遗传算法的Matlab实现讲解ppt课件

合集下载

遗传算法的原理及MATLAB程序实现.

遗传算法的原理及MATLAB程序实现.

1 遗传算法的原理1.1 遗传算法的基本思想遗传算法(genetic algorithms,GA)是一种基于自然选择和基因遗传学原理,借鉴了生物进化优胜劣汰的自然选择机理和生物界繁衍进化的基因重组、突变的遗传机制的全局自适应概率搜索算法。

遗传算法是从一组随机产生的初始解(种群)开始,这个种群由经过基因编码的一定数量的个体组成,每个个体实际上是染色体带有特征的实体。

染色体作为遗传物质的主要载体,其内部表现(即基因型)是某种基因组合,它决定了个体的外部表现。

因此,从一开始就需要实现从表现型到基因型的映射,即编码工作。

初始种群产生后,按照优胜劣汰的原理,逐代演化产生出越来越好的近似解。

在每一代,根据问题域中个体的适应度大小选择个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。

这个过程将导致种群像自然进化一样,后代种群比前代更加适应环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。

计算开始时,将实际问题的变量进行编码形成染色体,随机产生一定数目的个体,即种群,并计算每个个体的适应度值,然后通过终止条件判断该初始解是否是最优解,若是则停止计算输出结果,若不是则通过遗传算子操作产生新的一代种群,回到计算群体中每个个体的适应度值的部分,然后转到终止条件判断。

这一过程循环执行,直到满足优化准则,最终产生问题的最优解。

图1-1给出了遗传算法的基本过程。

1.2 遗传算法的特点1.2.1 遗传算法的优点遗传算法具有十分强的鲁棒性,比起传统优化方法,遗传算法有如下优点:1. 遗传算法以控制变量的编码作为运算对象。

传统的优化算法往往直接利用控制变量的实际值的本身来进行优化运算,但遗传算法不是直接以控制变量的值,而是以控制变量的特定形式的编码为运算对象。

这种对控制变量的编码处理方式,可以模仿自然界中生物的遗传和进化等机理,也使得我们可以方便地处理各种变量和应用遗传操作算子。

2. 遗传算法具有内在的本质并行性。

MATLAB遗传算法工具箱及应用(第二版)图文 (1)

MATLAB遗传算法工具箱及应用(第二版)图文 (1)
一旦计算了个体适应度值,种群中适应度高的个体将被 选中并重组,产生下一代。遗传算子直接操作染色体的特征 (基因),使用一般情况下个体的基因代码,产生更适合的个 体。重组算子用在一对个体或一大组个体中交换基因信息。 最简单的重组算子是单点交叉。
第一章 遗传算法概述
考虑两个二进制父代串:
A=10010110 和 B=10111000 I是随机地在1到串长L减1之间(即[1,
在决策变量域中的染色体表现型已被编码,可以估计种 群的个体成员的特性或适应度。通过特征目标函数来估计个 体在问题域中的特性。在自然世界中,这就是个体在现行环 境中的生存能力。因此,目标函数建立的基础是在整个繁殖 过程中选择成对的个体进行交配。
第一章 遗传算法概述
在再生(复制)期间,每个个体均被计算适应度值,它来 自没有加工的原始特性度量,由目标函数给出。这个值用来 在选择中偏向更加适合的个体。相对整个种群,适应度高的 个体具有高的选中参加交配的概率,而适应度低的个体具有 相对低的选中概率。
第一章 遗传算法概述
1.2 遗传算法的特点
遗传算法具有如下优点: (1)对可行解表示的广泛性。遗传算法的处理对象不是参 数本身,而是针对那些通过参数集进行编码得到的基因个体。 此编码操作使得遗传算法可以直接对结构对象进行操作。所谓 结构对象,泛指集合、序列、矩阵、树、图、链和表等各种一 维或二维甚至多维结构形式的对象。这一特点使得遗传算法具 有广泛的应用领域。比如: ①通过对连接矩阵的操作,遗传算法可用来对神经网络或 自动机的结构或参数加以优化。 ②通过对集合的操作,遗传算法可实现对规则集合和知识 库的精炼而达到高质量的机器学习目的。 ③通过对树结构的操作,用遗传算法可得到用于分类的最 佳决策树。 ④通过对任务序列的操作,遗传算法可用于任务规划,而 通过对操作序列的处理,可自动构造顺序控制系统。

遗传算法Malab实例讲解PPT课件

遗传算法Malab实例讲解PPT课件
if(rand<pc) cpoint=round(rand*py); newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)]; newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];
else newpop(i,:)=pop(i); newpop(i+1,:)=pop(i+1);
f(x)=10*sin(5x)+7*cos(4x), x∈[0,10]的最大值为: x1=1.5708 x2 =7.8540 F(x1)=f(x2)=17.0000
f(x)=10*sin(5x)+7*cos(4x) 的最大值
f1(x)=-f(x) -10*sin(5x)-7*cos(4x) 的最小值
if(ms(newin))<fitvalue(fitin) newpop(newin)=pop(fitin); newin=newin+1;
else fitin=fitin+1;
end end end
交叉
function [ newpop ] = crossover( pop,pc ) [px,py]=size(pop); newpop=ones(size(pop)); for i=1:2:px-1
if objvalue(i)+Cmin>0 temp=Cmin+objvalue(i);
else temp=0.0;
end fitvalue(i)= temp; end fitvalue=fitvalue';
end
选择
function [ newpop ] = selection( pop,fitvalue ) totalfit=sum(fitvalue); fitvalue=fitvalue/totalfit; fitvalue=cumsum(fitvalue); [px,py]=size(pop); ms=sort(rand(px,1)); fitin=1; newin=1; while newin<=px

《遗传算法详解》课件

《遗传算法详解》课件
特点
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率

遗传算法地原理及MATLAB程序实现

遗传算法地原理及MATLAB程序实现

1遗传算法的原理1.1遗传算法的基本思想遗传算法(genetic algorithms , GA )是一种基于自然选择和基因遗传学原理,借鉴了生物进化优胜劣汰的自然选择机理和生物界繁衍进化的基因重组、突变的遗传机制的全局自适应概率搜索算法。

遗传算法是从一组随机产生的初始解(种群)开始,这个种群由经过基因编码的一定数量的个体组成,每个个体实际上是染色体带有特征的实体。

染色体作为遗传物质的主要载体,其内部表现(即基因型)是某种基因组合,它决定了个体的夕卜部表现。

因此,从一开始就需要实现从表现型到基因型的映射,即编码工作。

初始种群产生后,按照优胜劣汰的原理,逐代演化产生出越来越好的近似解。

在每一代,根据问题域中个体的适应度大小选择个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。

这个过程将导致种群像自然进化一样,后代种群比前代更加适应环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。

计算开始时,将实际问题的变量进行编码形成染色体,随机产生一定数目的个体,即种群,并计算每个个体的适应度值,然后通过终止条件判断该初始解是否是最优解,若是则停止计算输出结果,若不是则通过遗传算子操作产生新的一代种群,回到计算群体中每个个体的适应度值的部分,然后转到终止条件判断。

这一过程循环执行,直到满足优化准则,最终产生问题的最优解。

图1-1给出了遗传算法的基本过程。

1.2遗传算法的特点1.2.1遗传算法的优点遗传算法具有十分强的鲁棒性,比起传统优化方法,遗传算法有如下优点:1.遗传算法以控制变量的编码作为运算对象。

传统的优化算法往往直接利用控制变量的实际值的本身来进行优化运算,但遗传算法不是直接以控制变量的值,而是以控制变量的特定形式的编码为运算对象。

这种对控制变量的编码处理方式,可以模仿自然界中生物的遗传和进化等机理,也使得我们可以方便地处理各种变量和应用遗传操作算子。

2.遗传算法具有内在的本质并行性。

遗传算法及其MATLAB实现

遗传算法及其MATLAB实现
染色体 U1 适应度值 19.805119
P k
0.111180
Qk
0.111180
U2
U3 U4 U5 U6 U7 U8 U9 U10
17.370890
9.590546 29.106122 15.686001 11.900541 17.958717 19.763190 26.401669 10.252480
101111011111110
2、初始群体的产生
• 遗传算法是对群体进行的进 化操作,需要给其准备一些 起始搜索点的初始群体数据
• 初始群体太小时会产生病态 基因,且造成有效等位基因 先天缺乏 • 初始群体太大会导致结果难 以收敛且浪费资源,稳健性 下降 • 建议值0~100
假设初始种群中有10个个体,其染色体可随机生成如下:
5、新种群的交配(交叉运算)
• 交叉运算是遗传算法中产生新个体的主要操作过程,它以某一概率相互交互两个个体之间的部分染色体 • 先对群体进行随机配对,其次随机设置交叉点位置,最后再相互交换配对染色体之间的部分基因 • 交叉概率一般取0.4~0.99
①交配染色体数量的确定 交配染色体的数量等于染色体总量乘以交配概率。这里假设 交配概率 P c 为0.25,染色体总量为10条,所以 参加交配的染色 体数量为[2.5]条。符号[ ]表示取整,这里取整数2,即交配的染 色体数目为2条。 假定其分别对应U1~U10这10个个体,则其中低于交配概率0.25的U5和U7参加交配。这 样操作的原因是:交配概率越低,低于交配概率以下的随机数的数量就越少,所以参加交配 的染色体数量与交配概率可能会成正比。 ③在交配池发生交配 染色体U5和U7被选中作为交配的父辈,交配点的选择以随机数产生。交配的种类有单 点交配和多点交配,这里取单点交配。计算机随机生成一个介于0~32的整数。假设所产生 的整数为1,那么两个染色体自1位置开始分割,在染色体1位置右端部分进行交换而生成新 的子辈染色体,即 U5=[1 0011 0110 1001 0110 1000 0000 1011 1001] U7=[0 0111 0101 1100 1100 0000 0101 0100 1000] U5*=[1 0111 0101 1100 1100 0000 0101 0100 1000] U7*=[0 0011 0110 1001 0110 1000 0000 1011 1001]

Matlab与遗传算法ppt课件

Matlab与遗传算法ppt课件
StallGenLimit
StallTimeLimit
InitialPopulation PlotFcns
默认值 [0,1] 20 0.8 0.2 100 inf -inf
50
20
[] []
实现功能 初始种群生成区间 种群规模 交配概率 变异概率 超过进化代数时算法停止 超过运算时间限制时停止
最佳个体等于或小于适应度 阈值时算法停止
遗传算法的优点: 1. 与问题领域无关切快速随机的搜索能力。 2. 搜索从群体出发,具有潜在的并行性,可以进行多个个体的 同时比较. 3. 搜索使用评价函数启发,过程简单 4. 使用概率机制进行迭代,具有随机性。 5. 具有可扩展性,容易与其他算法结合。
求 m i n f( x ) 2 0 0 e 0 .0 5 x s i n ( x )x [ 2 ,2 ] ]
6
0.009857
164/33=5…32 5
32
0.003113
199/33=7…1 7
1
0.000946
329/33=10…32 10
32
0.001282
最终新种群染色体
U1
[1101101 1001]
U2
[1101101 1001]
U3
[0001100 1100]
U4
[1111110 1101]
4. 计算每个染色体被复制的累积概率
10
Q k Pk k 1
Hale Waihona Puke (3)选择新种群产生10个随机数:
0.301431,0.322062,0.766503, 0.881893,0.350871 0.538392, 0.177618,0.343242,0.032685,0.197577

第八章使用matlab遗传算法工具

第八章使用matlab遗传算法工具

:第八章使用MATLAB遗传算法工具最新发布的MATLAB Release 14已经包含了一个专门设计的遗传算法与直接搜索工具箱(Genetic Algorithm and Direct Search Toolbox,GADS)。

使用遗传算法与直接搜索工具箱,可以扩展MATLAB及其优化工具箱在处理优化问题方面的能力,可以处理传统的优化技术难以解决的问题,包括那些难以定义或不便于数学建模的问题,可以解决目标函数较复杂的问题,比如目标函数不连续、或具有高度非线性、随机性以及目标函数没有导数的情况。

本章节首先介绍这个遗传算法与直接搜索工具箱,其余各节分别介绍该工具箱中的遗传算法工具及其使用方法。

遗传算法与直接搜索工具箱概述本节介绍MATLAB的GADS(遗传算法与直接搜索)工具箱的特点、图形用户界面及运行要求,解释如何编写待优化函数的M文件,且通过举例加以阐明。

8.1.1 工具箱的特点GADS工具箱是一系列函数的集合,它们扩展了优化工具箱和MATLAB数值计算环境的性能。

遗传算法与直接搜索工具箱包含了要使用遗传算法和直接搜索算法来求解优化问题的一些例程。

这些算法使我们能够求解那些标准优化工具箱范围之外的各种优化问题。

所有工具箱函数都是MATLAB的M文件,这些文件由实现特定优化算法的MATLAB语句所写成。

使用语句】type function_name就可以看到这些函数的MATLAB代码。

我们也可以通过编写自己的M文件来实现来扩展遗传算法和直接搜索工具箱的性能,也可以将该工具箱与MATLAB的其他工具箱或Simulink结合使用,来求解优化问题。

工具箱函数可以通过图形界面或MATLAB命令行来访问,它们是用MATLAB语言编写的,对用户开放,因此可以查看算法、修改源代码或生成用户函数。

遗传算法与直接搜索工具箱可以帮助我们求解那些不易用传统方法解决的问题,譬如表查找问题等。

遗传算法与直接搜索工具箱有一个精心设计的图形用户界面,可以帮助我们直观、方便、快速地求解最优化问题。

精心遗传算法及matlab实现课件PPT

精心遗传算法及matlab实现课件PPT

2021/3/10
3
遗传算法的定义
遗传算法( Genetic Algorithm :GA)是一种寻求函 数(问题)最优解的数学方法。其基本原理是:模拟自然界 生物繁衍过程中基因重组与进化的自然过程,把待解决问题 的参数编成二进制码或十进制码(也可编成其他进制码), 即基因,若干基因组成一个染色体(个体),许多染色体进 行类似于自然选择、配对交叉和变异的运算,经过多次重复 迭代(即世代遗传)直至得到最后的优化结果。
2021/3/10
2
特点
群体搜索特性:许多传统的搜索方法都是单点搜索,遗传算 法采用的是同时处理群体中多个个体的方法使遗传算法具有 较好的全局搜索性能,不容易陷入局部最优;
遗传算法的适应度函数(目标函数)可以解决不连续、不可 微、随机或高度非线性的问题,而且其定义域可以任意设定 ;
遗传算法具有可扩展性,易于同别的技术混合使用。
2021/3/10
9
选择(Slection)
选择(或称为复制)是在种群中选择适 应度高(函数更加优化)的个体产生新的种 群的过程。遗传算法中的选择操作就是用来 确定如何从父代群体中按某种方法选取哪些 个体遗传到下一代群体中的一种遗传运算, 用来确定重组或交叉个体。如轮盘赌选择, 随机竞争选择等
2021/3/10
运算参数有很多,均有缺省值,一般都不需要修改。各 个参数选项的详细信息在参考书中有详细介绍,另外在工具 箱操作界面的右侧也有相应的英文介绍。
2021/3/10
19
第4部分:运行显示
Plot对话框:运算过程的图形显示界面,可 同时选择多项,在运算过程中将显示对应的 运算过程。比如:best fitness将显示每一代 中最佳适应度的函数值;Best fitness 将显 示每一代最佳个体的取值;Scores将显示每 一代所有个体的取值等。

遗传算法(GeneticAlgorithm,GA)及MATLAB实现

遗传算法(GeneticAlgorithm,GA)及MATLAB实现

遗传算法(GeneticAlgorithm,GA)及MATLAB实现遗传算法概述:• 遗传算法(Genetic Algorithm,GA)是⼀种进化算法,其基本原理是仿效⽣物界中的“物竞天择、适者⽣存”的演化法则,它最初由美国Michigan⼤学的J. Holland教授于1967年提出。

• 遗传算法是从代表问题可能潜在的解集的⼀个种群(population)开始的,⽽⼀个种群则由经过基因(gene)编码的⼀定数⽬的个体(individual)组成。

因此,第⼀步需要实现从表现型到基因型的映射即编码⼯作。

初代种群产⽣之后,按照适者⽣存和优胜劣汰的原理,逐代(generation)演化产⽣出越来越好的近似解,在每⼀代,根据问题域中个体的适应度(fitness)⼤⼩选择个体,并借助于⾃然遗传学的遗传算⼦(genetic operators)进⾏组合交叉和变异,产⽣出代表新的解集的种群。

这个过程将导致种群像⾃然进化⼀样,后⽣代种群⽐前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

• 遗传算法有三个基本操作:选择(Selection)、交叉(Crossover)和变异(Mutation)。

• (1)选择。

选择的⽬的是为了从当前群体中选出优良的个体,使它们有机会作为⽗代为下⼀代繁衍⼦孙。

根据各个个体的适应度值,按照⼀定的规则或⽅法从上⼀代群体中选择出⼀些优良的个体遗传到下⼀代种群中。

选择的依据是适应性强的个体为下⼀代贡献⼀个或多个后代的概率⼤。

• (2)交叉。

通过交叉操作可以得到新⼀代个体,新个体组合了⽗辈个体的特性。

将群体中的各个个体随机搭配成对,对每⼀个个体,以交叉概率交换它们之间的部分染⾊体。

• (3)变异。

对种群中的每⼀个个体,以变异概率改变某⼀个或多个基因座上的基因值为其他的等位基因。

同⽣物界中⼀样,变异发⽣的概率很低,变异为新个体的产⽣提供了机会。

遗传算法的基本步骤:1)编码:GA在进⾏搜索之前先将解空间的解数据表⽰成遗传空间的基因型串结构数据,这些串结构数据的丌同组合便构成了丌同的点。

数学建模专题之MATLAB遗传算法优秀课件

数学建模专题之MATLAB遗传算法优秀课件

Grefenstette, Fitzpattrick
Schaffer
对含噪声的函数进行测试 多种群遗传算法解决多目标优化问题
1 遗传算法概述
年份 1986 1986 1987 1987
1987
1987 1987
1987
1987 1987
续表1.1
贡献者
内容
Goldberg
最优种群大小估计
Grefenstette
A ( A1, A2 , , AN )
其中 Aj ( j 1, 2, , N ) S ,N称为种群规模。
2 标准遗传算法
2.3 遗传算法的若干概念
适应度(Fitness) 在研究自然界中生物的遗传和进化 现象时,生物学家使用适应度这个术语来度量某个物种对 于生存环境的适应程度。对生存环境适应程度较高的物种 将获得更多的繁殖机会,而对生存环境适应程度较低的物 种,其繁殖机会就会相对较少,甚至逐渐灭绝。在遗传算 法中,一般通过适应度函数(Fitness function)来衡量某 一个体的适应度高低。
2 标准遗传算法
2.3 遗传算法的若干概念
个体(Individual) 称S 0,1l为个体空间,个体空间的元
素 a a0a1 al1 S 称为个体,它是染色体带有特征的实
体。分量 a j 0,1 称为基因,正整数 l称为个体的基因长
度。
种群(Population) 称个体空间S中N个个体组成的一个子 集(个体允许重复)称为一个种群,记为:
数学建模专题之 MATLAB遗传算法
Contents
1
遗传算法概述
2
标准遗传算法
3
遗传算法简单举例:函数极值
4
遗传算法求解TSP问题

MATLAB遗传算法工具箱及其应用ppt课件

MATLAB遗传算法工具箱及其应用ppt课件

Page 8
汕头大学工学院
二、遗传算法工具箱构造
5、变异算子:mut,mutate,mutbga。 二进制和整数变异操作由mut完成。实值的变异
运用育种函数mutbga是有效的。mutate对变异操作 提供一个高级接口。
Page 9
汕头大学工学院
二、遗传算法工具箱构造
6、多子群支持:migrate。
Page 5
汕头大学工学院
二、遗传算法工具箱构造
2、顺应度计算:ranking,scaling。
顺应度函数用于转换目的函数值,给每一个个体 一个非负的价值数。这个工具箱支持Goldberg的偏 移法和比率法以及贝克的线性评价算法。另外, ranking函数支持非线性评价。
Page 6
汕头大学工学院
Page 10
汕头大学工学院
三、遗传算法工具箱通用函数
几个典型工具箱函数的引见
创建初始种群函数crtbp 二进制串到实值转换函数bs2rv 轮盘工学院
三、遗传算法工具箱通用函数
1、函数crtbp
向量
个体数量 个体长度
功能:创建初始种群。
格式: C,L h,B r in o a c d m s r N e t ,L b V i n i p n dd
GA工具箱本质是个函数包,用户只需安装 了这个工具箱或者软件自带了这个工具箱,就 可以调用这些函数命令,从而编写出强大的 MATLAB遗传算法程序。
Page 4
汕头大学工学院
二、遗传算法工具箱构造
1、种群表示和初始化函数:crtbase,crtbp,crtp。
GA工具箱支持二进制、整数和浮点数的基因表示。 二进制和整数种群可以运用工具箱中的crtbp建立二 进制种群。crtbase是附加的功能,它提供向量描画 整数表示。种群的实值可用crtrp进展初始化。在二 进制代码和实值之间的变换可运用函数bs2rv,它支 持格雷码和对数编码。

第9讲 MATLAB遗传算法

第9讲  MATLAB遗传算法
设s1’与s2’配对,s3’与s4’配对。分别交换后 两位基因,得新染色体: s1’’=11001(25), s2’’=01100(12)
s3’’=11011(27), s4’’=10000(16)
变异
设变异率pm=0.001。
这样,群体S1中共有
5×4×0.001=0.02
位基因可以变异。 0.02位显然不足 1位,所以本轮遗传操作不 做变异。
● 选择-复制(selection-reproduction)
● 交叉(crossover,亦称交换、交配或杂交)
● 变异(mutation,亦称突变)
选择 - 复制
通常做法是:对于一个规模为 N
的种群 S, 按每个染色体 xi∈S 的选择概率 P(xi) 所决
定的选中机会 , 分 N 次从 S 中随机选定 N 个染色体 ,
(3) 计算各代种群中的各个体的适应度 , 并
对其染色体进行遗传操作,直到适应度最高的个
体(即31(11111))出现为止。
首先计算种群S1中各个体 s1= 13(01101), s2= 24(11000) s3= 8(01000), s4= 19(10011) 的适应度f (si) 。 容易求得 f (s1) = f(13) = 132 = 169 f (s2) = f(24) = 242 = 576 f (s3) = f(8) = 82 = 64 f (s4) = f(19) = 192 = 361
于是,得到第二代种群S2:
s1=11001(25), s2=01100(12)
s3=11011(27), s4=10000(16)
第二代种群S2中各染色体的情况 染色体 s1=11001 s2=01100 s3=11011 适应度 625 144 729 选择概率 0.36 0.08 0.41 积累概率 0.36 0.44 0.85 估计的 选中次数 1 0 2

遗传算法的Matlab实现讲解39页PPT

遗传算法的Matlab实现讲解39页PPT

4Matlab实现讲解
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳

遗传算法的Matlab实现讲解

遗传算法的Matlab实现讲解

bestfit=fitvalue(i);
end
end
精选版课件ppt
12
Matlab编程实现GA
❖ 结果见My_GA.m
精选版课件ppt
13
Matlab函数调用实现GA
• Matlab的GA函数
[x fval] = ga(@fitnessfun, nvars, [],[],[],[],[],[],[], options);
pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和
function pop2=decodechrom(pop,spoint,length) pop1=pop(:,spoint:spoint+length-1); pop2=decodebinary(pop1);
或 function [bestindividual, bestfit]=… best(pop, fitvalue) [bestfit,m_indx]=max(fitvalue); bestindividual=pop(m_indx,:);
if fitvalue(i)>bestfit
bestindividual=pop(i,:);
精选版课件ppt
3
Matlab编程实现GA
❖ 主程序
%遗传算法主程序 function My_GA global Cmin; Cmin=-10^6; popsize=50; %群体大小 Gene=20; chromlength=20; %字符串长
度(个体长度) pc=0.8; %交叉概率 pm=0.01; %变异概率 Xmax=10; Xmin=0;
精选版课件ppt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
Matlab编程实现GA
❖ 选择复制
function [newpop]=selection(pop,fitvalue) %程序中采用赌轮盘选择法选择实现 totalfit=sum(fitvalue); %求适应值之和 fitvalue=fitvalue/totalfit; %单个个体被选择的概率 fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],则 cumsum(fitvalue)=[1 3 6 10]
pop=newpop;
end
fplot('2*x+10*sin(5*x)+7*cos(4*x)',[0 10])
hold on
plot(x,y,'r*') . hold off
Matlab编程实现GA
❖ 初始化(编码)
% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小, chromlength表示染色体的长度(二值数的长度),
.
Matlab编程实现GA
❖ 将二进制数转化为十进制数
将二进制数转化为十进制数 %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py
% 长度大小取决于变量的二进制编码的长度(在本例中取20位)。 %Name: initpop.m
function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1}
行数为popsize,列数为chromlength的矩阵, % round对矩阵的每个单元进行取整。这样产生的初始种群。
量域 的数 objvalue=2*x+10*sin(5*x)+7*cos(4*x); %计算目标函数值
.
Matlab编程实现GA
❖ 计算个体的适应值
function fitvalue=calfitvalue(objvalue) global Cmin; fitvalue=objvalue-Cmin;
[px,py]=size(pop); ms=sort(rand(px,1)); %从小到大排列
fitin=1; newin=1; while newin<=px %蒙特卡洛方法抽样
if(ms(newin))<fitvalue(fitin) newpop(newin,:)=pop(fitin,:); newin=newin+1;
pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和
function pop2=decodechrom(pop,spoint,length) pop1=pop(:,spoint:spoint+length-1); pop2=decodebinary(pop1);
else fitin=fitin+1;
end
.
end
Matlab编程实现GA
❖ 交叉
function [newpop]=crossover(pop,pc) [px,py]=size(pop); newpop=ones(size(pop)); for i=1:2:px-1
if(rand<pc) cpoint=round(rand*py); newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)]; newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];
.
Matlab编程实现GA
❖ 计算目标函数值
计算目标函数值 % calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示
例仿真,可根据不同优化问题予以修改。 %遗传算法子程序 %Name: calobjvalue.m %实现目标函数的计算
function [objvalue]=calobjvalue(pop,chromlength,Xmax,Xmin) temp1=decodechrom(pop,1,chromlength); %将pop每行转化成十进制数 x=temp1*(Xmax-Xmin)/(2^chromlength-1); %将十进制域 中的数转化为变
.
Matlab编程实现GA
❖ 主程序
%遗传算法主程序 function My_GA global Cmin; Cmin=-10^6; popsize=50; %群体大小 Gene=20; chromlength=20; %字符串长
度(个体长度) pc=0.8; %交叉概率 pm=0.01; %变异概率 Xmax=10; Xmin=0;
个体及其适应值
x(i)=decodechrom(bestindividual,1,chromlength)*10/(2^chromlength-1); %最佳个体解码
y(i)=bestfit+Cmin; %最佳个体适应度 y_mean(i)=mean(fitvalue+Cmin); %第i代平均适应度
数学建模专题之
遗传算法的MATLAB实现
.
Contents I
1
Matlab编程实现GA
2
Matlab函数调用实现GA
3
Matlab工具箱实现GA
.数值函数
f(x)2x 1 0sin (5x)7co s(4x) m axf(x)?
x [0 ,1 0 ]
pop=initpop(popsize,chromlength); %随机产生初始群体 for i=1:Gene %20为迭代次数
[objvalue]=calobjvalue(pop,chromlength,Xmax,Xmin); %计算目标函数 fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度 [newpop]=selection(pop,fitvalue); %复制 [newpop]=crossover(newpop,pc); %交叉 [newpop]=mutation(newpop,pm); %变异 [bestindividual,bestfit]=best(pop,fitvalue); %求出群体中适应值最大的
相关文档
最新文档