基于PCA的人脸识别系统设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
HUNAN UNIVERSITY
毕业设计(论文)
设计论文题目基于PCA的人脸
识别系统
学生姓名李涛
学生学号20080810410
专业班级08级计科四班
学院名称信息科学与工程学院
指导老师潘华伟
学院院长章兢
20012 年 5 月18 日
摘要
随着计算机视觉技术的发展,以及社会的各个领域的需要,根据人固有的生物特征对人进行身份验证的课题吸引了一批研究人员,比较常见的有语音识别,指纹识别,人脸识别等技术。其中人脸识别因为识别率高、主动性强、使用方便等因素,在身份验证的各类方法中有独特的优势及相关的应用,成为了人体特征识别中的比较热门的研究课题。
本文首先阐述了人脸识别研究的历史,现状以及发展趋势,并说明了人脸识别的优势和难点。然后详细地说明人脸识别的两个部分:人脸检测和人脸识别。在人脸检测部分,本文主要介绍了基于haar分类器的检测方法,并详细说明了haar分类器的训练过程,讲述了分类器检测人脸的原理。在人脸识别部分,首先获取人的个人信息的,对人脸图像的采集并进行灰度化、归一化等预处理,然后采用PCA(主成分分析法)对采集到的图像进行特征提取,并存储相关的特征信息,最后对待识别的图像进行特征提取和分析,与训练的人脸图像数据计算欧式距离,最终识别出人的身份。在本文的最后,对实现的系统各项功能进行实验,对影响识别率的维数、采集图像数因素进行实验分析,并提出了主成分分析法人脸识别的优点和缺点。最后总结毕业设计中的不足,自己的心得体会,并对未来学习进行展望。
关键词:人脸检测,haar分类器,PCA,人脸识别
Abstract
With the development of computer vision technology, and social needs in many areas, the subject of authentication according to the inherent biological characteristics attracted a group of researchers ,Voice recognition, fingerprint recognition, face recognition technology are common。Face recognition with the recognition rate, motivated, easy to use and other factors,has unique advantages in all kinds of authentication methods and related applications,has become a popular research topic in the human feature recognition。
This paper first describes the history, current situation and development trend of face recognition research, and describes the advantages and difficulties of face recognition。And then detail the recognition of two parts: face detection and face recognition。In the face detection part, the paper mainly describes the detection method based on haar classifier, and details of haar classifier training process, about the principle of the classification of the detected face。In face recognition part, it first obtains personal information the acquisition of face images and graying, owned by a pretreatment。And then using PCA (Principal Component Analysis) collected image feature extraction, and storage characteristics of information,int the last ,identifiable image feature extraction and analysis, and training of the face image data to calculate the Euclidean distance, and ultimately identify the identity of the person。In the last experiment, the dimension of the recognition rate, number of images collected factors experimental analysis, and the advantages and disadvantages of the principal component analysis for face recognition system implemented various functions. The final summary of graduate design deficiencies, and their own feelings and experiences and future learning prospects。
Keywords: face detection, Haar classifier, PCA, face recognition