波函数满足定态薛定谔方程这里

合集下载

《量子力学》习题答案

《量子力学》习题答案

第一章 绪论1.1 由黑体辐射公式导出维思位移定律,能量密度极大值所对应的波长m λ与温度T成反比,即b T m =λ (常数),并近似计算b 的数值,准确到二位有效值。

[解]:由黑体辐射公式,频率在ν与ννd +之间的辐射能量密度为 ννπνρννd ec hd kTh 11833-=由此可以求出波长在λ与λλd +之间的能量密度λλρd )(由于 λν/c =, λλνd cd 2+=因而有:λλπλλρλd ehcd kT hc 118)(5-=令λkT hc x =所以有:11)(5-=xe Ax λρ (44558c h T k A π=常数)由 0)(=λλρd d 有0)1(115)(254=⎥⎦⎤⎢⎣⎡---=λλλρd dxe e x e x A d d x x x于是,得: 1)51(=-x e x该方程的根为 965.4=x因此,可以给出,k hcxk hc T m 2014.0==λ即b T m =λ (常数)其中k hcb 2014.0=2383410380546.110997925.21062559.62014.0--⨯⨯⨯⨯⨯=km⋅⨯=-310898.2[注]根据11833-=kThechνννπρ可求能量密度最大值的频率:令kThxν=113-=xeAxνρ(23338hcTkAπ=)]11[3=-=ννρνddxeAxdxdddx因而可得131=⎪⎭⎫⎝⎛-x ex此方程的解821.2=xhkThkTx821.2max==νbTTb'=⇒'=-1max maxνν其中34231062559.610380546.1821.2821.2--⨯⨯=='hkb1910878.5-⋅︒⨯=sk这里求得m axν与前面求得的m axλ换算成的mν的表示不一致。

1.2 在0k附近,钠的价电子能量约为3电子伏,求其德布罗意波长。

[解]德布罗意公式为ph =λ因为价电子能量很小,故可用非相对论公式μ22p E=代入德布罗意公式得λ==这里利用了电子能量E eV=。

能量表象下的薛定谔方程

能量表象下的薛定谔方程

•设描述微观粒子状态的波函数为Ψ(r,t),质量为m的微观粒子在势场V(r,t)中运动的薛定谔方程。

在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数Ψ(r,t)。

由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。

当势函数V不依赖于时间t时,粒子具有确定的能量,粒子的状态称为定态。

定态时的波函数可写成式中Ψ(r)称为定态波函数,满足定态薛定谔方程,这一方程在数学上称为本征方程,式中E为本征值,它是定态能量,Ψ(r)又称为属于本征值E的本征函数。

薛定谔方程是量子力学的基本方程,它揭示了微观物理世界物质运动的基本规律,如牛顿定律在经典力学中所起的作用一样,它是原子物理学中处理一切非相对论问题的有力工具,在原子、分子、固体物理、核物理、化学等领域中被广泛应用。

扩展资料
薛定谔方程(Schrodinger equation)在量子力学中,体系的状态不能用力学量(例如x)的值来确定,而是要用力学量的函数Ψ(x,t),即波函数(又称概率幅,态函数)来确定,因此波函数成为量子力学研究的主要对象。

力学量取值的概率分布如何,这个分布随时间如何变化,这些问题都可以通过求解波函数的薛定谔方程得到解答。

这个方程是奥地利物理学家薛定谔于1926年提出的,它是量子力学最基本的方程之一,在量子力学中的地位与牛顿方程在经典力学中的地位相当,超弦理论试图统一两种理论。

15.6 波函数 一维定态薛定谔方程

15.6 波函数 一维定态薛定谔方程
k nπ a
2
2mE
2
2
, n 1, 2 ,
En n
π
2 2
,
n 1, 2 ,
2ma
n 为主量子数,表明粒子的能量是量子化的。
大学物理 第三次修订本
13
第15章 量子物理基础
波函数
nπ Ψ n x A sin a
2 a
x , n 1, 2 ,
i t Ψ (r , t ) Ψ (r )e
E
定态薛定谔方程
2m 2 2 2 Ψ( r ) 2 E V Ψ(r ) 0 x y z
2 2 2
若粒子在一维空间运动,则
d Ψ x
2
dx
2

2m
大学物理 第三次修订本
o
a
x
势能曲线
11
第15章 量子物理基础
薛定谔方程
d Ψ x
2
dx
2

2mE
2
Ψ x 0
d Ψ x
2
,0 xa
k Ψ x 0
2
令 k
2 mE
2

dx
2
方程通解
Ψ x A sin kx B cos kx
Ψ 利用边界条件 x = 0, 0 0 , 则 B = 0 。
物质波波函数是复数,它本身并不代表任 何可观测的物理量。 波函数是怎样描述微观粒子运动状态的?
大学物理 第三次修订本
3
第15章 量子物理基础
1926年德国物理学家玻恩提出了物质波的 统计解释:实物粒子的物质波是一种概率波, t 时刻粒子在空间 r 处附近的体积元 dV 中出现的 概率dW与该处波函数绝对值的平方成正比。

量子力学与统计物理习题解答完整版

量子力学与统计物理习题解答完整版

量子力学与统计物理习题解答 第一章1. 一维运动粒子处于⎩⎨⎧≤>=-)0(0)0()(x x Axe x xλψ的状态,式中λ>0,求(1)归一化因子A ; (2)粒子的几率密度;(3)粒子出现在何处的几率最大? 解:(1)⎰⎰∞-∞∞-*=0222)()(dx e x Adx x x x λψψ令 x λξ2=,则323232023202224!28)3(88λλλξξλξλA AA d e A dx ex Ax=⨯=Γ==-∞∞-⎰⎰由归一化的定义1)()(=⎰∞∞-*dx x x ψψ得 2/32λ=A(2)粒子的几率密度xe x x x x P λλψψ2234)()()(-*==(3)在极值点,由一阶导数0)(=dxx dP 可得方程0)1(2=--xe x x λλ 而方程的根0=x ;∞=x ;λ/1=x 即为极值点。

几率密度在极值点的值0)0(=P ;0)(lim =∞→x P x ;24)/1(-=e P λλ由于P(x)在区间(0,1/λ)的一阶导数大于零,是升函数;在区间(1/λ,∞)的一阶导数小于零,是减函数,故几率密度的最大值为24-e λ,出现在λ/1=x 处。

2. 一维线性谐振子处于状态t i x Aet x ωαψ212122),(--=(1)求归一化因子A ;(2)求谐振子坐标小x 的平均值;(3)求谐振子势能的平均值。

解:(1)⎰⎰∞∞--∞∞-*=dx e Adx x222αψψ⎰∞-=02222dx e A xα⎰∞-=222ξαξd e Aαπ2A =由归一化的定义1=⎰∞∞-*dx ψψ得 πα=A (2) ⎰⎰∞∞-∞∞--==dx xe A dx x xP x x222)(α因被积函数是奇函数,在对称区间上积分应为0,故 0=x (3)⎰∞∞-=dx x P x U U )()(⎰∞∞--=dx e kx x 22221απα ⎰∞-=0222dx e x k x απα⎰∞-=222ξξπαξd e k⎥⎦⎤⎢⎣⎡+-=⎰∞-∞-0022221ξξπαξξd e e k⎰∞-=02221ξπαξd e k 2212ππαk=24αk =将2μω=k 、μωα=2代入,可得02141E U ==ω 是总能量的一半,由能量守恒定律U T E +=0可知动能平均值U E U E T ==-=0021和势能平均值相等,也是总能量的一半。

大学物理课件:23-2波函数与薛定谔方程

大学物理课件:23-2波函数与薛定谔方程

0.091
例:试求在一维无限深势阱中n=1粒子概率密度的最大值的位置。
解:一维无限深势阱中n=1粒子的概率密度为
1(x)
2
2 a
sin2
a
x
n (x)
d 1(x) 2
dx
4
a2
sin
a
x
cos
a
x0
2 sin n x
aa
因为粒子在阱内,则
sin
a
x
0
cos
a
x
0
a
x
2
由此解得最大值得位置为
在 dV 空间内发现粒子的概率: dP 2 dV *dV
概率密度 表示在某处单位体积内发现粒子的概率. Ψ 2 *
某一时刻在整个空间内发现粒子的概率为:
Ψ
2
dV
1
归一化条件
波函数的标准化条件
1)波函数具有有限性
有限空间内:
Ψ
2
dV
1
2)波函数是连续的
3)波函数是单值的
例:作一维运动的粒子被束缚在 0 x的 a范围内。已知其波函数
移动原子
六、一维简谐振子
微观领域中分子的振
动、晶格的振动、,都
可以近似地用简谐振子模
型来描述 。
一维简谐振子的经典模型
一维简谐振子的势函数:
U (x) 1 kx2 1 m2x2
2
2
k m,
m —— 振子质量, —— 固有频率,x —— 位移
相应的定态薛定谔方程为 :
2 d2 1 m 2 x2 E
2
2m
d2 dx2
U
x
x
E
x
2

量子力学 薛定谔方程的建立和定态问题

量子力学 薛定谔方程的建立和定态问题

第二章 波函数和薛定谔方程 2.3、 薛定谔方程 2.3.2、 薛定谔方程的建立
2.3.2、 薛定谔方程的建立 1、自由粒子满足的微分方程: 由自由粒子波函数
i ( p⋅r − Et ) ψ p ( r , t ) = Ae
(1)
将上式两边对时间 t 求一次偏导,得:
∂ψ p
i ( p⋅r − Et ) i i = − EAe = − Eψ p ∂t
第二章 波函数和薛定谔方程 2.3、 薛定谔方程 2.3.1、 描写波函数随时间变化的方程应满足条件
经典力学和量子力学关于描述粒子运动状态的差别。 经典力学 质点的状态用 r , p 描述。 量子力学
微观粒子状态用波函数 Ψ (r , t ) 描述。
每个时刻, r , p 均有确定值, 波函数 Ψ 描述的微观粒子不可能同
第二章 波函数和薛定谔方程 2.3、 薛定谔方程 2.3.1、 描写波函数随时间变化的方程应满足条件
2.3、 薛定谔方程
在 2.1 节中, 我们讨论了微观粒子在某一时刻 t 的状态, 以及描写这个状态的波函数 Ψ 的性质, 但未涉及当时间改 变时粒子的状态将怎样随着变化的问题。本节中我们来讨 论粒子状态随时间变化所遵从的规律。

第二章 波函数和薛定谔方程 2.3、 薛定谔方程 2.3.3、 关于薛定谔方程的几点说明
2.3.3、 关于薛定谔方程的几点说明 (1)薛定谔方程是建立的,而不是推导出来的,建立的 方式有多种。 (2)薛定谔方程是量子力学最基本的方程,也是量子力 学的一个基本假定。薛定谔方程正确与否靠实验检验。 (3)薛定谔方程描述了粒子运动状态随时间的变化,揭 示了微观世界中物质的运动规律。
第二章 波函数和薛定谔方程 2.4、 粒子流密度和粒子数守恒定律2.4.1、 几率分布变化及连续性方程

量子力学 第二章 波函数和薛定谔方程

量子力学 第二章 波函数和薛定谔方程

x px
t E J
二.量子力学中的测量过程 1.海森伯观察实验 2.测量过程 被测对象和仪器,测量过程即相互作用过程,其影响 不可控制和预测。
三.一对共轭量不可能同时具有确定的值是微观粒 子具有波动性的必然结果。
并不是测量方法或测量技术的缺陷。而是在本质上 它们就不可能同时具有确定的值
i p
p2 2
对自由粒子:
2 E p
2

2 i 2 t 2
3.力场中运动粒子的波动方程 能量关系:
E p2 U (r , t ) 2
2 i 2 U (r , t ) t 2
4.三个算符
2 H 2 U 2
1。与宏观粒子运动不同。
2。电子位置不确定。
3。几率正比于强度,即 ( r , t )

2
结论:
波函数的统计解释:波函数在空间某一点的 强度(振幅绝对值的平方)和在该点找到粒 子的几率成正比。
2 数学表达: (r , t ) | (r , t ) |
归一化:

2 (r , t )d | (r , t ) | d 1
3 2 i ( pr Et )
e

(r ) p
1 (2)

3 2
e
i pr
(r , t )


( r ) dp dp dp x y z c( p, t ) p
其中:
而:
i Et c( p, t ) c( p) e
而在晶体表面反射后的晶电子状态
状态的迭加。
p
为各种值的

大学物理(下册) 14.6 波函数 薛定谔方程

大学物理(下册) 14.6 波函数 薛定谔方程

1.所描述的状态称为 F 的本征态,而上式则 称为本征值方程;
2.波函数的标准条件:单值、有限和连续;
例题 14.6.1 设质量为m的粒子沿x轴方向运动,其势 能为: , x 0,x a Ep u ( x) 0, 0 x a (14.6.15)
无限深势阱:该势能如图所示形如一 无限深的阱,故称无限深势阱,本问 题为求解该一维无限深势阱内粒子的 波函数。
2 2 1 f ( t ) (x, y,z ) 推出: i V (x, y,z ) f (t ) t 2m (x, y,z )
设常量E:
1 f (t ) i E f (t ) t
2
[
2m
V (x, y,z )] (x, y,z ) E (x, y,z )
o
a
x
解:分析 因为势能不随时间变化,故粒子波函数 满足定态薛定谔方程,在势阱内势能为零故其定 态薛定谔方程为:
定态薛定谔方程为:
Ep
k 2mE
d 2 k 0 2 dx
2
其通解为: ( x)
A sin kx B cos kx
o
a
x
由波函数的标准条件:单值、有限和连续可得:
2.定态薛定谔方程 势能函数: V V ( x, y, z ) 波函数可以分离为坐标函数和时间函数的乘积:
(x, y,z,t ) (x, y,z ) f (t )
(14.6.8)
将其代入薛定谔方程式:
2 f (t ) i (x, y,z ) 2 (x, y,z ) f (t ) V (x, y,z ) (x, y,z ) f (t ) t 2m
2
解之得: 定态波函数:

波函数薛定谔方程

波函数薛定谔方程

(r .t )
0e
i
(
Et
pr )
波函数Ψ是复数,模的平方可表示为
2 *
5
4 、波函数的统计解释: (1)概率密度: 玻恩假定:概率波的波函数Ψ,模的平方
| r,t|2 r,t* r,t
代表 t 时刻,在空间 r 点处单位体积元中发现一个粒子的概 率,称为概率密度。
t 时刻在空间 r 附近体积 dv 内发现粒子的概率为:
为物质波能够干涉)。
薛定谔提出了波函数Ψ(x,y,z,t)所适用的(在非相对论) 动力学方程:
2 2 U x, y, z,t i
2m
t
(1)式中 2 2 2 2 称之为拉普拉斯算符, x2 y 2 z 2
11
(2)U x, y, z, t
表示微观粒子受到的作用势能,它一般的是 r 和 t 的函数, (3) m 是微观粒子的质量。
薛定谔方程既不能由经典理论导出,也不能用严格的逻辑推 理来证明,它的正确与否只能用实验来验证。
1 、一般的薛定谔方程 微观粒子的运动状态用波函数
Ψ(x,y,z,t)描述,薛定谔认为,这 个波函数应该是适用于微观粒子的波 动方程的一个解。
10
•必须能满足德布罗意波公式的要求,
E , h
h
p
•必须是线性微分方程,即其方程的解必须能满足叠加原理 (因
的原理可以证明它的正确性。 从薛定谔方程得到的结论正确与否,需要用实验事实去验证。
薛定谔方程是量子力学的一条基本假设。
14
例 15-23 将波函数在空间各点的振幅同时增大 D 倍,则粒子在 空间的分布概率将
(A)增大D2倍;(B)增大 2 D 倍;(C)增大 D 倍;(D)不变。

波函数与薛定谔方程

波函数与薛定谔方程

(2)态 的 迭 加 原 理
B.时 间部分 函数是确定 的。
如果 1、 2、xI*3…是体 系可能 的状 态 ,则 它们的线性 迭加态 = cl l+c2 2+e3Xlt3…=∑ci'Pi也 是体 系的一个 可 能状态 。当体 系处 在迭加 态 时 ,体系部 分处在 在迭加之前的各个态 'tq。
1)量子力学使用最多 的是把 可以实现的态分解为某一个算 符本征 态 的迭 加 。
2)如同经 典波的分解 和迭加 ,量子力学 的态的迭加 也是波 函数 的
数 ,这称 为简并 。若一 个本征值对应 的不 同本征 函数数 目为 N,则 称 N 重简并 。
定态薛 定谔方 程或不 含时 的薛定 谔方程 是能量 本征方程 ,E就称
波函数与薛定谔方程
四 川理 工 学院 王 学建
[摘 要 ]本文论述 了量子 力学微 观粒子行为 由波函数描 述,波函数具有统计 意义,波函数 由薛定谔方程解 出,介 绍 了用定态 薛定谔方
程 的 基 本 方 法和 步 骤 。 [关键词 ]波函数 态的迭加原理 薛定谔方程 定 态薛定谔方程
、P ,f) j一。。j j。。f(声, ) (产)( dpydp。
(2—1)
这 在数学上是成立的 ,这正好是非周期 函数的傅立叶展开 。
(1)在态 (x,y'Z’t)的粒子 ,它的动 量没有确 定 的值 ,由上式可 知 ,
积 内的概率或 t时刻粒子在空间分布 的概率密度
变 化 规 律 。
4.波 函 数 的 归 一 化 条 件 和 标 准 条 件
(2)建立方程 而不是 推导方程 ,其正确性由实验验证 。薛定谔方程
波函数 归一化条件
实质上是一种基本假设 ,不能从 其他更基本原理或方程推导 出来 ,它 的

量子力学电子教案波函数和 薛定谔方程

量子力学电子教案波函数和 薛定谔方程
第二章
波函数和 薛定谔方程
微观粒子的基本属性不能用经典语言确切描述。
量子力学用波函数描述微观粒子的运动状态,波函数所 遵从的方程——薛定谔方程是量子力学的基本方程。 一、 物质波的波函数及其统计解释
1. 波函数: 概率波的数学表达形式, 描述微观客体的运动状态
(r , t ) ( x, y, z, t )
对屏上电子数分布 作概率性描述
一般 t 时刻,到达空间 r(x,y,z)处某体积dV内的粒子数 : 2 d N N | | d V
| ( x, y, z, t ) | *
2
dN N dV
| ( x, y, z, t ) |
2
的物理意义:
• t 时刻,出现在空间(x,y,z)点附近单位体积内的 粒子数与总粒子数之比 • t 时刻,粒子出现在空间(x,y,z)点附近单位体积 内的概率 • t 时刻,粒子在空间分布的概率密度
2. 波函数的强度——模的平方 2 波函数与其共轭复数的积 | | * 例:一维自由粒子:
| ( x, t ) | * 0e
2 i ( E t p x x ) i h ( E t p x x )
0e
0
2
3. 波函数的统计解释
1 2
| | | 1 2 | 1 1 * 2 2 * 1 2 * 1 * 2
2 2
干涉项
4、 波函数的归一化条件和标准条件 归一化条件 粒子在整个空间出现的概率为1
|
V
| dV
2

V
dN N dV

三维定态薛定谔方程
一般形式薛定谔方程

普通物理学波函数 薛定谔方程

普通物理学波函数 薛定谔方程


2
i 2 2m x t
2 2
上页
下页
2、一维势场U(x,t)中运动粒子
i E t 2 2 P 2 2 x P2 E Ek U U 2m
2
2 2 U i 2 2m x t
在势场中一维运动的粒子的含时 薛定谔方程
单位体积中出现的概率,又称为概率密度 时刻 t , 粒子在空间
r
处 dV 体积内出现的概率
( r , t ) 不可直接测量!
(r ) (r )
2 可测量——在空间 w( r ) ( r ) 的概率密度。
r 处可观测到粒子
量子力学指出,我们只能判断在一定空间范围发现粒子 的概率,不能确定一个粒子一定在什么地方;只能作某种 可能性的判断,不能做绝对确定性t
三维势场中运动粒子的含时薛定谔方程
上页 下页
定态薛定谔方程 一维:
2 2 U i 2 2m x t
i E t
( x )e

i Et
U E 2 2m x 2 d 2 U E 2 2m d x
2 2 i 2 2m x t 2 U i 2m t
2
一维定态薛定谔方程
d 2 2m 2 ( E U ) 0 2 dx
2m 2 ( E U ) 0
2
三维定态薛定谔方程
上页
下页
奥地利物理学家,1933年诺贝尔物理奖获得者。薛 定谔是著名的理论物理学家,量子力学的重要奠基人之 一,同时在固体的比热、统计热力学、原子光谱及镭的 放射性等方面的研究都有很大成就。 薛定谔的波动力学,是在德布罗意提出的物质波的 基础上建立起来的。他把物质波表示成数学形式,建立 了称为薛定谔方程的量子力学波动方程。薛定谔方程在 量子力学中占有极其重要的地位,它与经典力学中的牛 顿运动定律的价值相似。在经典极限下,薛定谔方程可 薛定谔 以过渡到哈密顿方程。薛定谔方程是量子力学中描述微 Erwin 观粒子(如电子等)运动状态的基本定律,在粒子运动速 Schrö dinger 率远小于光速的条件下适用。 薛定谔对分子生物学的发展也做过工作。由于他的 ( 1887–1961) 影响,不少物理学家参与了生物学的研究工作,使物理 学和生物学相结合,形成了现代分子生物学的最显著的 特点之一。 薛定谔对原子理论的发展贡献卓著,因而于1933年 同英国物理学家狄拉克共获诺贝尔物理奖金。

量子物理基础 15.6 波函数 一维定态薛定谔方程

量子物理基础 15.6 波函数 一维定态薛定谔方程
光 源
N
摄谱仪
v0 +△v v0 v0 - △ v
S z e
磁 矩 r
(2) 解释
• 磁场作用下的原子附加能量 磁矩和角动量的关系
r L
e r µ =− L 2me r
的方向) 向 z 轴(外磁场 B 的方向)投影
µ
e e µz = − Lz = − (mlh) = −ml µB µB ——玻尔磁子 2me 2me r r 由于磁场作用, 由于磁场作用 原子附加能量为 ∆E = −µ ⋅ B= −µ cosθ B l µBB = −µz B = m
2 (k12 − k2 )2 sin 2 (k2a) R= 2 2 2 (k1 − k2 ) sin 2 (k2a) + 4k12k2 2 4k12k2 T= 2 2 2 (k1 − k2 ) sin 2 (k2a) + 4k12k2
U0

E


T + R =1
讨论
0
a
入射粒子一部分透射到达 III 区,另一部分被势垒反射回 I 区 。
N=3000 电子数 N=7 N=70000 N=20000 电子数 N=100 电子 双缝 干涉 图样
• t 时刻 , 粒子在 r 处 dV 内出现的概率 粒子在 r 2 dW =| Ψ(r , t) | dV r * r =Ψ(r , t)Ψ (r , t)dV
r Ψ(r ,t)
r r
o
dV
说明 • t 时刻 , 粒子在 r 处 dV 内出现的概率 粒子在
0 < x < a 区域,定态薛定谔方程为 区域,
d2Ψ( x) 2mE + 2 Ψ( x) = 0 2 dx h

波函数与薛定谔方程

波函数与薛定谔方程

§2.5
定态薛定谔方程
这里讨论一个极为重要的特殊情况: 假设势能U不显含时间t(经典力学中,在这种势场 中的粒子的机械能是守恒量)。 此时,薛定谔方程可以用分离变量法求其解,令特 解为
(r , t ) (r ) f (t )
代入薛定谔方程
i f t
i t
2
(r , t ) * (r , t )
(1)
几率密度时间变化率
w t * t * t
(2)
将薛定谔方程
i t
2
U
2
i
* t


2
U
2
2m
2m
代入得:
w t i 2m i 2m ( * *)
第二章 波函数与薛定谔方程
2.1 波函数的统计解释 2.2 态迭加原理 2.3 薛定谔方程 2.4 粒子流密度和粒子数守恒 2.5 定态薛定谔方程 2.6 一维无限深势阱 2.7 线性谐振子
§2.1波函数的统计解释
• 一、波函数 • 一般情况下,用一个函数表示描写粒 子的波,并称这个函数为波函数。 (r , t ) ( x, y , z , t ) 波函数的统计解释:波函数在空间某点 的强度(振幅绝对值的平方, (r , t ) 2 )和 在该点找到粒子的几率成正比。 描写粒子的波称为几率波。 波函数描写粒子的量子状态。
c 1 d
2

c则w
2
2


( x, y, z, t ) d 1
满足上式的波函数称为归一化波函数,上式也称为 归一化条件, c 称为归一化常数。
例:给定 ( x)

波函数与薛定谔方程

波函数与薛定谔方程
13
直到1926年波恩提出统计诠释,大多数物理学家接受
在已知给定的条件下,不可能精确地预知结果,只能预言某些 可能结果的概率 粒子的运动遵守概率定律,但概率本身还是受因果规律支配的 但争论仍在继续:
哥本哈根学派:玻尔、海森伯坚持波函数的概率或统计解释 认为它表明了自然界的最终实质 爱因斯坦不喜欢量子力学的“不完备性” 上帝不是跟宇宙玩掷骰子游戏
满足归一化条件 d 3r 1 的波函数
16

17

18

19

20
薛定谔方程引言
21
16-2 薛定谔方程
量子力学基本原理之二: 微观粒子体系的波函数ψ满足
薛定谔方程.
起源: 1926年薛定谔对德布罗意的工作了漂亮又简
洁的说明,-----德拜听后说“要真正研究波动,必须
有波动方程.” 几个星期后,薛定谔找到了这个方程.
也是这个体系的一个可能态。
c11 c2 2 cn n cn n
c1, c2, cn为任意常数 n
波函数遵从叠加原理由实验证实: 以双缝实验为例
1、子弹通过双缝的射击实验 (经典)
子弹
宏观粒子 可以跟踪
a P1
b
P2
P
P P1 P2概率叠加

H
i


t
如果知道了 U ,可列出微分方程,解得Ψ,即找到 Ψ 随时 间变化的规律。
27
定态薛定谔方程:如果粒子所处的势场 U( r ) 与时间无关(即
不显含时间), 可用分离变量法求解.


H i
r, t

t r
f

t

第2章 波函数与薛定谔方程

第2章 波函数与薛定谔方程


二、波函数的统计解释


电子(微观粒子)到底是什么? 它既不是经典的粒子,也不是经典的波。它是粒子 和波动两重性矛盾的统一。实际上是粒子“颗粒性” (具有一定的质量和电荷等属性的客体,但不与粒
6

子具有确定轨道相对应,这是由于位置和动量不能 同时具有确定的值,即测不准关系,后讲)与波的 “相干叠加性”(呈现干涉、衍射等现象,但不与 某种实在物理量在空间分布的周期性变化相对应) 的统一。

ˆ i p
3 ˆ 则 p * ( r ) p ( r ) d r
20

可表为
ˆ ) p (,p
动量算符

上式表明,动量平均值与波函数的梯度密切相关 (与波数 k 成正比)。 动能T=p2/2m和角动量L=r×p的平均值也可类似 求出。 一般说来,粒子的力学量A的平均值可如下求出
2
A-1/2称为归一化因子。波函数归一化与否,并 不影响几率分布。
12

注意:1)象平面波等一些理想波函数,它 们不能归一化。对此的归一化问题将在后 边介绍; 2)对于归一化的波函数仍有一个模为1的 因子不定性,即相位(phase)不定性。

e i 1
e
i
2
2
13
三、统计解释对波函数提出的要求
3
一、 波动、粒子两重性矛盾的分析



1 把电子看成是物质波包
包括波动力学的创始人薛定谔、德布罗意等人把 电子波理解为电子的某种实际结构,即看成三维 空间中连续分布的某种物质波包,因而呈现出了 干涉、衍射等现象。波包的大小即电子的大小, 波包的群速度即电子运动的速度。按经典自由粒 子能量,并利用德布罗意关系可得

波函数及薛定谔方程

波函数及薛定谔方程

即:
Ψ dV = 1 ∫∫∫
2
波函数归一化条件
波函数满足的条件:单值、有限、连续、 波函数满足的条件:单值、有限、连续、归一 满足的条件
四 薛定谔方程的建立
1、一维自由粒子薛定谔方程的建立 、一维自由粒子薛定谔 薛定 薛定谔方程是量子力学基本假设之一, 薛定谔方程是量子力学基本假设之一,不能理论推导证明 以一维自由粒子为例
2 mE 2mE = k2 2 ℏ
Φ( x) = A sin(kx + ϕ )
(0 < x < a )
d Φ 2 +k Φ =0 2 dx
2
(2)确定常数 A、ϕ ) 势阱无限深 ~ 阱外无粒子
Φ( x) = A sin(kx + ϕ )
(0 < x < a )
Φ (a) = 0
(x≤0 x≥a) 由波函数连续性 连续性, 由波函数连续性, 边界条件 : Φ (0) = 0 ϕ=0 Asinϕ = 0 Asinka =0
-费曼- 费曼-
玻恩( 的波函数统计解释: 玻恩(M..Born)的波函数统计解释 的波函数统计解释
t 时刻粒子出现在空间某点 r 附近体积元 dV
中的概率, 成正比。 中的概率,与波函数平方及 dV 成正比。 内概率: 出现在 dV 内概率:
dW = Ψ ( r , t ) dV
2
dV=dx dy dz 概率密度: 概率密度: w = dW = Ψ ( r , t ) 2 = ΨΨ
用指数形式表示: 用指数形式表示: 波的强度
x
y = Ae
I∝A
−i 2π ( vt − )
λ
)
x
λ
取复数实部

第二章波函数与薛定谔方程

第二章波函数与薛定谔方程

第二章 波函数与薛定谔方程2.1 设22()exp )2(x x A αψ-=,α为常数, 求归一化常数A . 解:由波函数满足的归一化条件()21x dx ψ+∞-∞=⎰有2222222222()exp 12()x x x x dx A dx A e dx A e dx αααψ+∞+∞+∞+∞---∞-∞-∞-∞-====⎰⎰⎰⎰由积分公式2x e dx +∞--∞=⎰有()()222211x x y e dx ed xe dy ααα+∞+∞+∞----∞-∞-∞===⎰⎰⎰即22221x A e dx A α+∞--∞==⎰,归一化常数A =2.2 设粒子波函数为(,,)x y z ψ ,求在(,)x x dx +范围中找到粒子的概率.解:在(,)x x dx +范围内找到粒子的概率为2(,,)x y z dydz dx ψ+∞+∞-∞-∞⎛⎫⎪⎝⎭⎰⎰.2.3 设在球坐标系中,粒子波函数表为(,,)r ψθϕ,求:(1)在球壳(,)r r dr +中找到粒子的概率;(2)在(,)θϕ方向的立体角d Ω中找到粒子的概率.解:(1)在球壳(,)r r dr +中找到粒子的概率为()22|(,,)|r d r dr ψθϕΩ⎰; (2)在(,)θϕ方向的立体角d Ω中找到粒子的概率()22|(,,)|r r dr d ψθϕΩ⎰.2.4求平面单色波为00()p i x p x ψ⎛⎫⎪⎝⎭=在动量表象中的形式. 解:由坐标表象与动量表象间傅里叶变换式()()121,t (,)e2ipx p x t dx ϕψπ+∞--∞=⎰得单色平面波动量表象中的形式为()()()()001112122111,t ()e e 222ii p x px px p p x dx e dx ϕψπππ⎛⎫ ⎪⎝⎭+∞+∞---∞-∞⎛⎫ ⎪ ⎪⎝⎭==⎰⎰()()001e2i p p xdx p p δπ+∞---∞==-⎰即平面单色波的波函数在动量表象中的表示形式为()()00,p p t p p ϕδ=-.2.5 粒子在0x x =点的量子态为δ函数00()()x x x x ψδ=-,试在动量表象中写出此量子态的形式.解:由坐标表象与动量表象间傅里叶变换式()()121,t (,)e 2i px p x t dx ϕψπ+∞--∞=⎰得δ函数在动量表象中量子态的形式为()()()()00012211211()e e21,t ()2e 2ip i ip x x x x p p x dx x x dx δϕπψππ+∞-----∞+∞∞-===⎰⎰即量子态为δ函数的波函数在动量表象中表示形式为()()00121,t e2i px x p ϕπ-=.2.6 证明从单粒子薛定谔方程得出的粒子速度场是非旋的,即求证0v ∇⨯=,其中/v j ρ=,ρ为概率密度,j 为概率流密度.证明:概率密度为()()(),,,r t r t r t ρψψ*=概率流密度为()()()()(),,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇根据薛定谔方程式可导出几率守恒方程,并定义几率流密度()()()()()(),,ln ,ln ,2,,2r t r t jv r t r t mi r t r t miψψψψρψψ***⎡⎤⎡⎤⎢⎥⎣⎦⎢⎥⎣⎦∇∇==-=∇-∇()()()()()ln ,ln ,l 2,,n 2r t i m r r t r t t mi ψψψψ**⎡⎤⎣⎦=∇-=∇可见v 正比于一个标量场()(),,r t r t ψψ* 的对数的梯度.梯度场无旋,故v是一个无旋场(0v ∇⨯=).2.7 设粒子在复势场()()()12V r V r iV r =+ 中运动,其中()1V r 和()2V r为实数,证明粒子的概率不守恒,并求出在某一空间体积中粒子概率“丧失”或“增加”的速率.解:根据薛定谔方程及其复数共轭形式()22122i V iV t m ψψψ∂=-∇++∂ (2.7.1)()22122i V iV t mψψψ***∂-=-∇+-∂ (2.7.2)ψ**(2.7.1) -ψ*(2.7.2)得()222222i iV t t m ψψψψψψψψψψ*****⎛⎫ ⎪⎝⎭∂∂+=-∇-∇+∂∂()2222iV mψψψψψψ***=-∇⋅∇-∇+ (2.7.3)即()()222V t mi ψψψψψψψψ****∂+∇⋅∇-∇=∂,可以写为 22j V tρρ∂+∇⋅=∂(2.7.4)其中()()(),,,r t r t r t ρψψ*=,()()()()(),,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇.上式右边不为零,这意味着粒子的几率不守恒.将上式对空间Ω积分,则得3322Sd r jds d rV t ρρΩΩ∂+=∂⎰⎰⎰ 故某一空间体积中粒子概率“丧失”或“增加”的速率为3322S V d r jds d r t ρρΩΩ∂=-+∂⎰⎰⎰ .2.8 设()()()1212,0E E r c r c r ψψψ=+ ,问(),0r ψ是否为定态,为什么?求(),r t ψ.解:(1)由于定态是体系能量具有确定值的状态,而题中波函数(),0r ψ处于能量1E 的本征态()1E r ψ与能量2E 的本征态()2E r ψ 的叠加状态,故(),0r ψ 不是定态;(2) t 时刻的波函数为()()()121212,i i E t E t E E r t c r e c r eψψψ--=+.2.9 计算1ikr e ψ=和2ikr e r ψ-=相应的概率流密度,并由所得结果说明这两个波函数描述的是怎样传播的波.解:由微商关系式:x y z e e e x y z∂∂∂∇=++∂∂∂ ,r r r e r ∇==,3211r r e r r r ∇=-=-(1)1ψ的概率流密度为:1ikr e r ψ=,1ikr e rψ-*= ()()()2122211ikr ikrikr ikrik ik ikr r r r e r e r ikr e e ikre r e r r rr r r ikr e e r ψ⎛⎫⎪⎝⎭∇-∇-∇-∇-∇=∇===∇= 或()111111ikrikrikr ikr ikr ikr ikr ikr r r r ikr e e ike e e e ike r e r e e e rrr r r r r r ψ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-∇=∇=∇+∇=∇+-∇=-= ()()()2212211ikrikr ikr ikr ikr i r r i r k k e r e r ikr e e ikre r e r r rr r r ikr e e r ψ-*------⎛⎫⎪⎝⎭∇-∇+-∇-∇=∇===--∇=+∇ ()()()()()11111,,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇()()22112ikrikrikr ikr r r ikr e ikr e e e e e mi r r r r --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦-+=--112r ikr ikr e mi r r ⎛⎫ ⎪⎝⎭--=+2rk e mr =即()12,r k j r t e mr=描述的是沿径向向外传播的球面波; (2) 2ψ的概率流密度为:2ikr e r ψ-=,2ikr e rψ*= ()()()2222211ikr ikrikr ikr ikri r kr ikr e r e r ikr e e ikre r e ikr e e r r r rr r r ψ-------⎛⎫⎪⎝⎭∇-∇+-∇-+∇-∇=∇===-∇= ()()()2222211ikr ikrikr ikrikr ikr r ikr e r e r ikr e e ikre r ik e r r rr r r e r e r ψ*⎛⎫⎪⎝⎭∇-∇-∇-∇=∇====∇∇- ()()()()()22222,,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇()()22112ikrikr ikr ikrr r ikr e ikr e e e e e mi r r r r --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦+-=-- ()33112r ikr ikr e mi r r ⎛⎫ ⎪ ⎪⎝⎭-+-=-2rk e mr =-即()22,r k j r t e mr=-描述的是沿径向向内传播的球面波.2.10 粒子在一维势场中运动,若所处的外场均匀但与时间有关,即()(),V x t V t =,试用分离变量法求解一维薛定谔方程.解:由一维薛定谔波动方程()()()222,,,2i x t V x t x t t m x ψψ⎡⎤⎢⎥⎣⎦∂∂=-+∂∂ , 采用分离变量法求特解,令其特解可表示为()()(),x t x f t ψϕ=,带入一维薛定谔波动方程有()()()()()()()()()()2222i x f t x f t V t x f t t m x ϕϕϕ∂∂=-+∂∂ ()()()()()()()()2222x i f t f t x V t x f t t m xϕϕϕ∂∂=-+∂∂方程两边同时除以()()x f t ϕ可得()()()()()22212f t i x V t f t t m x x ϕϕ∂∂=-+∂∂ ()()()()()22212f t i V t x f t t m x x ϕεϕ∂∂-=-≡∂∂其中ε是既不依赖于t ,也不依赖于x 的常数.(1)此时关于时间部分为:()()()f t i V t f t tε∂-=∂ 方程两边同时对时间t 积分得()()()()()()00000ln tt t t t df i d d V d d i f d V d t f d d ττττετττττε-=⇒-=⎰⎰⎰⎰⎰()()()()00ln ti V d t ti f t V d t f t e ττεττε⎛⎫ ⎪⎝⎭-+⎛⎫ ⎪⎝⎭⎰=-+⇒=⎰(2)关于坐标的部分为:()()()()2222221202d d m x x x m x dx dx εϕεϕϕϕ-=⇒+=此二阶齐次微分方程的解为()x Ae ϕ±=由上述两部分可知()()()()0,t i V d t x t x f t Ae eττεψϕ⎛⎫ ⎪ ⎪⎝⎭-+±⎰==其中A 和ε均为常数,分别由归一化条件和初试条件决定.2.11 粒子在无限深方势阱中(0x a <<)中运动,对处于定态()n x ψ的粒子,证明:2ax =,()222226112a x x n π⎛⎫ ⎪⎝⎭-=-, 0p =,()222n p p mE -=,讨论n →∞的情况,并与经典计算结果比较.解:一维无限深方势阱内(0x a <<)粒子的波函数为()n n x x a πψ⎛⎫⎪⎝⎭=, 能量本征值为22222n n E ma π= .(1) ()()0n n n x n x x x x x dx dx a a ππψψ+∞*-∞⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭==⎰⎰200cos 12sin 1222a a n x a n x x x a dx dx a a ππ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==⎰⎰ 0020022cos sin 1111122aaa a n x n x x a a dx dx x a a a n πππ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-=⎰⎰2a=(2)()222202n x a n x x x x dx a a ππ⎛⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝-=-⎰22222002212sin 1cos 222a a a n x a n x x dx x dx a a a a ππ⎛⎫⎛⎫⎧⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎨⎬ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎩⎭⎝⎭⎝⎭=-=--⎰⎰ 22220000112112cos cos 4a a a a n x a n xx dx x dx dx x dx a a a a a aππ=--+⎰⎰⎰⎰2222222260132412a a a a n n ππ⎛⎫ ⎪⎝⎭=--+=-(3)()()()(n n i i n x n x p x x dx dx a a ππψψ+∞*-∞⎛⎫⎛⎫-∇-∇ ⎪ ⎪⎝⎭⎝⎭==⎰⎰22022sin cos sin aan n x n x n n x i dx i dx a a a a a πππππ⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎝⎭⎝⎭⎝⎭-=-=⎰⎰0022022cos cos 222sin aaaa n x i n x n a a a n n x n i dx i a a a ππππππ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-==-=-⎰0=(4)()()222222220sin 2sin an n n x x x a n x p p x x dx dx a a ππψψ+∞*-∞⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∂∂--∂∂-==⎰⎰2222222230022sin sin sin a an n x n a a a a n x n x dx dx a a πππππ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭--==⎰⎰002222223301221cos sin 222a a a n x a n x x a n a n n a a dx πππππ⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭-==-⎰22222n mE n a π==2.12 考虑质量为m 的粒子被限制在宽度为a 的一维无限深势阱();;0,2,2ax V x a x ⎧⎪⎪⎨⎪⎪⎩<=∞> 中运动,(1)粒子的能级和相应的波函数;(2)粒子处于基态的动量分布. 解:(1)在阱内体系所满足的定态薛定谔方程是2222d E m dx ψψ=- ,2a x < (2.12.1)在阱外,定态薛定谔方程为()2222V x d E m dx ψψψ+=- ,2a x > (2.12.2) (2.12.2)式中,()x V →∞.根据波函数所满足的连续性和有限性条件,只有当0ψ=时,(2.12.2)式才能成立,所以有0ψ=,2ax >(2.12.3) 该条件为解(2.12.1)式时所需的边界条件.为书写简便,引入记号1222mEα⎛⎫⎪⎝⎭= (2.12.4) 则(2.12.1)式简写为2220d dx αψψ+=,2a x <它的解是sin cos A x B x ψαα=+,ax <(2.12.5) 根据ψ的连续性,由(2.12.3)式20a ψ⎛⎫± ⎪⎝⎭=,代入(2.12.5),有22sin cos 0aaA B αα+=, 22sin cos 0aaA B αα-+=.由此得到2sin 0aA α=,2cos 0aB α=. (2.12.6)A 和B 不能同时为零,否则ψ到处为零,这在物理上是没有意义的.因此,我们得到两组解:(1) 0A =,2cos 0aα= (2.12.7) (2) 0B =,2sin 0aα= (2.12.8)由此可求得22anαπ=,1,2,3,n = (2.12.9)对于第一组解,n 为奇数;对于第二组解,n 为偶数. 0n =对应于ψ恒为零的解,n 等于负整数时解与n 等于相应正整数时解线性相关(仅差一负号),都不取.由(2.12.4)式和(2.12.9)式,得到体系的能量为22222n n E maπ= ,n 为正整数. (2.12.10) 将(2.12.7)式、(2.12.8)式依次代入(2.12.5)式中,并考虑(2.12.9)及(2.12.3)两式,得到一组解的波函数为sin ,20,2n n aA x n x a a x πψ⎧<⎪⎪=⎨⎪>⎪⎩为正偶数 (2.12.11)另一组解的波函数为cos ,20,2n n aB x n x a a x πψ⎧<⎪⎪=⎨⎪>⎪⎩为正奇数 (2.12.12)由归一化条件21dx ψ∞-∞=⎰可得常数A B ==(2)粒子处于基态时1n =,体系的能量为22122E ma π= ,波函数为1x aπψ=,对应于动量空间的波函数为:()()221a a i i px px p x e dx x e dx a πϕψ∞---∞-⎫⎛⎫⎪ ⎪⎪⎝⎭⎭==⎰22c os 2aipx a ap x e dx a π--⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭==⎰ 其中积分项2cosaipx a x edx a π--⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎰采用两次分部积分求出: 222222cossin sin a i px a a ai ipx px a a x e a a a ix edx x pe dx a a πππππ------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=-⎰⎰222sin i ai a p p aipx a i eep a a x e dx a πππ---⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰ (I)222222cossincos aipx a a aiipx px a a x e a a a ix edx x pe dx a a πππππ------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=---⎰⎰2cos aipx a i a p x e dx aππ--⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=-⎰ (II) 结合(I)、(II)两式可得2222222222cos 2cos i a i a p p ai px a a ap a e e a p p a x e dx a πππππ---⎛⎫⎪⎛⎫⎛⎫⎛⎫⎝⎭+= ⎪ ⎪ ⎪-⎝⎭⎛⎫⎛⎫⎝⎭⎝⎭- ⎪ ⎪⎝⎭⎝⎭=⎰即()22cos a i px a ap a p x e dx a ππϕ--⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭== . 粒子处于基态的动量分布为()222224cos 221ap ap a p p a a p a πππϕπ⎛⎫ ⎪⎝⎭=⎡⎤⎛⎫⎛⎫++ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦=2.14 粒子在如图所示的势阱中运动,设粒子处于第n 个束缚态,相应的能级为n E ,如0n V E ,求粒子在阱外出现的概率.解:00E V <<的情况下粒子处于束缚态:在阱外2ax ≥,定态波动方程为 ()022220V d m E dx ψψ--=令β=考虑到束缚态边界条件(x →∞处,()0x ψ→),方程应取如下形式的解(),2,2xx a Ae x x a Be x ββψ-⎧⎪⎪⎨⎪⎪⎩≥=≤-常数A 与B 由归一化条件确定(由于势场具有对称性A B =).在阱内2ax ≤,定态波动方程表示为22220d mE dx ψψ+= 令k =波函数偶宇称态的解为()cos x C kx ψ ,奇宇称态的解为()sin x D kx ψ . (a) 偶宇称态,波函数()x ψ及其微商()x ψ'在2ax =处是连续的; 22cos cos 2a a x x a xaC kx C k AeAe ββ==--=⇒=()()222cos sin 2xa a x x aAeC kx akC k Ae βββ-==-''-=⇒=-两式相比可得到能级公式为tan 2ka kβ=. 如0n V E ,k β=→=,()2122n ka π+→ ()2222222222+xa a aa a xB A A Aee e e dx Bedx dx x ββββββββψ∞------∞+===⎰⎰⎰阱外带入关系式2cos 2aa C k Ae β-=得()222cos 2C kax dx ψβ=⎰阱外()222221sin 22cos aa C C a ka kdx C kx dx x ψ-+==⎰⎰阱内由于()2122n ka π+→,所以2cos 02ka →,sin 0ka →,粒子出现在阱外的概率远小于粒子出现在阱内的概率()()2222C a dx dx x x ψψ≈≈⎰⎰全空间阱内粒子出现在阱外的概率为()()220222c cos 2=o 2=s =222C k ka V a E dxC a a dxa x x βββψψ⎰⎰全空间阱外22220222221cos 21tan 112ka k k E k V a k ββ⎝⎭====+⎛⎫+ ⎪+⎝⎭=+⎝⎭⎝⎭.2.16 利用厄米多项式的递推关系()()()11220n n n H H nH ξξξξ+--+=,()()12n n H nH ξξ-=',求证()()111()n n n x x x x ψα-+⎤⎥⎥⎦=+,()()11()n n n d x x x dx ψα-+⎤⎥⎥⎦=, 并由此证明()n x ψ态下0x =,2nE V =,0p =,222n p m E T ==. 证明:(1)谐振子波函数()()22n n x H ξψξ-=,其中xξα=,α=关于Hermite 多项式有递推关系()()()11220n n n H H nH ξξξξ+--+=22ξ-得()()()22222211220n n n H H H ξξξξξξ---+--+=()()()2222221102n n n H H H ξξξξξξα---+--+= (*)()()()1120n n n x x xx αψ+--+=由此即得()()111()n n n x x x x ψα-+⎤⎥⎥⎦=(2) 由()()2n n x H ξψξ-=,()()()()()()()()222222x x x n n n n d d d dx dx dx d dx x H x e H x e H x αααψααα---⎫⎫⎛⎫⎪⎪ ⎪=+⎨⎬⎪ ⎪⎪⎭⎝⎭⎭= ()()()()()2222212x x n n x e H x e n H x αααααα---⎫⎛⎫⎪ ⎪=-+⎬⎪⎪⎝⎭⎭(()()()()2222212x x n n x H x n H x ααααα---=-+代入(*)的变形式得()()()222222112n n n H H H ξξξαξξξ---+-=+()(()()()()2222212x x n n n d x dx x H x n H x αααψαα---=-+()()()()22222112122x n n n H H n H x αξξαξξα--+---=-++⎫⎪⎪⎭()()()1112n n n x x x αψ⎫⎪⎪⎭+--=- ()()11n n x x α-+⎤⎥⎥⎦=(3)()()111n n n n nx x dx dx x x ψαψψ+∞+∞**-∞-+-∞⎤⎥⎥⎦==⎰⎰()()11n n n n x x dx dx ψψψψ-++∞+∞**-∞-∞=0=(4)()222222111222n n n n n n V m x m x m x V dx dx dx ωωωψψψψψψ+∞+∞+∞***-∞-∞-∞⎛⎫ ⎪⎝⎭====⎰⎰⎰由(1)得()()111()n n n x x x x ψα-+⎤⎥⎥⎦=+再乘以x 得()()2111()n n n x x x x ψψψα-+⎤⎥⎥⎦=()()()()2211n n n n x x x x αα-+⎫⎤⎤⎪⎥⎥⎪⎥⎦⎦⎤⎥=⎭⎥⎦()()()()2222112n n n n x x x ψα-+⎤⎥⎦=++ ()()()()()222222112n n n n n n x xdx n dx x x x ψψψψα+∞+∞**-∞-∞-+⎧⎫⎤⎨⎬⎩=⎭=⎥⎦+++⎰⎰()()()()222002112n n n n n n x dx n x dx x dx ψψψψψψα+∞+∞**-++∞∞*--∞-∞⎫⎪=++⎬⎪⎩⎭⎰ ()2212n α=+()()222222212111122221112222n n n n E m x m m V ωωωωα=++⎛⎫=+= ⎪⎝⎭==(5)()()11n n n n n n n d d i dx dx i i x dx d p d x x xψψψψψα+∞+∞+∞**-∞-∞-+*-∞--⎤⎛⎫-⎥ ⎪⎝⎭⎥⎦===⎰⎰⎰()()11000n n n n i x x dx dx ψψαψψ-++∞+∞**-∞-∞⎫⎪=-=⎬⎪⎭(6)()()22221121222nn n nnd dm dx m dxxpT dxmx dxαψψψ+∞+∞**-∞--∞+⎧⎫⎤⎪⎪⎥⎨⎬⎥⎪⎪⎛⎫--⎪⎝⎭⎦⎩⎭===⎰⎰()()()() 222 2n nn nn n mx x dx dx x x αααψψ+∞+∞*-*-∞∞+-⎧⎫⎧⎫⎤⎤⎪⎪⎪⎪⎥⎥⎨⎬⎨⎬⎥⎥⎪⎪⎪⎪⎫⎪-⎬⎪⎭⎦⎦⎩⎭⎩⎭=()()()()220022214nn n nnndx dxx xnmx dxψψψψαψψ+∞+∞**-∞+-∞-⎫⎪⎪⎬⎪⎪⎪⎩⎭+∞*-∞+-=-⎰⎰⎰()222111222212144nm nn Enm mωωα⎛⎫⎪⎪⎝⎭⎛⎫⎪⎝⎭+==+=+=2.17 质量为m的粒子处于势阱()220;,1,20;xxxm xVω∞⎧>=≤⎪⎨⎪⎩中,求粒子的可能能量.提示:利用谐振子波函数()nxψ的奇偶性()()()1nn nx xψψ-=-.解:线性谐振子对应于本正函数()()221212122!xn nnx e H xnαααπψ-⎛⎫⎪=⎪⎝⎭,α=的本征值为12nE nω⎛⎫=+⎪⎝⎭.题中0x≤区域,粒子的波函数满足()0xϕ=.0x>区域粒子的波函数满足边界条件()00ϕ=,()0ϕ∞=,由波函数的连续性可知()00ϕ=.由谐振子波函数()nxψ的奇偶性条件()()()1nn nx xψψ-=-,我们得知只有当n取奇数时连续性条件才被满足,故此时粒子的可能能量值为()1321222nE n nωω⎛⎫⎛⎫=++=+⎪ ⎪⎝⎭⎝⎭,0,1,2,n=.相应的本正函数为()()21n nx xϕ+=.()()()222222121011122n n n A x dx A x dx A x dx ψψϕ+∞+∞+∞++-∞====⎰⎰⎰,故A =.2.18 设()1,r t ψ 和()2,r t ψ 是不含时势场()V r中薛定谔方程的两个解,证明对变量变化的全空间积分312d x ψψ*⎰与时间无关,即3120d d x dtψψ*=⎰. 证明:由题意得()1,r t ψ 和()2,r t ψ分别满足薛定谔波动方程()()()()22111,,,2i r t r t V r r t t m ψψψ∂=-∇+∂ (2.18.1) ()()()()22222,,,2i r t r t V r r t t mψψψ∂=-∇+∂ (2.18.2) ()1,r t ψ*⨯ ()2.18.2 - ()2,r t ψ⨯()2.18.1*()()()()()()()()222122112,,,,,,2i r t r t r t r t r t r t t mψψψψψψ***∂=∇-∇∂()()()()()22112,,,,2r t r t r t r t mψψψψ**=∇⋅∇-∇上式对全空间进行积分()()()()()()()()233122112,,,,,,2i r t r t d x r t r t r t r t d x t mψψψψψψ***∂=∇⋅∇-∇∂⎰⎰ ()()()()()22112,,,,2r t r t r t r t ds m ψψψψ**=∇-∇⋅⎰由于无穷远处波函数为零,积分项()()()()()2112,,,,r t r t r t r t ψψψψ**∇-∇⎰ 为零,即()()()132,0,d d x dtr t r t ψψ*= .。

波函数 薛定谔方程

波函数  薛定谔方程

玻尔在解释氢原子光谱时就提出了定态的概念雏形.定态也是量子力
学中最重要的概念之一,本节就从薛定谔方程出发,对定态的性质做一些
概括性的讨论.
若势能V(r)与时间无关,则可以设
Ψ(r,t)=Ψ(r)f(t)
(15- 41)
把式(15- 41)代入式(15- 40),得到
波函数 薛定谔方程
两边同除以Ψ(r)f(t),就可以分离变量,即
波函数 薛定谔方程
薛定谔方程描述微观粒子运动的一般方程,自然也可以描 15- 36
解,由式(15- 36)可得
(15- 37)
波函数 薛定谔方程
由式(15- 35)可得
波函数 薛定谔方程
(1)这并不是薛定谔方程的证明,薛定谔方程是量子力学的基本 假定,是对大量实验观测结果的概括,它和经典力学中的牛顿三定律一 样,是不能被证明的.
波函数 薛定谔方程
图15- 13 无限深方势阱中的波函数
波函数 薛定谔方程
图15- 14所示为 无限深方势阱中的粒 子分布密度Ψ2(x).容 易看出,当n→∞时, 粒子分布密度会趋于 均匀,即在大量粒子 数条件下,量子力学 将回到经典情况.
图15- 14 无限深方势阱中的粒子分布密度
谢谢观看
波函数 薛定谔方程
若定态波函数能够满足归一化条件,即
则在无限远处,定态波函数必然迅速趋于0,即粒子不可能出现 在无穷远处,也就是粒子被限制在有限的范围内运动,这种状态就称 为束缚态,否则就称为游离态.
波函数 薛定谔方程
在经典情况下,粒子当然也不能出现在阱外,这一点与量子 力学的解并无区别.若是经典粒子,在阱内各处的势场都为零, 因此粒子在阱内均匀分布.在量子力学情况下,容易解得粒子出 现在各处的概率并不相同,随着位置的变化而变化,即粒子分布 是不均匀的.此外,在经典情况下,粒子的能量可以取任意的有 限值,即粒子的能量是可以连续变化的,但在量子力学情况下, 粒子的能量只能取一系列分立值,即能级是量子化的.图15-13所 示为无限深方势阱中的波函数Ψ(x).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 能量为En的粒子在 x-x+dx 内被发现的概率:
2 2 n dW n ( x ) dx sin xdx a a
2
波函数
几率密度分布
( x)
h2 E4 4 8ma2
2
( x)2
4
2 4 sin( x) a a
n=4
h2 E3 3 8ma2
2
2 3 3 sin( x) a a
主量子数决定着氢原子的能量,E 与n 的依赖关系与波尔理
2 角量子数l
角动量有确定值,为
L l (l 1), l 0,1,2,, (n 1)
角动量是量子化的,叫轨道角动量。习慣用小写字母表示电子 具有某一轨道角动量的量子态,
l 0,1,2,3,4,5,6, . 记号s, p, d , f , g , h, i,.
3 磁量子数ml
§19-8 量子力学简介(2)
定态薛定谔方程
2 [ V (r )] (r ) E (r ) 2m
2
一维定态薛定谔方程
d V ( x) ( x) E ( x) 2 2m dx
2 2
求解定态薛定谔方程,就是在已知势函数的条件下,求 出体系可能有的能量值和波函数。
安徽理工大学 2005级《大学物理》补充
第十八章 量子物理基础
第三讲量子力学应用初步
物理教研室
本次课内容
§19-8 量子力学简介(2)
三 薛定谔方程解一维势阱问题
四 对应原理 五 一维方势垒 隧道效应
§19-9 氢原子的量子理论
§19-10 多电子原子中的电子分布
课本 pp266—289; 练习册 第二十单元
n n ( x) A sin( x) a (0 x a )
式中常数A可由归一化条件求得。
n 2 a n ( x) dx A sin ( x) dx A 1 a 2 0
a 2 2 2
得到 A 2 / a 最后得到薛定谔方程的解为:
2 n n ( x) sin( x) a a (0 x a )
(5a )是勒让德方程,其解是勒让德多项式。为了使 和 时, 为有限,必须限定
(4)是径向方程,可写为:
径向方程用级数法求解。
若E>0,能量连续分布,自由电子情形;
但E<0, (束缚态),波函数标准条件要求
量子数的意义: 1 主量子数n
论相同。
氢原子只能处在一些分立的状态,用主量子数, 角量子数,磁量子数来描述, 取值如下
n=3
2 h E2 22 8ma2
2
2 2 sin( x) a a
n=2
n=1
h2 E1 1 8ma2
2
2 1 sin( x) a a
0
x a0
a
例题:在阱宽为a 的无限深势阱中,一个粒子的状态为
多次测量其能量。问 每次可能测到的值和相应概率? 能量的平均值? 解:已知无限深势阱中粒子的波函数和能量为
8
质量为m 的粒子在外场中作一维运 动,势能函数为
0 (0 x a ) V( x) ( x 0 或 x 0)
定态薛定谔方程为:
V (x )
x=0
x=a
2 d 2 E 2 2m dx
(0 x a )
(1)
当 x < 0 和 x > a 时, ( x) 0
此方程的通解为: ( x) A sin kx B cos kx
由于阱壁无限高,所以 (0) 0
A sin( 0) B cos(0) 0 A sin( ka) B cos( ka) 0
( a) 0
(1) (2)
由式(1)得 B = 0 ,波函数为: ( x) A sin kx 由式(2)得 A sin ka 0 ,于是
2
z
(1)
这里
,(1)式可写成


x
y
采用球坐标:
z
x r sin cos , y r sin sin , z r cos ,

球坐标下:

x
y
(2)式则为:
分离变量,令
代入方程(3)可得:
分离变量得


,(5)再分离变量式为:

和 的单值性要求
(5b )的解是
2 2 2 En 2ma2 n
势阱中粒子的能级图
E
当 n = 1,
h2 E1 2 2ma 8ma 2
n4
2 2
E4
E1即基态能级
n3 n2
E3
En n 2 E1
E2
n 叫作主量子数
n 1
o
a
E1
x
与 E 相对应的本征函数,即本问题的解为:
n ka n , k (n 1,2,3,) a
即: k 2mE / n / a,
2
由此得到粒子的能量En
2 2 2 En 2 2ma n ,
是量子化的。
n 1,2,3,
En 称为本问题中能量E 的本征值。势阱中的粒子,其能量
讨论
1 势阱中的粒子的能量不是任意的,只能取分立值,即 能量是量子化的。能量量子化是微观世界特有的现象,
经典粒子处在势阱中能量可取连续的任意值。
电子(m=9.1×10-31千克): ①若势阱宽a=10Å,则 En=0.75neV, 量子化明显; ②若a=1cm,则En=0.75×10-14eV ,量子化不明显。

多次测量能量(可能测到的值) 概率各占1/2 能量的平均值
§19-9 氢原子的量子理论
一 氢原子定态薛定谔方程的求解
氢原子由一个质子和一个电子组成,电子受质子库仑电场作用而绕核运 动(质子静止)。电子的状态由波函数描述,波函数满足定态薛定谔方程:
2 [ V (r )] (r ) E (r ) 2m
8
三 薛定谔方程解一维势阱问题
求解方程(1)
2 d 2 E 2 2m dx
(0 x a )
(1)
(1)式可写成
2
d 2 ( x) 2mE 2 ( x ) 0 (0 x a ) 2 dx
令 ( x ) 0 (0 x a ) 2 dx
相关文档
最新文档