山东省聊城市2018年初中学业水平考试数学试卷(整理版)
山东省聊城市2018年中考数学试卷(word版,含答案)
只有一项是符合题目要求)
1.下列实数中的无理数是(
A.
.1.21 B . 3^8
其峰值性能为12.5
A. 1.25 108 亿次 / 秒
.1.25 109亿次/秒
4.如图,直线AB//EF ,点C 是直线AB 上一点,点D 是直线AB 外一点,若.BCD =95;,
CDE 二25,则• DEF 的度数是( )
A. 110 B . 115 C . 120 D . 125
5.下列计算错误的是( 山东省聊城市 2018年中考数学试卷 、选择题(本大题共12个小题,
每小题3分.在每小题给出的四个选项中, 亿亿次/秒.这个数据以亿次
/秒为单位用科学计数法可以表示为(
C. 1.25 1010 亿次 / 秒
D. 12.5 108亿次/秒 22
7 2.如图所示的几何体,它的左视图是(
) 已连续多次取得世界第一的神威太湖之光超级计算机,
3.在运算速度上,。
2018年山东省聊城市中考数学试卷
2018年山东省聊城市中考数学试卷一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1. 下列实数中的无理数是( )A.√−83B.√1.21C.227D.√−332【答案】此题暂无答案【考点】算三平最根无理较的识轻立方于的性术【解析】此题暂无解析【解答】此题暂无解答【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…(每两个8之间依次多1个0)等形式.2. 如图所示的几何体,它的左视图是( )A. B. C. D.【答案】此题暂无答案【考点】简单组水都的三视图【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评3. 在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒,这个数据以亿次/秒为单位用科学记数法可以表示为()A.1.25×109亿次/秒B.1.25×108亿次/秒C.12.5×108亿次/秒D.1.25×1010亿次/秒【答案】此题暂无答案【考点】科学较盛法含-表项较大的数【解析】此题暂无解析【解答】此题暂无解答【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 如图,直线AB // EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95∘,∠CDE=25∘,则∠DEF的度数是()A.115∘B.110∘C.125∘D.120∘【答案】此题暂无答案【考点】平行线明判轮与性质平行体的省质【解析】此题暂无解析【解答】此题暂无解答【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.5. 下列计算错误的是()A.a2÷(a0⋅a2)=1B.a2÷a0⋅a2=a4C.−1.58÷(−1.5)7=−1.5D.(−1.5)8÷(−1.5)7=−1.5【答案】此题暂无答案【考点】单项式验河单项式同底射空的除法同底水水的乘法【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评6. 已知不等式2−x2≤2x−43<x−12,其解集在数轴上表示正确的是()A.B.C.D.【答案】此题暂无答案【考点】解一元表次镜等式组在数较溴表示总等线的解集【解析】此题暂无解析【解答】此题暂无解答【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.7. 如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.25∘ A.30∘ B.35∘D.27.5∘【答案】此题暂无答案【考点】圆明角研理【解析】此题暂无解析【解答】此题暂无解答【点评】此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.8. 下列计算正确的是()A.√711⋅√117÷√111=√11 B.3√10−2√5=√5C.1 3√18−3√89=√2 D.(√75−√15)÷√3=2√5【答案】此题暂无答案【考点】二次根明的织合运算【解析】此题暂无解析【解答】此题暂无解答【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.9. 小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.1 3B.12C.16D.23【答案】此题暂无答案【考点】列表法三树状图州【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.10. 如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A′处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是()A.γ=α+2βB.γ=2α+βC.γ=180∘−α−βD.γ=α+β【答案】此题暂无答案【考点】三角形射外角性过【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.11. 如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(−125, 95) B.(−95, 125) C.(−125, 165) D.(−165, 125)【答案】此题暂无答案【考点】相验极角家的锰质与判定坐标与图正变化-旋知矩来兴性质勾体定展【解析】此题暂无解析【解答】此题暂无解答此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.12. 春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.室内空气中的含药量不低于8mg/m3的持续时间达到了11minB.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3C.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内D.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效【答案】此题暂无答案【考点】反比于函数偏压史函数的综合一次射可的图象反比例射数的图放【解析】此题暂无解析【解答】此题暂无解答【点评】二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13. 已知关于x的方程(k−1)x2−2kx+k−3=0有两个相等的实根,则k的值是________.【答案】此题暂无答案【考点】根体判展式一元二较方程熔定义此题暂无解析【解答】此题暂无解答【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.14. 某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是________.【答案】此题暂无答案【考点】概水常式【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事.件A出现m种结果,那么事件A的概率P(A)=mn15. 用一块圆心角为216∘的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是________cm.【答案】此题暂无答案【考点】圆于凸计算【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16. 如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是________.【答案】此题暂无答案【考点】多边形正东与外角多边都读内角和【解析】此题暂无解析【解答】此题暂无解答【点评】本题主要考查了多边形的内角和的计算公式,理解:剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,是解决本题的关键.17. 若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[−2.82]=−3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+ 1.①,利用这个不等式①,求出满足[x]=2x−1的所有解,其所有解为________.【答案】此题暂无答案【考点】解一元表次镜等式组【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18. 先化简,再求值:aa+1−a−1a÷(aa+2−1a2+2a),其中a=−12.【答案】此题暂无答案【考点】分式因化简优值【解析】此题暂无解析【解答】此题暂无解答【点评】此题主要考查了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或整式,再代入求值.19.时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:解答下列问题:(1)这次抽样调查中的样本是________;(2)统计表中,a=________,b=________;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.【答案】此题暂无答案【考点】总体来个体腺样反措样本容量用样射子计总体统计表扇表统病图【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评20. 如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.【答案】此题暂无答案【考点】全等三来形的稳质正方来的性稳【解析】此题暂无解析【解答】此题暂无解答【点评】(1)根据ASA证明△ABE≅△BCF,可得结论;(2)根据(1)得:△ABE≅△BCF,则CF=BE=2,最后利用勾股定理可得AF的长.21. 建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【答案】此题暂无答案【考点】二元一正构程组的置用——移程问题二元一因方程似应用一元都次特等水的实常应用【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出关于a的一元一次不等式.22. 随着我市农产品整体品牌形象“聊•胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150∘,在点D处测得A点、C点的仰角分别为9∘,15.6∘,如图2.求保温板AC 的长是多少米?(精确到0.1米)(参考数据:√32≈0.86,sin9∘≈0.16,cos9∘≈0.99,tan9∘≈0.16,sin15.6∘≈0.27,cos15.6∘≈0.96,tan15.6∘≈0.28)【答案】此题暂无答案【考点】解直角明角念的应用备仰角俯城问题【解析】此题暂无解析【解答】此题暂无解答【点评】本题主要考查解直角三角形的应用-仰角俯角问题,解题的关键是理解题意,构建直角三角形,并熟练掌握三角函数的应用.23. 如图,已知反比例函数y=k1x (x>0)的图象与反比例函数y=k2x(x<0)的图象关于y轴对称,A(1, 4),B(4, m)是函数y=k1x(x>0)图象上的两点,连接AB,点C(−2, n)是函数y=k2x(x<0)图象上的一点,连接AC,BC.(1)求m,n的值;(2)求AB所在直线的表达式;(3)求△ABC的面积.【答案】此题暂无答案【考点】待定正数键求一程植数解析式三角表的病积矩形的正键与性质反比例表数病合题反比射函可铜象上误的坐标特征反比表函数弹数k蜡几何主义反比例根数的性气【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了反比例函数的图形及性质、待定系数法确定一次函数解析式及面积的和差关系.题目具有综合性.注意图形的面积可以用割补法也可以用规则的几何图形求和差.24. 如图,在Rt△ABC中,∠C=90∘,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.【答案】此题暂无答案【考点】切线的明定养性质【解析】此题暂无解析【解答】此题暂无解答【点评】本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质.25. 如图,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(10, 0),与对称轴l交于点E(5, 5).矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t(0≤t≤5).(1)求出这条抛物线的表达式;(2)当t=0时,求S△OBN的值;(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时,S有最大值,最大值是多少?【答案】此题暂无答案【考点】二次使如综合题【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、二次函数的性质、梯形的面积以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数关系式;(2)利用二次函数图象上点的坐标特征求出当t=0时点N的坐标;(3)分0<t≤4和4<t≤5两种情况找出S关于t的函数关系式.。
2018聊城市初中数学学生学业水平考试(答案及解析)
a
排球
篮球
足球
在这五种球类运动中选择一
15
33
b
种).调
查结果统计如下:
解答下列问题:
(1)这次抽样调查
中的样本是;
((23))统试计估表计中上,述 a1=200名学生中最喜欢乒乓球运动的人数.
第
19 题图 第4页(共6页)
20.(本题满分8分)如
图,正方形 ABCD 中,E 是 BC 上的一点,连接 AE,
A.1.21
B.3-8
2.如图所示的几何体,它的左视图是
C.32-3
D.272
第2题图
3.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为1
2.5亿亿
次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为
A.1.25×108亿次/秒
C.1.25×1010亿次/秒
B.1.25×109亿次/秒
)与药物在空气中的持续时间 x(min)之间的函数关系,在打开门窗通风前分别满足两个
3
一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是
A.经过5min 集中喷洒药物,室内空气中的含药量最
高达到10mg/m3
B.室内空气中的含药量不低于8mg/m3的持续时间
达到了11min
C.当室内空气中的含药量不低于5mg/m3且持续时
过 B 点作 BH⊥AE,垂足为点 H,延长 BH 交 CD
于点 F,连接 AF.
(1)求证:AE=BF.
(2)若正方形边长是5,BE=2,求 AF 的长.
-12. a
① 利
19.(本题满分8分)时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜
山东省聊城市2018年中考数学试卷(含答案解析)
山东省聊城市2018年中考数学试卷一、选择题1.下列实数中的无理数是()A. B. C. D.2.如图所示的几何体,它的左视图是()A. B. C. D.3.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学记数法可以表示为()A. 1.25×108亿次/秒B. 1.25×109亿次/秒C. 1.25×1010亿次/秒D. 12.5×108亿次/秒4.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A. 110°B. 115°C. 120°D. 125°5.下列计算错误的是()A. a2÷a0•a2=a4B. a2÷(a0•a2)=1C. (﹣1.5)8÷(﹣1.5)7=﹣1.5D. ﹣1.58÷(﹣1.5)7=﹣1.56.已知不等式,其解集在数轴上表示正确的是()A. B.C. D.7.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A. 25°B. 27.5°C. 30°D. 35°8.下列计算正确的是()A. B.C. D.9.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A. B. C. D.10.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A. γ=2α+βB. γ=α+2βC. γ=α+βD. γ=180°﹣α﹣β11.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A. (﹣)B. (﹣)C. (﹣)D. (﹣)12.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A. 经过集中喷洒药物,室内空气中的含药量最高达到B. 室内空气中的含药量不低于的持续时间达到了C. 当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D. 当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内二、填空题13.已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是________.14.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是________.15.用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是________cm.16.如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是________.17.若为实数,则表示不大于的最大整数,例如,,等.是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为________.三、解答题18.先化简,再求值:,其中.19.时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种).调查结果统计如下:解答下列问题:(1)这次抽样调查中的样本是________;(2)统计表中,________,________;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.20.如图,正方形中,是上的一点,连接,过点作,垂足为点,延长交于点,连接.(1)求证:.(2)若正方形边长是5,,求的长.21.建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?22.随着我市农产品整体品牌形象“聊•胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2.求保温板AC的长是多少米?(精确到0.1米)(参考数据:≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)23.如图,已知反比例函数的图象与反比例函数的图象关于轴对称,,是函数图象上的两点,连接,点是函数图象上的一点,连接,.(1)求,的值;(2)求所在直线的表达式;(3)求的面积.24.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.25.如图,已知抛物线与轴分别交于原点和点,与对称轴交于点.矩形的边在轴正半轴上,且,边,与抛物线分别交于点,.当矩形沿轴正方向平移,点,位于对称轴的同侧时,连接,此时,四边形的面积记为;点,位于对称轴的两侧时,连接,,此时五边形的面积记为.将点与点重合的位置作为矩形平移的起点,设矩形平移的长度为.(1)求出这条抛物线的表达式;(2)当时,求的值;(3)当矩形沿着轴的正方向平移时,求关于的函数表达式,并求出为何值时,有最大值,最大值是多少?答案解析部分一、选择题1.【答案】C【解析】【解答】解: =1.1,=-2,是有理数,是无理数,故答案为:C.【分析】无理数,就是无限不循环的小数,常见的无理数有:开放开不尽的数;及含的式子;具有特殊结构的数如:0,。
2018年山东省聊城中考数学试题答案
山东省聊城市2018年中考数学试卷数学答案解析一、选择题1.【答案】C【解析】A ,是有理数,B ,是有理数,C .D 项,是2-227分数,属于有理数.【考点】有理数和无理数.2.【答案】D【解析】从几何体的左面看,有一条看不见的棱,应画虚线;从图中数据看,该虚线靠近上方,故D 项符合.【考点】左视图.3.【答案】B【解析】12.5亿.9=1250000000=1.2510⨯【考点】科学记数法.4.【答案】C【解析】如图,过点作,D DG AB ∥95,1801809585.BC D C D G BC D ∠=︒∴∠=︒-∠=︒-︒=︒ 25,852560.CDE EDG CDG CDE ∠=︒∴∠=∠-∠=︒-︒=︒ ,,180********.AB EF EF DG DEF EDG ∴∴∠=︒-∠=︒-︒=︒ ∥∥(第4题)【考点】平行线的性质.5.【答案】D【解析】A ,B ,C 项正确,D 项, ()()78871.5 1.5 1.5 1.5 1.5.-÷-=-÷-=【考点】整式的运算.6.【答案】A【解析】原不等式可化为,解不等式①,得.解不等式②,得.原不等式组的2423224132x x x x --⎧≥⎪⎪⎨--⎪<⎪⎩①②2x ≥5x <∴解集为,在数轴上表示如A 项所示.25x ≤<【考点】解不等式组及在数轴上表示不等式组的解集.7.【答案】D【解析】,,85,60,25AD C A B AD C A ∠=︒∠=︒∴∠=∠-∠=︒ 222550AOC B ∴∠=∠=⨯︒=︒.855035C ADC AOC ∴∠=∠-∠=︒-︒=︒【考点】三角形的外角性质、圆周角定理.8.【答案】B【解析】A 项,是同类二次根式,不能合并.B项,正确.C 项,(5-÷=÷=--=【考点】二次根式的运算.9.【答案】B【解析】小亮、小莹、大刚三位同学随机地站成一排共有6种等可能结果,其中小亮恰好站在中间的结果有2种,所以(小亮恰好站在中间). P 21==63【考点】概率的求法.10.【答案】A【解析】如图,由折叠可知,.,A A α'∠=∠=,CEA AFD CEA A ββα'''∠=∴∠=∠+∠=+ ,即.2BDA A AFD αβααβ'∴∠=∠+∠=++=+=2+γαβ(第10小题)【考点】折叠的性质、三角形的外角性质.11.【答案】A【解析】如图,过点作轴,垂足为点..四边形是矩形,1C 1CD x ⊥D 190CD O ∴∠=︒ OABC .由旋转可知,.在中,由勾股定理,得190CD O BCO ∴∠=∠=︒1115,90OA OA COA COA ==∠=∠=︒1R t C O A △,,,111114.90,90CA COC COA COD COC =∠+∠=︒∠+∠=︒ 1111,CO D CO A CO D AO C ∴∠=∠∴ △△1111OC C D OD OC OA A C∴==即,解得点在第二象限,点的坐标为. 13354C D OD ==1912,.55OD C D == 1C ∴1C 912,55⎛⎫- ⎪⎝⎭(第11题)【考点】旋转的性质、勾股定理及相似三角形的性质与判定.12.【答案】C【解析】由题图可知,经过5的集中药物喷洒的一次函数的表达式为,反比例函数的表达式为min 2y x =.A 项,由函数图像可知,第5时,室内空气的最高含药量达到10,该项正确.B 项,在120y x=min 3mg/m 中,令,则,解得.,该项正确。
2018年山东省聊城市中考数学试卷含答案解析
2018年山东省聊城市中考数学试卷一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列实数中的无理数是()A.B.C.D.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学记数法可以表示为()A.1.25×108亿次/秒B.1.25×109亿次/秒C.1.25×1010亿次/秒D.12.5×108亿次/秒4.(3分)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120°D.125°5.(3分)下列计算错误的是()A.a2÷a0•a2=a4 B.a2÷(a0•a2)=1C.(﹣1.5)8÷(﹣1.5)7=﹣1.5 D.﹣1.58÷(﹣1.5)7=﹣1.56.(3分)已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.7.(3分)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°8.(3分)下列计算正确的是()A.3﹣2= B.•(÷)=C.(﹣)÷=2D.﹣3=9.(3分)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.B.C.D.10.(3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β11.(3分)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A处,则点1的坐标为()C的对应点C1A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)12.(3分)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.(3分)已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.14.(3分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.15.(3分)用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是cm.16.(3分)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是.17.(3分)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(7分)先化简,再求值:﹣÷(﹣),其中a=﹣.19.(8分)时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:(1)这次抽样调查中的样本是;(2)统计表中,a= ,b= ;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.20.(8分)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.21.(8分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?(8分)随着我市农产品整体品牌形象“聊•胜一筹!”的推出,现代农业得到了更快发展.某22.农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2.求保温板AC的长是多少米?(精确到0.1米)(参考数据:≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)23.(8分)如图,已知反比例函数y=(x>0)的图象与反比例函数y=(x<0)的图象关于y轴对称,A(1,4),B(4,m)是函数y=(x>0)图象上的两点,连接AB,点C(﹣2,n)是函数y=(x<0)图象上的一点,连接AC,BC.(1)求m,n的值;(2)求AB所在直线的表达式;(3)求△ABC的面积.24.(10分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB 于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.25.(12分)如图,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(10,0),与对称轴l 交于点E(5,5).矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM 的面积记为S.将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t(0≤t≤5)(1)求出这条抛物线的表达式;(2)当t=0时,求S的值;△OBN(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时S有最大值,最大值是多少?2018年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列实数中的无理数是()A.B.C.D.【分析】分别根据无理数、有理数的定义即可判定选择项【解答】解:,,是有理数,是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:用左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.(3分)在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学记数法可以表示为()A.1.25×108亿次/秒B.1.25×109亿次/秒C.1.25×1010亿次/秒D.12.5×108亿次/秒【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:12.5亿亿次/秒=1.25×109亿次/秒,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120°D.125°【分析】直接延长FE交DC于点N,利用平行线的性质得出∠BCD=∠DNF=95°,再利用三角形外角的性质得出答案.【解答】解:延长FE交DC于点N,∵直线AB∥EF,∴∠BCD=∠DNF=95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°.故选:C.【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.5.(3分)下列计算错误的是()A.a2÷a0•a2=a4 B.a2÷(a0•a2)=1C.(﹣1.5)8÷(﹣1.5)7=﹣1.5 D.﹣1.58÷(﹣1.5)7=﹣1.5【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.【解答】解:∵a2÷a0•a2=a4,∴选项A不符合题意;∵a2÷(a0•a2)=1,∴选项B不符合题意;∵(﹣1.5)8÷(﹣1.5)7=﹣1.5,∴选项C不符合题意;∵﹣1.58÷(﹣1.5)7=1.5,∴选项D符合题意.故选:D.【点评】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.6.(3分)已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.【分析】把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的方法部分即可.【解答】解:根据题意得:,由①得:x≥2,由②得:x<5,∴2≤x<5,表示在数轴上,如图所示,故选:A.【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.7.(3分)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°【分析】直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.【解答】解:∵∠A=60°,∠ADC=85°,∴∠B=85°﹣60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°﹣95°﹣50°=35°故选:D.【点评】此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.8.(3分)下列计算正确的是()A.3﹣2= B.•(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A、3与﹣2不是同类二次根式,不能合并,此选项错误;B、•(÷)=•==,此选项正确;C、(﹣)÷=(5﹣)÷=5﹣,此选项错误;D、﹣3=﹣2=﹣,此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.9.(3分)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.B.C.D.【分析】先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.【解答】解:列表如下:,共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率=.故选:B.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.10.(3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.【点评】本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.11.(3分)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【解答】解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(﹣,).故选:A.【点评】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.12.(3分)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内【分析】利用图中信息一一判断即可;【解答】解:A、正确.不符合题意.B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24﹣2.5=21.5<35,故本选项错误,符合题意;D、正确.不符合题意,故选:C.【点评】本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.(3分)已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.【分析】根据二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元一次方程,解之即可得出k的值.【解答】解:∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,∴,解得:k=.故答案为:.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.14.(3分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,∴P(红灯亮)==,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.(3分)用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是50 cm.【分析】设这个扇形铁皮的半径为Rcm,圆锥的底面圆的半径为rcm,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.和弧长公式得到2πr=,解得r=R,然后利用勾股定理得到402+(R)2=R2,最后解方程即可.【解答】解:设这个扇形铁皮的半径为Rcm,圆锥的底面圆的半径为rcm,根据题意得2πr=,解得r=R,因为402+(R)2=R2,解得R=50.所以这个扇形铁皮的半径为50cm.故答案为50.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.(3分)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是540°或360°或180°.【分析】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.【解答】解:n边形的内角和是(n﹣2)•180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.故答案为:540°或360°或180°.【点评】本题主要考查了多边形的内角和的计算公式,理解:剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,是解决本题的关键.17.(3分)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为x=0.5或x=1 .【分析】根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.【解答】解:∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x﹣1,∴2x﹣1≤x<2x﹣1+1,解得,0<x≤1,∵2x﹣1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.【点评】本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(7分)先化简,再求值:﹣÷(﹣),其中a=﹣.【分析】首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入a 的值可得答案.【解答】解:原式=﹣÷[﹣],=﹣÷[﹣],=﹣÷,=﹣•,=﹣,=﹣,当a=﹣时,原式=﹣=﹣4.【点评】此题主要考查了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或整式,再代入求值.19.(8分)时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:(1)这次抽样调查中的样本是时代中学学生最喜欢的一种球类运动情况;(2)统计表中,a= 39 ,b= 21 ;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.【分析】(1)直接利用样本的定义分析得出答案;(2)用喜欢排球的人数除以其所占的百分比即可求得样本容量,用样本容量乘以羽毛球所占的百分比即可求得a,用样本容量减去其他求得b值;(3)用总人数乘以喜欢乒乓球的人所占的百分比即可.【解答】解:(1)这次抽样调查中的样本是:时代中学学生最喜欢的一种球类运动情况;故答案为:时代中学学生最喜欢的一种球类运动情况;(2)∵喜欢蓝球的有33人,占22%,∴样本容量为33÷22%=150;a=150×26%=39(人),b=150﹣39﹣42﹣15﹣33=21(人);故答案为:39,21;(3)最喜欢乒乓球运动的人数为:1200×=336(人).【点评】本题考查了扇形统计图、用样本估计总体等知识,解题的关键是正确的从统计图中读懂有关信息.20.(8分)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.【分析】(1)根据ASA证明△ABE≌△BCF,可得结论;(2)根据(1)得:△ABE≌△BCF,则CF=BE=2,最后利用勾股定理可得AF的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,∴∠BAE+∠AEB=90°,∵BH⊥AE,∴∠BHE=90°,∴∠AEB+∠EBH=90°,∴∠BAE=∠EBH,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵AB=BC=5,由(1)得:△ABE≌△BCF,∴CF=BE=2,∴DF=5﹣2=3,∵四边形ABCD是正方形,∴AB=AD=5,∠ADF=90°,由勾股定理得:AF====.【点评】此题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题证明△ABE ≌△BCF是解本题的关键.21.(8分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【分析】(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据“甲乙两队合作150天完成土方量120万立方,甲队施工110天、乙队施工150天完成土方量103.2万立方”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据完成工作的总量=甲队完成的土方量+乙队完成的土方量,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据题意得:,解得:.答:甲队原计划平均每天的施工土方量为0.42万立方,乙队原计划平均每天的施工土方量为0.38万立方.(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据题意得:110×0.42+(40+110)×(0.38+a)≥120,解得:a≥0.112.答:乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出关于a的一元一次不等式.(8分)随着我市农产品整体品牌形象“聊•胜一筹!”的推出,现代农业得到了更快发展.某22.农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2.求保温板AC的长是多少米?(精确到0.1米)(参考数据:≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)【分析】作CE⊥BD、AF⊥CE,设AF=x,可得AC=2x、CF=x,在Rt△ABD中由AB=EF=2知BD=,DE=BD﹣BE=﹣x,CE=EF+CF=2+x,根据tan∠CDE=列出关于x的方程,解之可得.【解答】解:如图所示,过点C作CE⊥BD于点E,过点A作AF⊥CE于点F,则四边形ABEF是矩形,∴AB=EF、AF=BE,设AF=x,∵∠BAC=150°、∠BAF=90°,∴∠CAF=60°,则AC==2x、CF=AFtan∠CAF=x,在Rt△ABD中,∵AB=EF=2,∠ADB=9°,∴BD==,则DE=BD﹣BE=﹣x,CE=EF+CF=2+x,在Rt△CDE中,∵tan∠CDE=,∴tan15.6°=,解得:x≈0.7,即保温板AC的长是0.7米.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是理解题意,构建直角三角形,并熟练掌握三角函数的应用.23.(8分)如图,已知反比例函数y=(x>0)的图象与反比例函数y=(x<0)的图象关于y轴对称,A(1,4),B(4,m)是函数y=(x>0)图象上的两点,连接AB,点C(﹣2,n)是函数y=(x<0)图象上的一点,连接AC,BC.(1)求m,n的值;(2)求AB所在直线的表达式;(3)求△ABC的面积.【分析】(1)先由点A确定k,再求m的值,根据关于y轴对称,确定k2再求n;(2)先设出函数表达式,再代入A、B两点,得直线AB的表达式;(3)过点A、B作x轴的平行线,过点C、B作y轴的平行线构造矩形,△ABC的面积=矩形面积﹣3个直角三角形的面积.【解答】解:(1)因为点A、点B在反比例函数y=(x>0)的图象上,∴k1=1×4=4,∴m×4=k1=4,∴m=1∵反比例函数y=(x>0)的图象与反比例函数y=(x<0)的图象关于y轴对称.∴k2=﹣k1=﹣4∴﹣2×n=﹣4,∴n=2(2)设直线AB所在的直线表达式为y=kx+b把A(1,4),B(4,1)代入,得解得∴AB所在直线的表达式为:y=﹣x+5(3)如图所示:过点A、B作x轴的平行线,过点C、B作y轴的平行线,它们的交点分别是E、F、B、G.∴四边形EFBG是矩形.则AF=3,BF=3,AE=3,EC=2,CG=1,GB=6,EG=3∴S△ABC =S矩形EFBG﹣S△AFB﹣S△AEC﹣S△CBG=BG×EG﹣AF×FB﹣AE×EC﹣BG×CG=18﹣﹣3﹣3=【点评】本题考查了反比例函数的图形及性质、待定系数法确定一次函数解析式及面积的和差关系.题目具有综合性.注意图形的面积可以用割补法也可以用规则的几何图形求和差.24.(10分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB 于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.【分析】(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;(2)证△BDE∽△BEC得=,据此可求得BC的长度,再证△AOE∽△ABC得=,据此可得AD的长.【解答】解:(1)如图,连接OE,∵OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠CBE,∴∠OEB=∠CBE,∴OE∥BC,又∵∠C=90°,∴∠AEO=90°,即OE⊥AC,∴AC为⊙O的切线;(2)∵ED⊥BE,∴∠BED=∠C=90°,又∵∠DBE=∠EBC,∴△BDE∽△BEC,∴=,即=,∴BC=;∵∠AEO=∠C=90°,∠A=∠A,∴△AOE∽△ABC,∴=,即=,解得:AD=.【点评】本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质.。
2018年山东省聊城市中考数学试卷-答案
山东省聊城市2018年中考数学试卷数学答案解析2.【答案】D【解析】从几何体的左面看,有一条看不见的棱,应画虚线;从图中数据看,该虚线靠近上方,故D 项符合.【考点】左视图. 3.【答案】B【解析】12.5亿9=1250000000=1.2510⨯. 【考点】科学记数法. 4.【答案】C【解析】如图,过点D 作DG AB ∥,95,1801809585.BCD CDG BCD ∠=︒∴∠=︒-∠=︒-︒=︒25,852560.CDE EDG CDG CDE ∠=︒∴∠=∠-∠=︒-︒=︒,,180********.AB EF EF DG DEF EDG ∴∴∠=︒-∠=︒-︒=︒∥∥(第4题)【考点】平行线的性质. 5.【答案】D【解析】A ,B ,C 项正确,D 项,()()78871.5 1.5 1.5 1.5 1.5.-÷-=-÷-=【考点】整式的运算. 6.【答案】A【解析】原不等式可化为2423224132x xx x --⎧≥⎪⎪⎨--⎪<⎪⎩①②,解不等式①,得2x ≥.解不等式②,得5x <.∴原不等式组的解集为25x ≤<,在数轴上表示如A 项所示.【考点】解不等式组及在数轴上表示不等式组的解集. 7.【答案】D 【解析】85,60,A D C A B A D CA ∠=︒∠=︒∴∠=∠-∠=︒,222550AOC B ∴∠=∠=⨯︒=︒,855035C ADC AOC ∴∠=∠-∠=︒-︒=︒.【考点】三角形的外角性质、圆周角定理. 8.【答案】B【解析】A 项,与不是同类二次根式,不能合并.B 项,正确.C 项,(35=-【考点】二次根式的运算. 9.【答案】B【解析】小亮、小莹、大刚三位同学随机地站成一排共有6种等可能结果,其中小亮恰好站在中间的结果有2种,所以P (小亮恰好站在中间)21==63.【考点】概率的求法. 10.【答案】A【解析】如图,由折叠可知,A A α'∠=∠=.,CEA AFD CEA A ββα'''∠=∴∠=∠+∠=+,2BDA A AFD αβααβ'∴∠=∠+∠=++=+,即=2+γαβ.(第10小题)【考点】折叠的性质、三角形的外角性质. 11.【答案】A【解析】如图,过点1C 作1C D x ⊥轴,垂足为点D .190C DO ∴∠=︒.四边形OABC 是矩形,190C DO BCO ∴∠=∠=︒.由旋转可知,1115,90OA OA C OA COA ==∠=∠=︒.在1Rt COA △中,由勾股定理,得111114.90,90CA C OC COA C OD C OC =∠+∠=︒∠+∠=︒,1111,C OD COA C OD AOC ∴∠=∠∴△△,1111OC C D OD OCOA AC ∴==,即13354C D OD ==,解得1912,.55OD C D ==点1C 在第二象限,∴点1C 的坐标为912,55⎛⎫- ⎪⎝⎭.(第11题)【考点】旋转的性质、勾股定理及相似三角形的性质与判定. 12.【答案】C【解析】由题图可知,经过5min 的集中药物喷洒的一次函数的表达式为2y x =,反比例函数的表达式为120y x=.A 项,由函数图像可知,第5min 时,室内空气的最高含药量达到103mg/m ,该项正确.B 项,在2y x =中,令8y =,则28x =,解得4x =.()15411min ∴-=,该项正确。
2018年山东省聊城市中考数学试卷(带答案解析)
解得:x=± (负数舍去), i
则 NO= ,NC1= , i
故点 C 的对应点 C1 的坐标为:(﹣ , ). 故选:A.
12.(3 分)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项 工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过 程中,先经过 5min 的集中药物喷洒,再封闭宿舍 10min,然后打开门窗进行通 风,室内每立方米空气中含药量 y(mg/m3)与药物在空气中的持续时间 x(min)
由(1)得:△ABE≌△BCF,
∴CF=BE=2,
∴DF=5﹣2=3,
∵四边形 ABCD 是正方形,
∴AB=AD=5,∠ADF=90°,
由勾股定理得:AF= t i
i= i i= i
=.
第 11页(共 18页)
21.(8 分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的
三、解答题(本题共 8 个小题,共 69 分,解答题应写出文字说明、证明过程或 推演步骤)
18.(7 分)先化简,再求值:
﹣
÷(
﹣ i
i
i ),其中 a=﹣i.
【解答】解:原式=
﹣
÷[ ﹣
],
i ti
i
=
﹣
÷[
﹣
],
ti ti
i
=
﹣
÷
,
ti
ti
= ﹣ •t
t
,
i =﹣,
第 9页(共 18页)
i =﹣ ,
A.γ=2α+β B.γ=α+2β C.γ=α+β D.γ=180°﹣α﹣β 【解答】解:由折叠得:∠A=∠A', ∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA', ∵∠A=α,∠CEA′=β,∠BDA'=γ, ∴∠BDA'=γ=α+α+β=2α+β, 故选:A.
2018年山东省聊城市中考数学试卷试题及答案
2018年山东省聊城市中考数学试卷一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)(2018•聊城)下列实数中的无理数是( )A BC D .2272.(3分)(2018•聊城)如图所示的几何体,它的左视图是( )A .B .C .D .3.(3分)(2018•聊城)在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒,这个数据以亿次/秒为单位用科学记数法可以表示为( )A .81.2510⨯亿次/秒B .91.2510⨯亿次/秒C .101.2510⨯亿次/秒D .812.510⨯亿次/秒4.(3分)(2018•聊城)如图,直线//AB EF ,点C 是直线AB 上一点,点D 是直线AB 外一点,若95BCD ∠=︒,25CDE ∠=︒,则DEF ∠的度数是( )A .110︒B .115︒C .120︒D .125︒5.(3分)(2018•聊城)下列计算错误的是( ) A .2024a a a a ÷= B .202()1a a a ÷= C .87( 1.5)( 1.5) 1.5-÷-=- D .871.5( 1.5) 1.5-÷-=-6.(3分)(2018•聊城)已知不等式2241232x x x ---<…,其解集在数轴上表示正确的是()A .B .C .D .7.(3分)(2018•聊城)如图,O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC .若60A ∠=︒,85ADC ∠=︒,则C ∠的度数是( )A .25︒B .27.5︒C .30︒D .35︒8.(3分)(2018•聊城)下列计算正确的是( )A .=B 111(11711÷=C .=D =9.(3分)(2018•聊城)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( ) A .12B .13C .23D .1610.(3分)(2018•聊城)如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆外的A '处,折痕为DE .如果A α∠=,CEA β∠'=,BDA γ'∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=︒--11.(3分)(2018•聊城)如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且5OA =,3OC =.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的1A 处,则点C 的对应点1C 的坐标为( )A .9(5-,12)5B .12(5-,9)5C .16(5-,12)5D .12(5-,16)512.(3分)(2018•聊城)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,室内每立方米空气中含药量3(/)y mg m 与药物在空气中的持续时间()x min 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A .经过5min 集中喷洒药物,室内空气中的含药量最高达到310/mg mB .室内空气中的含药量不低于38/mg m 的持续时间达到了11minC .当室内空气中的含药量不低于35/mg m 且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D .当室内空气中的含药量低于32/mg m 时,对人体才是安全的,所以从室内空气中的含药量达到32/mg m 开始,需经过59min 后,学生才能进入室内二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.(3分)(2018•聊城)已知关于x 的方程2(1)230k x kx k --+-=有两个相等的实根,则k 的值是 .14.(3分)(2018•聊城)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是 .15.(3分)(2018•聊城)用一块圆心角为216︒的扇形铁皮,做一个高为40cm 的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是 cm .16.(3分)(2018•聊城)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 .17.(3分)(2018•聊城)若x 为实数,则[]x 表示不大于x 的最大整数,例如[1.6]1=,[]3π=,[ 2.82]3-=-等.[]1x +是大于x 的最小整数,对任意的实数x 都满足不等式[][]1x x x <+….①利用这个不等式①,求出满足[]21x x =-的所有解,其所有解为 . 三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤) 18.(7分)(2018•聊城)先化简,再求值:211()122a a a a a a a a --÷-+++,其中12a =-. 19.(8分)(2018•聊城)时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:解答下列问题:(1)这次抽样调查中的样本是;(2)统计表中,a=,b=;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.20.(8分)(2018•聊城)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH AE⊥,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE BF=.(2)若正方形边长是5,2BE=,求AF的长.21.(8分)(2018•聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?22.(8分)(2018•聊城)随着我市农产品整体品牌形象“聊胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB ,BD 分别表示大棚的墙高和跨度,AC 表示保温板的长.已知墙高AB 为2米,墙面与保温板所成的角150BAC ∠=︒,在点D 处测得A 点、C 点的仰角分别为9︒,15.6︒,如图2.求保温板AC 的长是多少米?(精确到0.1米)(参考数据:0.86≈,sin90.16︒≈,cos90.99︒≈,tan90.16︒≈,sin15.60.27︒≈,cos15.60.96︒≈,tan15.60.28)︒≈23.(8分)(2018•聊城)如图,已知反比例函数1(0)k y x x=>的图象与反比例函数2(0)k y x x=<的图象关于y 轴对称,(1,4)A ,(4,)B m 是函数1(0)ky x x =>图象上的两点,连接AB ,点(2,)C n -是函数2(0)ky x x=<图象上的一点,连接AC ,BC .(1)求m ,n 的值;(2)求AB 所在直线的表达式; (3)求ABC ∆的面积.24.(10分)(2018•聊城)如图,在Rt ABC ∆中,90C ∠=︒,BE 平分ABC ∠交AC 于点E ,作ED EB ⊥交AB 于点D ,O 是BED ∆的外接圆. (1)求证:AC 是O 的切线;(2)已知O 的半径为2.5,4BE =,求BC ,AD 的长.25.(12分)(2018•聊城)如图,已知抛物线2y ax bx =+与x 轴分别交于原点O 和点(10,0)F ,与对称轴l 交于点(5,5)E .矩形ABCD 的边AB 在x 轴正半轴上,且1AB =,边AD ,BC 与抛物线分别交于点M ,N .当矩形ABCD 沿x 轴正方向平移,点M ,N 位于对称轴l 的同侧时,连接MN ,此时,四边形ABNM 的面积记为S ;点M ,N 位于对称轴l 的两侧时,连接EM ,EN ,此时五边形ABNEM 的面积记为S .将点A 与点O 重合的位置作为矩形ABCD 平移的起点,设矩形ABCD 平移的长度为(05)t t 剟. (1)求出这条抛物线的表达式; (2)当0t =时,求OBN S ∆的值;(3)当矩形ABCD 沿着x 轴的正方向平移时,求S 关于(05)t t <…的函数表达式,并求出t 为何值时,S 有最大值,最大值是多少?2018年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列实数中的无理数是()A B C D.22 7【解答】227是有理数,是无理数,故选:C.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.【解答】解:从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:D.3.(3分)在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒,这个数据以亿次/秒为单位用科学记数法可以表示为() A.81.2510⨯亿次/秒B.91.2510⨯亿次/秒C.101.2510⨯亿次/秒D.812.510⨯亿次/秒【解答】解:12.5亿亿次/秒91.2510=⨯亿次/秒.故选:B.4.(3分)如图,直线//AB EF,点C是直线AB上一点,点D是直线AB外一点,若95BCD∠=︒,25CDE∠=︒,则DEF∠的度数是()A .110︒B .115︒C .120︒D .125︒【解答】解:延长FE 交DC 于点N , 直线//AB EF , 95BCD DNF ∴∠=∠=︒, 25CDE ∠=︒,9525120DEF ∴∠=︒+︒=︒.故选:C .5.(3分)下列计算错误的是( ) A .2024a a a a ÷= B .202()1a a a ÷= C .87( 1.5)( 1.5) 1.5-÷-=- D .871.5( 1.5) 1.5-÷-=-【解答】解:2024a a a a ÷=,∴选项A 不符合题意;202()1a a a ÷=,∴选项B 不符合题意;87( 1.5)( 1.5) 1.5-÷-=-,∴选项C 不符合题意;871.5( 1.5) 1.5-÷-=,∴选项D 符合题意.故选:D.6.(3分)已知不等式2241232x x x---<…,其解集在数轴上表示正确的是()A .B .C .D .【解答】解:根据题意得:2242324132x xx x--⎧⎪⎪⎨--⎪<⎪⎩①②…,由①得:2x…,由②得:5x<,25x∴<…,表示在数轴上,如图所示,故选:A.7.(3分)如图,O中,弦BC与半径OA相交于点D,连接AB,OC.若60A∠=︒,85ADC∠=︒,则C∠的度数是()A.25︒B.27.5︒C.30︒D.35︒【解答】解:60A∠=︒,85ADC∠=︒,856025B∴∠=︒-︒=︒,95CDO∠=︒,250AOC B∴∠=∠=︒,180955035C ∴∠=︒-︒-︒=︒故选:D .8.(3分)下列计算正确的是( )A .=B 111(11711÷=C .=D =【解答】解:A 、与-B 111711711()111171111711÷=⨯=⨯C 、5=D == 故选:B .9.(3分)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( ) A .12B .13C .23D .16【解答】解:列表如下:,共有6种等可能的结果,其中小亮恰好站在中间的占2种, 所以小亮恰好站在中间的概率13=.故选:B .10.(3分)如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆外的A '处,折痕为DE .如果A α∠=,CEA β∠'=,BDA γ'∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=︒--【解答】解:由折叠得:A A '∠=∠,BDA A AFD '∠=∠+∠,AFD A CEA ''∠=∠+∠,A α∠=,CEA β∠'=,BDA γ'∠=,2BDA γααβαβ'∴∠==++=+,故选:A .11.(3分)如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且5OA =,3OC =.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的1A 处,则点C 的对应点1C 的坐标为( )A .9(5-,12)5B .12(5-,9)5C .16(5-,12)5D .12(5-,16)5【解答】解:过点1C 作1C N x ⊥轴于点N ,过点1A 作1A M x ⊥轴于点M , 由题意可得:1190C NO A MO ∠=∠=︒,123∠=∠=∠,则△1AOM ∽△1OC N , 5OA =,3OC =, 15OA ∴=,13A M =,4OM ∴=,∴设3NO x =,则14NC x =,13OC =,则22(3)(4)9x x +=, 解得:35x =±(负数舍去),则95NO =,1125NC =,故点C 的对应点1C 的坐标为:9(5-,12)5.故选:A .12.(3分)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,室内每立方米空气中含药量3(/)y mg m 与药物在空气中的持续时间()x min 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A .经过5min 集中喷洒药物,室内空气中的含药量最高达到310/mg mB .室内空气中的含药量不低于38/mg m 的持续时间达到了11minC .当室内空气中的含药量不低于35/mg m 且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D .当室内空气中的含药量低于32/mg m 时,对人体才是安全的,所以从室内空气中的含药量达到32/mg m 开始,需经过59min 后,学生才能进入室内 【解答】解:A 、正确.不符合题意.B 、由题意4x =时,8y =,∴室内空气中的含药量不低于38/mg m 的持续时间达到了11min ,正确,不符合题意;C 、5y =时, 2.5x =或24,24 2.521.535-=<,故本选项错误,符合题意;D 、当5x …时,函数关系式为2y x =,2y =时,1x =;当15x >时,函数关系式为120y x=,2y =时,60x =;60159-=,故当室内空气中的含药量低于32/mg m 时,对人体才是安全的,所以从室内空气中的含药量达到32/mg m 开始,需经过59min 后,学生才能进入室内,正确.不符合题意, 故选:C .二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果) 13.(3分)已知关于x 的方程2(1)230k x kx k --+-=有两个相等的实根,则k 的值是 34. 【解答】解:关于x 的方程2(1)230k x kx k --+-=有两个相等的实根, ∴210(2)4(1)(3)0k k k k -≠⎧⎨=----=⎩, 解得:34k =. 故答案为:34. 14.(3分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是25.【解答】解:红灯亮30秒,黄灯亮3秒,绿灯亮42秒,P ∴(红灯亮)302303425==++,故答案为:25. 15.(3分)用一块圆心角为216︒的扇形铁皮,做一个高为40cm 的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是 50 cm . 【解答】解:设这个扇形铁皮的半径为Rcm , 圆锥的底面圆的半径为rcm , 根据题意得2162180R r ππ=,解得35r R =, 因为222340()5R R +=,解得50R =.所以这个扇形铁皮的半径为50cm . 故答案为50.16.(3分)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 540︒或360︒或180︒ .【解答】解:n 边形的内角和是(2)180n -︒,边数增加1,则新的多边形的内角和是(412)180540+-⨯︒=︒,所得新的多边形的角不变,则新的多边形的内角和是(42)180360-⨯︒=︒, 所得新的多边形的边数减少1,则新的多边形的内角和是(412)180180--⨯︒=︒, 因而所成的新多边形的内角和是540︒或360︒或180︒. 故答案为:540︒或360︒或180︒.17.(3分)若x 为实数,则[]x 表示不大于x 的最大整数,例如[1.6]1=,[]3π=,[ 2.82]3-=-等.[]1x +是大于x 的最小整数,对任意的实数x 都满足不等式[][]1x x x <+….①利用这个不等式①,求出满足[]21x x =-的所有解,其所有解为0.5x =或1x = .【解答】解:对任意的实数x 都满足不等式[][]1x x x <+…,[]21x x =-,21211x x x ∴-<-+…,解得,01x <…,21x -是整数, 0.5x ∴=或1x =,故答案为:0.5x =或1x =.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤) 18.(7分)先化简,再求值:211()122a a a a a a a a --÷-+++,其中12a =-. 【解答】解:原式11[]12(2)a a a a a a a a -=-÷-+++,211[]1(2)(2)a a a a a a a a a -=-÷-+++, 2111(2)a a a a a a a --=-÷++, 1(2)1(1)(1)a a a a a a a a -+=-++-, 211a a a a +=-++, 21a =-+, 当12a =-时,原式24112=-=--+. 19.(8分)时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:解答下列问题:(1)这次抽样调查中的样本是 时代中学学生最喜欢的一种球类运动情况 ;(2)统计表中,a=,b=;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.【解答】解:(1)这次抽样调查中的样本是:时代中学学生最喜欢的一种球类运动情况;故答案为:时代中学学生最喜欢的一种球类运动情况;(2)喜欢篮球的有33人,占22%,∴样本容量为3322%150÷=;15026%39a=⨯=(人),1503942153321b=----=(人);故答案为:39,21;(3)最喜欢乒乓球运动的人数为:421200336150⨯=(人).20.(8分)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH AE⊥,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE BF=.(2)若正方形边长是5,2BE=,求AF的长.【解答】(1)证明:四边形ABCD是正方形,AB BC∴=,90ABE BCF∠=∠=︒,90BAE AEB∴∠+∠=︒,BH AE⊥,90BHE∴∠=︒,90AEB EBH ∴∠+∠=︒,BAE EBH ∴∠=∠,在ABE ∆和BCF ∆中, BAE CBF AB BCABE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABE BCF ASA ∴∆≅∆,AE BF ∴=;(2)解:5AB BC ==,由(1)得:ABE BCF ∆≅∆, 2CF BE ∴==, 523DF ∴=-=,四边形ABCD 是正方形, 5AB AD ∴==,90ADF ∠=︒,由勾股定理得:AF =21.(8分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方. (1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【解答】解:(1)设甲队原计划平均每天的施工土方量为x 万立方,乙队原计划平均每天的施工土方量为y 万立方,根据题意得:150()120110(40110)103.2x y x y +=⎧⎨++=⎩,解得:0.420.38x y =⎧⎨=⎩.答:甲队原计划平均每天的施工土方量为0.42万立方,乙队原计划平均每天的施工土方量为0.38万立方.(2)设乙队平均每天的施工土方量比原来提高a 万立方才能保证按时完成任务, 根据题意得:1100.42(40110)(0.38)120a ⨯++⨯+…, 解得:0.112a ….答:乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务. 22.(8分)随着我市农产品整体品牌形象“聊胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB ,BD 分别表示大棚的墙高和跨度,AC 表示保温板的长.已知墙高AB 为2米,墙面与保温板所成的角150BAC ∠=︒,在点D 处测得A 点、C 点的仰角分别为9︒,15.6︒,如图2.求保温板AC的长是多少米?(精确到0.1米)(参考数据:0.86≈,sin90.16︒≈,cos90.99︒≈,tan90.16︒≈,sin15.60.27︒≈,cos15.60.96︒≈,tan15.60.28)︒≈【解答】解:如图所示,过点C 作CE BD ⊥于点E ,过点A 作AF CE ⊥于点F ,则四边形ABEF 是矩形,AB EF ∴=、AF BE =,设AF x =,150BAC ∠=︒、90BAF ∠=︒, 60CAF ∴∠=︒,则2cos AFAC x CAF==∠、tan CF AF CAF =∠=,在Rt ABD ∆中,2AB EF ==,9ADB ∠=︒,2tan tan9AB BD ADB ∴==∠︒, 则2tan9DE BD BE x =-=-︒,2CE EF CF =+=, 在Rt CDE ∆中,tan CECDE DE∠=,tan15.6tan9x ∴︒-︒解得:0.75x ≈,则2 1.5x =,即 1.5AC =米, 即保温板AC 的长约是1.5米. 23.(8分)如图,已知反比例函数1(0)k y x x =>的图象与反比例函数2(0)ky x x=<的图象关于y 轴对称,(1,4)A ,(4,)B m 是函数1(0)ky x x=>图象上的两点,连接AB ,点(2,)C n -是函数2(0)ky x x=<图象上的一点,连接AC ,BC .(1)求m ,n 的值;(2)求AB 所在直线的表达式; (3)求ABC ∆的面积.【解答】解:(1)因为点A 、点B 在反比例函数1(0)k y x x=>的图象上, 1144k ∴=⨯=, 144m k ∴⨯==,1m ∴=反比例函数1(0)k y x x =>的图象与反比例函数2(0)ky x x=<的图象关于y 轴对称. 214k k ∴=-=-24n ∴-⨯=-,2n ∴=(2)设直线AB 所在的直线表达式为y kx b =+把(1,4)A ,(4,1)B 代入,得414k b k b =+⎧⎨=+⎩解得15k b =-⎧⎨=⎩ AB ∴所在直线的表达式为:5y x =-+(3)如图所示:过点A 、B 作x 轴的平行线,过点C 、B 作y 轴的平行线,它们的交点分别是E 、F 、B 、G .∴四边形EFBG 是矩形.则3AF =,3BF =,3AE =,2EC =,1CG =,6GB =,3EG =ABC AFB AEC CBG EFBG S S S S S ∆∆∆∆∴=---矩形111222BG EG AF FB AE EC BG CG =⨯-⨯-⨯-⨯ 918332=--- 152=24.(10分)如图,在Rt ABC ∆中,90C ∠=︒,BE 平分ABC ∠交AC 于点E ,作ED EB⊥交AB 于点D ,O 是BED ∆的外接圆.(1)求证:AC 是O 的切线;(2)已知O 的半径为2.5,4BE =,求BC ,AD 的长.【解答】解:(1)如图,连接OE ,OB OE =,OBE OEB ∴∠=∠, BE 平分ABC ∠,OBE CBE ∴∠=∠,OEB CBE ∴∠=∠,//OE BC ∴,又90C ∠=︒,90AEO ∴∠=︒,即OE AC ⊥,AC ∴为O 的切线;(2)ED BE ⊥,90BED C ∴∠=∠=︒,又DBE EBC ∠=∠,BDE BEC ∴∆∆∽, ∴BD BE BE BC =,即544BC=, 165BC ∴=; 90AEO C ∠=∠=︒,A A ∠=∠,AOE ABC ∴∆∆∽, ∴AO OE AB BC=,即 2.5 2.51655AD AD +=+, 解得:457AD =. 25.(12分)如图,已知抛物线2y ax bx =+与x 轴分别交于原点O 和点(10,0)F ,与对称轴l交于点(5,5)E .矩形ABCD 的边AB 在x 轴正半轴上,且1AB =,边AD ,BC 与抛物线分别交于点M ,N .当矩形ABCD 沿x 轴正方向平移,点M ,N 位于对称轴l 的同侧时,连接MN ,此时,四边形ABNM 的面积记为S ;点M ,N 位于对称轴l 的两侧时,连接EM ,EN ,此时五边形ABNEM 的面积记为S .将点A 与点O 重合的位置作为矩形ABCD 平移的起点,设矩形ABCD 平移的长度为(05)t t 剟. (1)求出这条抛物线的表达式;(2)当0t =时,求OBN S ∆的值;(3)当矩形ABCD 沿着x 轴的正方向平移时,求S 关于(05)t t <…的函数表达式,并求出t 为何值时,S 有最大值,最大值是多少?【解答】解:(1)将(5,5)E 、(10,0)F 代入2y ax bx =+,2555100100a b a b +=⎧⎨+=⎩,解得:152a b ⎧=-⎪⎨⎪=⎩, ∴抛物线的表达式为2125y x x =-+. (2)当0t =时,点B 的坐标为(1,0),点N 的坐标为9(1,)5, 95BN ∴=,1OB =, 19210OBN S BN OB ∆∴==. (3)①当04t <…时(图1),点A 的坐标为(,0)t ,点B 的坐标为(1,0)t +, ∴点M 的坐标为21(,2)5t t t -+,点N 的坐标为(1t +,21(1)2(1))5t t -+++, 2125AM t t ∴=-+,21(1)2(1)5BN t t =-+++, 221111()1[2(1)2(1)]2255S AM BN AB t t t t ∴=+=⨯⨯-+-+++, 21995510t t =-++,21999()5220t =--+, 105-<, ∴当4t =时,S 取最大值,最大值为4910; ②当45t <…时(图2),点A 的坐标为(,0)t ,点B 的坐标为(1,0)t +, ∴点M 的坐标为21(,2)5t t t -+,点N 的坐标为(1t +,21(1)2(1))5t t -+++, 2125AM t t ∴=-+,21(1)2(1)5BN t t =-+++, 221111(5)(25)(4)[5(1)2(1)]2525S t t t t t t ∴=--+++--+++, 32321111122136(3525)()2525555t t t t t t =-+++-++-, 232711101010t t =-+-, 239199()10240t =--+, 3010-<, ∴当92t =时,S 取最大值,最大值为19940. 49196199104040=<, ∴当92t =时,S 有最大值,最大值是19940.。
聊城市2018年初中学业水平测试数学模拟试题(二)
数学模拟(二) 第1页 (共3页)聊城市2018年初中学业水平测试数学模拟试题(二)亲爱的同学,伴随着考试的开始,你又走到了一个新的人生驿站。
请你在答题之前,一定要仔细阅读以下说明:1.试题由选择题与非选择题两部分组成,共3页。
选择题36分,非选择题84分,共 120分。
考试时间120分钟。
2.将姓名、考场号、座号、考号填写在试题和答题卡指定的位置。
3.试题答案全部写在答题卡上,完全按照答题卡中的“注意事项”答题。
4.考试结束,答题卡和试题一并交回。
5.不允许使用计算器。
愿你放松心情,认真审题,缜密思考,细心演算,争取交一份满意的答卷。
选择题(共36分)一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1. 如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的有( )A .2个B .3个C .4个D .5个 2.小星同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数约为61700000,这个数用科学记数法表示为( )A. 617 ×105B. 6.17 ×106C. 6.17 ×107D. 0.617 ×1083.为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周的使 用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7.关于这组数据,下列结论错误的是 ( )A.极差是7B.众数是8C.中位数是8.5D.平均数是94.下图的长方体是由A ,B ,C ,D 四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体是( )A.B.C.D.5. 正方形ABCD 在坐标系中的位置如图所示,将 正方形ABCD 绕D 点顺时针旋转90°后,B 点的对应点 的坐标为( )A. (−2,2)B. (4,1)C. (3,1)D. (4,0)6. 如果抛物线经过点和,那么对称轴是直线( )A.B.C.D.7. 如图,现分别旋转两个标准的转盘,则转盘 所转到的两个数字之积为奇数的概率是( )A.B. C. D.8. 如图,▱ABCD 中,平分交AD 于点E 、交AC 于点F ,则的值为( ) A. B.C.D.9. 同圆的外切正四边形与内接正四边形的边长之比是 A.:1B.:1 C. 2:1D. 3:110. 如图,AB 是的直径,弦,垂足为E,若,则直径AB 的长为数学模拟(二) 第2页 (共3页)A. 2B. 3C. 4D. 511. 在边长为2的正方形ABCD 中,对角线AC 与BD相交于点是BD 上一动点,过P 作,分别交正方形的两条边于点设的面积为y ,则能反映y 与x之间关系的图象为A. B.C. D.12. 在平面直角坐标系中,第一个正方形ABCD 的位置如图所示,点A的坐标为,点D 的坐标为延长CB 交x 轴于点,作第二个正方形;延长交x 轴于点,作第三个正方形,按这样的规律进行下去,第2018个正方形的面积为A. B. C.D.二、填空题(本题共5个小题,每小题3分,共15分。
山东省聊城市2018年中考数学试卷(解析版)
山东省聊城市2018年中考数学试卷一、选择题(本大题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项是符合题目要求)1. 下列实数中的无理数是()A. B. C. D.【答案】C【解析】分析: 分别根据无理数、有理数的定义即可判定选择项.详解:=1.1,=-2,是有理数,是无理数,故选:C.点睛:此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2. 如图所示的几何体,它的左视图是()A. B. C. D.【答案】D【解析】分析: 根据从左边看得到的图形是左视图,可得答案.详解: 用左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3. 在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为()A. 亿次/秒B. 亿次/秒C. 亿次/秒D. 亿次/秒【答案】B【解析】分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解: 12.5亿亿次/秒=1.25×109亿次/秒,故选:B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 如图,直线,点是直线上一点,点是直线外一点,若,,则的度数是()A. B. C. D.【答案】C【解析】分析: 直接延长FE交DC于点N,利用平行线的性质得出∠BCD=∠DNF=95°,再利用三角形外角的性质得出答案.详解: 延长FE交DC于点N,∵直线AB∥EF,∴∠BCD=∠DNF=95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°.故选:C.点睛:此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.5. 下列计算错误的是()A. B.C. D.【答案】D【解析】分析: 根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.详解:∵a2÷a0•a2=a4,∴选项A不符合题意;∵a2÷(a0•a2)=1,∴选项B不符合题意;∵(-1.5)8÷(-1.5)7=-1.5,∴选项C不符合题意;∵-1.58÷(-1.5)7=1.5,∴选项D符合题意.故选:D.点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.6. 已知不等式,其解集在数轴上表示正确的是()A. B.C. D.【答案】A【解析】分析: 把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的方法部分即可.详解:根据题意得:,由①得:x≥2,由②得:x<5,∴2≤x<5,表示在数轴上,如图所示,点睛:此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.7. 如图,中,弦与半径相交于点,连接,.若,,则的度数是()A. B. C. D.【答案】D【解析】分析: 直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解: ∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选:D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.8. 下列计算正确的是()A. B.C. D.【答案】B【解析】分析: 根据二次根式的加减乘除运算法则逐一计算可得.详解:A、与不是同类二次根式,不能合并,此选项错误;B、===,此选项正确;C、=(5-)÷=5-,此选项错误;D、=,此选项错误;点睛:本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.9. 小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A. B. C. D.【答案】B【解析】分析: 先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.详解:列表如下:,共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率=.故选:B.点睛:本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.10. 如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是()A. B. C. D.【答案】A【解析】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.11. 如图,在平面直角坐标系中,矩形的两边,分别在轴和轴上,并且,.若把矩形绕着点逆时针旋转,使点恰好落在边上的处,则点的对应点的坐标为()A. B. C. D.【答案】A【解析】分析: 直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.详解: 过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(-,).故选:A.点睛:此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.12. 春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A. 经过集中喷洒药物,室内空气中的含药量最高达到B. 室内空气中的含药量不低于的持续时间达到了C. 当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D. 当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内【答案】C【解析】分析: 利用图中信息一一判断即可.详解: A、正确.不符合题意.B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;D、正确.不符合题意,故选:C.点睛:本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13. 已知关于的方程有两个相等的实根,则的值是__________.【答案】【解析】分析: 根据二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元一次方程,解之即可得出k的值.详解::∵关于x的方程(k-1)x2-2kx+k-3=0有两个相等的实根,∴,解得:k=.故答案为:.点睛:本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.14. 某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是__________.【答案】【解析】分析: 根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,∴P(红灯亮)=,故答案为:.点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.15. 用一块圆心角为的扇形铁皮,做一个高为的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是__________.【答案】50【解析】分析:设这个扇形铁皮的半径为Rcm,圆锥的底面圆的半径为rcm,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.和弧长公式得到2πr=,解得r=R,然后利用勾股定理得到402+(R)2=R2,最后解方程即可.学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...详解:设这个扇形铁皮的半径为Rcm,圆锥的底面圆的半径为rcm,根据题意得2πr=,解得r=R,因为402+(R)2=R2,解得R=50.所以这个扇形铁皮的半径为50cm.故答案为50.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16. 如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是__________.【答案】180°或360°或540°【解析】分析: 剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.详解: n边形的内角和是(n-2)•180°,边数增加1,则新的多边形的内角和是(4+1-2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4-2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4-1-2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.故答案为:540°或360°或180°.点睛:本题主要考查了多边形的内角和的计算公式,理解:剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,是解决本题的关键.17. 若为实数,则表示不大于的最大整数,例如,,等. 是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.【答案】或1.【解析】分析: 根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.详解: ∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,∴2x-1≤x<2x-1+1,解得,0<x≤1,∵2x-1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.点睛:本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.三、解答题(本题共8个小题,共69分.解答应写出文字说明、证明过程或演算步骤)18. 先化简,再求值:,其中.【答案】-4【解析】分析: 首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入a的值可得答案.详解:原式====-当a=-时,原式=-4.点睛:此题主要考查了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或整式,再代入求值.19. 时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种).调查结果统计如下:解答下列问题:(1)这次抽样调查中的样本是________;(2)统计表中,________,________;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.【答案】(1)时代中学学生最喜欢的一种球类运动情况;(2)39,21;(3)336人.【解析】分析: (1)直接利用样本的定义分析得出答案;(2)用喜欢排球的人数除以其所占的百分比即可求得样本容量,用样本容量乘以羽毛球所占的百分比即可求得a,用样本容量减去其他求得b值;(3)用总人数乘以喜欢乒乓球的人所占的百分比即可.详解:(1)这次抽样调查中的样本是:时代中学学生最喜欢的一种球类运动情况;故答案为:时代中学学生最喜欢的一种球类运动情况;(2)∵喜欢蓝球的有33人,占22%,∴样本容量为33÷22%=150;a=150×26%=39(人),b=150-39-42-15-33=21(人);故答案为:39,21;(3)最喜欢乒乓球运动的人数为:1200×=336(人).点睛:本题考查了扇形统计图、用样本估计总体等知识,解题的关键是正确的从统计图中读懂有关信息.20. 如图,正方形中,是上的一点,连接,过点作,垂足为点,延长交于点,连接.(1)求证:.(2)若正方形边长是5,,求的长.【答案】(1)证明见解析;(2).【解析】分析: (1)根据ASA证明△ABE≌△BCF,可得结论;(2)根据(1)得:△ABE≌△BCF,则CF=BE=2,最后利用勾股定理可得AF的长.详解:(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,∴∠BAE+∠AEB=90°,∵BH⊥AE,∴∠BHE=90°,∴∠AEB+∠EBH=90°,∴∠BAE=∠EBH,在△ABE和△BCF中,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵AB=BC=5,由(1)得:△ABE≌△BCF,∴CF=BE=2,∴DF=5-2=3,∵四边形ABCD是正方形,∴AB=AD=5,∠ADF=90°,由勾股定理得:AF=.点睛:此题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题证明△ABE≌△BCF 是解本题的关键.21. 建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【答案】(1)甲、乙两队原计划平均每天的施工土方量分别为0.42万立方和0.38万立方.(2)乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.【解析】分析: (1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据“甲乙两队合作150天完成土方量120万立方,甲队施工110天、乙队施工150天完成土方量103.2万立方”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据完成工作的总量=甲队完成的土方量+乙队完成的土方量,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.详解:(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方.根据题意,得解之,得答:甲、乙两队原计划平均每天的施工土方量分别为0.42万立方和0.38万立方.(2)设乙队平均每天的施工土方量至少要比原来提高z万立方.根据题意,得40(0.38+z)+110(0.38+z+0.42≥120,解之,得z≥0.112,答:乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.点睛:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出关于a的一元一次不等式.22. 随着我市农产品整体品牌形象“聊·胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段,分别表示大棚的墙高和跨度,表示保温板的长.已知墙高为2米,墙面与保温板所成的角,在点处测得点、点的仰角分别为,,如图2.求保温板的长是多少米?(精确到0.1米)(参考数据:,,,,,,.)【答案】保温板AC的长是1.5米.【解析】分析:作CE⊥BD、AF⊥CE,设AF=x,可得AC=2x、CF=x,在Rt△ABD中由AB=EF=2知BD=,DE=BD-BE=-x,CE=EF+CF=2+x,根据tan∠CDE=列出关于x的方程,解之可得.详解:如图所示,过点C作CE⊥BD于点E,过点A作AF⊥CE于点F,则四边形ABEF是矩形,∴AB=EF、AF=BE,设AF=x,∵∠BAC=150°、∠BAF=90°,∴∠CAF=60°,则AC=2x、CF=AFtan∠CAF=x,在Rt△ABD中,∵AB=EF=2,∠ADB=9°,∴BD=,则DE=BD-BE=-x,CE=EF+CF=2+x,在Rt△CDE中,∵tan∠CDE=,∴tan15.6°=,解得:x≈1.5,即保温板AC的长是1.5米.点睛:本题主要考查解直角三角形的应用-仰角俯角问题,解题的关键是理解题意,构建直角三角形,并熟练掌握三角函数的应用.23. 如图,已知反比例函数的图象与反比例函数的图象关于轴对称,,是函数图象上的两点,连接,点是函数图象上的一点,连接,.(1)求,的值;(2)求所在直线的表达式;(3)求的面积.【答案】(1)m=1,n=2.(2)y=-x+5;(3)【解析】分析:(1)先把A点坐标代入得k1=4,则反比例函数解析式为y=(x>0),再利用反比例解析式确定B点坐标即可求出m的值,根据两个反比例函数的图象关于轴对称,可得k₂=-4,又由点是函数图象上的一点即可求出n的值;(2)根据A,B两点坐标利用待定系数法即可求出一次函数解析式.(3)自A,B,C三点分别向x轴作垂线,垂足分别为A′,B′,C′,然后根据三角形面积公式和进行计算.详解:(1)由A(1,4),B(4,m)是函数(x>0)图象上的两点,∴4=,k1=4,∴(x>0)∴m=.∵(x<0)的图象和(x>0)的图象关于y轴对称,∴点A(1,4)关于y轴的对称点A1(-1,4)在(x<0)的图象上,∴4=,k2=-4,∴由点C(-2,n)是函数图象上的一点,∴n=2.(2设AB所在直线的表达式为y=kx+b,将A(1,4),B(4,1)分别代入y=kx+b,得解这个二元一次方程组,得.∴AB所在直线表达式为:y=-x+5(3)自A,B,C三点分别向x轴作垂线,垂足分别为A′,B′,C′,CC′=2,AA′=4,BB′=1,C′A′=3,A′B′=3,C′B′=6.∴′=×(2+4) ×3+×(1+4) ×3-×(2+1) ×6=点睛:本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.24. 如图,在中,,平分交于点,作交于点,是的外接圆.(1)求证:是的切线;(2)已知的半径为2.5,,求,的长.【答案】(1)证明见解析;(2).【解析】分析:(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;(2)证△BDE∽△BEC得=,据此可求得BC的长度,再证△AOE∽△ABC得=,据此可得AD的长.详解:(1)如图,连接OE,∵OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠CBE,∴∠OEB=∠CBE,∴OE∥BC,又∵∠C=90°,∴∠AEO=90°,即OE⊥AC,∴AC为⊙O的切线;(2)∵ED⊥BE,∴∠BED=∠C=90°,又∵∠DBE=∠EBC,∴△BDE∽△BEC,∴=,即,∴BC=;∵∠AEO=∠C=90°,∠A=∠A,∴△AOE∽△ABC,∴=,即,解得:AD=.点睛:本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质.25. 如图,已知抛物线与轴分别交于原点和点,与对称轴交于点.矩形的边在轴正半轴上,且,边,与抛物线分别交于点,.当矩形沿轴正方向平移,点,位于对称轴的同侧时,连接,此时,四边形的面积记为;点,位于对称轴的两侧时,连接,,此时五边形的面积记为.将点与点重合的位置作为矩形平移的起点,设矩形平移的长度为.(1)求出这条抛物线的表达式;(2)当时,求的值;(3)当矩形沿着轴的正方向平移时,求关于的函数表达式,并求出为何值时,有最大值,最大值是多少?【答案】(1)y=-x2+2x.(2).(3)S=-t2+t-,当t=时,S有最大值,最大值是.【解析】分析: (1)根据点E、F的坐标,利用待定系数法即可求出抛物线的表达式;(2)找出当t=0时,点B、N的坐标,进而可得出OB、BN的长度,再根据三角形的面积公式可求出S△OBN的值;(3)分0<t≤4和4<t≤5两种情况考虑:①当0<t≤4时(图1),找出点A、B、M、N的坐标,进而可得出AM、BN的长度,利用梯形的面积公式即可找出S关于t的函数关系式,再利用二次函数的性质即可求出S的最大值;②当4<t≤5时,找出点A、B、M、N的坐标,进而可得出AM、BN的长度,将五边形分成两个梯形,利用梯形的面积公式即可找出S关于t的函数关系式,再利用二次函数的性质即可求出S的最大值.将①②中的S的最大值进行比较,即可得出结论.详解:(1)将E(5,5)、F(10,0)代入y=ax2+bx,,解得:,∴抛物线的表达式为y=-x2+2x.(2)当t=0时,点B的坐标为(1,0),点N的坐标为(1,),∴BN=,OB=1,∴S△OBN=BN•OB=.(3)①当0<t≤4时(图1),点A的坐标为(t,0),点B的坐标为(t+1,0),∴点M的坐标为(t,-t2+2t),点N的坐标为(t+1,-(t+1)2+2(t+1)),∴AM=-t2+2t,BN=-(t+1)2+2(t+1),∴S=(AM+BN)•AB=×1×[-t2+2t-(t+1)2+2(t+1)],=-t2+t+,=-(t-)2+,∵-<0,∴当t=4时,S取最大值,最大值为;②当4<t≤5时(图2),点A的坐标为(t,0),点B的坐标为(t+1,0),∴点M的坐标为(t,-t2+2t),点N的坐标为(t+1,-(t+1)2+2(t+1)),∴AM=-t2+2t,BN=-(t+1)2+2(t+1),∴S=(5-t)(-t2+2t+5)+(t-4)[5-(t+1)2+2(t+1)],=(t3-3t2+5t+25)+(-t3+t2+t-),=-t2+t-,=-(t-)2+,∵-<0,∴当t=时,S取最大值,最大值为.∵=<,∴当t=时,S有最大值,最大值是.点睛:本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、二次函数的性质、梯形的面积以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数关系式;(2)利用二次函数图象上点的坐标特征求出当t=0时点N的坐标;(3)分0<t≤4和4<t≤5两种情况找出S关于t的函数关系式.。
2018年山东聊城市中考数学试卷及答案解析
2018年聊城市中考数学试卷一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列实数中的无理数是()A.B.C.D.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学记数法可以表示为()A.1.25×108亿次/秒 B.1.25×109亿次/秒C.1.25×1010亿次/秒D.12.5×108亿次/秒4.(3分)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120°D.125°5.(3分)下列计算错误的是()A.a2÷a0?a2=a4B.a2÷(a0?a2)=1C.(﹣1.5)8÷(﹣1.5)7=﹣1.5 D.﹣1.58÷(﹣1.5)7=﹣1.56.(3分)已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.7.(3分)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25° B.27.5°C.30°D.35°8.(3分)下列计算正确的是()A.3﹣2=B.?(÷)=C.(﹣)÷=2D.﹣3=9.(3分)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.B.C.D.10.(3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()﹣α﹣βA.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°11.(3分)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)12.(3分)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.(3分)已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.14.(3分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.15.(3分)用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是cm.16.(3分)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是.17.(3分)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(7分)先化简,再求值:﹣÷(﹣),其中a=﹣.19.(8分)时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:球类名称乒乓球羽毛球排球篮球足球人数42a1533b解答下列问题:(1)这次抽样调查中的样本是;(2)统计表中,a=,b=;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.20.(8分)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.21.(8分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?22.(8分)随着我市农产品整体品牌形象“聊?胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2.求保温板AC的长是多少米?(精确到0.1米)≈0.27,cos15.6°≈0.96,tan15.6°(参考数据:≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.28)23.(8分)如图,已知反比例函数y=(x>0)的图象与反比例函数y=(x<0)的图象关于y轴对称,A(1,4),B(4,m)是函数y=(x>0)图象上的两点,连接AB,点C(﹣2,n)是函数y=(x<0)图象上的一点,连接AC,BC.(1)求m,n的值;(2)求AB所在直线的表达式;(3)求△ABC的面积.24.(10分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为 2.5,BE=4,求BC,AD的长.25.(12分)如图,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(10,0),与对称轴l交于点E (5,5).矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t(0≤t≤5)(1)求出这条抛物线的表达式;(2)当t=0时,求S△OBN的值;(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时S有最大值,最大值是多少?参考答案与试题解析一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列实数中的无理数是()A.B.C.D.【分析】分别根据无理数、有理数的定义即可判定选择项【解答】解:,,是有理数,是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:用左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.(3分)在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学记数法可以表示为()A.1.25×108亿次/秒 B.1.25×109亿次/秒C.1.25×1010亿次/秒D.12.5×108亿次/秒【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:12.5亿亿次/秒=1.25×109亿次/秒,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120°D.125°【分析】直接延长FE交DC于点N,利用平行线的性质得出∠BCD=∠DNF=95°,再利用三角形外角的性质得出答案.【解答】解:延长FE交DC于点N,∵直线AB∥EF,∴∠BCD=∠DNF=95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°.故选:C.【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.5.(3分)下列计算错误的是()A.a2÷a0?a2=a4B.a2÷(a0?a2)=1C.(﹣1.5)8÷(﹣1.5)7=﹣1.5 D.﹣1.58÷(﹣1.5)7=﹣1.5【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.【解答】解:∵a2÷a0?a2=a4,∴选项A不符合题意;∵a2÷(a0?a2)=1,∴选项B不符合题意;∵(﹣1.5)8÷(﹣1.5)7=﹣1.5,∴选项C不符合题意;∵﹣1.58÷(﹣1.5)7=1.5,∴选项D符合题意.故选:D.【点评】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.6.(3分)已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.【分析】把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的方法部分即可.【解答】解:根据题意得:,由①得:x≥2,由②得:x<5,∴2≤x<5,表示在数轴上,如图所示,故选:A.【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.7.(3分)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25° B.27.5°C.30°D.35°【分析】直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.【解答】解:∵∠A=60°,∠ADC=85°,∴∠B=85°﹣60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°﹣95°﹣50°=35°故选:D.【点评】此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.8.(3分)下列计算正确的是()A.3﹣2=B.?(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A、3与﹣2不是同类二次根式,不能合并,此选项错误;B、?(÷)=?==,此选项正确;C、(﹣)÷=(5﹣)÷=5﹣,此选项错误;D、﹣3=﹣2=﹣,此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.9.(3分)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.B.C.D.【分析】先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.【解答】解:列表如下:,共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率=.故选:B.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.10.(3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()﹣α﹣βA.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.【点评】本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.11.(3分)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣,) B.(﹣,) C.(﹣,)D.(﹣,)【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【解答】解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(﹣,).故选:A.【点评】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.12.(3分)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内【分析】利用图中信息一一判断即可;【解答】解:A、正确.不符合题意.B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24﹣2.5=21.5<35,故本选项错误,符合题意;D、正确.不符合题意,故选:C.【点评】本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.(3分)已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.【分析】根据二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元一次方程,解之即可得出k的值.【解答】解:∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,∴,解得:k=.故答案为:.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.14.(3分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,∴P(红灯亮)==,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.15.(3分)用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是50cm.【分析】设这个扇形铁皮的半径为Rcm,圆锥的底面圆的半径为rcm,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.和弧长公式得到2πr=,解得r=R,然后利用勾股定理得到402+(R)2=R2,最后解方程即可.【解答】解:设这个扇形铁皮的半径为Rcm,圆锥的底面圆的半径为rcm,根据题意得2πr=,解得r=R,因为402+(R)2=R2,解得R=50.所以这个扇形铁皮的半径为50cm.故答案为50.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.(3分)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是540°或360°或180°.【分析】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.【解答】解:n边形的内角和是(n﹣2)?180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.故答案为:540°或360°或180°.【点评】本题主要考查了多边形的内角和的计算公式,理解:剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,是解决本题的关键.17.(3分)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为x=0.5或x=1.【分析】根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.【解答】解:∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x﹣1,∴2x﹣1≤x<2x﹣1+1,解得,0<x≤1,∵2x﹣1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.【点评】本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(7分)先化简,再求值:﹣÷(﹣),其中a=﹣.【分析】首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入a的值可得答案.【解答】解:原式=﹣÷[﹣],=﹣÷[﹣],=﹣÷,=﹣?,=﹣,=﹣,当a=﹣时,原式=﹣=﹣4.【点评】此题主要考查了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或整式,再代入求值.19.(8分)时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:球类名称乒乓球羽毛球排球篮球足球人数42a1533b解答下列问题:(1)这次抽样调查中的样本是时代中学学生最喜欢的一种球类运动情况;(2)统计表中,a=39,b=21;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.【分析】(1)直接利用样本的定义分析得出答案;(2)用喜欢排球的人数除以其所占的百分比即可求得样本容量,用样本容量乘以羽毛球所占的百分比即可求得a,用样本容量减去其他求得b值;(3)用总人数乘以喜欢乒乓球的人所占的百分比即可.【解答】解:(1)这次抽样调查中的样本是:时代中学学生最喜欢的一种球类运动情况;故答案为:时代中学学生最喜欢的一种球类运动情况;(2)∵喜欢蓝球的有33人,占22%,∴样本容量为33÷22%=150;a=150×26%=39(人),b=150﹣39﹣42﹣15﹣33=21(人);故答案为:39,21;(3)最喜欢乒乓球运动的人数为:1200×=336(人).【点评】本题考查了扇形统计图、用样本估计总体等知识,解题的关键是正确的从统计图中读懂有关信息.20.(8分)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.【分析】(1)根据ASA证明△ABE≌△BCF,可得结论;(2)根据(1)得:△ABE≌△BCF,则CF=BE=2,最后利用勾股定理可得AF的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,∴∠BAE+∠AEB=90°,∵BH⊥AE,∴∠BHE=90°,∴∠AEB+∠EBH=90°,∴∠BAE=∠EBH,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵AB=BC=5,由(1)得:△ABE≌△BCF,∴CF=BE=2,∴DF=5﹣2=3,∵四边形ABCD是正方形,∴AB=AD=5,∠ADF=90°,由勾股定理得:AF====.【点评】此题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题证明△ABE≌△BCF是解本题的关键.21.(8分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【分析】(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y 万立方,根据“甲乙两队合作150天完成土方量120万立方,甲队施工110天、乙队施工150天完成土方量103.2万立方”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据完成工作的总量=甲队完成的土方量+乙队完成的土方量,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据题意得:,解得:.答:甲队原计划平均每天的施工土方量为0.42万立方,乙队原计划平均每天的施工土方量为0.38万立方.(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据题意得:110×0.42+(40+110)×(0.38+a)≥120,解得:a≥0.112.答:乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出关于a的一元一次不等式.22.(8分)随着我市农产品整体品牌形象“聊?胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2.求保温板AC的长是多少米?(精确到0.1米)≈0.27,cos15.6°≈0.96,tan15.6°(参考数据:≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.28)【分析】作CE⊥BD、AF⊥CE,设AF=x,可得AC=2x、CF=x,在Rt△ABD中由AB=EF=2知BD=,DE=BD﹣BE=﹣x,CE=EF+CF=2+x,根据tan∠CDE=列出关于x的方程,解之可得.【解答】解:如图所示,过点C作CE⊥BD于点E,过点A作AF⊥CE于点F,则四边形ABEF是矩形,∴AB=EF、AF=BE,设AF=x,∵∠BAC=150°、∠BAF=90°,∴∠CAF=60°,则AC==2x、CF=AFtan∠CAF=x,在Rt△ABD中,∵AB=EF=2,∠ADB=9°,∴BD==,则DE=BD﹣BE=﹣x,CE=EF+CF=2+x,在Rt△CDE中,∵tan∠CDE=,∴tan15.6°=,解得:x≈0.7,即保温板AC的长是0.7米.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是理解题意,构建直角三角形,并熟练掌握三角函数的应用.23.(8分)如图,已知反比例函数y=(x>0)的图象与反比例函数y=(x<0)的图象关于y轴对称,A(1,4),B(4,m)是函数y=(x>0)图象上的两点,连接AB,点C(﹣2,n)是函数y=(x<0)图象上的一点,连接AC,BC.(1)求m,n的值;(2)求AB所在直线的表达式;(3)求△ABC的面积.【分析】(1)先由点A确定k,再求m的值,根据关于y轴对称,确定k2再求n;(2)先设出函数表达式,再代入A、B两点,得直线AB的表达式;(3)过点A、B作x轴的平行线,过点C、B作y轴的平行线构造矩形,△ABC的面积=矩形面积﹣3个直角三角形的面积.【解答】解:(1)因为点A、点B在反比例函数y=(x>0)的图象上,∴k1=1×4=4,∴m×4=k1=4,∴m=1∵反比例函数y=(x>0)的图象与反比例函数y=(x<0)的图象关于y轴对称.∴k2=﹣k1=﹣4∴﹣2×n=﹣4,∴n=2(2)设直线AB所在的直线表达式为y=kx+b把A(1,4),B(4,1)代入,得解得∴AB所在直线的表达式为:y=﹣x+5(3)如图所示:过点A、B作x轴的平行线,过点C、B作y轴的平行线,它们的交点分别是E、F、B、G.∴四边形EFBG是矩形.则AF=3,BF=3,AE=3,EC=2,CG=1,GB=6,EG=3∴S△ABC=S矩形EFBG﹣S△AFB﹣S△AEC﹣S△CBG=BG×EG﹣AF×FB﹣AE×EC﹣BG×CG=18﹣﹣3﹣3=【点评】本题考查了反比例函数的图形及性质、待定系数法确定一次函数解析式及面积的和差关系.题目具有综合性.注意图形的面积可以用割补法也可以用规则的几何图形求和差.24.(10分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为 2.5,BE=4,求BC,AD的长.【分析】(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;(2)证△BDE∽△BEC得=,据此可求得BC的长度,再证△AOE∽△ABC得=,据此可得AD的长.【解答】解:(1)如图,连接OE,∵OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠CBE,∴∠OEB=∠CBE,∴OE∥BC,又∵∠C=90°,∴∠AEO=90°,即OE⊥AC,∴AC为⊙O的切线;(2)∵ED⊥BE,∴∠BED=∠C=90°,又∵∠DBE=∠EBC,∴△BDE∽△BEC,∴=,即=,∴BC=;∵∠AEO=∠C=90°,∠A=∠A,∴△AOE∽△ABC,∴=,即=,解得:AD=.【点评】本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质.25.(12分)如图,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(10,0),与对称轴l交于点E (5,5).矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t(0≤t≤5)(1)求出这条抛物线的表达式;(2)当t=0时,求S△OBN的值;(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时S有最大值,最大值是多少?【分析】(1)根据点E、F的坐标,利用待定系数法即可求出抛物线的表达式;(2)找出当t=0时,点B、N的坐标,进而可得出OB、BN的长度,再根据三角形的面积公式可求出S。
2018年聊城市中考数学试卷及答案解析版
2018年山东省聊城市中考数学试卷一.选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.(2018聊城)(﹣2)3的相反数是()A.﹣6B.8C.D.考点:有理数的乘方;相反数.专题:计算题.分析:原式表示3个﹣2的乘积,计算得到结果,求出结果的相反数即可.解答:解:根据题意得:﹣(﹣2)3=﹣(﹣8)=8.故选B.点评:此题考查了有理数的乘方,以及相反数,弄清题意是解本题的关键.2.(2018聊城)PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣6考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.0000025=2.5×10﹣6;故选:D.点评:本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(2018聊城)如图是由几个相同的小立方块组成的三视图,小立方块的个数是()A.3个B.4个C.5个D.6个考点:由三视图判断几何体.分析:根据三视图的知识,可判断该几何体有两列两行,底面有3个正方形,第二层有1个.解答:解:综合三视图可看出,底面有3个小立方体,第二层应该有1个小立方体,因此小立方体的个数应该是3+1=4个.故选B.点评:本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.4.(2018聊城)不等式组的解集在数轴上表示为()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.解答:解:,∵解不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为:1<x≤2,在数轴上表示不等式组的解集为:,故选A.点评:本题考查了在数轴上表示不等式组的解集,解一元一次不等式(组)的应用,关键是能正确在数轴上表示不等式组的解集.5.(2018聊城)下列命题中的真命题是()A.三个角相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形C.顺次连接矩形四边中点得到的四边形是菱形D.正五边形既是轴对称图形又是中心对称图形考点:命题与定理.分析:根据矩形、菱形、正方形的判定以及正五边形的性质得出答案即可.解答:解:A.根据四个角相等的四边形是矩形,故此命题是假命题,故此选项错误;B.根据对角线互相垂直、互相平分且相等的四边形是正方形,故此命题是假命题,故此选项错误;C.顺次连接矩形四边中点得到的四边形是菱形,故此命题是真命题,故此选项正确;D.正五边形是轴对称图形不是中心对称图形,故此命题是假命题,故此选项错误.故选:C.点评:此题主要考查了矩形、菱形、正方形的判定以及正五边形的性质等知识,熟练掌握相关定理是解题关键.6.(2018聊城)下列事件:①在足球赛中,弱队战胜强队.②抛掷1枚硬币,硬币落地时正面朝上.③任取两个正整数,其和大于1④长为3cm,5cm,9cm的三条线段能围成一个三角形.其中确定事件有()A.1个B.2个C.3个D.4个考点:随机事件.分析:根据随机事件的定义对各选项进行逐一分析即可.解答:解:A.在足球赛中,弱队战胜强队是随机事件,故本选项正确;B.抛掷1枚硬币,硬币落地时正面朝上是随机事件,故本选项正确;C.任取两个正整数,其和大于1是必然事件,故本选项错误;D.长为3cm,5cm,9cm的三条线段能围成一个三角形是不可能事件,故本选项错误.故选B.点评:本题考查的是随机事件,即在一定条件下,可能发生也可能不发生的事件,称为随机事件.7.(2018聊城)把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm,那么钢丝大约需要加长()A.102cm B.104cm C.106cm D.108cm考点:整式的加减;圆的认识.分析:根据圆的周长公式分别求出半径变化前后的钢丝长度,进而得出答案.解答:解:设地球半径为:rcm,则地球的周长为:2πrcm,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm,故此时钢丝围成的圆形的周长变为:2π(r+16)cm,∴钢丝大约需要加长:2π(r+16)﹣2πr≈100(cm)=102(cm).故选:A.点评:此题主要考查了圆的面积公式应用以及科学记数法等知识,根据已知得出图形变化前后的周长是解题关键.8.(2018聊城)二次函数y=ax2+bx的图象如图所示,那么一次函数y=ax+b的图象大致是()。
【真题】山东省聊城市2018年中考数学试卷含答案Word版
山东省聊城市2018年中考数学试卷一、选择题(本大题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项是符合题目要求)1.下列实数中的无理数是( )A B .2D .2272.如图所示的几何体,它的左视图是( )A .B .C .D .3.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为( ) A .81.2510⨯亿次/秒 B .91.2510⨯亿次/秒 C .101.2510⨯亿次/秒 D. 812.510⨯亿次/秒4.如图,直线//AB EF ,点C 是直线AB 上一点,点D 是直线AB 外一点,若95BCD ∠=,25CDE ∠=,则DEF ∠的度数是( )A .110B .115C .120D .125 5.下列计算错误的是( )A .2024a a a a ÷⋅= B .202()1a a a ÷⋅= C .87( 1.5)( 1.5) 1.5-÷-=- D .871.5( 1.5) 1.5-÷-=- 6.已知不等式2241232x x x ---≤<,其解集在数轴上表示正确的是( )A .B .C .D . 7.如图,O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC .若60A ∠=,85ADC ∠=,则C ∠的度数是( )A .25B .27.5C .30D .35 8.下列计算正确的是( )A .==C .==9.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( ) A .12 B .13 C .23 D .1610.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=-- 11.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且5OA =,3OC =.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的1A 处,则点C 的对应点1C 的坐标为( )A .912(,)55-B .129(,)55-C .1612(,)55-D .1216(,)55- 12.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,室内每立方米空气中含药量3(/)y mg m 与药物在空气中的持续时间(min)x 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A .经过5min 集中喷洒药物,室内空气中的含药量最高达到310/mg m B .室内空气中的含药量不低于38/mg m 的持续时间达到了11minC .当室内空气中的含药量不低于35/mg m 且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D .当室内空气中的含药量低于32/mg m 时,对人体才是安全的,所以从室内空气中的含药量达到32/mg m 开始,需经过59min 后,学生才能进入室内非选择题(共84分)二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.已知关于x 的方程2(1)230k x kx k --+-=有两个相等的实根,则k 的值是 .14.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是 .15.用一块圆心角为216的扇形铁皮,做一个高为40cm 的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是 cm .16.如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 .17.若x 为实数,则[]x 表示不大于x 的最大整数,例如[1.6]1=,[]3π=,[ 2.82]3-=-等. []1x +是大于x 的最小整数,对任意的实数x 都满足不等式[][]1x x x ≤<+. ①,利用这个不等式①,求出满足[]21x x =-的所有解,其所有解为 .三、解答题(本题共8个小题,共69分.解答应写出文字说明、证明过程或演算步骤)18.先化简,再求值:211()122a a a a a a a a --÷-+++,其中12a =-. 19.时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种).调查结果统计如下:解答下列问题:(1)这次抽样调查中的样本是________;(2)统计表中,a=________,b=________;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.⊥,垂足为20.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH AE点H,延长BH交CD于点F,连接AF.=.(1)求证:AE BFBE=,求AF的长.(2)若正方形边长是5,221.建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?22.随着我市农产品整体品牌形象“聊·胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB ,BD 分别表示大棚的墙高和跨度,AC 表示保温板的长.已知墙高AB 为2米,墙面与保温板所成的角150BAC ∠=,在点D 处测得A 点、C 点的仰角分别为9,15.6,如图2.求保温板AC的长是多少米?(精确到0.1米)(参考数据:0.862≈,sin 90.16≈,cos90.99≈,tan 90.16≈,sin15.60.27≈,cos15.60.96≈,tan15.60.28≈.)23.如图,已知反比例函数1(0)k y x x =>的图象与反比例函数2(0)ky x x=<的图象关于y 轴对称,(1,4)A ,(4,)B m 是函数1(0)ky x x=>图象上的两点,连接AB ,点(2,)C n -是函数2(0)ky x x=<图象上的一点,连接AC ,BC .(1)求m ,n 的值;(2)求AB 所在直线的表达式; (3)求ABC ∆的面积.24.如图,在Rt ABC ∆中,90C ∠=,BE 平分ABC ∠交AC 于点E ,作ED E B ⊥交AB 于点D ,O 是BED ∆的外接圆.(1)求证:AC 是O 的切线;(2)已知O 的半径为2.5,4BE =,求BC ,AD 的长.25.如图,已知抛物线2y ax bx =+与x 轴分别交于原点O 和点(10,0)F ,与对称轴l 交于点(5,5)E .矩形ABCD 的边AB 在x 轴正半轴上,且1AB =,边AD ,BC 与抛物线分别交于点M ,N .当矩形ABCD 沿x 轴正方向平移,点M ,N 位于对称轴l 的同侧时,连接MN ,此时,四边形ABNM 的面积记为S ;点M ,N 位于对称轴l 的两侧时,连接EM ,EN ,此时五边形ABNEM 的面积记为S .将点A 与点O 重合的位置作为矩形ABCD 平移的起点,设矩形ABCD 平移的长度为(05)t t ≤≤.(1)求出这条抛物线的表达式; (2)当0t =时,求OBN S ∆的值;(3)当矩形ABCD 沿着x 轴的正方向平移时,求S 关于(05)t t ≤≤的函数表达式,并求出t 为何值时,S 有最大值,最大值是多少?2018年中考真题11。
2018年山东省聊城市中考数学试卷(含答案与解析)
数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前山东省聊城市2018年初中学业水平考试数 学(考试时间120分钟,满分120分)选择题(共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列实数中的无理数是 ( )ABCD .2272.如图所示的几何体,它的左视图是( )(第2题)A .B .C .D .3.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学记数法可以表示为 ( ) A .81.2510⨯亿次/秒 B .91.2510⨯亿次/秒C .101.2510⨯亿次/秒D .812.510⨯亿次/秒4.如图,直线AB EF ∥,点C 是直线AB 上一点,点D 是直线AB 外一点,若95BCD ∠=︒,25CDE ∠=︒,则DEF ∠的度数是 ( )(第4题)A .110︒B .115︒C .120︒D .125︒5.下列计算错误的是( )A .2024a a a a ÷=B .202()1a a a ÷⋅=C .87( 1.5)( 1.5) 1.5-÷-=-D .871.5( 1.5) 1.5-÷-=-6.已知不等式2241232x x x ---≤<,其解集在数轴上表示正确的 ( ) A .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共26页) 数学试卷 第4页(共26页)B .C .D .7.如图,O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC .若60A ∠=︒,85ADC ∠=︒,则C ∠的度数是( )(第7题)A .25︒B .27.5︒C .30︒D .35︒8.下列计算正确的是( )A.= B=C.=D9.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )A .12 B .13C .23 D .1610.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC △处的A '处,折痕为DE .如果A α∠=,CEA β'∠=,BDA γ'∠=,那么下列式子中正确的是( )(第10题)A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=︒--11.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且5OA =,3OC =.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的1A 处,则点C 的对应点1C 的坐标为( )(第11题)A .912(,)55-B .129(,)55- C .1612(,)55-D .1216(,)55-12.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,室内每立方米空气中含药量3(mg/m )y 与药物在空气中的持续时间(min)x 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )数学试卷 第5页(共26页) 数学试卷 第6页(共26页)(第12题)A .经过5min 集中喷洒药物,室内空气中的含药量最高达到310mg/mB .室内空气中的含药量不低于38mg/m 的持续时间达到了11minC .当室内空气中的含药量不低于35mg/m 且持续时间不低于35min ,才能有效杀灭某种传染病毒.此次消毒完全有效D .当室内空气中的含药量低于32mg/m 时,对人体才是安全的,所以从室内空气中的含药量达到32mg/m 开始,需经过59min 后,学生才能进入室内非选择题(共84分)二、填空题(本大题共5小题,每小题3分,共15分.)13.已知关于x 的方程2(1)230k x kx k --+-=有两个相等的实数根,则k 的值是 .14.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30 S 后关闭,紧接着黄灯开启3 S 后关闭,再紧接着绿灯开启42 S ,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是 .(第14题)15.用一块圆心角为216︒的扇形铁皮,做一个高为40cm 的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是 cm .16.如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 .17.若x 为实数,则[]x 表示不大于x 的最大整数,例如[1.6]1=,[]3π=,[2.82]3-=-等.[]1x +是大于x 的最小整数,对任意的实数x 都满足不等式[][]1x x x ≤<+①.利用这个不等式①,求出满足[]21x x =-的所有解,其所有解为 .三、解答题(本大题共8小题,共69分.解答应写出必要的文字说明、证明过程或演算步骤)18.(本小题共7分)先化简,再求值:211()122a a a a a a a a --÷-+++,其中12a =-.19.(本小题满分8分)时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1 200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种).调查结果统计如下:(第19题)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________解答下列问题:(1)这次抽样调查中的样本是;(2)统计表中,a=,b=;(3)试估计上述1 200名学生中最喜欢乒乓球运动的人数.20.(本小题满分8分)如图,在正方形ABCD中,E是BC上的一点,连接AE,过B点作BH AE⊥,垂足为点H,延长BH交CD于点F,连接AF.(第20题)(1)求证:AE BF=.(2)若正方形边长是5,2BE=,求AF的长.21.(本小题满分8分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲、乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?22.(本小题满分8分)随着我市农产品整体品牌形象“聊·胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2m,墙面与保温板所成的角150BAC∠=︒,在点D处测得A点、C点的仰角分别为9︒,15.6︒,如图2.求保温板AC的长是多少米?(结果精确到0.1m.0.86≈,sin90.16︒≈,cos90.99︒≈,tan90.16︒≈,sin15.60.27︒≈,cos15.60.96︒≈,tan15.60.28︒≈.)(第22题)数学试卷第7页(共26页)数学试卷第8页(共26页)数学试卷 第9页(共26页) 数学试卷 第10页(共26页)23.(本小题满分8分)如图,已知反比例函数1(0)k y x x =>的图象与反比例函数2(0)ky x x=<的图象关于y 轴对称,点(1,4)A ,(4,)B m 是函数1(0)ky x x=>图象上的两点,连接AB ,点(2,)C n -是函数2(0)ky x x =<图象上的一点,连接AC ,BC .(第23题)(1)求m ,n 的值.(2)求AB 所在直线的表达式; (3)求ABC △的面积.24.(本小题满分10分)如图,在Rt ABC △中,90C ∠=︒,BE 平分ABC ∠交AC 于点E ,作ED EB ⊥交AB 于点D ,O 是BED ∆的外接圆.(第24题)(1)求证:AC 是O 的切线;(2)已知O 的半径为2.5,4BE =,求BC ,AD 的长.25.(本小题满分12分)如图,已知抛物线2y ax bx =+与x 轴分别交于原点O 和点(10,0)F ,与对称轴l 交于点(5,5)E .矩形ABCD 的边AB 在x 轴正半轴上,且1AB =,边AD ,BC 与抛物线分别交于点M ,N .当矩形ABCD 沿x 轴正方向平移,点M ,N 位于对称轴l 的同侧时,连接MN ,此时,四边形ABNM 的面积记为S ;点M ,N 位于对称轴l 的两侧时,连接EM ,EN ,此时五边形ABNEM 的面积记为S .将点A 与点O 重合的位置作为矩形ABCD 平移的起点,设矩形ABCD 平移的长度为(05)t t ≤≤.(第25题)(1)求这条抛物线的表达式; (2)当0t =时,求OBN S ∆的值;(3)当矩形ABCD 沿着x 轴的正方向平移时,求S 关于(05)t t ≤≤的函数表达式,并求出t 为何值时,S 有最大值,最大值是多少?-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第11页(共26页) 数学试卷 第12页(共26页)山东省聊城市2018年中考数学试卷数学答案解析一、选择题 1.【答案】C【解析】A,是有理数,B2-,是有理数,C数.D 项,227是分数,属于有理数. 【考点】有理数和无理数. 2.【答案】D【解析】从几何体的左面看,有一条看不见的棱,应画虚线;从图中数据看,该虚线靠近上方,故D 项符合. 【考点】左视图. 3.【答案】B【解析】12.5亿9=1250000000=1.2510⨯. 【考点】科学记数法. 4.【答案】C【解析】如图,过点D 作DG AB ∥,95,1801809585.BCD CDG BCD ∠=︒∴∠=︒-∠=︒-︒=︒25,852560.CDE EDG CDG CDE ∠=︒∴∠=∠-∠=︒-︒=︒,,180********.AB EF EF DG DEF EDG ∴∴∠=︒-∠=︒-︒=︒∥∥(第4题)【考点】平行线的性质. 5.【答案】D【解析】A ,B ,C 项正确,D 项,()()78871.5 1.5 1.5 1.5 1.5.-÷-=-÷-=【考点】整式的运算. 6.【答案】A【解析】原不等式可化为2423224132x xx x --⎧≥⎪⎪⎨--⎪<⎪⎩①②,解不等式①,得2x ≥.解不等式②,得5x <.∴原不等式组的解集为25x ≤<,在数轴上表示如A 项所示.【考点】解不等式组及在数轴上表示不等式组的解集. 7.【答案】D 【解析】85,60,25ADC A B ADC A ∠=︒∠=︒∴∠=∠-∠=︒,222550AOC B ∴∠=∠=⨯︒=︒,855035C ADC AOC ∴∠=∠-∠=︒-︒=︒.【考点】三角形的外角性质、圆周角定理. 8.【答案】B【解析】A 项,与不是同类二次根式,不能合并.B 项,正确.C 项,(5=【考点】二次根式的运算. 9.【答案】B【解析】小亮、小莹、大刚三位同学随机地站成一排共有6种等可能结果,其中小亮恰好站在中间的结果有2种,所以P (小亮恰好站在中间)21==63.【考点】概率的求法. 10.【答案】A 【解析】如图,由折叠可知,A A α'∠=∠= .,CEA AFD CEA A ββα'''∠=∴∠=∠+∠=+,2BDA A AFD αβααβ'∴∠=∠+∠=++=+,即=2+γαβ.数学试卷 第13页(共26页) 数学试卷 第14页(共26页)(第10小题)【考点】折叠的性质、三角形的外角性质. 11.【答案】A【解析】如图,过点1C 作1C D x ⊥轴,垂足为点D .190C DO ∴∠=︒.四边形OABC 是矩形,190C DO BCO ∴∠=∠=︒.由旋转可知,1115,90OA OA C OA COA ==∠=∠=︒.在1Rt COA △中,由勾股定理,得111114.90,90CA C OC COA C OD C OC =∠+∠=︒∠+∠=︒,1111,C OD COA C OD AOC ∴∠=∠∴△△,1111OC C D OD OCOA AC ∴==,即13354C DOD ==,解得1912,.55OD C D ==点1C 在第二象限,∴点1C 的坐标为912,55⎛⎫- ⎪⎝⎭.(第11题)【考点】旋转的性质、勾股定理及相似三角形的性质与判定. 12.【答案】C【解析】由题图可知,经过5min 的集中药物喷洒的一次函数的表达式为2y x =,反比例函数的表达式为120y x=.A 项,由函数图像可知,第5min 时,室内空气的最高含药量达到103mg/m ,该项正确.B 项,在2y x =中,令8y =,则28x =,解得4x =.()15411min ∴-=,该项正确。
二〇一八年聊城市初中学生学业水平考试
将
x=1
代2x,得
y=
-
1 5
+2=
9 5
.
∴N
(1,95
),BN
=
9 5
,∴S△OBN
= 12AB������BN = 12 ×1× 95 =190.… … … … … … … … …
4分
(3)① 当 0<t≤4 时 ,A(t,0),B(t+1,0),
∴M ,N
两点的坐标为
M
(t,-
(2)设乙队平均每天的施工土方量至少要比原来提高z 万立方.根据题意,得
40(0.38+z)+110(0.38+z+0.42)≥120, …………………………………………… 6分
解之,得z≥0.112.………………………………………………………………………… 7分
答:乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务. … 8分
24.(本 题 满 分 10 分 )
证明:(1)连接 OE,∵OB=OE,∴∠OBE=∠OEB.
∵BE 平分∠ABC,∠OBE=∠EBC.∴∠OEB=∠EBC.∴OE∥BC. ……………… 2分
又∵∠C=90°,∴∠OEA=90°,即 AC⊥OE.
又∵OE 是☉O 的半径,∴AC 是☉O 的切线.…………… 4分
{100a+10b=0,…………………………………………………………………………… 1分
25a+5b=5.
{ 解之,得
a= -
1, 5
b=2.
数 学 试 题 答 案 第 3 页 (共 4 页 )
∴抛物线的表达式y=-15x2+2x. …………………………………………………… 2分
(2)当t=0时,点 A,O,M 重合,AB=1,B(1,0),