量子力学的基本原理和处理具体问题的一些重要方法,并初步具有用这些方法解决较简单问题的能力。
培养学生的抽象思维能力和分析问题、解决问题的能力。
并根据本课程应用范围广的特点,能初步应用所学的知识解决有关的问题。
激发每个学生的特长和潜能,鼓励并引导他们的好奇心、求知欲、想象力、创新欲望和探索精神。
课程教学目标1:熟练掌握基本知识。
熟练掌握量子力学基本原理,微观粒子运动图像,力学量的算符理论,表象理论,自旋及其描述,初步会用量子力学的知识解决简单实际问题。
课程教学目标2:深刻理解量子力学基本原理。
深刻理解描述微观世界物理思想,将力学量算符、波函数的的物理意义与测量、表象等知识联系起来,体会其中的关联。
学会求解简单的定态薛定谔方程,分析实际问题。
课程教学目标3:了解初等量子力学的内涵与外延。
了解量子力学的绘景、算符与矩阵的关系,幺正变换,知道Dirac算符及其运算法则,占有数表象及升降算。
塞曼效应、光谱精细结构的量子力学解释,学会利用所学知识分析、解释实际物理问题。
课程教学目标4:提高运用所学理论分析、解决解决实际问题的能力。
能够利用近似方法分析实际问题,掌握微扰理论的基本思想以及对求解实际问题的方法。
能够利用表象理论建立算符本征方程的矩阵形式,并会求解本征值问题。
学会运用所学知识分析氢原子问题、斯特恩盖拉赫实验等实际问题。
课程教学目标与毕业要求对应的矩阵关系注:以关联度标识,课程与某个毕业要求的关联度可根据该课程对相应毕业要求的支撑强度来定性估计,H:表示关联度高;M表示关联度中;L表示关联度低。
二、课程教学要求本课程以讲授量子力学的基本原理,基本概念、理论、和数学方法为主。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《量子力学》课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称:量子力学所属专业:物理学专业课程性质:专业基础课学分:4(二)课程简介、目标与任务;课程简介:量子理论是20世纪物理学取得的两个(相对论和量子理论)最伟大的进展之一,以研究微观物质运动规律为基本出发点建立的量子理论开辟了人类认识客观世界运动规律的新途径,开创了物理学的新时代。
本课程着重介绍《量子力学》(非相对论)的基本概念、基本原理和基本方法。
课程分为两大部分:第一部分主要是讲述量子力学的基本原理(公设)及表述形式。
在此基础上,逐步深入地让学生认识表述原理的数学结构,如薛定谔波动力学、海森堡矩阵力学以及抽象表述的希尔伯特空间的代数结构。
本部分的主要内容包括:量子状态的描述、力学量的算符、量子力学中的测量、运动方程和守恒律、量子力学的表述形式、多粒子体系的全同性原理。
第二部分主要是讲述量子力学的基本方法及其应用。
在分析清楚各类基本应用问题的物理内容基础上,掌握量子力学对一些基本问题的处理方法。
本篇主要内容包括:一维定态问题、氢原子问题、微扰方法对外场中的定态问题和量子跃迁的处理以及弹性散射问题。
课程目标与任务:1. 掌握微观粒子运动规律、量子力学的基本假设、基本原理和基本方法。
2.掌握量子力学的基本近似方法及其对相关物理问题的处理。
3.了解量子力学所揭示的互补性认识论及其对人类认识论的贡献。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;本课程需要学生先修《电磁学》、《光学》、《原子物理》、《数学物理方法》和《线性代数》等课程。
《电磁学》和《光学》中的麦克斯韦理论最终统一了光学和电磁学;揭示了任意温度物体都向外辐射电磁波的机制,它是19世纪末人们研究黑体辐射的基本出发点,对理解本课程中的黑体辐射实验及紫外灾难由于一定的帮助。
《原子物理》中所学习的关于原子结构的经典与半经典理论及其解释相关实验的困难是导致量子力学发展的主要动机之一。
《数学物理方法》中所学习的复变函数论和微分方程的解法都在量子力学中有广泛的应用。
《线性代数》中的线性空间结构的概念是量子力学希尔伯特空间的理论基础,对理解本课程中的矩阵力学和表象变换都很有助益。
(四)教材与主要参考书。
[1] 钱伯初, 《理论力学教程》, 高等教育出版社; (教材)[2] 苏汝铿, 《量子力学》, 高等教育出版社;[3] L. D. Landau and E. M. Lifshitz, Non-relativistic QuantumMechanics;[4] P. A. M. Dirac, The Principles of Quantum Mechanics, OxfordUniversity Press 1958;二、课程内容与安排第一章微观粒子状态的描述第一节光的波粒二象性第二节原子结构的玻尔理论第三节微观粒子的波粒二象性第四节量子力学的第一公设:波函数(一)教学方法与学时分配:课堂讲授;6学时(二)内容及基本要求主要内容:主要介绍量子力学的实验基础、研究对象和微观粒子的基本特性及其状态描述。
【重点掌握】:1.量子力学的实验基础:黑体辐射;光电效应;康普顿散射实验;电子晶体衍射实验;2.微观粒子的波粒二象性;3.微观粒子状态的波函数描述。
【了解】:1.单电子单缝衍射实验和双缝干涉实验;2.玻尔互补原理。
【难点】:1.对微观粒子的波粒二象性的理解;2.对微观粒子状态的波函数描述及其几率解释的理解。
第二章量子力学中的力学量第一节量子力学的第二公设:算符第二节量子力学的第三公设:测量算符的本征值和本征函数第三节力学量完全集算符的对易关系第四节海森堡不确定关系(一)教学方法与学时分配:课堂讲授;8学时(二)内容及基本要求主要内容:主要介绍微观粒子力学量的算符描述方法及其性质;介绍量子系统的测量结果及其不确定性。
【重点掌握】:1. 算符表示力学量的线性性和厄米性;2. 算符本征值和本征态及其性质;3.量子系统的测量结果;4.海森堡不确定关系。
【掌握】:1.如何求任意算符的本征解;2.如何利用不确定关系估算量子系统基态能。
【难点】:1.厄密算符本征函数的正交性和完备性;2.量子系统测量结果及其所伴随的波包塌缩;3.量子力学中的不确定关系及其物理意义和物理后果。
第三章量子力学的动力学和守恒量第一节量子力学的第四公设:薛定谔方程第二节力学量平均值随时间的演化守恒量第三节一维定态问题:无限深势阱;有限深势阱;δ势阱;一维谐振子;势垒贯穿和扫描隧道显微镜(一)教学方法与学时分配:课堂讲授;10学时(二)内容及基本要求主要内容:主要讲授量子力学的动力学演化方程-薛定谔方程及其求解;讲授定态薛定谔方程及其典型的一维问题求法。
【重点掌握】:1.量子力学的动力学演化:薛定谔方程及其求解方法;2.几类典型一维定态薛定谔方程的求法;【一般了解】:1.理解守恒量和对称性的关系;2.无限深势阱的应用:量子点;3.势垒贯穿的应用:扫描隧道显微镜及其发展【难点】:定态薛定谔方程和时间相关薛定谔方程的求法。
第四章三维定态问题:氢原子和类氢原子第一节中心力场的一般分析第二节自由粒子球面波解第三节氢原子定态能级第四节碱金属原子能级(一)教学方法与学时分配:课堂讲授;8学时(二)内容及基本要求主要内容:主要介绍三维定态薛定谔方程的球坐标求法;介绍氢原子和碱金属原子能级结构特征及其不同。
【重点掌握】:氢原子能级结构。
【掌握】:碱金属原子能级结构中的量子数亏损。
【难点】:氢原子能级结构、其简并度及其与玻尔氢原子模型的对比。
第五章量子力学的表述形式第一节希尔伯特空间第二节态矢和算符第三节表象和表象变换第四节几种常见的表象:坐标表象;动量表象;能量表象;角动量表象第五节量子力学中的绘景:薛定谔绘景;海森堡绘景(一)教学方法与学时分配:课堂讲授;10学时(二)内容及基本要求主要内容:主要介绍量子力学的抽象表述:希尔伯特空间、态矢和算符;介绍量子力学的表象理论及其表象变换;介绍几类典型的表象。
【重点掌握】:1.希尔伯特空间和态矢;2.表象和表象变换、能量表象和角动量表象。
【掌握】:量子力学中的绘景及其物理等价性。
【了解】:坐标表象和动量表象及其联系。
【难点】:1.表象的物理意义;表象变换的物理目的;不同表象所反映出来的同一态矢的物理相关性。
2.利用能量表象和角动量表象对具体问题进行处理的方法。
第六章量子力学的近似方法第一节定态微扰方法第二节变分法第三节 WKB方法(一)教学方法与学时分配:课堂讲授;6学时(二)内容及基本要求主要内容:主要介绍定态微扰方法和变分法及其应用。
【重点掌握】:定态微扰方法对量子力学问题的求解。
【一般了解】:变分法和WKB方法对相关量子力学问题的求解。
【难点】:理解量子力学的不可解问题及其近似方法;理解微扰近似方法的基本原理和物理思想。
第七章自旋第一节电子自旋第二节电子的总角动量第三节原子的精细结构:L-S耦合第四节带电粒子在电磁场中的运动:正常塞曼效应;反常塞曼效应;朗道能级和量子霍尔效应(一)教学方法与学时分配:课堂讲授;10学时(二)内容及基本要求主要内容:主要介绍电子自旋及其所导致的碱金属原子的精细结构;介绍带点粒子在电磁场中运动的哈密顿量以及磁场导致的原子能级劈裂(塞曼效应)。
【重点掌握】:掌握电子的自旋的发现实验和理论描述;掌握自旋轨道耦合导致的原子能级的精细结构;掌握磁场导致的原子能级劈裂的塞曼效应;掌握角动量耦合规则。
【一般了解】:了解量子霍尔效应及其最新进展。
【难点】:掌握微扰法对原子能级劈裂(精细结构和塞曼效应)的计算方法;掌握自旋轨道耦合导致的原子能级劈裂的物理机制;掌握正常塞曼效应和反常塞曼效应能级分裂的特征。
第八章散射第一节散射问题的一般描述第二节分波法第三节玻恩近似(一)教学方法与学时分配:课堂讲授;4学时(二)内容及基本要求主要内容:简要介绍散射问题的一般描述;介绍基于玻恩近似的分波法对散射问题的描述。
【掌握】:散射问题的微观描述。
【难点】:分波法对平面波的球面波展开。
第九章量子跃迁第一节含时微扰方法第二节周期性外场引起的量子跃迁第三节光的辐射和吸收第四节激光原理(一)教学方法与学时分配:课堂讲授;6学时(二)内容及基本要求主要内容:主要介绍含时微扰方法及其对原子跃迁的处理;介绍原子跃迁选择定则的量子力学基础。
【重点掌握】:含时微扰方法和原子跃迁的选择定则。
【难点】:含时微扰方法对原子受激辐射的处理。
第十章多粒子体系的全同性原理第一节量子力学的第五共设:全同性原理第二节玻色子系统波函数的对称化第三节费米子系统波函数的反对称化(一)教学方法与学时分配:课堂讲授;4学时(二)内容及基本要求主要内容:主要介绍量子力学的第五公设及其对全同微观粒子的分类;介绍全同性原理对两类微观粒子的波函数的限制:对称化和反对称化。
【重点掌握】:微观全同粒子的不可区分性;玻色子和费米子波函数的对称化与反对称化。
【一般了解】:氢分子的本征波函数中的全同性原理。
【难点】:理解微观全同粒子的不可区分性和宏观全同粒子的可区分性的物理根源;掌握波函数(反)对称化的基本过程。
制定人:安钧鸿审定人:批准人:日期:。