高考数学模拟复习试卷试题模拟卷201 4

合集下载

2024年高考数学模拟试题与答案解析

2024年高考数学模拟试题与答案解析

2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。

A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。

所以A∩B={x|x=6k,k∈Z},故选B。

2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。

根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。

故选A。

3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。

又因为S6-S3=24,得到a4+a5+a6=24。

由等差数列的性质,a3+a6=a4+a5。

将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。

解方程组a1+a3=12和a4+a5=16,得到a4=8。

故选B。

二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。

再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。

5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。

【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。

三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。

2024年高考数学精选模拟试卷及答案

2024年高考数学精选模拟试卷及答案

2024年高考数学精选模拟试卷及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.现要完成下列2项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;①东方中学共有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )4.现将5个代表团人员安排至甲、乙、丙三家宾馆入住,要求同一个代表团人员住同一家宾馆,且每家宾馆至少有一个代表团入住.若这5个代表团中,A B 两个代表团已经入住甲宾馆且不再安排其他代表团入住甲宾馆,则不同的入住方案种数为( ) A .6B .12C .16D .185.下列命题中正确的个数是①命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠; ①“0a ≠”是“20a a +≠”的必要不充分条件; ①若p q ∧为假命题,则p ,q 为假命题;①若命题2000:,10p x R x x ∃∈++<,则:p x ⌝∀∈R ,210x x ++≥.二、多选题三、填空题四、解答题16.2018年茂名市举办“好心杯”少年美术书法作品比赛,某赛区收到200件参赛作品,为了解作品质量,现从这些作品中随机抽取12件作品进行试评.成绩如下:67,82,78,86,96,81,73,84,76,59,85,93. (1)求该样本的中位数和方差;(2)若把成绩不低于85分(含85分)的作品认为为优秀作品,现在从这12件作品中任意抽取3件,求抽到优秀作品的件数的分布列和期望.17.某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为n 的样本,并将样本数据分成五组:[)1828,,[)2838,,[)3848,,[)4858,,[)5868,,再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.(1)分别求出a,x的值;(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖概率.18.某食品公司在八月十五来临之际开发了一种月饼礼盒,礼盒中共有7个两种口味的月饼,其中4个五仁月饼和3个枣泥月饼.(1)一次取出两个月饼,求两个月饼为同一种口味的概率;(2)依次不放回地从礼盒中取2个月饼,求第1次、第2次取到的都是五仁月饼的概率;(3)依次不放回地从礼盒中取2个月饼,求第2次取到枣泥月饼的概率.19.在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,大于等于90分的选手将直接参加竞赛选拔赛.已知成绩合格的100名参赛选手成绩的60,70,80,90,90,100的频率构成等比数列.频率分布直方图如图所示,其中[)[)[](2)若试剂A在连续进行的三轮测试中,都有2X ,则认为该试剂对药品B的酸碱值检测效果是稳定的,求出出现这种现象的概率.参考答案:a4)中位数为81.5,方差为,x=9(2)。

2024年辽宁省高考数学模拟试题04(解析版)

2024年辽宁省高考数学模拟试题04(解析版)

2024年高考数学模拟试题04(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。

1.某同学坚持夜跑锻炼身体,他用手机记录了连续10周每周的跑步总里程(单位:千米),其数据分别为17,21,15,8,9,13,11,10,20,6,则这组数据的75%分位数是()A .12B .16C .17D .18.5【答案】C【分析】将数据从小到大排列,再根据百分位数计算规则计算可得.【详解】依题意这10个数据从小到大排列为:6,8,9,10,11,13,15,17,20,21,又1075%7.5⨯=,所以75%分位数为从小到大排列的第八个数,即为17.故选:C 2.若复数()412i 34iz +=+,则z =()AB C .5D .253.2022年北京冬奥会期间,主办方需从3名高三学生、2名高二学生、1名高一学生中随机抽取两名学生参加接待外宾活动.若抽取的两名学生中必须有一名高三学生,则另一名是高二或高一学生的概率为()A .34B .14C .25D .354.已知双曲线()22:10,0x y E a ba b-=>>的左、右焦点分别为12,,F FP 为E 上一点,且124PF PF b +≥,则E的离心率的取值范围为()A .B .2⎤⎦C .(D .⎛ ⎝⎦5.已知数列{}n a 满足110a =,2110n n a a +=,若10110s t a a a ⋅=,则s t +的最大值为()A .10B .12C .16D .186.已知函数()23log f x x =,正数,a b 满足()()310f a f b +-=,则ab+的最小值为()A .6B .8C .12D .247.已知三棱锥,A BCD AB BC E-==为BC中点,A BC D--为直二面角,且AED∠为二面角A BC D--的平面角,三棱锥A BCD-的外接球O表面积为84π5,则平面BCD被球O截得的截面面积及直线AD与平面BCD所成角的正切值分别为()A.4π5B.4π,55C.16π,55D.16π,55过F 作平面BCD 的垂线,过两垂线的交点即为三棱锥A 则四边形OHEF 是矩形,OF 连接,OB BF ,设BCD △外接圆半径设球O 半径为OB R =,因为球8.某地计划对如图所示的半径为a 的直角扇形区域ABC 按以下方案进行扩建改造,在扇形ABC 内取一点P使得BP =,以BP 为半径作扇形PBE ,且满足22PBE PBC θ∠=∠=,其中0π02θθ<≤<,0cos θ=则图中阴影部分的面积取最小值时θ的大小为()A .π12B .π6C .π4D .π3二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。

备战2024年高考数学模拟卷第一卷(新高考专用)共8套

备战2024年高考数学模拟卷第一卷(新高考专用)共8套

(考试时间:120分钟试卷满分:150分备战2024年高考数学模拟卷(新高考专用)黄金卷01)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集U =R ,集合{3,10},02xA yy x x B x x ⎧⎫==-<<=≥⎨⎬+⎩⎭∣,则U A B ð等于()A .()2,0-B .[)2,0-C .()3,2--D .(]3,2--2.已知()iR 1im z m +=∈-,z =,则实数m 的值为()A .3±B .3C.D3.下列区间中,函数()3sin 6f x x π⎛⎫=+ ⎪⎝⎭的单调递减区间是()A .π0,2⎛⎫ ⎪⎝⎭B .π,π2⎛⎫ ⎪⎝⎭C .3ππ,2⎛⎫ ⎪⎝⎭D .3π,2π2⎛⎫⎪⎝⎭4.已知函数()f x 的图象如图所示,则该函数的解析式为()A .2()e ex xx f x -=+B .()3e e x xf x x -+=C .2()e e x xx f x -=-D .()2e e x xf x x -+=5.在ABC 中,过重心E 任作一直线分别交AB ,AC 于M ,N 两点,设AM xAB =u u u r u u u r ,AN yAC =u u ur u u u r ,(0x >,0y >),则4x y +的最小值是()A .43B .103C .3D .26.一百零八塔,位于宁夏吴忠青铜峡市,是始建于西夏时期的实心塔群,共分十二阶梯式平台,自上而下一共12层,每层的塔数均不少于上一层的塔数,总计108座.已知其中10层的塔数成公差不为零的等差数列,剩下两层的塔数之和为8,则第11层的塔数为()A .17B .18C .19D .207.已知双曲线2222:1(,0)x y C a b a b -=>的右焦点为F ,过F 作x 轴的垂线与C 的一个交点为P ,与C 的一条渐近线交于,Q O 为坐标原点,若1455OP OF OQ =+,则双曲线C 的离心率为()AB .2C .53D .548.对任意()0,2e ,ln e x x a x ∈-≤恒成立,则实数a 的取值范围为()A .()e,2e B .3e ,2e 2⎡⎤⎢⎥⎣⎦C .()e2e ,2e ln 2e ⎛⎫- ⎪ ⎪⎝⎭D .()e 2e ,2e ln 2e ⎡⎤-⎢⎥⎢⎥⎣⎦二、选择题:本题共4小题,每小题5分,共20分。

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。

2024年河北高考数学模拟试卷及答案

2024年河北高考数学模拟试卷及答案

2024年河北高考数学模拟试卷及答案(一)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知抛物线C :212y x = ,则C 的准线方程为 A . 18x =B .1-8x =C .18y =D .1-8y = 2.已知复数121z i=+ ,复数22z i =,则21z z -=A .1BC ..10 3.已知命题:(0,)ln xp x e x ∀∈+∞>,,则 A .p 是假命题,:(-)ln xp x e x ⌝∃∈∞≤,0,B .p 是假命题, :(0+)ln xp x e x ⌝∃∈∞≤,,C .p 是真命题,:(-)ln xp x e x ⌝∃∈∞≤,0,D .p 是真命题,:(0+)ln xp x e x ⌝∃∈∞≤,,4.已知圆台1O O 上下底面圆的半径分别为1,3,母线长为4,则该圆台的侧面积为 A .8πB .16πC .26πD .32π5.下列不等式成立的是A.66log 0.5log 0.7>B. 0.50.60.6log 0.5>C.65log 0.6log 0.5>D. 0.60.50.60.6>6.某校为了解本校高一男生身高和体重的相关关系,在该校高一年级随机抽取了7名男生,测量了他们的身高和体重得下表:由上表制作成如图所示的散点图:由最小二乘法计算得到经验回归直线1l 的方程为11ˆˆˆy b x a =+,其相关系数为1r ;经过残差分析,点(167,90)对应残差过大,把它去掉后,再用剩下的6组数据计算得到经验回归直线2l 的方程为22ˆˆˆy b x a =+,相关系数为2r .则下列选项正确的是 A .121212ˆˆˆˆ,,b b a a r r <>< B .121212ˆˆˆˆ,,b b a a r r <<> C .121212ˆˆˆˆ,,b b a a r r ><> D .121212ˆˆˆˆ,,b b a a r r >>< 7.函数()y f x =的导数()y f x '=仍是x 的函数,通常把导函数()y f x '=的导数叫做函数的二阶导数,记作()y f x ''=,类似地,二阶导数的导数叫做三阶导数,三阶导数的导数叫做四阶导数一般地,n-1阶导数的导数叫做 n 阶导数,函数()y f x =的n 阶导数记为()n y fx =(),例如xy e =的n 阶导数()()n xx ee =.若()cos 2xf x xe x =+,则()500f =()A .49492+B .49C .50D .50502-8.已知函数()cos()f x x ωϕ=+的部分图象如下,12y =与其交于A ,B 两点. 若3AB π=,则ω=A .1B .2C .3D .4二、选择题:本题共3小题,每小题6分,共18分。

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)一、选择题(共30题,每题2分,共60分)1. 已知函数 $ f(x) = x^2 4x + 3 $,则下列哪个选项是正确的?A. $ f(x) $ 在 $ x = 2 $ 处取得最小值B. $ f(x) $ 在 $ x = 2 $ 处取得最大值C. $ f(x) $ 在 $ x = 2 $ 处取得极值D. $ f(x) $ 在 $ x = 2 $ 处无极值2. 若 $ \log_2 8 = x $,则 $ x $ 的值为多少?A. 3B. 4C. 5D. 63. 已知等差数列 $ \{a_n\} $,若 $ a_1 = 3 $,$ a_3 = 9 $,则 $ a_5 $ 的值为多少?A. 12B. 15C. 18D. 214. 若 $ \sin^2 x + \cos^2 x = 1 $,则下列哪个选项是正确的?A. $ \sin x $ 和 $ \cos x $ 必须同时为正B. $ \sin x $ 和 $ \cos x $ 必须同时为负C. $ \sin x $ 和 $ \cos x $ 一正一负D. $ \sin x $ 和 $ \cos x $ 可以同时为零5. 若 $ \frac{a}{b} = \frac{c}{d} $,则下列哪个选项是正确的?A. $ a + c = b + d $B. $ ad = bc $C. $ a c = b d $D. $ \frac{a}{c} = \frac{b}{d} $6. 已知 $ a $、$ b $、$ c $ 是等边三角形的三边长,则下列哪个选项是正确的?A. $ a^2 + b^2 = c^2 $B. $ a^2 + c^2 = b^2 $C. $ b^2 + c^2 = a^2 $D. $ a = b = c $7. 若 $ \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 $,则下列哪个选项是正确的?A. 该方程表示椭圆B. 该方程表示双曲线C. 该方程表示抛物线D. 该方程表示圆8. 已知 $ \sqrt{3} $ 是方程 $ x^2 2x + 1 = 0 $ 的根,则该方程的另一根为多少?A. $ 1 \sqrt{3} $B. $ 1 + \sqrt{3} $C. $ 2 \sqrt{3} $D. $ 2 + \sqrt{3} $9. 若 $ a $、$ b $、$ c $ 是三角形的三边长,且 $ a^2 +b^2 = c^2 $,则下列哪个选项是正确的?A. 该三角形是等腰三角形B. 该三角形是等边三角形C. 该三角形是直角三角形D. 该三角形是钝角三角形10. 若 $ \frac{1}{x} + \frac{1}{y} = \frac{1}{z} $,则下列哪个选项是正确的?A. $ x + y = z $B. $ xy = z $C. $ \frac{1}{x} + \frac{1}{y} = z $D. $ x + y + z = 0 $二、填空题(共10题,每题2分,共20分)11. 已知 $ f(x) = 2x + 1 $,若 $ f(3) = 7 $,则 $ f(1)$ 的值为______。

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)试卷一:基础能力测试一、选择题(每题5分,共50分)1. 若函数 $ f(x) = \sqrt{3x 1} $ 在区间 $[0, 2]$ 上有定义,则 $ x $ 的取值范围是:A. $[0, 1]$B. $[0, 2]$C. $[1, 2]$D. $[1, 3]$2. 已知集合 $ A = \{x | x^2 3x + 2 = 0\} $,则集合 $ A $ 的元素个数是:A. 1B. 2C. 3D. 43. 若 $ a, b $ 是方程 $ x^2 4x + 3 = 0 $ 的两个根,则$ a + b $ 的值是:A. 1B. 2C. 3D. 44. 已知函数 $ f(x) = 2x^3 3x^2 + x $,则 $ f'(1) $ 的值是:A. 2B. 3C. 4D. 55. 若 $ \log_2 8 = x $,则 $ x $ 的值是:A. 2B. 3C. 4D. 56. 已知等差数列 $ \{a_n\} $ 的首项 $ a_1 = 2 $,公差 $ d = 3 $,则第10项 $ a_{10} $ 的值是:A. 29B. 30C. 31D. 327. 若 $ \sin 45^\circ = x $,则 $ x $ 的值是:A. $ \frac{\sqrt{2}}{2} $B. $ \frac{\sqrt{3}}{2} $C. $ \frac{1}{2} $D. $ \frac{1}{\sqrt{2}} $8. 已知函数 $ f(x) = \frac{1}{x} $,则 $ f^{1}(x) $ 的表达式是:A. $ x $B. $ \frac{1}{x} $C. $ x $D. $ \frac{1}{x} $9. 若 $ a^2 = b^2 $,则 $ a $ 和 $ b $ 的关系是:A. $ a = b $B. $ a = b $C. $ a = b $ 或 $ a = b $D. $ a $ 和 $ b $ 无关10. 已知等比数列 $ \{a_n\} $ 的首项 $ a_1 = 1 $,公比 $ q = 2 $,则第5项 $ a_5 $ 的值是:A. 8B. 16C. 32D. 64二、填空题(每题5分,共20分)1. 若 $ x^2 5x + 6 = 0 $,则 $ x $ 的值是 ________。

高考数学模拟试题含解析 试题

高考数学模拟试题含解析 试题

智才艺州攀枝花市创界学校2021届新高考数学模拟试题〔含解析〕一、单项选择题 1.集合1|244x A x ⎧⎫=≤≤⎨⎬⎩⎭,1|lg 10B y y x x ⎧⎫==>⎨⎬⎩⎭,,那么A B =〔〕A.[]22-,B.(1,)+∞C.(]1,2-D.(](1)2-∞-⋃+∞,,【答案】C 【解析】 【分析】先解得不等式1244x ≤≤及110x >时函数lg y x =的值域,再根据交集的定义求解即可. 【详解】由题,不等式1244x ≤≤,解得22x -≤≤,即{}|22A x x =-≤≤; 因为函数lg y x =单调递增,且110x >,所以1y >-,即{}|1B y y =>-, 那么(]1,2A B ⋂=-,应选:C【点睛】此题考察集合的交集运算,考察解指数不等式,考察对数函数的值域. 2.设i 是虚数单位,假设复数5i2i()a a +∈+R 是纯虚数,那么a 的值是〔〕 A.3- B.3C.1D.1-【答案】D 【解析】 【分析】整理复数为b ci +的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【详解】由题,()()()()5252112222i i ia a a i a i i i i -+=+=++=++++-, 因为纯虚数,所以10a +=,那么1a =-, 应选:D【点睛】此题考察复数的类型求参数范围,考察复数的除法运算. 3.“2a <〞是“10,x a x x∀>≤+〞的〔〕 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【答案】A 【解析】 【分析】假设10,x a x x ∀>≤+,那么min 1a x x ⎛⎫≤+ ⎪⎝⎭,利用均值定理可得min12x x ⎛⎫+= ⎪⎝⎭,那么2a ≤,. 【详解】假设10,x a x x ∀>≤+,那么min 1a x x ⎛⎫≤+ ⎪⎝⎭,因为12x x +≥,当且仅当1x x=时等号成立, 所以2a ≤, 因为{}{}|2|2a a a a <⊆≤,所以“2a <〞是“10,x a x x∀>≤+〞的充分不必要条件, 应选:A【点睛】此题考察充分条件和必要条件的断定,考察利用均值定理求最值. 4.甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如下列图. ①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学的平均分高; ③甲同学的平均分比乙同学的平均分低; ④甲同学成绩的方差小于乙同学成绩的方差. 以上说法正确的选项是〔〕 A.③④ B.①②C.②④D.①③④【答案】A 【解析】 【分析】由茎叶图中数据可求得中位数和平均数,即可判断①②③,再根据数据集中程度判断④. 【详解】由茎叶图可得甲同学成绩的中位数为8082812+=,乙同学成绩的中位数为878887.52+=,故①错误;()1=72+76+80+82+86+90=816x ⨯甲,()1=69+78+87+88+92+96=856x ⨯乙,那么x x <甲乙,故②错误,③正确;显然甲同学的成绩更集中,即波动性更小,所以方差更小,故④正确, 应选:A【点睛】此题考察由茎叶图分析数据特征,考察由茎叶图求中位数、平均数.5.刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以致于不可割,那么与圆周合体而无所失矣〞,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n 边形等分成n 个等腰三角形(如下列图),当n 变得很大时,这n 个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到sin 2的近似值为〔〕 A.π90B.π180C.π270D.π360【答案】A【解析】 【分析】设圆的半径为r ,每个等腰三角形的顶角为360n ︒,那么每个等腰三角形的面积为21360sin 2r n︒,由割圆术可得圆的面积为221360sin 2rn r n π︒=⋅,整理可得3602sin n nπ︒=,当180n =时即可为所求.【详解】由割圆术可知当n 变得很大时,这n 个等腰三角形的面积之和近似等于圆的面积, 设圆的半径为r ,每个等腰三角形的顶角为360n︒, 所以每个等腰三角形的面积为21360sin2r n ︒, 所以圆的面积为221360sin 2r n r n π︒=⋅,即3602sin n n π︒=, 所以当180n =时,可得3602sin sin 218018090ππ︒=︒==,应选:A【点睛】此题考察三角形面积公式的应用,考察阅读分析才能. 6.函数()22x f x a x=--的一个零点在区间()1,2内,那么实数a 的取值范围是〔〕A.()1,3 B.()1,2C.()0,3D.()0,2【答案】C 【解析】 【分析】显然函数()22x f x ax=--在区间()1,2内连续,由()f x 的一个零点在区间()1,2内,那么()()120f f <,即可求解.【详解】由题,显然函数()22x f x a x=--在区间()1,2内连续,因为()f x 的一个零点在区间()1,2内,所以()()120f f <,即()()22410a a ----<,解得0<<3a ,应选:C【点睛】此题考察零点存在性定理的应用,属于根底题.7.圆()22:200Mx y ay a +-=>截直线0x y +=所得线段的长度是M 与圆()()22:111N x y -+-=的位置关系是〔〕A.内切B.相交C.外切D.相离【答案】B 【解析】 化简圆()()2221:0,,M x y a a M a r a M+-=⇒=⇒到直线x y +=的间隔d =⇒()221220,2,2a a M r +=⇒=⇒=,又()2121,1,1Nr MNr r MN =⇒=-<<12r r +⇒两圆相交.选B8.九章算术中记载,堑堵是底面为直角三角形的直三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵111ABC A B C -中,AC BC ⊥,12AA =,马11B ACC A -体积的最大值为43时,堑堵111ABC A B C -的外接球的体积为〔〕A.4π3π C.32π3【答案】B 【解析】 【分析】利用均值不等式可得()11222112113333B ACC A V BC AC AA BC AC BC AC AB -=⋅⋅=⋅≤+=,即可求得AB ,进而求得外接球的半径,即可求解.【详解】由题意易得BC ⊥平面11ACC A ,所以()11222112113333B ACC A V BC AC AA BC AC BC AC AB -=⋅⋅=⋅≤+=, 当且仅当AC BC =时等号成立,又阳马11B ACC A -体积的最大值为43, 所以2AB =,所以堑堵111ABC A B C -的外接球的半径R ==所以外接球的体积3433Vr π==, 应选:B【点睛】此题以中国传统文化为背景,考察四棱锥的体积、直三棱柱的外接球的体积、根本不等式的应用,表达了数学运算、直观想象等核心素养.二、多项选择题9.以下函数中,既是偶函数,又在(0,)+∞上单调递增的是〔〕A.3)y x =B.e e x x y -=+C.21y x =+D.cos 3y x =+【答案】BC 【解析】 【分析】易知A,B,C,D 四个选项里面的函数的定义域均为R ,先利用()f x -与()f x 的关系判断奇偶性,再判断单调性,即可得到结果.【详解】由题,易知A,B,C,D 四个选项里面的函数的定义域均为R ,对于选项A,()()))ln3ln30f x f x x x -+=+=,那么()3)f x x =-为奇函数,故A 不符合题意;对于选项B,()()x x f x e e f x --=+=,即()e e x x f x -=+为偶函数,当(0,)x ∈+∞时,设()1x te t =>,那么1y t t=+,由对勾函数性质可得,当()1,t ∈+∞时是增函数,又x t e =单调递增,所以()e e x xf x -=+在(0,)+∞上单调递增,故B 符合题意;对于选项C,()()()2211f x x x f x -=-+=+=,即()21f x x =+为偶函数,由二次函数性质可知对称轴为0x=,那么()21f x x =+在(0,)+∞上单调递增,故C 符合题意;对于选项D,由余弦函数的性质可知cos 3y x =+是偶函数,但在(0,)+∞不恒增,故D 不符合题意; 应选:BC【点睛】此题考察由解析式判断函数的奇偶性和单调性,纯熟掌握各函数的根本性质是解题关键. 10.2((0)n ax a>的展开式中第5项与第7项的二项数系数相等,且展开式的各项系数之和为1024,那么以下说法正确的选项是〔〕 A.展开式中奇数项的二项式系数和为256 B.展开式中第6项的系数最大 C.展开式中存在常数项 D.展开式中含15x 项的系数为45 【答案】BCD 【解析】 【分析】由二项式的展开式中第5项与第7项的二项数系数相等可知10n =,由展开式的各项系数之和为1024可得1a =,那么二项式为10101222x x x-⎛⎫⎛+=+ ⎪ ⎝⎝⎭,易得该二项式展开式的二项式系数与系数一样,利用二项式系数的对称性判断A,B ;根据通项判断C,D 即可.【详解】由二项式的展开式中第5项与第7项的二项数系数相等可知10n =, 又展开式的各项系数之和为1024,即当1x =时,()1011024a +=,所以1a =,所以二项式为10101222x x x-⎛⎫⎛+=+ ⎪ ⎝⎝⎭,那么二项式系数和为1021024=,那么奇数项的二项式系数和为110245122⨯=,故A 错误;由10n =可知展开式一共有11项,中间项的二项式系数最大,即第6项的二项式系数最大, 因为2x 与12x-的系数均为1,那么该二项式展开式的二项式系数与系数一样,所以第6项的系数最大,故B 正确;假设展开式中存在常数项,由通项()12102110r r r r T C x x--+=可得()121002r r --=,解得8r =,故C 正确; 由通项()12102110r r r r TC xx--+=可得()1210152r r --=,解得2r,所以系数为21045C =,故D 正确,应选:BCD【点睛】此题考察二项式的定理的应用,考察系数最大值的项,考察求指定项系数,考察运算才能.11.在ABC 中,D 在线段AB 上,且5,3AD BD ==假设2,cos CB CD CDB =∠=,那么〔〕 A.3sin 10CDB ∠= B.ABC 的面积为8C.ABC 的周长为8+ D.ABC 为钝角三角形【答案】BCD 【解析】 【分析】由同角的三角函数关系即可判断选项A ;设CD a =,那么2BC a =,在BCD 中,利用余弦定理求得a ,即可求得DBC S △,进而求得ABCS,即可判断选项B ;在ADC 中,利用余弦定理求得AC ,进而判断选项C ;由BC 为最大边,利用余弦定理求得cos C ,即可判断选项D.【详解】因为cos CDB ∠=,所以sin 5CDB ∠==,故A 错误; 设CD a =,那么2BCa =,在BCD 中,2222cos BC CD BD BC CD CDB =+-⋅⋅∠,解得a =所以11sin 33225DBCSBD CD CDB =⋅⋅∠=⨯=, 所以3583ABCDBCSS +==,故B 正确;因为ADCCDB π∠=-∠,所以()cos cos cos ADC CDB CDB π∠=-∠=-∠=,在ADC 中,2222cos AC AD CD AD DC ADC =+-⋅⋅∠,解得AC =所以()358ABCCAB AC BC =++=++=+故C 正确;因为8AB =为最大边,所以2223cos 025BC AC AB C BC AC +-==-<⋅,即C ∠为钝角,所以ABC 为钝角三角形,故D 正确. 应选:BCD【点睛】此题考察利用余弦定理解三角形,考察三角形面积的公式的应用,考察判断三角形的形状. 12.如图,在四棱锥P ABCD -中,PC⊥底面ABCD ,四边形ABCD 是直角梯形,//,,222AB CD AB AD AB AD CD ⊥===,F 是AB 的中点,E 是PB 上的一点,那么以下说法正确的选项是〔〕A.假设2PB PE =,那么//EF平面PACB.假设2PB PE =,那么四棱锥P ABCD -的体积是三棱锥E ACB -体积的6倍C.三棱锥P ADC -中有且只有三个面是直角三角形D.平面BCP ⊥平面ACE【答案】AD 【解析】 【分析】利用中位线的性质即可判断选项A ;先求得四棱锥P ABCD -的体积与四棱锥E ABCD -的体积的关系,再由四棱锥E ABCD -的体积与三棱锥E ABC -的关系进而判断选项B ;由线面垂直的性质及勾股定理判断选项C ;先证明AC ⊥平面BCP ,进而证明平面BCP ⊥平面ACE ,即可判断选项D.【详解】对于选项A,因为2PB PE =,所以E 是PB 的中点,因为F 是AB 的中点,所以//EF PA ,因为PA ⊂平面PAC ,EF⊄平面PAC ,所以//EF 平面PAC ,故A 正确;对于选项B,因为2PB PE =,所以2P ABCD E ABCD V V --=,因为//,,222AB CD AB AD AB AD CD ⊥===,所以梯形ABCD 的面积为()()113121222CD AB AD +⋅=⨯+⨯=,1121122ABCS AB AD =⋅=⨯⨯=,所以32E ABCD E ABC V V --=,所以3P ABCDE ABC V V --=,故B 错误;对于选项C,因为PC ⊥底面ABCD ,所以PC AC ⊥,PC CD ⊥,所以PAC ,PCD 为直角三角形, 又//,AB CD AB AD ⊥,所以AD CD ⊥,那么ACD 为直角三角形,所以222222PA PC AC PC AD CD =+=++,222PD CD PC =+,那么222PA PD AD =+,所以PAD △是直角三角形,故三棱锥P ADC -的四个面都是直角三角形,故C 错误; 对于选项D,因为PC ⊥底面ABCD ,所以PC AC ⊥,在RtACD 中,AC =在直角梯形ABCD 中,BC ==,所以222AC BC AB +=,那么AC BC ⊥,因为BC PC C ⋂=,所以AC ⊥平面BCP ,所以平面BCP ⊥平面ACE ,故D 正确,应选:AD【点睛】此题考察线面平行的断定,考察面面垂直的判断,考察棱锥的体积,考察空间想象才能与推理论证才能.三、填空题. 13.向量(2,)am =,(1,2)b =-,且a b ⊥,那么实数m 的值是________.【答案】1 【解析】 【分析】 根据ab ⊥即可得出220a b m ⋅=-=,从而求出m 的值.【详解】解:∵a b ⊥;∴220a bm ⋅=-=;∴m =1. 故答案为:1.【点睛】此题考察向量垂直的充要条件,向量数量积的坐标运算. 14.数列{}n a 的前n 项和公式为221nS n n =-+,那么数列{}n a 的通项公式为___.【答案】2,143,2nn a n n =⎧=⎨-≥⎩【解析】 【分析】由题意,根据数列的通项n a 与前n 项和n S 之间的关系,即可求得数列的通项公式. 【详解】由题意,可知当1n =时,112a S ==;当2n ≥时,()221221143nn n a S S n n n n n -=-=---+-=-.又因为11a =不满足43n a n =-,所以2,143,2n n a n n =⎧=⎨-≥⎩.【点睛】此题主要考察了利用数列的通项n a 与前n 项和n S 之间的关系求解数列的通项公式,其中解答中熟记数列的通项n a 与前n 项和n S 之间的关系,合理准确推导是解答的关键,着重考察了推理与运算才能,属于根底题.15.双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点和点()2,P a b 为某个等腰三角形的三个顶点,那么双曲线C 的离心率为________.【解析】 【分析】由等腰三角形及双曲线的对称性可知121F F PF =或者122F F PF =,进而利用两点间间隔公式求解即可.【详解】由题设双曲线的左、右焦点分别为()1,0F c -,()2,0F c ,因为左、右焦点和点()2,P a b 为某个等腰三角形的三个顶点,当122F F PF =时,2c =,由222b c a =-可得222430c ac a +-=,等式两边同除2a 可得22430e e +-=,解得1e =<〔舍〕;当121F F PF =时,2c =由222b c a =-可得222430c ac a --=,等式两边同除2a 可得22430e e --=,解得e =故答案为:22【点睛】此题考察求双曲线的离心率,考察双曲线的几何性质的应用,考察分类讨论思想. 16.设定义域为R 的函数()f x 满足()()f x f x '>,那么不等式()()121x e f x f x -<-的解集为__________. 【答案】(1,)+∞ 【解析】【分析】根据条件构造函数F 〔x 〕()xf x e=,求函数的导数,利用函数的单调性即可得到结论.【详解】设F 〔x 〕()xf x e=,那么F ′〔x 〕()()'xf x f x e-=,∵()()f x f x '>,∴F ′〔x 〕>0,即函数F 〔x 〕在定义域上单调递增. ∵()()121x ef x f x -<-∴()()2121xx f x f x ee--<,即F 〔x 〕<F 〔2x 1-〕∴x 2x 1-<,即x >1 ∴不等式()()121x e f x f x -<-的解为()1,+∞故答案为()1,+∞【点睛】此题主要考察函数单调性的判断和应用,根据条件构造函数是解决此题的关键.四、解答题.17.函数()21cos 2cos f x x x x m =--+在R 上的最大值为3.〔1〕求m 的值及函数()f x 的单调递增区间;〔2〕假设锐角ABC ∆中角、、A B C 所对的边分别为a b c 、、,且()0f A =,求b c的取值范围.【答案】〔1〕1m =,函数()f x 的单调递增区间为263k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,,;〔2〕122bc<<. 【解析】 【分析】〔1〕运用降幂公式和辅助角公式,把函数的解析式化为正弦型函数解析式形式,根据,可以求出m 的值,再结合正弦型函数的性质求出函数()f x 的单调递增区间;〔2〕由〔1〕结合()0f A =,可以求出角A 的值,通过正弦定理把问题b c的取值范围转化为两边对角的正弦值的比值的取值范围,结合ABC ∆是锐角三角形,三角形内角和定理,最后求出b c的取值范围.【详解】解:〔1〕()21cos 2cos f x x x x m =--+由23m +=,所以1m =因此()2sin 216f x x π⎛⎫=-++ ⎪⎝⎭令3222262k x k k Z πππππ+≤+≤+∈, 得263k x k k Z ππππ+≤≤+∈, 因此函数()f x 的单调递增区间为263k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,, 〔2〕由2sin 2106A π⎛⎫-++= ⎪⎝⎭,∴1sin 2=62A π⎛⎫+ ⎪⎝⎭ 由02A π<<得72666A πππ<+<,因此5266A ππ+=所以3A π=因为为锐角三角形ABC ∆,所以022032C B C πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩,解得62C ππ<<因此tan 3C>,那么122b c <<【点睛】此题考察了降幂公式、辅助角公式,考察了正弦定理,考察了正弦型三角函数的单调性,考察了数学运算才能.{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.〔Ⅰ〕求数列{}n b 的通项公式;〔Ⅱ〕令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T . 【答案】〔Ⅰ〕;〔Ⅱ〕【解析】试题分析:〔1〕先由公式1n n n a S S -=-求出数列{}n a 的通项公式;进而列方程组求数列{}n b 的首项与公差,得数列{}n b 的通项公式;〔2〕由〔1〕可得()1312n n c n +=+⋅,再利用“错位相减法〞求数列{}n c 的前n 项和n T .试题解析:〔1〕由题意知当2n ≥时,165n n n a S S n -=-=+,当1n =时,1111a S ==,所以65n a n =+.设数列{}n b 的公差为d ,由112223{a b b a b b =+=+,即11112{1723b db d=+=+,可解得14,3b d ==, 所以31nb n =+.〔2〕由〔1〕知()()()116631233n n n nn c n n +++==+⋅+,又123n n T c c c c =+++⋅⋅⋅+,得()2341322324212n n T n +⎡⎤=⨯⨯+⨯+⨯+⋅⋅⋅++⨯⎣⎦,()34522322324212n n T n +⎡⎤=⨯⨯+⨯+⨯+⋅⋅⋅++⨯⎣⎦,两式作差,得()()()23412224213222221234123221nn n n n n T n n n ++++⎡⎤-⎡⎤⎢⎥-=⨯⨯+++⋅⋅⋅+-+⨯=⨯+-+⨯=-⋅⎣⎦-⎢⎥⎣⎦所以232n nT n +=⋅.考点1、待定系数法求等差数列的通项公式;2、利用“错位相减法〞求数列的前n 项和.【易错点晴】此题主要考察待定系数法求等差数列的通项公式、利用“错位相减法〞求数列的前n 项和,属于难题.“错位相减法〞求数列的前n 项和是重点也是难点,利用“错位相减法〞求数列的和应注意以下几点:①掌握运用“错位相减法〞求数列的和的条件〔一个等差数列与一个等比数列的积〕;②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以1q -. 19.如图,四棱锥P ABCD -的底面是等腰梯形,//AD BC ,2AD =,4BC =,60ABC ∠=︒,PAD △为等边三角形,且点P 在底面ABCD 上的射影为AD 的中点G ,点E 在线段BC 上,且:1:3CE EB =.〔1〕求证:DE ⊥平面PAD . 〔2〕求二面角A PC D --的余弦值.【答案】〔1〕证明见解析〔2 【解析】 【分析】〔1〕由等腰梯形的性质可证得DE AD ⊥,由射影可得PG ⊥平面ABCD ,进而求证;〔2〕取BC 的中点F ,连接GF ,以G 为原点,GA 所在直线为x 轴,GF 所在直线为y 轴,GP 所在直线为z 轴,建立空间直角坐标系,分别求得平面APC 与平面DPC 的法向量,再利用数量积求解即可.【详解】〔1〕在等腰梯形ABCD 中,点E 在线段BC 上,且:1:3CE EB =,∴点E 为BC 上靠近C 点的四等分点,2AD =,4BC =,1CE =, ∴DE AD ⊥,点P 在底面ABCD 上的射影为AD 的中点G ,连接PG ,PG ∴⊥平面ABCD ,DE ⊂平面ABCD ,PG DE ∴⊥.又AD PG G ⋂=,AD ⊂平面PAD ,PG ⊂平面PAD ,DE ∴⊥平面PAD .〔2〕取BC 的中点F ,连接GF ,以G 为原点,GA 所在直线为x 轴,GF 所在直线为y 轴,GP 所在直线为z 轴,建立空间直角坐标系,如下列图, 由〔1〕易知,DECB ⊥,1CE =,又60ABC DCB ∠=∠=︒,DE GF ∴==2AD =,PAD △为等边三角形,PG ∴=,那么(0,0,0)G ,(1,0,0)A ,(1,0,0)D -,P,(C -,()AC ∴=-,(1AP =-,()0DC =-,DP =,设平面APC 的法向量为111(,,)m x y z =,那么00m AC m AP ⎧⋅=⎨⋅=⎩,即1111300x x ⎧-+=⎪⎨-+=⎪⎩,令1x =那么13y =,11z =,3,)1(3,m ∴=,设平面DPC 的法向量为222(,,)nx y z =,那么00n DC n DP ⎧⋅=⎨⋅=⎩,即22220x x ⎧-+=⎪⎨=⎪⎩,令2x =,那么21y =,21z =-,3,1,()1n ∴=-,设平面APC 与平面DPC 的夹角为θ,那么∴二面角A PCD --.【点睛】此题考察线面垂直的证明,考察空间向量法求二面角,考察运算才能与空间想象才能. 20.某单位准备购置三台设备,型号分别为,,A B C 这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购置设备的同时购置该易耗品,每件易耗品的价格为100元,也可以在设备使用过程中,随时单独购置易耗品,每件易耗品的价格为200元.为了决策在购置设备时应购置的易耗品的件数.该单位调查了这三种型号的设备各60台,调査每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上互相HY. 〔1〕求该单位一个月中,,A B C 三台设备使用的易耗品总数超过21件的概率;〔2〕以该单位一个月购置易耗品所需总费用的期望值为决策根据,该单位在购置设备时应同时购置20件还是21件易耗品? 【答案】〔1〕16〔2〕应该购置21件易耗品 【解析】 【分析】〔1〕由统计表中数据可得型号分别为,,A B C 在一个月使用易耗品的件数为6,7,8时的概率,设该单位三台设备一个月中使用易耗品的件数总数为X ,那么(21)(22)(23)P X P X P X >==+=,利用HY 事件概率公式进而求解即可;〔2〕由题可得X 所有可能的取值为19,20,21,22,23,即可求得对应的概率,再分别讨论该单位在购置设备时应同时购置20件易耗品和21件易耗品时总费用的可能取值及期望,即可分析求解. 【详解】〔1〕由题中的表格可知A 型号的设备一个月使用易耗品的件数为6和7的频率均为301602=; B 型号的设备一个月使用易耗品的件数为6,7,8的频率分别为201301101,,603602606===; C 型号的设备一个月使用易耗品的件数为7和8的频率分别为453151,604604==; 设该单位一个月中,,A B C 三台设备使用易耗品的件数分别为,,x y z ,那么1(6)(7)2P x P x ====,11(6),(7)32P y P y ====,131(8),(7),(8)644P y P z P z ======,设该单位三台设备一个月中使用易耗品的件数总数为X , 那么(21)(22)(23)P X P X P X >==+=而(22)(6,8,8)(7,7,8)(7,8,7)P X P x y z P x y z P x y z =====+===+===111111113726422426448=⨯⨯+⨯⨯+⨯⨯=, 1111(23)(7,8,8)26448P X P x y z ======⨯⨯=,故711(21)48486P X >=+=, 即该单位一个月中,,A B C 三台设备使用的易耗品总数超过21件的概率为16. 〔2〕以题意知,X 所有可能的取值为19,20,21,22,231131(19)(6,6,7)2348P X P x y z ======⨯⨯=;(20)(6,6,8)(6,7,7)(7,6,7)P X P x y z x y z P x y z =====+===+===1111131131723422423448=⨯⨯+⨯⨯+⨯⨯=; (21)(6,7,8)(6,8,7)(7,6,8)(7,7,7)P X P x y z x y z P x y z P x y z =====+===+===+===1111131111131722426423422448=⨯⨯+⨯⨯+⨯⨯+⨯⨯=; 由〔1〕知,71(22),(23)4848P X P X ====, 假设该单位在购置设备的同时购置了20件易耗品,设该单位一个月中购置易耗品所需的总费用为1Y 元,那么1Y 的所有可能取值为2000,2200,2400,2600,111723(2000)(19)(20)84848P Y P X P X ===+==+=;117(2200)(21)48P Y P X ====; 17(2400)(22)48P Y P X ====; 11(2600)(23)48P Y P X ====; 12317712000220024002600214248484848EY =⨯+⨯+⨯+⨯≈; 假设该单位在肋买设备的同时购置了21件易耗品,设该单位一个月中购置易耗品所需的总费用为2Y 元,那么2Y 的所有可能取值为2100,2300,2500,2117175(2100)(19)(20)(21)848486P Y P X P X P X ===+=+==++=;27(2300)(22)48P Y P X ====; 21(2500)(23)48P Y P X ====; 2571210023002500213864848EY =⨯+⨯+⨯≈;21EY EY <,所以该单位在购置设备时应该购置21件易耗品【点睛】此题考察HY 事件的概率,考察离散型随机变量的分布列和期望,考察数据处理才能.21.直线1x y +=过椭圆()222210x y a b a b+=>>的右焦点,且交椭圆于A ,B 两点,线段AB 的中点是21,33M ⎛⎫⎪⎝⎭, 〔1〕求椭圆的方程;〔2〕过原点的直线l 与线段AB 相交〔不含端点〕且交椭圆于C ,D 两点,求四边形ACBD 面积的最大值.【答案】〔1〕2212x y +=〔2【解析】 【分析】 〔1〕由直线1x y +=可得椭圆右焦点的坐标为(1,0),由中点M 可得121242,33x x y y +=+=,且由斜率公式可得21211y y x x -=--,由点,A B 在椭圆上,那么2222112222221,1x y x y a b a b+=+=,二者作差,进而代入整理可得222a b =,即可求解;〔2〕设直线:l y kx =,点,A B 到直线l 的间隔为12,d d ,那么四边形的面积为()1212111222S CD d CD d CD d d =⋅+⋅=+,将y kx =代入椭圆方程,再利用弦长公式求得CD ,利用点到直线间隔求得12,d d ,根据直线l 与线段AB 〔不含端点〕相交,可得()4101033k k ⎛⎫⨯-+<⎪⎝⎭,即14k >-,进而整理换元,由二次函数性质求解最值即可. 【详解】〔1〕直线1x y +=与x 轴交于点(1,0),所以椭圆右焦点的坐标为(1,0),故1c =,因为线段AB 的中点是21,33M⎛⎫⎪⎝⎭, 设()()1122,,,A x y B x y ,那么121242,33x x y y +=+=,且21211y y x x -=--, 又2222112222221,1x y x y a b a b +=+=,作差可得22222121220x x y y a b --+=, 那么()()()()21212121220x x x x y y y y a b-+-++=,得222a b = 又222,1a b c c =+=, 所以222,1ab ==,因此椭圆的方程为2212x y +=.〔2〕由〔1〕联立22121x y x y ⎧+=⎪⎨⎪+=⎩,解得01x y =⎧⎨=⎩或者4313x y ⎧=⎪⎪⎨⎪=-⎪⎩,不妨令()410,1,,33A B ⎛⎫-⎪⎝⎭,易知直线l 的斜率存在, 设直线:l y kx =,代入2212x y +=,得()22212k x +=,解得x =或者设()()3344,,,CD x y y x ,那么34x x=-=,那么34C x D -=,因为()410,1,,33A B ⎛⎫- ⎪⎝⎭到直线y kx =的间隔分别是12d d ==, 由于直线l 与线段AB 〔不含端点〕相交,所以()4101033k k ⎛⎫⨯-+<⎪⎝⎭,即14k >-,所以()124441k k d d +++, 四边形ACBD 的面积()1212111222S CD d CD d CD d d =⋅+⋅=+=, 令1k t +=,34t>,那么2221243k t t +=-+,所以S ==, 当123t =,即12k =时,min S =因此四边形ACBD. 【点睛】此题考察求椭圆的HY 方程,考察椭圆中的四边形面积问题,考察直线与椭圆的位置关系的应用,考察运算才能. 22.函数()()2ln 12a f x x x xb =---,,R a b ∈. 〔1〕当-1b =时,讨论函数()f x 的零点个数;〔2〕假设()f x 在()0,∞+上单调递增,且2a b c e +≤求c 的最大值.【答案】〔1〕见解析〔2〕2 【解析】 【分析】〔1〕将1b =-代入可得()2ln 2a f x x x x =-,令0f x ,那么ln 2a xx =,设()ln x g x x=,那么转化问题为()gx 与2ay =的交点问题,利用导函数判断()g x 的图象,即可求解; 〔2〕由题可得()ln 0f x ax b x '=+-≥在0,上恒成立,设()ln h x ax b x =+-,利用导函数可得()min 11ln h x h b a a ⎛⎫==++ ⎪⎝⎭,那么()min0h x ≥,即221ln a b a a +≥--,再设()21ln m x x x =--,利用导函数求得()mx 的最小值,那么2ln2a b +≥,进而求解.【详解】〔1〕当-1b =时,()2ln 2a f x x x x =-,定义域为0,,由0f x 可得ln 2a xx=, 令()ln xgx x =,那么()21ln x g x x -'=, 由0g x,得0x e <<;由0g x,得x e >,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减,那么()g x 的最大值为()1g e e=, 且当xe >时,()10g x e<<;当0x e <≤时,()1g x e≤,由此作出函数()gx 的大致图象,如下列图.由图可知,当20a e <<时,直线2a y =和函数()g x 的图象有两个交点,即函数()f x 有两个零点; 当12a e =或者02a ≤,即2a e =或者0a ≤时,直线2a y =和函数()g x 的图象有一个交点,即函数()f x 有一个零点; 当12a e >即2a e>时,直线2a y =与函数()g x 的象没有交点,即函数()f x 无零点. 〔2〕因为()f x 在0,上单调递增,即()ln 0f x ax b x '=+-≥在0,上恒成立,设()ln h x ax b x =+-,那么()1h x a x'=-, ①假设0a =,那么()0h x '<,那么()h x 在0,上单调递减,显然()ln 0f x b x '=-≥,在0,上不恒成立;②假设0a <,那么()0h x '<,()h x 在0,上单调递减,当max,1b x a>-时,0,ln 0ax b x +<-<,故()0hx <,()f x 单调递减,不符合题意;③假设 0a >,当10x a<<时,()0h x '<,()h x 单调递减, 当1x a>时,()0h x '>,()h x 单调递增,所以()min 11ln h x h b a a ⎛⎫==++ ⎪⎝⎭, 由()min 0hx ≥得221ln a b a a +≥--,设()21ln ,0m x x x x =-->,那么()12m x x'=-, 当102x <<时,()0m x '<,()m x 单调递减; 当12x>时,()0m x '>,()m x 单调递增, 所以()1ln 22m x m ⎛⎫≥=⎪⎝⎭,所以2ln2a b +≥, 又2a b c e +≤,所以2≤c ,即c 的最大值为2.【点睛】此题考察利用导函数研究函数的零点问题,考察利用导函数求最值,考察运算才能与分类讨论思想.。

(2024新题型)备战2024年高考数学模拟卷(新题型地区专用) 及答案

(2024新题型)备战2024年高考数学模拟卷(新题型地区专用) 及答案

【赢在高考·黄金8卷】备战2024年高考数学模拟卷(新题型地区专用)黄金卷05(考试时间:120分钟试卷满分:150分)第I卷(选择题)(答案在最后)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要【解析】如上图正方体中,设平面1ABB 11D C 为β,CD 为m ,β,//m α,此时//m β,故,因为n α⊥,n β⊥,α、β是不同的平面,则必有正确;,如上图正方体中,设平面ABB【解析】:()222210x y a b a b+=>>的图象,则)0y ,()0,B y ,则(02,AF c x =- )00,c x y --,()1,BF c y =-- ,x a 223F B ,得(223322F F c B A ==- 00332232c x y -,得005332x c y y ⎧=⎪⎪⎨⎪=-⎪⎩,1BF 得()()110AF BF c x c ⋅=---+000yy +=即222053032c c y +-=2021=,得2222511639c c a b ⎛⎫ ⎪⎝⎭+=,又42255090e e -+=,又椭圆离心率15,得55e =.二、多项选择题:本题共3小题,每小题要求,全部选对的得6分,部分选对的得部分分,有选错的得1z ,2z 为复数,则下列说法正确的是(∈R ,则11z z =312⎝⎭A .4ω=B .9π182f ⎛⎫=⎪⎝⎭C .函数()f x 在ππ,32⎛⎫⎪⎝⎭上单调递减D .若将函数()f x 的图象沿【答案】ACD【解析】令()(sin f x x ω=+由图可知:π23A x k ωϕ+=+所以1π3C B BC x x ω⎛=-=-+ ⎝所以π12π33BC AB ω⎛=-=- ⎝所以()()sin 4f x x ϕ=+,由所以ππ2π3k ϕ-+=+,k ∈所以4π2π3k =+ϕ,Z k ∈,4π因为(2023)(2025)(3)(1)2f f f f +=+=,(2024)(0)0f f ==,所以B 错误.因为(2022)(2024)(2)(0)2f f f f +=+=,(2023)(3)1f f ==,所以(2022)(2024)2(2023)f f f +=,所以(2023)f 是(2022)f 与(2024)f 的等差中项,故C 正确.因为(1)(2)(3)(4)f f f f +++()(1)(3)(2)(4)f f f f =+++2204=++=,所以20241()506[(1)(2)(3)(4)]50642024i f i f f f f ==+++=⨯=∑,故D 正确.故选:ACD第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分。

高考数学模拟试题及答案 (二十套)

高考数学模拟试题及答案 (二十套)
【答案】AC
【解析】
【分析】
以点 为坐标原点, 、 、 所在直线分别为 、 、 轴建立空间直角坐标系 ,利用空间向量法可判断A选项的正误;证明出 平面 ,分别取棱 、 、 、 、 、 的中点 、 、 、 、 、 ,比较 和六边形 的周长和面积的大小,可判断B选项的正误;利用空间向量法找出平面 与棱 、 的交点 、 ,判断四边形 的形状可判断C选项的正误;将矩形 与矩形 延展为一个平面,利用 、 、 三点共线得知 最短,利用平行线分线段成比例定理求得 ,可判断D选项的正误.
9.Keep是一款具有社交属性的健身APP,致力于提供健身教学、跑步、骑行、交友及健身饮食指导、装备购买等一站式运动解决方案.Keep可以让你随时随地进行锻炼,记录你每天的训练进程.不仅如此,它还可以根据不同人的体质,制定不同的健身计划.小明根据Keep记录的2019年1月至2019年11月期间每月跑步的里程(单位:十公里)数据整理并绘制了下面的折线图.根据该折线图,下列结论正确的是()
,则 , ,所以B正确.
对于选项C、D, ,
令 ,即 ,所以 ,则令 ,
,令 ,得
由函数 的图像性质可知:
时, , 单调递减.
时, , 单调递增.
所以 时, 取得极小值,
即当 时 取得极小值,
又 ,即
又因为在 上 单调递减,所以
所以 时, 取得极小值,
即当 时 取得极大值,
又 ,即
所以
当 时,
所以当 ,即 时,f(x)在(-π,+∞)上无零点,所以C不正确.
A.月跑步里程最小值出现在2月
B.月跑步里程逐月增加
C.月跑步里程的中位数为5月份对应的里程数
D. 1月至5月的月跑步里程相对于6月至11月波动性更小

高考模拟数学试卷及答案

高考模拟数学试卷及答案

高考模拟数学试卷及答案高考模拟数学试卷及答案高考即将到来,数学作为一门重要的科目,对于许多学生来说都是一个挑战。

为了帮助大家更好地备考,我们为大家提供了一份高考模拟数学试卷及答案,希望对大家有所帮助。

一、选择题(每题5分,共40分)1、在等差数列{an}中,a1=1,an=6n-5,则公差d的值为() A. 1B. 2C. 3D. 4 答案:B2、已知复数z满足|z|=1,则|z-i|的最大值为() A. 1 B. 2 C. 3D. 4 答案:B3、已知函数f(x)=x3+ax2+bx在x=1处取得极小值-2,则a、b的值为() A. a=1,b=0 B. a=3,b=3 C. a=1,b=2 D. a=3,b=2 答案:A4、已知双曲线x2-y2=1的焦点为F1、F2,点P在双曲线上,且∠F1PF2=90°,则|PF1|•|PF2|的值为() A. 2 B. 4 C. 8 D. 16 答案:B5、已知{an}为等比数列,a1=1,公比为q,则“q>1”是“{an}为递增数列”的() A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件答案:A6、已知向量a、b的夹角为60°,|a|=2,|b|=4,则|a-b|=() A.2 B. 4 C. 6 D. 8 答案:C7、已知函数f(x)=x3+ax2+bx在x=1处取得极小值-2,则a、b的值为() A. a=1,b=0 B. a=3,b=3 C. a=1,b=2 D. a=3,b=2 答案:A8、等差数列{an}的前n项和记为Sn,已知a2=3,S9=45,则数列{an}的前多少项的和最大() A. 7 B. 8 C. 9 D. 10 答案:C二、填空题(每题6分,共30分)9、已知角α的终边过点P(3,-4),则sin(α-π)=__________。

答案:-4/591、若空间中有四个点A、B、C、D,则直线AB和直线CD的位置关系为____________。

2024年新高考数学模拟卷A卷(解析版)

2024年新高考数学模拟卷A卷(解析版)

2024年新高考数学模拟卷A 卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}2468M =,,,,{}2|280N x x x =--≤,则M N ⋂=()A .{}2,4B .{}2,4,6C .{}2,4,6,8D .[]24,【答案】A【详解】由题意{}2|280{|24}N x x x x x =--≤=-≤≤,∴{2,4}M N ⋂=.故选:A .2.复数2(2)i z i-=i 为虚数单位,则A .25B .C .5D .【答案】C【详解】()()()223443,1i i i z i i--⨯-===--()()2243 5.z -+-=3.已知()1,3a =-,()2,1b =- ,且()()2//a b ka b +-,则实数k =()A .2-B .2C .12D .12-【答案】D【详解】 (1,3)=- a ,()2,1b =- ,(1ka b k ∴-= ,3)(2---,1)(2k =+,13)k --,2(3,1)a b +=--,()//(2)ka b a b +-,(2)3(13)k k ∴-+=---,∴解得:12k =-.故选:D .4.已知函数2,(1)()4,(1)x a x ax x f x a x ⎧-++<⎪=⎨⎪≥⎩,若()y f x =在(),-∞+∞上单调递增,则实数a 的取值范围是()A .[]2,4B .()2,4C .()2,+∞D .[)2,+∞【答案】A【详解】()f x 在(),-∞+∞上单调递增;∴2112211414aa a a a a a a⎧≥⎪≥⎧⎪⎪>⇒>⎨⎨⎪⎪≤⎩⎪-++≤⎩,解得24a ≤≤;所以实数a 的取值范围为[]2,4.故选:A .5.若椭圆X :()22211x y a a +=>与双曲线H :2213x y -=的离心率之和为736,则=a ()A .2B 3C 2D .1【答案】A【详解】椭圆X :()22210x y aa +=>H :2213x y -==,=2a=.故选:A.6.设过点(0,P 与圆22:410C x y x +--=相切的两条直线的夹角为α,则cos α=()A .19BC .19-D .【答案】A【详解】解法1:如图,圆22410x yx +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r ,过点(0,P 作圆C 的切线,切点为,A B ,连接AB .因为3PC =,则2PA PB ==,得2sin 3APC APC ∠∠=,则221cos cos sin 09APB APC APC∠=∠-∠=-<,即APB ∠为钝角,且α为锐角,所以1cos cos(π)9APB α=-∠=.故选A.解法2:如图,圆22410x y x +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r =,过点(0,P 作圆C 的切线,切点为,A B ,连接AB .因为3PC =,则2PA PB ==,因为22222cos 2cos PA PB PA PB APB CA CB CA CB ACB+-⋅∠=+-⋅∠,且πACB APB ∠=-∠,则448cos 5510cos APB ACB +-∠=+-∠,即44cos 55cos APB ACB -∠=-∠,解得1cos 09APB ∠=-<,即APB ∠为钝角,且α为锐角,则1cos cos(π)9APB α=-∠=.故选:A.解法3:圆22410x y x +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r =线方程为0x=,则圆心到切点的距离2d r =<,不合题意;若切线斜率存在,则设切线方程为y kx =,即0kx y -=,则圆心到切线的距离d =120,k k ==-1212sin tan 1cos k k k k ααα-==+,又α为锐角,由22sin cos 1αα+=解得1cos 9α=.故选:A.7.若数列{}n a 满足212n na p a +=(p 为常数,n ∈N ,1n ≥),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列;乙:数列{}n a 是等比数列,则().A .甲是乙的充分非必要条件B .甲是乙的必要非充分条件C .甲是乙的充要条件D .甲是乙的既非充分也非必要条件【答案】B【详解】若{}n a 为等比数列,设其公比为q ,则()222112n n n n a a q p a a ++⎛⎫=== ⎪⎝⎭,p 为常数,所以{}2n a 成等比数列,即{}n a 是等方比数列,故必要性满足.若{}n a 是等方比数列,即{}2n a 成等比数列,则{}n a 不一定为等比数列,例如23452,2,2,2,2,...--,有()221224n na a +=±=,满足{}n a 是等方比数列,但{}n a 不是等比数列,充分性不满足.故选:B8.若ππ2sin sin sin 44βααβ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭,则()tan αβ+=()A .-1B .1C .-2D .2【答案】A【详解】解法一:由题得()()2sin sin cos 2222βαααβαβ⎫-=-+-⎪⎪⎝⎭,所以2sin sin 2cos sin sin cos cos sin cos cos sin sin αβαβαβαβαβαβ-=-++,即sin cos cos sin cos cos sin sin 0αβαβαβαβ++-=,即()()sin cos 0αβαβ+++=,显然()cos 0αβ+≠,故()tan 1αβ+=-.解法二:令π4αθ-=,则π4αθ=+,所以ππ2sin sin sin 44βααβ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭可化为π2sin sin sin 2βθθβ⎛⎫=-+ ⎪⎝⎭,即()2sin sin cos βθθβ=-,所以2sin sin cos cos sin sin βθθβθβ=+,即cos cos sin sin 0θβθβ-=,所以()cos 0θβ+=,则ππ2k θβ+=+,k ∈Z ,所以()πππ3πtan tan tan πtan 14424k αβθβ⎛⎫⎛⎫+=++=++==- ⎪ ⎪⎝⎭⎝⎭,k ∈Z .故选:A.二、多选题:本题共3小题,每小题6分,共18分。

高考数学模拟复习试卷试题模拟卷21814

高考数学模拟复习试卷试题模拟卷21814

高考模拟复习试卷试题模拟卷【高频考点解读】1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系.【热点题型】题型一 等差数列基本量的运算例1、(1)在数列{an}中,若a1=-2,且对任意的n ∈N*有2an +1=1+2an ,则数列{an}前10项的和为( )A .2B .10C.52D.54(2)(·课标全国Ⅰ)设等差数列{an}的前n 项和为Sn ,Sm -1=-2,Sm =0,Sm +1=3,则m 等于( )A .3B .4C .5D .6【提分秘籍】(1)等差数列的通项公式及前n 项和公式,共涉及五个量a1,an ,d ,n ,Sn ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【举一反三】(1)若等差数列{an}的前5项和S5=25,且a2=3,则a7等于( )A .12B .13C .14D .15(2)记等差数列{an}的前n 项和为Sn ,若a1=12,S4=20,则S6等于( )A .16B .24C .36D .48(3)已知等差数列{an}的前n 项和为Sn ,且满足S33-S22=1,则数列{an}的公差是( )A.12B .1C .2D .3题型二 等差数列的性质及应用例2、(1)设等差数列{an}的前n 项和为Sn ,若S3=9,S6=36,则a7+a8+a9等于( )A .63B .45C .36D .27(2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( )A .13B .12C .11D .10(3)已知Sn 是等差数列{an}的前n 项和,若a1=-,S -S =6,则S =________.【提分秘籍】在等差数列{an}中,数列Sm ,S2m -Sm ,S3m -S2m 也成等差数列;{Sn n }也是等差数列.等差数列的性质是解题的重要工具.【举一反三】(1)设数列{an}是等差数列,若a3+a4+a 5=12,则a1+a2+…+a7等于( )A .14B .21C .28D .35(2)已知等差数列{an}的前n 项和为Sn ,且S10=10,S20=30,则S30=________.题型三 等差数列的判定与证明例3、已知数列{an}中,a1=35,an =2-1an -1(n≥2,n ∈N*),数列{bn}满足bn =1an -1(n ∈N*). (1)求证:数列{bn}是等差数列;(2)求数列{an}中的最大项和最小项,并说明理由.【提分秘籍】等差数列的四个判定方法:(1)定义法:证明对任意正整数n 都有an +1-an 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2an +1=an +an +2后,可递推得出an +2-an +1=an +1-an =an -an -1=an -1-an -2=…=a2-a1,根据定义得出数列{an}为等差数列.(3)通项公式法:得出an =pn +q 后,得an +1-an =p 对任意正整数n 恒成立,根据定义判定数列{an}为等差数列.(4)前n 项和公式法:得出Sn =An2+Bn 后,根据Sn ,an 的关系,得出an ,再使用定义法证明数列{an}为等差数列.【举一反三】(1)若{an}是公差为1的等差数列,则{a2n -1+2a2n}是( )A .公差为3的等差数列B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列(2)在数列{an}中,若a1=1,a2=12,2an +1=1an +1an +2(n ∈N*),则该数列的通项为( ) A .an =1n B .an =2n +1C .an =2n +2D .an =3n 【高考风向标】【高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =()(A )172(B )192(C )10(D )12 【高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为,则该数列的首项为________【高考福建,文16】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________.【高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a =,d =.1.(·安徽卷)数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q 的等比数列,则q =________.2.(·北京卷)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n =________时,{an}的前n 项和最大.3.(·福建卷)等差数列{an}的前n 项和为Sn ,若a1=2,S3=12,则a6等于( )A .8B .10C .12D .144.(·湖北卷)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{an}的通项公式.(2)记Sn 为数列{an}的前n 项和,是否存在正整数n ,使得Sn>60n +800?若存在,求n 的最小值;若不存在,说明理由.5.(·湖南卷)已知数列{an}满足a1=1,|an +1-an|=pn ,n ∈N*.(1)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p 的值;(2)若p =12,且{a2n -1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.6.(·辽宁卷)设等差数列{an}的公差为d.若数列{2a1an}为递减数列,则( )A.d<0 B.d>0 C.a1d<0 D.a1d>07.(·全国卷)等差数列{an}的前n项和为Sn.已知a1=10,a2为整数,且Sn≤S4.(1)求{an}的通项公式;(2)设bn=1anan+1,求数列{bn}的前n项和Tn.8.(·新课标全国卷Ⅰ] 已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.(1)证明:an+2-an=λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.9.(·山东卷)已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(1)求数列{an}的通项公式;(2)令bn=(-1)n-14nanan+1,求数列{bn}的前n项和Tn.10.(·陕西卷)△ABC的内角A,B,C所对的边分别为a,b,c.(1)若a,b,c成等差数列,证明:sin A+sin C=2sin(A+C);(2)若a,b,c成等比数列,求cos B的最小值.11.(·天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn为其前n项和.若S1,S2,S4成等比数列,则a1的值为________.12.(·重庆卷)设a1=1,an+1=a2n-2an+2+b(n∈N*).(1)若b=1,求a2,a3及数列{an}的通项公式.(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.13.(·新课标全国卷Ⅰ] 某几何体的三视图如图1-3所示,则该几何体的体积为()图1-3A .16+8πB .8+8πC .16+16πD .8+16π14.(·新课标全国卷Ⅰ] 设等差数列{an}的前n 项和为Sn ,若Sm -1=-2,Sm =0,Sm +1=3,则m =( )A .3B .4C .5D .615.(·广东卷)在等差数列{an}中,已知a3+a8=10,则3a 5+a7=________.16.(·北京卷)已知{an}是由非负整数组成的无穷数列,该数列前n 项的最大值记为An ,第n项之后各项an +1,an +2,…的最小值记为Bn ,dn =An -Bn.(1)若{an}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n ∈N*,an +4=an),写出d1,d2,d3,d4的值;(2)设d 是非负整数,证明:dn =-d(n =1,2,3,…)的充分必要条件为{an}是公差为d 的等差数列; (3)证明:若a1=2,dn =1(n =1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.17.(·全国卷)等差数列{an}前n 项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.18.(·山东卷)设等差数列{an}的前n 项和为Sn ,且S4=4S2,a2n =2an +1.(1)求数列{an}的通项公式;(2)设数列{bn}的前n 项和为Tn ,且Tn +an +12n =λ(λ为常数),令cn =b2n(n ∈N*),求数列{cn}的前n 项和Rn.19.(·四川卷) 在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项、公差及前n 项和.20.(·新课标全国卷Ⅱ] 等差数列{an}的前n 项和为Sn ,已知S10=0,S15=25,则nSn 的最小值为________.21.(·重庆卷)已知{an}是等差数列,a1=1,公差d≠0,Sn 为其前n 项和,若a1,a2,a5成等比数列,则S8=________.【高考押题】1.已知数列{an}是等差数列,a1+a7=-8,a2=2,则数列{an}的公差d 等于( )A .-1B .-2C .-3D .-42.已知等差数列{an}满足a1+a2+a3+…+a101=0,则有( )A.a1+a101>0B.a2+a100<0C.a3+a99=0D.a51=513.设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于()A.0B.37C.100D.-374.等差数列{an}中,已知a5>0,a4+a7<0,则{an}的前n项和Sn的最大值为()A.S4B.S5C.S6D.S75.在等差数列{an}中,a1>0,a10·a11<0,若此数列的前10项和S10=36,前18项和S18=12,则数列{|an|}的前18项和T18的值是()A.24B.48C.60D.846.已知递增的等差数列{an}满足a1=1,a3=a22-4,则an=________.7.等差数列{an}的前n项和为Sn,已知a5+a7=4,a6+a8=-2,则当Sn取最大值时,n的值是________.8.已知数列{an}中,a1=1且1an+1=1an+13(n∈N*),则a10=________.9.在等差数列{an}中,a1=1,a3=-3.(1)求数列{an}的通项公式;(2)若数列{an}的前k项和Sk=-35,求k的值.10.设等差数列{an}的前n项和为Sn,若a1<0,S=0.(1)求Sn的最小值及此时n的值;(2)求n的取值集合,使其满足an≥Sn.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

高考模拟复习试卷试题模拟卷高三数学第四次月考

高考模拟复习试卷试题模拟卷高三数学第四次月考

高考模拟复习试卷试题模拟卷高三数学第四次月考数学试卷(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

考生作答时,将答案写在答题卡上,在本试卷上答题无效。

第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M N φ≠,则k 的取值范围是().A .2k ≤B .12k -<≤C .1k ->D .1k ≥- 2.下列命题正确的是( )A .∀x ∈R ,x2+2x +1=0B .∃x ∈R ,-x +1≥0C .∀x ∈N*,log2x>0D .∃x ∈R ,cosx<2x -x2-33. 将函数x y 2sin =的图象向右平移4π个单位,再向上平移1个单位,所得函数图象对应的解析式为( )A.1)42sin(+-=πx y B.x y 2cos 2=C.x y 2sin 2=D.x y 2cos -=4.已知由不等式00240x y y kx y x ≤⎧⎪≥⎪⎨-≤⎪⎪--≤⎩确定的平面区域Ω的面积为7,则k 的值( )A .2-B .1-C .3-D .25.设,,l m n 表示不同的直线,αβγ,,表示不同的平面,给出下列四个命题: ①若m ∥l ,且.m α⊥则l α⊥; ②若m ∥l ,且m ∥α.则l ∥α;③若,,l m n αββγγα===,则l ∥m ∥n ; ④若,,,m l n αββγγα===且n ∥β,则l ∥m. 其中正确命题的个数是( ) A .1 B .2 C .3 D .46.在各项均为正数的等比数列{}n a 中,351,1a a ==,则2326372a a a a a ++=( )A . 8B .6C .4D.8-7. 下列各点中,能作为函数tan()5y x π=+(x ∈R 且310x k ππ≠+,k ∈Z )的一个对称中心的点是( )A .(0,0)B .(,0)5πC .(,0)πD .3(,0)10π8.用数学归纳法证明不等()2242321312111≥>++++++n n n n n 的过程中,由n=k 递推到n=k+1时,不等式左边( )A.增加了一项)1(21+k B.增加了一项)1(21121+++k kC.增加了)1(21121+++k k ,又减少了11+k D.增加了)1(21+k ,又减少了11+k9.定义在R 上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有0x -x x f -x f 1212<)()(,则( )A .f(3)<f(-2)<f(1)B .f(1)<f(-2)<f(3)C .f(-2)<f(1)<f(3)D .f(3)<f(1)<f(-2)10.已知x>0,y>0,2lg 8lg 2lg yx =+,则1x +13y的最小值是( )A .2B .2 2C .4D .2311.已知f(x)=3-2|x|,g(x)=x2-2x ,F(x)=⎩⎪⎨⎪⎧gx ,若f x ≥g x ,fx,若fx<gx.则F(x)的最值是( )A .最大值为3,最小值-1B .最大值为7-27,无最小值C .最大值为3,无最小值D .既无最大值,又无最小值12.对于任意两个正整数,m n ,定义某种运算“※”如下:当,m n 都为正偶数或正奇数时,m ※n =m n +;当,m n 中一个为正偶数,另一个为正奇数时, m ※n =mn .则在此定义下,集合{(,)M a b a =※12,,}b a b **=∈∈N N 中的元素个数是( )A .10个B .18个C .16个D .15个第Ⅱ卷二、填空题:(本大题共4小题,每小题5分,共20分.将答案填在答题卷相应位置上.) 13.已知正四棱柱ABCD -A1B1C1D1中,AA1=2AB ,则CD 与平面BDC1所成角的正弦值等于________________. 14.已知2n cosn f π=)(,则f(1)+f(2)+...+f()+f()=_______________. 15.一个几何体的三视图及其尺寸如下图所示,其中主视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,则这个几何体的表面积是________. 16.若定义在R 上的偶函数y =()f x 满足(1)f x +=1()f x ,且当x ∈(0,1]时,()f x =x ,函数()g x =3+1log (>0)2 (0)x x x x ⎧⎨≤⎩,则函数()h x =()()f x g x -在区间[-4,4]内的零点的个数为 .三、解答题:(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.)17.(满分12分)已知0a -12x -x q ,020-x 8-x p 222>+>::.若p 是q 的充分不必要条件,求正实数a 的取值范围.18. (满分12分)已知函数25()5sin cos 53cos 32f x x x x =-+(其中x ∈R ),求:(1)函数()f x 的最小正周期; (2)函数()f x 的单调区间;(3)函数()f x 图象的对称轴和对称中心.19.(满分12分)在公差不为0的等差数列{an}中,a1,a4,a8成等比数列. (1)已知数列{an}的前10项和为45,求数列{an}的通项公式; (2)若,且数列{bn}的前n 项和为Tn ,若,求数列{an}的公差.20.(满分12分) 在直三棱柱111ABC A B C -中,12,22AB BC AA ===ACB=90°,M是1AA 的中点,N是1BC 的中点(Ⅰ)求证:MN ∥平面111A B C ; (Ⅱ)求点1C 到平面BMC 的距离; (Ⅲ)求二面角11B C M A --的平面角 的余弦值大小。

高考数学模拟复习试卷试题模拟卷201 4

高考数学模拟复习试卷试题模拟卷201 4

高考模拟复习试卷试题模拟卷【高频考点解读】1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 【热点题型】题型一 三角函数的定义域、值域【例1】 (1)函数y =1tan x -1的定义域为____________.(2)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x≤9)的最大值与最小值之和为( ) A .2- 3 B .0 C .-1 D .-1-3解析 (1)要使函数有意义,必须有⎩⎪⎨⎪⎧tan x -1≠0,x ≠π2+kπ,k ∈Z ,即⎩⎨⎧x ≠π4+kπ,k ∈Z ,x ≠π2+kπ,k ∈Z.故函数的定义域为{x|x≠π4+kπ且x≠π2+kπ,k ∈Z}. (2)∵0≤x≤9,∴-π3≤π6x -π3≤7π6, ∴sin ⎝⎛⎭⎫π6x -π3∈⎣⎢⎡⎦⎥⎤-32,1.∴y ∈[]-3,2,∴ymax +ymin =2- 3. 答案 (1){x|x≠π4+kπ且x≠π2+kπ,k ∈Z} (2)A 【提分秘籍】(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.(2)求解三角函数的值域(最值)常见到以下几种类型:①形如y =asin x +bcos x +c 的三角函数化为y =Asin(ωx +φ)+k 的形式,再求最值(值域);②形如y =asin2x +bsin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =asin xcos x +b(sin x±cos x)+c 的三角函数,可先设t =sinx±cos x ,化为关于t 的二次函数求值域(最值).【举一反三】(1)函数y =sin x -cos x 的定义域为________. (2)函数y =sin x -cos x +sin xcos x 的值域为________.解析 (1)法一 要使函数有意义,必须使sinx -co s x≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2kπ+π4≤x≤2kπ+5π4,k ∈Z . 法二 利用三角函数线,画出满足条件的终边范围(如图阴影部分所示).∴定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2kπ+π4≤x≤2kπ+5π4,k ∈Z .法三 sin x -cos x =2sin ⎝⎛⎭⎫x -π4≥0,将x -π4视为一个整体,由正弦函数y =sin x 的图象和性质可知2kπ≤x -π4≤π+2kπ,k ∈Z ,解得2kπ+π4≤x≤2kπ+5π4,k ∈Z.所以定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2kπ+π4≤x≤2kπ+5π4,k ∈Z . (2)设t =sin x -cos x ,则t2=sin2x +cos2x - 2sin xcos x ,sin xcos x =1-t22,且-2≤t≤ 2.∴y =-t22+t +12=-12(t -1)2+1.当t =1时,ymax =1;当t =-2时,ymin =-12- 2.∴函数的值域为⎣⎡⎦⎤-12-2,1. 答案 (1)⎩⎨⎧⎭⎬⎫x ⎪⎪2kπ+π4≤x≤2kπ+5π4,k ∈Z(2)⎣⎡⎦⎤-12-2,1 题型二三角函数的奇偶性、周期性、对称性【例2】 (1)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f(x)=sin(ωx +φ)的图象的两条相邻的对称轴,则φ=( )A.π4B.π3C.π2D.3π4(2)函数y =2cos2⎝⎛⎭⎫x -π4-1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数【提分秘籍】(1)求f(x)=Asin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+kπ(k ∈Z),求x ;求f(x)的对称中心的横坐标,只需令ωx +φ=kπ(k ∈Z)即可.(2)求最小正周期时可先把所给三角函数式化为y =Asin(ωx +φ)或y =Acos( ωx +φ)的形式,则最小正周期为T =2π|ω|;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx +b 的形式.【举一反三】(1)如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( ) A.π6 B.π4 C.π3 D.π2(2)(·杭州模拟)若函数f(x)=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( ) A.π2 B.2π3 C.3π2 D.5π3题型三 三角函数的单调性【例3】 (1)已知f(x)=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π],则f(x)的单调递增区间为________.(2)已知ω>0,函数f(x)=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34C.⎝⎛⎦⎤0,12 D .(0,2] 解析 (1)由-π2+2kπ≤x +π4≤π2+2kπ,k ∈Z , 得-3π4+2kπ≤x≤π4+2kπ,k ∈Z.又x ∈[0,π],所以f(x)的单调递增区间为⎣⎡⎦⎤0,π4.(2)由π2<x <π得π2ω+π4<ωx +π4<πω+π4,由题意知⎝⎛⎭⎫π2ω+π4,πω+π4⊆⎣⎡⎦⎤π2,3π2,∴⎩⎨⎧π2ω+π4≥π2,πω+π4≤3π2,∴12≤ω≤54,故选A.答案 (1)⎣⎡⎦⎤0,π4 (2)A【提分秘籍】(1)求较为复杂的三角函数的单调区间时,首先化简成y =Asin(ωx +φ)形式,再求y =Asin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.(2)对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【举一反三】(1)若函数f(x)=sin ωx(ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于( )A.23B.32 C .2 D .3(2)函数f(x)=sin ⎝⎛⎭⎫-2x +π3的单调减区间为______.(2)由已知函数为y =-sin ⎝⎛⎭⎫2x -π3,欲求函数的单调减区间,只需求y =sin ⎝⎛⎭⎫2x -π3的单调增区间. 由2kπ-π2≤2x -π3≤2kπ+π2,k ∈Z , 得kπ-π12≤x≤kπ+5π12,k ∈Z.故所给函数的单调减区间为⎣⎡⎦⎤kπ-π12,kπ+5π12(k ∈Z). 答案 (1)B (2)⎣⎡⎦⎤kπ-π12,kπ+5π12(k ∈Z)【高考风向标】【高考浙江,文11】函数()2sin sin cos 1f x x x x =++的最小正周期是,最小值是.【答案】32,2π- 【解析】()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+ 23sin(2)242x π=-+,所以22T ππ==;min 32()22f x =-. 【高考陕西,文14】如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin(6πx +Φ)+k ,据此函数可知,这段时间水深(单位:m)的最大值为____________.【答案】8【解析】由图像得,当sin()16x π+Φ=-时min 2y =,求得5k =,当sin()16x π+Φ=时,max 3158y =⨯+=,故答案为8.【高考湖南,文15】已知ω>0,在函数y=2sin ωx 与y=2cos ωx 的图像的交点中,距离最短的两个交点的距离为3ω =_____.【答案】2πω=【解析】由题根据三角函数图像与性质可得交点坐标为12211154242k k k k Z ππππωω+++-∈((,),((,),,, 距离最短的两个交点一定在同一个周期内,()2222152322442πππωω∴=-+--∴=()(),. 【高考天津,文14】已知函数()()sin cos 0f x x x ωωω=+>,x ∈R ,若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为.【答案】π【高考福建,文21】已知函数()2103cos 10cos 222x x x f x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2.(ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >. 【答案】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ⅱ)详见解析. 【解析】(I )因为()2103cos 10cos 222x x x f x =+ 535cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭.所以函数()f x 的最小正周期2πT =. (II )(i )将()f x 的图象向右平移6π个单位长度后得到10sin 5y x =+的图象,再向下平移a (0a >)个单位长度后得到()10sin 5g x x a =+-的图象.又已知函数()g x 的最大值为2,所以1052a +-=,解得13a =.所以()10sin 8g x x =-.【高考重庆,文18】已知函数f(x)=1232cos x . (Ⅰ)求f (x )的最小周期和最小值,(Ⅱ)将函数f (x )的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图像.当x ∈,2ππ⎡⎤⎢⎥⎣⎦时,求g(x)的值域. 【答案】(Ⅰ)()f x 的最小正周期为,最小值为2+3,(Ⅱ)1323,]. 【解析】 (1) 2113()sin 23cos sin 2(1cos 2)22f x x xx x 1333sin 2cos 2sin(2)232x x x, 因此()f x 的最小正周期为,最小值为2+32. (2)由条件可知:3g()sin()32x x.当[,]2x时,有2[,]363x , 从而sin()3x的值域为1[,1]2, 那么3sin()32x的值域为1323[,]22. 故g()x 在区间[,]2上的值域是1323,].(·安徽卷) 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为2.求cos A 与a 的值.【解析】 由三角形面积公式,得 12×3×1·sin A =2,故sin A =2 23. 因为sin2A +cos2A =1, 所以cos A =±1-sin2A =±1-89=±13.①当cos A =13时,由余弦定理得a2=b2+c2-2bccos A =32+12-2×1×3×13=8, 所以a =2 2.②当cos A =-13时,由余弦定理得a2=b2+c2-2bccos A =32+12-2×1×3×⎝⎛⎭⎫-13=12,所以a =2 3.(·福建卷) 将函数y =sin x 的图像向左平移π2个单位,得到函数y =f(x)的图像,则下列说法正确的是( )A .y =f(x)是奇函数B .y =f(x)的周期为πC .y =f(x)的图像关于直线x =π2对称 D .y =f(x)的图像关于点⎝⎛⎭⎫-π2,0对称 【答案】D【解析】将函数y =sin x 的图像向左平移π2个单位后,得到函数y =f(x)=sin ⎝⎛⎭⎫x +π2的图像,即f(x)=cos x .由余弦函数的图像与性质知,f(x)是偶函数,其最小正周期为2π,且图像关于直线x =kπ(k ∈Z)对称,关于点⎝⎛⎭⎫π2+kπ,0(k ∈Z)对称,故选D.图1-2(·江苏卷) 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.【答案】π6(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 【答案】A【解析】函数y =cos|2x|=cos 2x ,其最小正周期为π,①正确;将函数y =cos x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x|的图像,所以其最小天正周期也为π,②正确;函数y =cos ⎝⎛⎭⎫2x +π6的最小正周期为π,③正确;函数y =tan ⎝⎛⎭⎫2x -π4的最小正周期为π2,④不正确.(·江苏卷) 函数y =3sin ⎝⎛⎭⎫2x +π4的最小正周期为________. 【答案】π 【解析】周期为T =2π2=π.(·辽宁卷) 设向量a =(3sin x ,sin x),b =(cos x ,sin x),x ∈0,π2. (1)若|a|=|b|,求x 的值;(2)设函数f(x)=a·b ,求f(x)的最大值.(·山东卷) 函数y =xcos x +sin x 的图像大致为( ) 图1-3 【答案】D 【解析】∵f(-x)=-xcos(-x)+sin(-x)=-(xcos x +sin x )=-f(x),∴y =xcos x +sin x 为奇函数,图像关于原点对称,排除选项B ,当x =π2,y =1>0,x =π,y =-π<0,故选D.(·新课标全国卷Ⅰ] 设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=________.【答案】-2 55【解析】f(x)=sin x -2cos x =5⎝ ⎛⎭⎪⎫15sin x -25cos x ,令cos α=15,sin α=25, 则f(x)=5sin(x -α).当θ-α=2kπ+π2,即θ=2kπ+π2+α(上述k 为整数)时,f(x)取得最大值,此时 cos θ=-sin α=-2 55.【高考押题】1.函数f(x)=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( )A.⎣⎡⎦⎤kπ2-π12,kπ2+5π12(k ∈Z)B.⎝⎛⎭⎫kπ2-π12,kπ2+5π12(k ∈Z)C.⎣⎡⎦⎤kπ-π12,kπ+5π12(k ∈Z) D.⎝⎛⎭⎫kπ+π6,kπ+2π3(k ∈Z)2.在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③解析 ①y =cos|2x|=cos 2x ,最小正周期为π;②由图象知y =|cos x|的最小正周期为π;③y =cos ⎝⎛⎭⎫2x +π6的最小正周期T =2π2=π; ④y =tan ⎝⎛⎭⎫2x -π4的最小正周期T =π2,因此选A. 答案 A3.已知函数f(x)=cos23x -12,则f(x)的图象的相邻两条对称轴之间的距离等于 ( )A.2π3B.π3C.π6D.π12解析 因为f(x)=1+cos 6x 2-12=12cos 6x ,所以最小正周期T =2π6=π3,相邻两条对称轴之间的距离为T 2=π6,故选C.答案 C4.已知函数f(x)=sin(x +θ)+3cos(x +θ)⎝⎛⎭⎫θ∈⎣⎡⎦⎤-π2,π2是偶函数,则θ的值为 ( ) A .0 B.π6 C.π4 D.π3解析 据已知可得f(x)=2sin ⎝⎛⎭⎫x +θ+π3,若函数为偶函数,则必有θ+π3= kπ+π2(k ∈Z),又由于θ∈⎣⎡⎦⎤-π2,π2,故有θ+π3=π2,解得θ=π6,经代入检验符合题意. 答案 B5.关于函数y =tan ⎝⎛⎭⎫2x -π3,下列说法正确的是( ) A .是奇函数B .在区间⎝⎛⎭⎫0,π3上单调递减C.⎝⎛⎭⎫π6,0为其图象的一个对称中心 D .最小正周期为π6.函数y =cos ⎝⎛⎭⎫π4-2x 的单调减区间为________. 解析 由y =cos ⎝⎛⎭⎫π4-2x =cos ⎝⎛⎭⎫2x -π4得2kπ≤2x -π4≤2kπ+π(k ∈Z), 故kπ+π8≤x≤kπ+5π8(k ∈Z).所以函数的单调减区间为⎣⎡⎦⎤kπ+π8,kπ+5π8(k ∈Z). 答案 ⎣⎡⎦⎤kπ+π8,kπ+5π8(k ∈Z) 7.函数y =lg(sin x)+cos x -12的定义域为________.解析 要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2kπ<x <π+2kπ(k ∈Z ),-π3+2kπ≤x≤π3+2kπ(k ∈Z ), ∴2kπ<x≤π3+2kπ(k ∈Z),∴函数的定义域为⎩⎨⎧⎭⎬⎫x|2kπ<x ≤π3+2kπ,(k ∈Z ).答案 ⎝⎛⎦⎤2kπ,π3+2kπ(k ∈Z) 8.函数y =sin2x +sin x -1的值域为________.解析y =sin2x +sin x -1,令t =sin x ,t ∈[-1,1],则有y =t2+t -1=⎝⎛⎭⎫t +122-54, 画出函数图象如图所示,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t2+t -1,可得y ∈⎣⎡⎦⎤-54,1. 答案 ⎣⎡⎦⎤-54,1 9.已知函数f(x)=6cos4x +5sin2x -4cos 2x,求f(x)的定义域,判断它的奇偶性,并求其值域. 解 由cos 2x≠0得2x≠kπ+π2,k ∈Z ,解得x≠kπ2+π4,k ∈Z ,所以f(x)的定义域为⎩⎨⎧⎭⎬⎫x|x ∈R ,且x ≠kπ2+π4,k ∈Z . 因为f(x)的定义域关于原点对称,且f(-x)=6cos4(-x )+5sin2(-x )-4cos (-2x )=6cos4x +5sin2x -4cos 2x=f(x). 所以f(x)是偶函数, 当x≠kπ2+π4,k ∈Z 时,f(x)=6cos4x +5sin2x -4cos 2x =6cos4x +5-5cos2x -42cos2x -1=(2cos2x -1)(3cos2x -1)2cos2x -1=3cos2x -1. 所以f(x)的值域为⎩⎨⎧⎭⎬⎫y|-1≤y <12,或12<y≤2.10.已知函数f(x)=cos x·sin ⎝⎛⎭⎫x +π3-3cos2x +34,x ∈R. (1)求f(x)的最小正周期;(2)求f(x)在闭区间⎣⎡⎦⎤-π4,π4上的最大值和最小值. 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第02节 排列与组合一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【惠州市高三第一次调研考试】将甲,乙等5位同学分别保送到北京大学,上海交通大学,中山大学这3所大学就读,则每所大学至少保送1人的不同保送方法数为( )种。

高考数学模拟复习试卷试题模拟卷11814

高考数学模拟复习试卷试题模拟卷11814

高考模拟复习试卷试题模拟卷【考情解读】1.掌握二倍角的正弦、余弦、正切公式.2.能运用两角和与差的正弦、余弦、正切公式以及二倍角的正弦、余弦和正切公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【高频考点突破】考点一已知三角函数值求值例1、已知角A 、B 、C 为△ABC 的三个内角,OM →=(sinB +cosB ,cosC),ON →=(sinC ,sinB -cosB),OM →·ON →=-15.(1)求tan2A 的值;(2)求2cos2A2-3sinA -12sin A +π4的值.【方法技巧】对于条件求值问题,即由给出的某些角的三角函数值,求另外一些角的三角函数值,关键在于“变角”即使“目标角”变换成“已知角”.若角所在象限没有确定,则应分情况讨论,应注意公式的正用、逆用、变形运用,掌握其结构特征,还要注意拆角、拼角等技巧的运用.【变式探究】已知α∈(π2,π),且sin α2+cos α2=62. (1)求cosα的值;(2)若sin(α-β)=-35,β∈(π2,π),求cosβ的值.考点二已知三角函数值求角例2、如图,在平面直角坐标系xOy 中,以Ox 轴为始边做两个锐角α、β,它们的终边分别与单位圆相交于A 、B 两点,已知A 、B 两点的横坐标分别为210,255.(1)求tan(α+β)的值;(2)求α+2β的值.【方法技巧】(1)已知某些相关条件,求角的解题步骤:①求出该角的范围;②结合该角的范围求出该角的三角函数值.(2)根据角的函数值求角时,选取的函数在这个范围内应是单调的. 【变式探究】已知向量a =(sinθ,-2)与b =(1,cosθ)互相垂直,其中θ∈(0,π2). (1)求sinθ和cosθ的值;(2)若sin(θ-φ)=1010,0<φ<π2,求φ的值.考点三正、余弦定理的应用例3、在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A -2cos C cos B =2c -ab . (1)求sin Csin A 的值;(2)若cos B =14,b =2,求△ABC 的面积S.【方法技巧】(1)利用正弦定理,实施角的正弦化为边时只能是用a 替换sinA ,用b 替换sinB ,用c 替换sinC.sinA ,sinB ,sinC 的次数要相等,各项要同时替换,反之,用角的正弦替换边时也要这样,不能只替换一部分;(2)以三角形为背景的题目,要注意三角形的内角和定理的使用.像本例中B +C =60°; (3)在求角的大小一定要有两个条件才能完成:①角的范围;②角的某一三角函数值.在由三角函数值来判断角的大小时,一定要注意角的范围及三角函数的单调性.【变式探究】在锐角△ABC 中,a 、b 、c 分别为A 、B 、C 所对的边,且3a =2csinA. (1)确定角C 的大小;(2)若c =7,且△ABC 的面积为332,求a +b 的值.考点四解三角形与实际问题例4、如图,A,B是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D点需要多长时间?【方法技巧】应用解三角形知识解决实际问题需要下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.【变式探究】如图所示,上午11时在某海岛上一观察点A测得一轮船在海岛北偏东60°的C处,12时20分测得船在海岛北偏西60°的B处,12时40分轮船到达位于海岛正西方且距海岛5 km的E港口,如果轮船始终匀速直线前进,问船速为多少?【真题感悟】【高考陕西,文6】“sin cos αα=”是“cos20α=”的( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要 【答案】A【高考四川,文13】已知sinα+2cosα=0,则2sinαcosα-cos2α的值是______________.【押题专练】1.已知sin θ2=45,cos θ2=-35,则角θ所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】C2.已知sin α=55,则cos4α的值是() A.425 B .-725 C.1225D .-1825【答案】B3.若-2π<α<-3π2,则1-cos α-π2的值是() A .sin α2 B .cos α2 C .-sin α2D .-cos α24.已知θ为第二象限角,sin(π-θ)=2425,则cos θ2的值为() A.35 B.45 C .±35D .±45【答案】C5.已知x ∈(π2,π),cos 2x =a ,则c os x =() A. 1-a 2 B .-1-a 2 C.1+a 2D .-1+a 2【答案】D6.若cos α=-45,α是第三象限角,则1+tan α21-tan α2=()A .-12 B.12 C .2D .-2【答案】A7.已知cos 2α=14,则sin2α=________.【答案】38 8.sin 2B 1+cos2B -sin2B =-3,则tan 2B =________.【答案】349.设α是第二象限角,tan α=-43,且sin α2<cos α2,则cos α2=________.【答案】-5 510.化简:2sin(π4-x)+6cos(π4-x)11.求3tan 10°+14cos210°-2sin 10°的值.12.已知函数f(x)=3sin2x-2sin2x.(1)求函数f(x)的最大值;(2)求函数f(x)的零点的集合.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟复习试卷试题模拟卷【高频考点解读】1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 【热点题型】题型一 三角函数的定义域、值域【例1】 (1)函数y =1tan x -1的定义域为____________.(2)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x≤9)的最大值与最小值之和为( ) A .2- 3 B .0 C .-1 D .-1-3解析 (1)要使函数有意义,必须有⎩⎪⎨⎪⎧tan x -1≠0,x ≠π2+kπ,k ∈Z ,即⎩⎨⎧x ≠π4+kπ,k ∈Z ,x ≠π2+kπ,k ∈Z.故函数的定义域为{x|x≠π4+kπ且x≠π2+kπ,k ∈Z}. (2)∵0≤x≤9,∴-π3≤π6x -π3≤7π6, ∴sin ⎝⎛⎭⎫π6x -π3∈⎣⎢⎡⎦⎥⎤-32,1.∴y ∈[]-3,2,∴ymax +ymin =2- 3. 答案 (1){x|x≠π4+kπ且x≠π2+kπ,k ∈Z} (2)A 【提分秘籍】(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.(2)求解三角函数的值域(最值)常见到以下几种类型:①形如y =asin x +bcos x +c 的三角函数化为y =Asin(ωx +φ)+k 的形式,再求最值(值域);②形如y =asin2x +bsin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =asin xcos x +b(sin x±cos x)+c 的三角函数,可先设t =sinx±cos x ,化为关于t 的二次函数求值域(最值).【举一反三】(1)函数y =sin x -cos x 的定义域为________. (2)函数y =sin x -cos x +sin xcos x 的值域为________.解析 (1)法一 要使函数有意义,必须使sinx -co s x≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2kπ+π4≤x≤2kπ+5π4,k ∈Z . 法二 利用三角函数线,画出满足条件的终边范围(如图阴影部分所示).∴定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2kπ+π4≤x≤2kπ+5π4,k ∈Z .法三 sin x -cos x =2sin ⎝⎛⎭⎫x -π4≥0,将x -π4视为一个整体,由正弦函数y =sin x 的图象和性质可知2kπ≤x -π4≤π+2kπ,k ∈Z ,解得2kπ+π4≤x≤2kπ+5π4,k ∈Z.所以定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2kπ+π4≤x≤2kπ+5π4,k ∈Z . (2)设t =sin x -cos x ,则t2=sin2x +cos2x - 2sin xcos x ,sin xcos x =1-t22,且-2≤t≤ 2.∴y =-t22+t +12=-12(t -1)2+1.当t =1时,ymax =1;当t =-2时,ymin =-12- 2.∴函数的值域为⎣⎡⎦⎤-12-2,1. 答案 (1)⎩⎨⎧⎭⎬⎫x ⎪⎪2kπ+π4≤x≤2kπ+5π4,k ∈Z(2)⎣⎡⎦⎤-12-2,1 题型二三角函数的奇偶性、周期性、对称性【例2】 (1)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f(x)=sin(ωx +φ)的图象的两条相邻的对称轴,则φ=( )A.π4B.π3C.π2D.3π4(2)函数y =2cos2⎝⎛⎭⎫x -π4-1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数【提分秘籍】(1)求f(x)=Asin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+kπ(k ∈Z),求x ;求f(x)的对称中心的横坐标,只需令ωx +φ=kπ(k ∈Z)即可.(2)求最小正周期时可先把所给三角函数式化为y =Asin(ωx +φ)或y =Acos( ωx +φ)的形式,则最小正周期为T =2π|ω|;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx +b 的形式.【举一反三】(1)如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( ) A.π6 B.π4 C.π3 D.π2(2)(·杭州模拟)若函数f(x)=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( ) A.π2 B.2π3 C.3π2 D.5π3题型三 三角函数的单调性【例3】 (1)已知f(x)=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π],则f(x)的单调递增区间为________.(2)已知ω>0,函数f(x)=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34C.⎝⎛⎦⎤0,12 D .(0,2] 解析 (1)由-π2+2kπ≤x +π4≤π2+2kπ,k ∈Z , 得-3π4+2kπ≤x≤π4+2kπ,k ∈Z.又x ∈[0,π],所以f(x)的单调递增区间为⎣⎡⎦⎤0,π4.(2)由π2<x <π得π2ω+π4<ωx +π4<πω+π4,由题意知⎝⎛⎭⎫π2ω+π4,πω+π4⊆⎣⎡⎦⎤π2,3π2,∴⎩⎨⎧π2ω+π4≥π2,πω+π4≤3π2,∴12≤ω≤54,故选A.答案 (1)⎣⎡⎦⎤0,π4 (2)A【提分秘籍】(1)求较为复杂的三角函数的单调区间时,首先化简成y =Asin(ωx +φ)形式,再求y =Asin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.(2)对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【举一反三】(1)若函数f(x)=sin ωx(ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于( )A.23B.32 C .2 D .3(2)函数f(x)=sin ⎝⎛⎭⎫-2x +π3的单调减区间为______.(2)由已知函数为y =-sin ⎝⎛⎭⎫2x -π3,欲求函数的单调减区间,只需求y =sin ⎝⎛⎭⎫2x -π3的单调增区间. 由2kπ-π2≤2x -π3≤2kπ+π2,k ∈Z , 得kπ-π12≤x≤kπ+5π12,k ∈Z.故所给函数的单调减区间为⎣⎡⎦⎤kπ-π12,kπ+5π12(k ∈Z). 答案 (1)B (2)⎣⎡⎦⎤kπ-π12,kπ+5π12(k ∈Z)【高考风向标】【高考浙江,文11】函数()2sin sin cos 1f x x x x =++的最小正周期是,最小值是.【答案】32,2π- 【解析】()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+ 23sin(2)242x π=-+,所以22T ππ==;min 32()22f x =-. 【高考陕西,文14】如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin(6πx +Φ)+k ,据此函数可知,这段时间水深(单位:m)的最大值为____________.【答案】8【解析】由图像得,当sin()16x π+Φ=-时min 2y =,求得5k =,当sin()16x π+Φ=时,max 3158y =⨯+=,故答案为8.【高考湖南,文15】已知ω>0,在函数y=2sin ωx 与y=2cos ωx 的图像的交点中,距离最短的两个交点的距离为3ω =_____.【答案】2πω=【解析】由题根据三角函数图像与性质可得交点坐标为12211154242k k k k Z ππππωω+++-∈((,),((,),,, 距离最短的两个交点一定在同一个周期内,()2222152322442πππωω∴=-+--∴=()(),. 【高考天津,文14】已知函数()()sin cos 0f x x x ωωω=+>,x ∈R ,若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为.【答案】π【高考福建,文21】已知函数()2103cos 10cos 222x x x f x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2.(ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >. 【答案】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ⅱ)详见解析. 【解析】(I )因为()2103cos 10cos 222x x x f x =+ 535cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭.所以函数()f x 的最小正周期2πT =. (II )(i )将()f x 的图象向右平移6π个单位长度后得到10sin 5y x =+的图象,再向下平移a (0a >)个单位长度后得到()10sin 5g x x a =+-的图象.又已知函数()g x 的最大值为2,所以1052a +-=,解得13a =.所以()10sin 8g x x =-.【高考重庆,文18】已知函数f(x)=1232cos x . (Ⅰ)求f (x )的最小周期和最小值,(Ⅱ)将函数f (x )的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图像.当x ∈,2ππ⎡⎤⎢⎥⎣⎦时,求g(x)的值域. 【答案】(Ⅰ)()f x 的最小正周期为,最小值为2+3,(Ⅱ)1323,]. 【解析】 (1) 2113()sin 23cos sin 2(1cos 2)22f x x xx x 1333sin 2cos 2sin(2)232x x x, 因此()f x 的最小正周期为,最小值为2+32. (2)由条件可知:3g()sin()32x x.当[,]2x时,有2[,]363x , 从而sin()3x的值域为1[,1]2, 那么3sin()32x的值域为1323[,]22. 故g()x 在区间[,]2上的值域是1323,].(·安徽卷) 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为2.求cos A 与a 的值.【解析】 由三角形面积公式,得 12×3×1·sin A =2,故sin A =2 23. 因为sin2A +cos2A =1, 所以cos A =±1-sin2A =±1-89=±13.①当cos A =13时,由余弦定理得a2=b2+c2-2bccos A =32+12-2×1×3×13=8, 所以a =2 2.②当cos A =-13时,由余弦定理得a2=b2+c2-2bccos A =32+12-2×1×3×⎝⎛⎭⎫-13=12,所以a =2 3.(·福建卷) 将函数y =sin x 的图像向左平移π2个单位,得到函数y =f(x)的图像,则下列说法正确的是( )A .y =f(x)是奇函数B .y =f(x)的周期为πC .y =f(x)的图像关于直线x =π2对称 D .y =f(x)的图像关于点⎝⎛⎭⎫-π2,0对称 【答案】D【解析】将函数y =sin x 的图像向左平移π2个单位后,得到函数y =f(x)=sin ⎝⎛⎭⎫x +π2的图像,即f(x)=cos x .由余弦函数的图像与性质知,f(x)是偶函数,其最小正周期为2π,且图像关于直线x =kπ(k ∈Z)对称,关于点⎝⎛⎭⎫π2+kπ,0(k ∈Z)对称,故选D.图1-2(·江苏卷) 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.【答案】π6(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 【答案】A【解析】函数y =cos|2x|=cos 2x ,其最小正周期为π,①正确;将函数y =cos x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x|的图像,所以其最小天正周期也为π,②正确;函数y =cos ⎝⎛⎭⎫2x +π6的最小正周期为π,③正确;函数y =tan ⎝⎛⎭⎫2x -π4的最小正周期为π2,④不正确.(·江苏卷) 函数y =3sin ⎝⎛⎭⎫2x +π4的最小正周期为________. 【答案】π 【解析】周期为T =2π2=π.(·辽宁卷) 设向量a =(3sin x ,sin x),b =(cos x ,sin x),x ∈0,π2. (1)若|a|=|b|,求x 的值;(2)设函数f(x)=a·b ,求f(x)的最大值.(·山东卷) 函数y =xcos x +sin x 的图像大致为( )图1-3 【答案】D【解析】∵f(-x)=-xcos(-x)+sin(-x)=-(xcos x +sin x )=-f(x),∴y =xcos x +sin x 为奇函数,图像关于原点对称,排除选项B ,当x =π2,y =1>0,x =π,y =-π<0,故选D.(·新课标全国卷Ⅰ] 设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=________. 【答案】-2 55【解析】f(x)=sin x -2cos x = 5⎝⎛⎭⎪⎫15sin x -25cos x ,令cos α=15,sin α=25, 则f(x)=5sin(x -α).当θ-α=2kπ+π2, 即θ=2kπ+π2+α(上述k 为整数)时,f(x)取得最大值,此时 cos θ=-sin α=-2 55. 【高考押题】1.函数f(x)=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( )A.⎣⎡⎦⎤kπ2-π12,kπ2+5π12(k ∈Z)B.⎝⎛⎭⎫kπ2-π12,kπ2+5π12(k ∈Z) C.⎣⎡⎦⎤kπ-π12,kπ+5π12(k ∈Z) D.⎝⎛⎭⎫kπ+π6,kπ+2π3(k ∈Z)2.在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③解析 ①y =cos|2x|=cos 2x ,最小正周期为π; ②由图象知y =|cos x|的最小正周期为π; ③y =cos ⎝⎛⎭⎫2x +π6的最小正周期T =2π2=π;④y =tan ⎝⎛⎭⎫2x -π4的最小正周期T =π2,因此选A.答案 A3.已知函数f(x)=cos23x -12,则f(x)的图象的相邻两条对称轴之间的距离等于 ( ) A.2π3B.π3C.π6D.π12解析 因为f(x)=1+cos 6x 2-12=12cos 6x ,所以最小正周期T =2π6=π3,相邻两条对称轴之间的距离为T2=π6,故选C.答案 C4.已知函数f(x)=sin(x +θ)+3cos(x +θ)⎝⎛⎭⎫θ∈⎣⎡⎦⎤-π2,π2是偶函数,则θ的值为 ( )A .0B.π6C.π4D.π3解析 据已知可得f(x)=2sin ⎝⎛⎭⎫x +θ+π3,若函数为偶函数,则必有θ+π3=kπ+π2(k ∈Z),又由于θ∈⎣⎡⎦⎤-π2,π2,故有θ+π3=π2,解得θ=π6,经代入检验符合题意.答案 B5.关于函数y =tan ⎝⎛⎭⎫2x -π3,下列说法正确的是( )A .是奇函数B .在区间⎝⎛⎭⎫0,π3上单调递减 C.⎝⎛⎭⎫π6,0为其图象的一个对称中心 D .最小正周期为π6.函数y =cos ⎝⎛⎭⎫π4-2x 的单调减区间为________.解析 由y =cos ⎝⎛⎭⎫π4-2x =cos ⎝⎛⎭⎫2x -π4得2kπ≤2x -π4≤2kπ+π(k ∈Z), 故kπ+π8≤x≤kπ+5π8(k ∈Z).所以函数的单调减区间为⎣⎡⎦⎤kπ+π8,kπ+5π8(k ∈Z).答案 ⎣⎡⎦⎤kπ+π8,kπ+5π8(k ∈Z)7.函数y =lg(sin x)+cos x -12的定义域为________.解析 要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2kπ<x <π+2kπ(k ∈Z ),-π3+2kπ≤x≤π3+2kπ(k ∈Z ), ∴2kπ<x≤π3+2kπ(k ∈Z),∴函数的定义域为⎩⎨⎧⎭⎬⎫x|2kπ<x ≤π3+2kπ,(k ∈Z ).答案 ⎝⎛⎦⎤2kπ,π3+2kπ(k ∈Z)8.函数y =sin2x +sin x -1的值域为________. 解析y =sin2x +sin x -1,令t =sin x ,t ∈[-1,1],则有y =t2+t -1=⎝⎛⎭⎫t +122-54,画出函数图象如图所示,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t2+t -1,可得y ∈⎣⎡⎦⎤-54,1. 答案 ⎣⎡⎦⎤-54,1 9.已知函数f(x)=6cos4x +5sin2x -4cos 2x ,求f(x)的定义域,判断它的奇偶性,并求其值域. 解 由cos 2x≠0得2x≠kπ+π2,k ∈Z , 解得x≠kπ2+π4,k ∈Z ,所以f(x)的定义域为⎩⎨⎧⎭⎬⎫x|x ∈R ,且x ≠kπ2+π4,k ∈Z .因为f(x)的定义域关于原点对称, 且f(-x)=6cos4(-x )+5sin2(-x )-4cos (-2x )=6cos4x +5sin2x -4cos 2x=f(x). 所以f(x)是偶函数, 当x≠kπ2+π4,k ∈Z 时,f(x)=6cos4x +5sin2x -4cos 2x =6cos4x +5-5cos2x -42cos2x -1 =(2cos2x -1)(3cos2x -1)2cos2x -1=3cos2x -1.所以f(x)的值域为⎩⎨⎧⎭⎬⎫y|-1≤y <12,或12<y≤2.10.已知函数f(x)=cos x·sin ⎝⎛⎭⎫x +π3-3cos2x +34,x ∈R.(1)求f(x)的最小正周期;(2)求f(x)在闭区间⎣⎡⎦⎤-π4,π4上的最大值和最小值.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第03节 几何概型A 基础巩固训练1.在区间[0,π]上随机取一个数x ,则事件“sin x≥cos x”发生的概率为( ) A.14 B.12 C.34 D .1 【答案】 C【解析】 ∵sin x≥cos x ,x ∈[0,π], ∴π4≤x≤π, ∴事件“sin x≥cos x”发生的概率为π-π4π-0=34.2.(·西城模拟)在区间[0,2]上任取两个实数a ,b ,则函数f(x)=x3+ax -b 在区间[-1,1]上有且只有一个零点的概率是( )A.18B.14C.34D.78【答案】D3.如图10-6-8所示,墙上挂有一边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,a2为半径的扇形,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是( ) A .1-π4B.π4C .1-π8D.与a 的取值有关【解析】 由题意知,阴影部分的面积为a2-4×14×π⎝⎛⎭⎫a 22=⎝⎛⎭⎫1-π4a2,故概率为1-π4. 【答案】 A4. (·阜阳模拟)一艘轮船从O 点的正东方向10 km 处出发,沿直线向O 点的正北方向10 km 处的港口航行,某台风中心在点O ,距中心不超过r km 的位置都会受其影响,且r 是区间[5,10]内的一个随机数,则轮船在航行途中会遭受台风影响的概率是( ) A.2-12B.1-22C.2-1D.2- 2【答案】 D【解析】 以O 为圆心,r 为半径作圆,易知当r >52时,轮船会遭受台风影响,所以P =10-5210-5=10-525=2- 2. 5.在棱长为2的正方体ABCD -A1B1C1D1中,点O 为底面ABCD 的中心,在正方体ABCD -A1B1C1D1内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 【答案】1-π12B 能力提升训练1. 【高考辽宁卷第6题】若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π【答案】B2. 在区间(0,1)内任取两个实数,则这两个实数的和大于13的概率为()A.1718B.79C.29D.118【答案】A3.【湖北八校高三第二次联考数学试题】记集合{}22(,)|4A x y x y=+≤和集合{}(,)|20,0,0B x y x y x y=+-≤≥≥表示的平面区域分别为1Ω和2Ω,若在区域1Ω内任取一点(,)M x y,则点M落在区域2Ω的概率为.【答案】12πBAyxO4.一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A .18B .116C .127D .2764【答案】A【解析】根据几何概型知识,概率为体积之比,即P =4-2343=18. 5. (·福建三明质量检测)已知集合M ={x|-2≤x ≤8},N ={x|x2-3x +2≤0},在集合M 中任取一个元素x ,则“x ∈(M ∩N)”的概率是( )A .110B .16C .310D .12【答案】A【解析】因为N ={x|x2-3x +2≤0}=[1,2],所以M ∩N =[1,2],所以所求的概率为2-18+2=110.C 思维扩展训练1. 【东莞市高三模拟考试一】已知(2,1)A ,(1,2)B -,31,55C ⎛⎫- ⎪⎝⎭,动点(,)P a b 满足02OP OA ≤⋅≤且02OP OB ≤⋅≤,则点P 到点C 的距离大于14的概率为( )A .5164π-B .564πC .116π- D .16π 【答案】A2. 【高考重庆卷第15题】某校早上8:00开始上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为_____(用数字作答)【答案】932【解析】用x表示小张到校的时间,3050x≤≤,用y表示小王到校的时间,3050y≤≤则所有可能的结果对应直角坐标平面内的正方形区域ABCD记“小张比小王至少早到5分钟”为事件M,则M所对区域为图中的阴影部分DEF∆所以()1151592202032DEFABCDSP AS∆⨯⨯===⨯正方形,所以答案应填:932.3. (济南市高三3月考模拟考试)如图,长方体ABCD—A1B1C1D1,有一动点在此长方体内随机运动,则此动点在三棱锥A—A1BD内的概率为.【答案】164. 【北京市丰台区高三一模】设不等式组2210x yy⎧+-≤⎨≥⎩,表示的平面区域为M,不等式组201t x ty t-≤≤⎧⎪⎨≤≤-⎪⎩,表示的平面区域为N.在M内随机取一个点,这个点在N内的概率的最大值是_________.【答案】2π5. 若k∈[-3,3],则k的值使得过A(1,1)可以作两条直线与圆(x-k)2+y2=2相切的概率等于( )A .12B .13C .23D .34【答案】C 【解析】点在圆外,过该点可做两条直线与圆相切.故使圆心与点A 的距离大于半径即可,即(1-k)2+1>2,解得k <0或k >2,所以所求k ∈[-3,0)∪(2,3],所求概率P =46=23.高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

相关文档
最新文档