八年级数学下册第十六章分式知识点总结

合集下载

八年级数学下册第十六章分式知识点总结

八年级数学下册第十六章分式知识点总结

1分式的知识点解析与培优一、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。

二、判断分式的依据:例:下列式子中,y x +15、8a 2b 、—239a、y x b a --25、4322b a -、2-a 2、m1、65xy x 1、21、212+x 、πxy 3、yx +3、m a 1+中分式的个数为( )A 、 2B 、 3C 、 4D 、 5练习题:(1)下列式子中,是分式的有 。

(1)275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹。

(7)78x π+(8)3y y (9)234x + 二、 分式有意义的条件是分母不为零;【B ≠0】 分式没有意义的条件是分母等于零;【B=0】分式值为零的条件分子为零且分母不为零。

【B ≠0且A=0 即子零母不零】例2.注意:(12+x ≠0) 例1:当x 时,分式51-x 有意义; 例2:分式xx -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义。

例4:当x 时,分式12+x x有意义例5:x ,y 满足关系 时,分式x yx y-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( ) A .122+x x B.12+x x C.133+x x D.25x x - 例7:使分式2+x x有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2<x 例8:分式)3)(1(2-+-x x x 无意义,则x 的值为( )A 。

2 B.—1或-3 C. —1 D 。

3 三、分式的值为零:使分式值为零:令分子=0且分母≠0,注意:当分子等于0时,看看是否使分母=0了,如果使分母=0了,那么要舍去。

例1:当x 时,分式121+-a a的值为0. 例2:当x 时,分式112+-x x 的值为0。

八年级数学下册第十六章分式知识点总结

八年级数学下册第十六章分式知识点总结

分式的知识点解析与培优一、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。

二、判断分式的依据:例:下列式子中,y x +15、8a 2b 、-239a、y x b a --25、4322b a -、2-a 2、m1、65xy x 1、21、212+x 、πxy 3、yx +3、m a 1+中分式的个数为( )A 、 2B 、 3C 、 4D 、 5练习题:(1)下列式子中,是分式的有 .(1)275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--; ⑸22b b -;⑹. (7)78x π+(8)3y y (9)234x + 二、 分式有意义的条件是分母不为零;【B ≠0】 分式没有意义的条件是分母等于零;【B=0】分式值为零的条件分子为零且分母不为零。

【B ≠0且A=0 即子零母不零】例2.注意:(12+x ≠0)例1:当x 时,分式51-x 有意义;例2:分式xx -+212中,当____=x 时,分式没有意义例3:当x 时,分式112-x 有意义。

例4:当x 时,分式12+x x有意义例5:x ,y 满足关系 时,分式x yx y-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( ) A .122+x x B.12+x x C.133+x x D.25x x -例7:使分式2+x x有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2<x 例8:分式)3)(1(2-+-x x x 无意义,则x 的值为( )A. 2B.-1或-3C. -1D.3 三、分式的值为零:使分式值为零:令分子=0且分母≠0,注意:当分子等于0时,看看是否使分母=0了,如果使分母=0了,那么要舍去。

例1:当x 时,分式121+-a a的值为0. 例2:当x 时,分式112+-x x 的值为0.例3:如果分式22+-a a 的值为零,则a 的值为( )A. 2±B.2C.-2D..以上全不对例4:能使分式122--x xx 的值为零的所有x 的值是 ( )A. x=0B.x-1C.x=0 或x=1D.0=x 或1±=x 例5:要使分式65922+--x x x 的值为0,则x 的值为( )A.3或-3B.3C.-3 D 2 例6:若01=+aa,则a 是( ) A.正数 B.负数 C.零 D.任意有理数例9:当X= 时,分式2212x x x -+-的值为零。

华师版八下数学第16章分式知识归纳

华师版八下数学第16章分式知识归纳

华东师大版八年级下册数学第16章 分式§16.1分式及基本性质一、分式的概念1、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。

2、对于分式概念的理解,应把握以下几点:(1)分式是两个整式相除的商。

其中分子是被除式,分母是除式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。

3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。

4、分式的值为0的条件:当分式的分子等于0,而分母不等于0时,分式的值为0。

即,使BA =0的条件是:A=0,B ≠0。

5、有理式整式和分式统称为有理式。

整式分为单项式和多项式。

分类:有理式单项式:由数与字母的乘积组成的代数式;⎪⎩⎪⎨⎧−→−⎩⎨⎧分式多项项单项式整式多项式:由几个单项式的和组成的代数式。

二、分式的基本性质1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

用式子表示为:A B = A ·M B ·M= A÷M B÷M ,其中M (M ≠0)为整式。

2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是:确定几个分式的最简公分母。

确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。

(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。

3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

2022数学八年级下册十六章知识点

2022数学八年级下册十六章知识点

2022数学八年级下册十六章知识点数学八年级下册十六章知识点1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

2.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。

3.分式值为零的条件:分式AB =0的条件是A=0,且B≠0.(首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。

)4.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

用式子表示为(其中A、B、C是整式),5.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是确定几个式子的最简公分母。

几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。

求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的`字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。

6.分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。

约分的关键是找出分式中分子和分母的公因式。

(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;(2)找公因式的方法:① 当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,先把多项式因式分解。

7.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

八年级数学下册 第16章《分式》温习与小结

八年级数学下册 第16章《分式》温习与小结

第16章《分式》温习与小结学习目标:了解本章知识要点、巩固本章知识点的应用,并综合应用知识点解决问题。

学习重点:分式的概念、运算及分式方程的应用。

学习难点 :分式方程的应用。

教学设计:一、知识点温习:1. 分式的概念(1)若是 A 、B 表示两个整式,且 B 中含有字母,那么式子A B 叫做分式。

(2)分式与整式的区别: 分式的分母中含有字母,整式的分母中不含有字母。

2. 分式成心义的条件:分式的分母不能为 0,即A B中, B ≠ 0 时,分式成心义。

3. 分式的值为0的条件:分子为0,且分母不为0,关于A B ,即00A B =⎧⎨≠⎩时,A B = 0 . 4. 分式(数)的大体性质: 分式(数)的分子、分母都乘以(或除以)同一个不等于零的整式(数),分式(数)的值不变。

A A MB B M ⋅=⋅, A A M B B M÷=÷( M 为 ≠ 0 的整式) 5. 分式通分(1)通分的依据是分式的大体性质; (2)通分的关键是确信最简公分母;(3)通分后的各分式的分母相同;(4)通分后的各分式别离与原先的分式相等.6. 分式通分的步骤(1)确信最简公分母①取各分母系数的最小公倍数。

②凡显现的字母(或含字母的式子)为底的幂的因式都要取。

③相同字母(或含字母的式子)的幂的因式取指数最大的。

④当分母中有多项式时,要先将多项式分解因式。

(2)将各分式化成相同分母的分式。

7. 分式的约分(1)约分的依据:分式的大体性质 (2)约分后不改变分式的值。

(3)约分的结果:使分子、分母中没有公因式,即化为最简分式。

8. 分子的变号规那么 分式的分子、分母及分式本身的符号改变其中任意两个,分式的值不变。

用式子表示为:a a a b b b -==--;a a a a b b b b---=-==-- 分式的乘方是把分子、分母别离乘方,即na b ⎛⎫ ⎪⎝⎭= 11. 分式的加减 (1)同分母分式相加减,分母不变,把分子相加减。

八年级16章分式知识点

八年级16章分式知识点

八年级16章分式知识点在数学学科中,分式是一个重要的概念。

在初中阶段,分式的具体内容通常在高年级进行学习,比如八年级第16章就是分式知识点的学习内容。

在这一章节中,学生将学习如何理解分式的概念,如何用分式解决实际问题,以及分式的简化和运算等知识点。

本文将详细介绍八年级第16章分式知识点的内容。

1. 章节概述在八年级第16章,学生需要掌握以下四个方面的内容:1.1 分式的概念分式是一个形如“a/b”的表达式,其中“a”和“b”是数。

分式的意义是将一个数“a”分为“b”份。

例如,“3/4”表示将数3分成4份,每一份为“3/4”。

1.2 分式的运算对于两个分式“a/b”和“c/d”,我们可以进行加、减、乘、除这四种运算。

具体来说,加法和减法可以通过通分实现,乘法可以直接相乘分子和分母,而除法则通过取倒数来实现。

1.3 分式的简化当分子和分母没有公因数时,分式就已经简化了。

但如果存在公因数,则需要通过约分来简化分式。

约分的过程是将分子和分母同时除以它们的最大公因数。

1.4 分式的应用分式在实际生活中有着广泛的应用,比如在化学中用于计算化学反应中物质的量,或者在经济学中用于计算利率等。

2.分式的概念分式是数学中非常重要的一个概念。

在具体的表达式中,分式通常表示将一个整体分为若干份的比例关系。

在八年级的16章中,学生需要掌握分式的基本概念,包括如何理解分式的意义,以及如何将分式表示为最简形式等。

3.分式的运算分式的运算分为四种,包括加法、减法、乘法和除法。

4种运算的具体规则如下:3.1 加法和减法在分式加法和减法中,需要先使两个分母相同,然后再将两个分式的分子进行相加或相减,最后化简得到最简分式。

具体来说,假设分式为a/b和c/d,则它们的和为(ad+bc)/bd,差为(ad-bc)/bd。

3.2 乘法分式的乘法比较简单,只需要将两个分式的分子和分母分别相乘,然后约分即可。

具体来说,假设分式为a/b和c/d,则它们的积为ac/bd。

(精编)八年级数学下册___分式知识点总结

(精编)八年级数学下册___分式知识点总结

第十六章 分式AB1.分式 的定义:如果 A 、 B 表示两个整式,并且 B 中含有字母,那么式子 叫做分式。

分式有意义 的条件是分母不为零,分式值为零 的条件分子为零且分母不为零。

2.分式 的基本性质:分式 的分子与分母同乘或除以一个不等于0 的整式,分式 的值不变。

A A?CB B?C A A C B B C( C 0)3.分式 的通分和约分:关键先是分解因式4.分式 的运算:分式乘法法则:分式乘分式,用分子 的积作为积 的分子,分母 的积作为分母。

分式除法法则:分式除以分式,把除式 的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则:分式乘方要把分子、分母分别乘方。

a nb na c ac a c a d ad a ( )n ? ; ?b d bd b d bc bcb分式 的加减法则:同分母 的分式相加减,分母不变,把分子相加减。

异分母 的分式相加减, a b a b a c ad bc ad bc,先通分,变为同分母分式,然后再加减c c c bd bd bd bd混合运算 :运算顺序和以前一样。

能用运算率简算 的可用运算率简算。

1a n1,即 a 1(a 0);当 n 为正整数时, a n5.任何一个不等于零 的数 的零次幂等于 ( a 0)6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数 )m(1)同底数 的幂 的乘法: a ?a n a m n;mn(2)幂 的乘方: (a m )n a ;(3)积 的乘方: (ab) n a b ;n n(4)同底数 的幂 的除法: a m a n a m n ( a ≠0);a a nb n( )n(5)商 的乘方: ;(b ≠0) b7.分式方程:含分式,并且分母中含未知数 的方程——分式方程。

解分式方程 的过程,实质上是将方程两边同乘以一个整式(最简公分母) 为整式方程。

,把分式方程转化解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根, 因此分式方程一定要验根。

分式八年级下册数学知识点归纳总结

分式八年级下册数学知识点归纳总结

分式八年级下册数学知识点归纳总结
分式八年级下册数学知识点归纳总结
1.分式的有关概念
设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义
分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简
2、分式的基本性质
(M为不等于零的.整式)
3.分式的运算(分式的运算法则与分数的运算法则类似).
(异分母相加,先通分);
4.零指数
5.负整数指数
注意正整数幂的运算性质
可以推广到整数指数幂,也就是上述等式中的m、n可以是O或负整数.
6、解分式方程的一般步骤:
在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程..验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去.
7、列分式方程解应用题的一般步骤:
(1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;(4)解方程,并验根,还要看方程的解是否符合题意;(5)写出答案(要有单位)。

八年级数学下册知识点总结-分式精华版

八年级数学下册知识点总结-分式精华版

分式专项训练1.分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零。

2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

(0≠C )3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则:分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 混合运算:运算顺序和以前一样。

能用运算率简算的可用运算率简算。

5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,nn a a 1=- ()0≠a6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:m n m n a a a+∙=; (2)幂的乘方:()m n mn a a=; (3)积的乘方:()n n n ab a b =;(4)同底数的幂的除法:m n m n a a a -÷=( a ≠0);(5)商的乘方:()nn n a a b b=;(b ≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤 :(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方;a c ac a c a d ad b d bd b d b c bc ∙=÷=∙=()nn n a a b b =A A C B B C ∙=∙A A C B B C ÷=÷程;(4)验根.增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

八年级数学《分式》知识点

八年级数学《分式》知识点

八年级数学《分式》知识点一、分式的概念形如 A/B(A、B 是整式,B 中含有字母且 B 不等于 0)的式子叫做分式。

其中 A 叫做分子,B 叫做分母。

理解分式的概念时,需要注意以下几点:1、分式的分母中必须含有字母。

例如:5/x 是分式,而 5/3 就不是分式,因为它的分母 3 是常数。

2、分母的值不能为 0。

如果分母 B 的值为 0,那么分式就没有意义。

3、分式是两个整式相除的商,其中分子是被除式,分母是除式。

4、整式和分式统称为有理式。

二、分式有意义的条件分式有意义的条件是分母不等于 0。

即:对于分式 A/B,当B≠0 时,分式有意义。

例如:对于分式 2/(x 1),要使其有意义,则x 1≠0,即x≠1。

三、分式的值为 0 的条件分式的值为 0 时,需要同时满足两个条件:1、分子等于 0,即 A = 0。

2、分母不等于 0,即B≠0。

例如:对于分式(x 2)/(x + 1),当 x 2 = 0 且 x +1≠0 时,分式的值为 0。

由 x 2 = 0 得 x = 2,又因为 x +1≠0,即x≠ 1,所以当 x = 2 时,该分式的值为 0。

四、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不等于 0 的整式,分式的值不变。

即:A/B = A×M/B×M,A/B = A÷M/B÷M(M 为不等于 0 的整式)例如:将分式 2x/(3y)的分子分母同时乘以 2,得到 4x/(6y),分式的值不变。

利用分式的基本性质,可以进行分式的约分和通分。

五、约分把一个分式的分子和分母的公因式约去,叫做约分。

约分的关键是确定分子和分母的公因式。

确定公因式的方法:1、系数:取分子和分母系数的最大公约数。

例如:在分式 8x/12 中,8 和 12 的最大公约数是 4,所以分子分母同时除以 4 进行约分。

2、字母:取分子和分母相同字母的最低次幂。

例如:在分式 x²y/xy²中,相同字母是 x 和 y,x 的最低次幂是 1,y 的最低次幂是 1,所以公因式是 xy,约分后为 x/y。

数学八年级下册分式知识点总结

数学八年级下册分式知识点总结

数学八年级下册分式知识点总结
数学八年级下册分式的知识点总结包括:
1. 分式的定义:分式是由分子和分母组成的有理数表达式,分子和分母都是整数。

2. 分数的运算:加减乘除四则运算的规则同整数的运算规则。

3. 分式化简:将分子和分母的公因式约去,将分数化简为最简形式。

4. 分数的乘除法:乘法时,分子乘以分子,分母乘以分母。

除法时,乘以倒数,即分
子乘以分母的倒数。

5. 分式的加减法:分式加减法也要找到分母的最小公倍数,然后分子相加减,分母不变。

6. 分式的混合运算:先进行分数的乘除法运算,再进行分数的加减法运算。

7. 分式方程的解:分式方程的解与分式的定义域有关,需要注意排除分母为零的情况。

8. 分式不等式的解:将分数不等式转化为分母为正数的不等式,根据分母正负的不同
确定解的范围。

9. 分式的应用:分式在实际问题中的应用包括比例、速度、利润等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六章 分式知识点及典型例子
一、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B
A 叫做分式。

例1.下列各式a π,11x +,15
x+y ,22a b a b --,-3x 2,0•中,是分式的有( )个。

二、 分式有意义的条件是分母不为零;【B ≠0】
分式没有意义的条件是分母等于零;【B=0】
分式值为零的条件分子为零且分母不为零。

【B ≠0且A=0 即子零母不零】
例2.下列分式,当x 取何值时有意义。

(1)2132
x x ++; (2)2323x x +-。

例3.下列各式中,无论x 取何值,分式都有意义的是( )。

A .121x +
B .21x x +
C .231x x
+ D .2221x x + 例4.当x______时,分式2134
x x +-无意义。

当x_______时,分式2212x x x -+-的值为零。

例5.已知1x -1y
=3,求5352x xy y x xy y +---的值。

三、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不
变。

(0≠C )
四、分式的通分和约分:关键先是分解因式。

例6.不改变分式的值,使分式115101139
x y x y -+的各项系数化为整数,分子、分母应乘以(• )。

例7.不改变分式2323523
x x x x -+-+-的值,使分子、分母最高次项的系数为正数,则是(• )。

例8.分式434y x a +,2411x x --,22x xy y x y
-++,2222a ab ab b +-中是最简分式的有( )。

例9.约分:(1)22699x x x ++-; (2)2232m m m m
-+- C B C A B A ⋅⋅=C B C A B A ÷÷=
例10.通分:(1)
26x ab ,29y a bc ; (2)2121a a a -++,261
a - 例11.已知x 2+3x+1=0,求x 2+
21x 的值. 例12.已知x+1x
=3,求2421x x x ++的值. 五、分式的运算:
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则: 分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减。

,a b a b a c ad bc ad bc c c c b d bd bd bd
±±±=±=±= 混合运算:运算顺序和以前一样。

能用运算率简算的可用运算率简算。

例13.当分式211x --21x +-11
x -的值等于零时,则x=_________。

例14.已知a+b=3,ab=1,则a b +b a
的值等于_______。

例15.计算:222x x x +--2144
x x x --+。

例16.计算:2
1
x x --x-1 例17.先化简,再求值:
3a a --263a a a +-+3a
,其中a=32。

六、 任何一个不等于零的数的零次幂等于1 即)0(10≠=a a ;
当n 为正整数时,n
n a a 1=- ()0≠a 七、正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)
(1)同底数的幂的乘法:n m n m a
a a +=⋅; bc ad c d
b a d
c b a b
d ac d c b a =⋅=÷=⋅;n n n b
a b a =)(
(2)幂的乘方:mn n m a
a =)(; (3)积的乘方:n
n n b a ab =)(; (4)同底数的幂的除法:n m n m a a a -=÷( a ≠0);
(5)商的乘方:n n
n b
a b a =)((b ≠0) 八、科学记数法:把一个数表示成n a 10⨯的形式(其中101<≤a ,n 是整数)的记数方法叫做科学记数法。

1、用科学记数法表示绝对值大于10的n 位整数时,其中10的指数是1-n 。

2、用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)。

例18.若25102=x ,则x -10等于( )。

A.51- B.51 C.50
1 D.6251 例19.若31=+-a a ,则22-+a a 等于( )。

A. 9
B. 1
C. 7
D. 11
例20.计算:(1)10123)326(34--⎪⎭⎫ ⎝⎛⋅-⋅- (2)()32
132----xy b a
例21.人类的遗传物质就是DNA,人类的DNA 是很长的链,最短的22号染色体也长达3000000个核苷酸,这个数用科学记数法表示是___________。

例22.计算()()___________1031032125=⨯÷⨯--。

例23.自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”,已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为_________。

例24.计算34x x y -+4x y y x +--74y x y -得( ) A .-264x y x y +- B .264x y x y
+- C .-2 D .2 例25.计算a-b+22b a b +得( ) A .22a b b a b
-++ B .a+b C .22
a b a b ++ D .a-b 九、分式方程:含分式,并且分母中含未知数的方程——分式方程。

1、解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

2、解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

3、解分式方程的步骤:
(1)、在方程的两边都乘以最简公分母,约去分母,化成整式方程。

(2)、解这个整式方程。

(3)、把整式方程的根代入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。

(4)、写出原方程的根。

增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

4、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

例26.解方程。

(1)623-=x x (2)1613122-=-++x x x (3)01152=+-+x x (4)x
x x 38741836---=- 例27. X 为何值时,代数式x
x x x 231392---++的值等于2? 例28.若方程122423=+-+x x 有增根,则增根应是( )
十、列方程应用题
(一)、步骤(1)审:分析题意,找出研究对象,建立等量关系;(2)设:选择恰当的未知数,注意单位;(3)列:根据等量关系正确列出方程;(4)解:认真仔细;(5)检:不要忘记检验;
(6)答:不要忘记写。

(二) 应用题的几种类型:
1、行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题。

例29.甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.
2、工程问题 基本公式:工作量=工时×工效。

例30.一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?
3、顺水逆水问题 v 顺水=v 静水+v 水; v 逆水=v 静水-v 水。

例31.已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?。

相关文档
最新文档