全站仪中间法三角高程测量代替四等水准可行性论文

全站仪中间法三角高程测量代替四等水准可行性论文
全站仪中间法三角高程测量代替四等水准可行性论文

全站仪中间法三角高程测量代替四等水准的可行性研究中图分类号:p224.2文献标识码:a 文章编号:

水准测量是目前测量精度最高的一种高程测量方法,但测量效率较低,一般适用于平坦地区,在山区及高差陡变的情况下施测则较为困难。三角高程测量通常是用全站仪施测,其高差测量精度可达三、四等水准测量的要求,其测量精度约低于几何水准方法,但测量效率较高,适于山区等各种大高差场合的高程测量。本文通过分析全站仪中间法三角高程测量的施测方案,采用合理的观测方法使大部分系统误差在观测和计算中相互抵消,对剩余的残余误差进行理论分析,对基于该方案的全站仪高程测量的精度作出理论评定,证明了该测量方法的可行性。

现在大多数测绘工作中的控制测量数据采集过程中仍采用传统的测量方法,即平面控制测量使用gps采集数据,高程控制测量采用水准仪采集数据。全站仪三角高程测量使用较少。这种局面产生的原因是:人们普遍认为用全站仪测高程的精度较低,达不到高程控制测量。在高程控制测量中,传统的水准测量在山区或高差较大的地区受地形起伏的限制,工作效率低。采用全站仪三角高程测量方法,既能提高效率,又能保证质量,它是一种在地形起伏较大的山区非常实用的方法。只要采取适当的作业措施,在特定的地形和施测条件下,其测量数据是正确可靠的。用全站仪三角高程测量代替三等及以下的水准测量有其可行性,特别是地形起伏较大的山区是一种非常实用的方法,可大大降低工作量。

全站仪测量高程

全站仪测量高程 量仪器高法: 就是在设站的时候量取仪器高,输入仪器高,菱镜高即可,量仪器高的时候是从已知高程控制点量到仪器中心的距离,并不是地面到仪器中心的距离。 这种方法不建议使用,如果对标高要求不高的话可以使用。例如地形图的测绘可以使用。 测量高差法: 如果对坐标没有要求,只需要测出高程,那不需要架设在控制点上,随便找个位置整平即可,先在已知高程点上测一下,仪器会显示出X Y Z,X和Y不管,只看Z。记下Z的数据,然后再拿去待测点测一下,同理记下Z的数据。求出这两个数据的差值就可以算出待测点的高程,比如;已知高程42米,在已知点的读数5.263,待测点的读数4.263。那待测点的高程就是41米。有时候仪器会显示负的读数,没关系,同理即可!需要记住的是菱镜高不能变动。 这种方法的使用原来跟水准仪一样了。测量精度较高,推进使用。特别适用于深基坑的高程测量。 改变仪器高法: 如果你有已知高程点32米,那你就把仪器高设置32左右,随便设,把菱镜立在已知高程点上,测一下,如果仪器显示比已知高程点高了,你就把仪器高改一下。举例说明;已知高程点35.5米,仪器整平,进入测量界面,输入仪器高36米(有的仪器在测量界面就可以直接输入,有的要在后视界面设置),菱镜高输入1.2米(一般是1.2米,随便输入也可以)。然后把菱镜立在已知高程点上测一下,仪器显示34.8米,说明比已知高程低了.7米,那就把仪器高升高0.7米,改为36.7米,在测一下,仪器显示35.5米,那说明测量对了(如果不对,那还得试一下。反正总可以弄到和已知高程点一样的,摸索摸索!),想测什么就测什么了。这种方法也很好用。 最后说明一下,全站仪测量高程的精度没有水准仪高,因为仪器瞄准的时候是尽可能的瞄准菱镜中心,如果上下移动一点对高程都有影响。测量距离远的话更是不准。大概是2CM左右。建议不在迫不得已的时候不要使用全站仪测量精度要求高的点。

水准高程测量试题及答案

高程测量测试题 部门:姓名:得分: 一、单项选择题:(每题2分,共30分) 1.在水准测量中设A为后视点,B为前视点,并测得后视点读数为 1.124m,前视读数为1.428m,则B 点比A点( B )。 A. 高 B. 低 C. 等高 D. 无法判断 2.视准轴是连接物镜光心与( C )的连线。 A. 目镜光心 B. 调焦透镜光心 C. 十字丝分划板中心 D. 光学对中器光心 3.水准测量中,A,B分别为前、后视点,后视读数为1.235m,前视读数为1.450m,则h BA=( A )。 A.-0.215m B. 0.215m C. 0.140m D. -0.140m 4.水准测量中,A、B分别为后、前视点,H A=2 5.000m,后视读数为1.426m,前视读数为1.150m,则仪器的视线高程为( D )。 A. 24.724m B. 26.150m C. 25.276m D. 26.426m 5.在下列型号的水准仪中,精度最高的是( A )。 A. DS05 B. DS1 C. DS3 D. DS10 6. 转动物镜对光螺旋的目的是( B )。 A. 看清十字丝 B. 使目标成像清晰 C. 整平水准管 D. 对中 7. 视差产生的原因是( A )。 A. 目标成像与十字丝分划板平面不重合 B. 目标成像与目镜平面不重合 C. 目标成像与调焦透镜平面不重合 D. 目标成像与观测者视界面不重合 8. 某附合水准测量路线,已知水准点A,B高程HA=18.552m,HB=25.436m。实测高差总和为6.870m,则该水准路线的高差闭合差为( B )mm。 B. -14 C. 12 D. -12 9. 水准仪的使用中双手调节脚螺旋,使圆水准气泡居中,气泡移动方向与( B )运动的方向一致。 A.右手大拇指 B.左手大拇指 C.以上都不对 10. 右图塔尺读数应为( A )m A.1.534m B.1.554m C.1.538m D. 1.544m 11. 高程测量的基本原理是: 利用水准仪提供的( B ),测量两点间高差, 从而由已知点高程推算出未知点高程。 A.相对视线 B.水平视线 C. 相对高程 D. 大地水准面 12. 右图塔尺读数应为( A )m A.0.437m B.0.432m C.0.442m D. 0.447m 13. 要进行水准仪精确整平,需调节什么螺旋( C ) A 目镜调焦螺旋 B 物镜调焦螺旋

三角高程测量原理

§5.9 三角高程测量 三角高程测量的基本思想是根据由测站向照准点所观测的垂直角(或天顶距)和它们之间的水平距离,计算测站点与照准点之间的高差。这种方法简便灵活,受地形条件的限制较少,故适用于测定三角点的高程。三角点的高程主要是作为各种比例尺测图的高程控制的一部分。一般都是在一定密度的水准网控制下,用三角高程测量的方法测定三角点的高程。 5.9.1 三角高程测量的基本公式 1.基本公式 关于三角高程测量的基本原理和计算高差的基本公式,在测量学中已有过讨论,但公式的推导是以水平面作为依据的。在控制测量中,由于距离较长,所以必须以椭球面为依据来推导三角高程测量的基本公式。 如图5-35所示。设0s 为B A 、两点间的实测水 平距离。仪器置于A 点,仪器高度为1i 。B 为照准 点,砚标高度为2v ,R 为参考椭球面上B A ''的曲率半径。AF PE 、分别为过P 点和A 点的水准面。PC 是PE 在P 点的切线,PN 为光程曲线。当位于P 点的望远镜指向与 PN 图5-35

相切的PM 方向时,由于大气折光的影响,由N 点出射的光线正好落在望远镜的横丝上。这就是说,仪器置于A 点测得M P 、间的垂直角为2,1a 。 由图5-35可明显地看出,B A 、 两地面点间的高差为 NB MN EF CE MC BF h --++==2,1 (5-54) 式中,EF 为仪器高NB i ;1为照准点的觇标高度2v ;而CE 和MN 分别为地球曲率和折光影响。由 2 021s R CE = 2021s R MN ' = 式中R '为光程曲线PN 在N 点的曲率半径。设 ,K R R =' 则 2 0202.21S R K S R R R MN ='= K 称为大气垂直折光系数。 由于B A 、两点之间的水平距离0s 与曲率半径R 之比值很小(当km s 100=时,0s 所对的圆心角仅5'多一点),故可认为PC 近似垂直于OM ,即认为 90≈PCM ,这样PCM ?可视为直角三角形。则(5-54)式中的MC 为 2,10tan αs MC = 将各项代入(5-54)式,则B A 、两地面点的高差为 2 12 02,1022 01202,102,121tan 221tan v i s R K s v s R K i s R s h -+-+=--++ =αα 令式中 C C R K ,21=-一般称为球气差系数,则上式可写成

全站仪三角高程测量方法

应用全站仪进行三角高程测量的新方 在工程的施工过程中,常常涉及到高程测量。传统的测量方法是水准测量、三角高程测量。两种方法虽然各有特色,但都存在着不足。水准测量是一种直接测高法,测定高差的精度是较高的,但水准测量受地形起伏的限制,外业工作量大,施测速度较慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度较快。在大比例地形图测绘、线型工程、管网工程等工程测量中广泛应用。但精度较低,且每次测量都得量取仪器高,棱镜高。麻烦而且增加了误差来源。 随着全站仪的广泛使用,使用跟踪杆配合全站仪测量高程的方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。经过长期摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 一、三角高程测量的传统方法 如图一所示,设A,B为地面上高度不同的两点。已知A点高程H A, 只要知道A 点对B点的高差H AB 即可由H B =H A +H AB 得到B点的高程H B。 此主题相关图片如下: 图中:D为A、B两点间的水平距离а为在A点观测B点时的垂直角

i为测站点的仪器高,t为棱镜高 HA为A点高程,HB为B点高程。 V为全站仪望远镜和棱镜之间的高差(V=Dtanа) 首先我们假设A,B两点相距不太远,可以将水准面看成水准面,也不考虑大气 折光的影响。为了确定高差h AB ,可在A点架设全站仪,在B点竖立跟踪杆,观测垂直角а,并直接量取仪器高i和棱镜高t,若A,B两点间的水平距离为D, 则h AB =V+i-t 故H B =H A +Dtanа+i-t (1) 这就是三角高程测量的基本公式,但它是以水平面为基准面和视线成直线为前提的。因此,只有当A,B两点间的距离很短时,才比较准确。当A,B两点距离较远时,就必须考虑地球弯曲和大气折光的影响了。这里不叙述如何进行球差和气差的改正,只就三角高程测量新法的一般原理进行阐述。我们从传统的三角高程测量方法中我们可以看出,它具备以下两个特点: 1、全站仪必须架设在已知高程点上 2、要测出待测点的高程,必须量取仪器高和棱镜高。 二、三角高程测量的新方法 如果我们能将全站仪象水准仪一样任意置点,而不是将它置在已知高程点上,同时又在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。如图一,假设B点的高程已知,A点的高程为未知,这里要通过全站仪测定其它待测点的高程。首先由(1)式可知: H A =H B -(Dtanа+i-t) (2) 上式除了Dtanа即V的值可以用仪器直接测出外,i,t都是未知的。但有一点可以确定即仪器一旦置好,i值也将随之不变,同时选取跟踪杆作为反射棱镜,假定t值也固定不变。从(2)可知: H A +i-t=H B -Dtanа=W(3) 由(3)可知,基于上面的假设,H A +i-t在任一测站上也是固定不变的.而且可以计算出它的值W。 这一新方法的操作过程如下: 1、仪器任一置点,但所选点位要求能和已知高程点通视。 2、用仪器照准已知高程点,测出V的值,并算出W的值。(此时与仪

全站仪后方交会法步骤和高程测量步骤

全站仪后方交会法步骤和 高程测量步骤 Revised final draft November 26, 2020

1、角度测量(angleobservation) (1)功能:可进行水平角、竖直角的测量。 (2)方法:与经纬仪相同,若要测出水平角∠AOB,则: 1)当精度要求不高时: 瞄准A点——置零(0SET)——瞄准B点,记下水平度盘HR的大小。 2)当精度要求高时:——可用测回法(methodofobservationset)。 操作步骤同用经纬仪操作一样,只是配置度盘时,按“置盘”(HSET)。 2、距离测量(distancemeasurement) PSM、PPM的设置——测距、测坐标、放样前。 1)棱镜常数(PSM)的设置。 一般:PRISM=0(原配棱镜),-30mm(国产棱镜) 2)大气改正数(PPM)(乘常数)的设置。 输入测量时的气温(TEMP)、气压(PRESS),或经计算后,输入PPM的值。 (1)功能:可测量平距HD、高差VD和斜距SD(全站仪镜点至棱镜镜点间高差及斜距) (2)方法:照准棱镜点,按“测量”(MEAS)。 3、坐标测量(coordinatemeasurement) (1)功能:可测量目标点的三维坐标(X,Y,H)。 (2)测量原理任意架仪器,先设置仪器高为0,棱镜高是多少就是多少,棱镜拿去直接放在已知点上测高差,测得的高差为棱镜头到仪器视线的高差,当然,有正有负了,然后拿出计算器用已

知点加上棱镜高,再加上或减去(因为有正有负)测得的高差就是仪器的视线高啊,因为仪器高为0,所以这个数字就是你的测站点高程,进测站点把它改成这个数字就行了,改完测站点了一般情况下都要打一下已知点复核一下。。。 若输入:方位角,测站坐标(,);测得:水平角和平距。则有: 方位角: 坐标: 若输入:测站S高程,测得:仪器高i,棱镜高v,平距,竖直角,则有: 高程: (3)方法: 输入测站S(X,Y,H),仪器高i,棱镜高v——瞄准后视点B,将水平度盘读数设置为——瞄准目标棱镜点T,按“测量”,即可显示点T的三维坐标。 4、点位放样(Layout) (1)功能:根据设计的待放样点P的坐标,在实地标出P点的平面位置及填挖高度。 (2)放样原理 1)在大致位置立棱镜,测出当前位置的坐标。 2)将当前坐标与待放样点的坐标相比较,得距离差值dD和角度差dHR或纵向差值ΔX和横向差值ΔY。 3)根据显示的dD、dHR或ΔX、ΔY,逐渐找到放样点的位置。

三四等水准测量计算

三、四等水准测量施测方法 1、一个测站上的观测顺序 (1)瞄准后视尺黑面,读取下丝、上丝读数; (2)瞄准后视尺红面,读取中丝读数; (3)瞄准前视尺黑面,读取下丝、上丝读数; (4)瞄准前视尺红面,令气泡重新准确符合,读取中丝读数。 以上四等水准每站观测顺序简称为后(黑)——后(红)——前(黑)——前(红)。对于三等水准测量,应按后(黑)——前(黑)——前(红)——后(红)的顺序进行观测。 2、测站上的计算及校核 (1)视距部分 后距=[(1)项—(2)项]×100,记入第(9)项; 前距=[(5)项—(6)项]×100,记入第(10)项; 后、前距差d=(9)项—(10)项,记人第(11)项; 后、前距差累积值∑d=本站(11)+前站(12),记入第(12)项。 四等水准测量记录

(2)高差部分 四等水准测量采用双面水准尺,因此应根据红、黑面读数进行下列校核计算: A、理论上讲,同一把水准尺的黑面读数十K值减去红面读数应为零。 即: 后视尺(3)项+K—(4)项=(13)项; 前视尺(7)项+K—(8)项=(14)项; 其中K为水准尺红、黑面起始读数的差值,系一常数值。在本例中47号尺的K=4.787米;46号尺的K=4.687米。由于测量有误差,(13)项和(14)项往往不为零,但其不符值不得超过±3毫米(三等水准不得超过±2毫米)。 B、理论上讲,用黑面尺测得的高差与用红面尺测得的高差应相等。 (3)项—(7)项=(15)项(黑面尺高差);

(4)项—(8)项=(16)项(红面尺高差)。 因为两把尺的红面起始读数各为4.787米和4.687米,两者相差0.1米,所以理论上在(16)项上加或减去0.1米之后与(15)项之差应为零,但由于测量有误差,往往不为零,其不符值不得超过±5毫米(三等水准不得超过±3毫米),并记入第(17)项。 (17)项=(15)项—[(16)项±0.1米] 表中第(17)项除了检查用黑、红面测得的高差是否合乎要求外,同时也用作检查计算是否有误,这是因为: (17)项=(15)项—[(16)项±0.1米]=(13)项—(14)项 当以上计算合格后,再按下式计算出高差中数: 高差中数(18((15)项+(16)项±0.1米)

全站仪进行高程测量的几个方法

全站仪进行高程测量的几个方法的探讨 王晓涛 摘要:全站仪在公路工程施工中的使用越来越普遍,利用全站仪测量高程,在施工中越来越受到关注。根据工程施工中的实践,总结出全站仪测量高程的几种方法,使全站仪三角高程测量精度进一步提高,提高了施测速度与准确性。 关键词:全站仪高程测量方法 在现有公路工程施工中,高程测量传统方法是水准测量、三角高程测量。两种方法各有利弊,水准测量是一种直接测量高程的方法,测量高差的精度较高,但受地形的影响大,转站多,施测速度慢。随着全站仪在公路施工广泛普及应用,用全站仪测量高程越来越受到施工测量人员的青睐。现就全站仪测量高程的几种方法结合施工过程中的实践,对传统方法和新方法 探讨一下。 一、利用三角高程测量的传统方法: D V t а i hAB HA HB 高程基准面 图中: D :为A、B两点间的水平距离 а:为A点观测B点时的垂直角 i 为测站点的仪器高 t :为棱镜高 HA:为A点高程 HB:为B点高程 V :为全站仪望远镜和棱镜之间的高差(V=D×tgа) 传统方法步骤: 在已知高程点A点架设仪器,量取仪器高i、棱镜高t,输入全站仪测得AB之间的平距D, 则HB高程为: HB=HA+D×tgа+i-t ① 此方法以水平面为基准面,只有当A、B两点的距离较近时,测量质量才比较准确,当距离远时还必须要考虑到地球曲率、大气折光对距离的影响。在人员量取仪器高、棱镜高时,量取数据误差大、精度不高,影响测量精度的误差来源比较多。而且传统方法进行高程测量,仪器必须架设在已知高程的点位上,必须量取仪器高、棱镜高。对要测点如果不通视的无法 施测,有一定的局限性。 二、利用新方法高程测量 内蒙古二赛一级公路二合同段地处平原微丘,线路全长61.343km,地势平坦。一些GPS高程控制点离路线较远,最远的有1.4km,这些都加大水准点复测以及施工过程中的水准点加密的工作量。由于施工工期紧、测量人员有限,采用新的全站仪测量高程,提高了施测速度 及精度,满足了工程进度的需要。 基本原理:

全站仪高程测量新方法

全站仪高程测量新方法 [导读]:使用棱镜配合全站仪测量高程的方法越来越普及,传统的三角高程测量方法已经显示出了局限性。经过长期的工作实践,总结出一种新的方法进行三角高程测量。 摘要:使用棱镜配合全站仪测量高程的方法越来越普及,传统的三角高程测量方法已经显示出了局限性。经过长期的工作实践,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任意置站的特点,又减少了三角高程的误差来源,同时毎次测量时还不必量取仪器高、棱镜高。该法使三角高程测量精度进一步提高,施测进度更快。 关键词:全站仪测量三角高程新方法 1引言 在长江下游丘陵地区测量过程中,全站仪测量技术被广泛应用,全站仪三角高程测量也得到普遍应用。传统的测量方法是水准测量、三角高程测量。两种方法虽然各有特色,但都存在着不足。水准测量是一种直接测高法,测定高差的精度是校高的,但水准测量受地起伏的限制,外业工作量大,施测速度校慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度校快。在大比例地形图测绘、线型工程、管网工程等工程测量中广泛应用。但精度校低,且每次测量都得量取仪器高、棱镜高,比校繁锁,而且增加了误差来源。随着全站仪的广泛使用,使用棱镜配合全站仪测量高程的方法越来越普及,传统的三角高程测量方法已径显示出了局限性。我们经过长期实践和摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任意置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。该方法使三角高程测量精度进一并提高,施测速度更快。 2三角高程测量的传统方法 设A、B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA+HAB得到B点的高程HB。 D为A、B两点间的水平距离;α为在A点观测,B点时的垂直角;i为测站点的仪器高;t为棱镜高;HA 为A点高程,HB为B点高程V为全站仪望远镜和棱镜之间的高差(V=Dtanα); 首先我们假设A、B两点相距不太远,可以将水准面看成水平面,也不考虑大气折光的影。为了确定高差HAB,可在A点架设全站仪、在B点竖立棱镜,观测垂直角α,并直接量取仪器高i和棱镜高t,若A、B两点间的水平距离为D,则HAB=V+i-t,故 HB=HA+Dtanα+i-t(1) 这就是三角高程测量基本公式,但它是以水平面为基准和视线成直线为前提的。因此,只有当A、B两点间的距离很短时,才比较准确。当A、B两点距离较远时,就必须考虑地球弯曲和大气折光的影响。这里不叙述如何进行球差和气差的改正,只就三角高程测量新方法的一般原理进行闸述。从传统的三角高程测量方法中我们可以看出,它具备以下两个特点:a全站仪必须架设在已知高程点上;b要测出待测点的高程,必须量取仪器高和棱镜高。 3三角高程测量的新方法 如果我们能将全站仪像水准仪一样任意置点,而不是将它置在已知高程点上同时又,在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。如图所示,假设B点的高程为已知,A点的高程为未知,这里要通过全站仪测定其他待测点的高程。首先由式(1)可知:HA=HB-(Dtanα+i-t)(2) 上式除了Dtanα即V的值可以用仪器直接测出外,i、t都是未知的。但有一点可以确定,即仪器一旦置好,i值也将随之不变,同时选取棱镜作为反射,假定t值也固定不变。从式(2)可知: HA+i-t=HB-Dtanα=W(3) 由式(3)可知,基于上面的假设,HA+i-t在任一测站上也是固定不变的,而且可以计算出它的值W。 这一新方法的操作过程如下: a、仪器任意置点,但所选点位要求能和已知高程点通视。 b、用仪器照准已知高程点,测出V的值,并算出W的值(此时与仪器高程测定有关的常数如测站点高程、仪器高、棱镜高均为任意什值。施测前不必设定)。 c、将仪器测站点高程重新设定为W、仪器高和棱镜高设为0即可。 d、照准待测点测出其高程。

四等水准测量技术总结

四等水准测量技术总结 篇一:四等水准测量的实习报告 四等水准测量的实习报告 一.实习的目的和要求 目的: (1)进一步熟练水准仪的操作,掌握用双面水准尺进行四等水准测量的观测、 记录与计算方法。 (2)熟悉四等水准测量的主要技术指标,掌握测站及线路的检核方法。要求: 四等水准测量技术要求 二.仪器和工具 dS3水准仪1台,双面水准尺2支,尺垫2个,记录板2块. 三.实验步骤 1.了解四等水准测量的方法 双面尺法四等水准测量是在小地区布设高程控制网的常用方法,是在每个测量站上安置一次水准仪,但分别在水准尺的黑、红两面刻划上读数,可以测得两次高差,进行测站检核。除此以外,还有其他一系列的检核。 2.四等水准测量的实验

(1)从某一已知高程水准点出发,选定一条闭合水准路线,设置4站。 (2)安置水准仪的测站至前、后视立尺点的距离,应该用步测使其相等。 在每一测站,按下列顺序进行观测: ①后视水准尺黑面,读取上、下视距丝读数,精平,读取中丝读数; ②前视水准尺黑面,读取上、下视距丝读书,精平,读取中丝读数; ③前视水准尺红面,精平,读取中丝读数; ④后视水准尺红面,精平,读取中丝读数。 (3)记录着在“四等水准测量记录”表中按表头表明次序(1)~(8)记录各个读数,(9)~(10)为计算结果: 后视距离:(9)=100×{(1)-(2)} 前视距离:(10)=100×{(4)-(5)} 前、后视距之差:(11)=(9)-(10) 前、后视距离累积差(即Σ视距差):(12)=上站(12)+本站(11) 红黑面差:(13)=(6)+K-(7), (14)=(3)+K-(8),(K=4.687或4.787) 黑面高差:(15)=(3)-(6) 红面高差:(16)=(8)-(7) 红黑面高差之差:(17)=(15)-(16)=(14)-(13) 平均高差:(18)=1/2{(15)+(16)} 每站读数结束((1)~(8)),随即进行各项计算((9)~(16)),

应用全站仪进行三角高程测量的新方法

应用全站仪进行三角高程测量的新方法 摘要:使用对中杆配合全站仪测量高程的方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。经过长期摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。关键词:全站仪三角高程测量新方法 一、前言 在工程的施工过程中,常常涉及到高程测量,传统的测量方法是水准测量、三角高程测量。两种方法虽然各有特色,但都存在着不足。水准测量是一种直接测高法,测定高差的精度是较高的,但水准测量受地形起伏的限制,外业工作量大,施测速度较慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度较快。在大比例地形图测绘、线型工程、管网工程等工程测量中广泛应用。但精度较低,且每次测量都得量取仪器高,棱镜高,麻烦并且增加了误差来源。特别随着全站仪的广泛使用,使用对中杆配合全站仪测量高程的方法越来越普及,使用传统的三角高程测量方法已经显示出了它的局限性。经过长期摸索,笔者总结出了一种新的方法进行三角高程测量,这种方法既结合了水准测量的任意置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。二、三角高程测量的传统方法如图1所示,设A,B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA+HAB得到B点的高程HB。 图(1) 图(1)中: D为A、B两点间的水平距离 а为在A点观测B点时的垂直角 i为测站点的仪器高,t为棱镜高 HA为A点高程,HB为B点高程。 V为全站仪望远镜和棱镜之间的高差(V=Dta nа) 首先我们假设A,B两点相距不太远,可以将水准面看成水平面,也不考虑

新方法进行三角高程测量的原理

精密三角高程测量 一、 精密三角高程测量的原理 如图1,为了测量点A 到点B 的高差,在O 处安置全站仪、A 处安置棱镜,测得OA 的距离A S 和垂直角A α,从而计算O 点处全站仪中心的高程O H o H =A H +A L -A h ? (1) 然后再在过度点1I 处安置棱镜,测得O 1I 的距离1S 和垂直角1α,从而计算1I 点处高程1H 1 H =0H +1h ?-1L (2) 点A 和点1I 高差为1o h 1o h =0H +1h ?-1L -(o H -A L +A h ?) =1h ?-A h ?+A L -1L (3) 图 1

然后在下一个转点1O I 处架设仪器,将原A 点的棱镜架设到2I ,1I 处的棱镜旋转与1O 处的全站仪对准。同理可计算出1I 和2I 两点高差12h 12h =2h ?-' ?1h +1L -2L (4) 同理可得第I 点与B 点的高差为iB h iB h =B h ?-' ?i h +i L -B L (5) 点A 和点B 高差AB ?H 为 AB ?H =1o h +12h +…+iB h =1h ?-A h ?+2h ?-'?1h +…+B h ?-'?i h +A L -B L (6) 从上式可看出,欲求的点A 和点B 的高差中已消去了个转点棱镜高, 并且与仪器高无关,也就不存在量取仪器高,只需精确量取起点和终点的棱镜高。从而大大减小了量取仪器高和棱镜高而引起的误差。 二、三角高程测量的精度分析 1.单向观测三角高程测量高差的计算公式为 v i R s k s -+?-+=?2cos )1(sin h 22α α (7) 式中,h ?为三角高程测量的高差,s 为仪器到棱镜的斜距; α为垂直角,k 为大气垂直折光系数,k=1.14,R 为地球平均曲率半径,R = 6 370 km; i 为仪器高;v 为规牌高或棱镜高。 三、单向观测三角高程测量高差的误差公式为 222 2 22222cos )(sin v i k s h m m m R s m s m m ++???????+????? ?+=?ρααα (8)

全站仪测高差

使用全站仪快速测量巷道高差的方法求算待定点的高程时,只要测定两点间的高差,根据一个已知点高程,就可以推算出待定点的高程,这一测量过程称为高程测量。高程测量的实质就是高差测量。高程测量的常用方法有水准测量和三角高程测量。水准测量是利用水准尺配合水准仪提供水平视线来测定两点间高差的方法。水准测量具有较高的精度,因此是高程测量中最主要的方法。 一、水准测量原理 如下图所示,已知高程点A的高程为H A,欲求待定点B的高程H B。当两点相距较近时,在A、B两点中间安置一台水准仪,在A、B两点分别铅直竖立底部为零的水准尺,利用水准仪提供的水平视线在两尺上分别读得视线截尺读数a和b,由下图可知A、B两点间的高差为: h AB=a-b 则B点的高程为H B=H A+h AB a—已知高程点A上的水准尺读数,称为后视读数; b—待求高程点B上的水准尺读数,称为前视读数; A—为已知点,称为后视点;

B—为待测高程点,称为前视点。 用文字表示,高差=后视读数-前视读数。高差计算规定是后视读数减前视读数,为此高差有正负之分,高差为正(a>b时),即前视读数小,表示前视点比后视点高;高差为负(a<b时),即前视读数大,表示前视点比后视点低。 — 以上安置一次仪器测定两点高差的施测过程称为水准测量的基本 原理。 二、高程计算方法 测量工作中,根据不同的需要,高程的计算一般有两种方法,高差法和视线高法 1、高差法 利用两点间的高差计算未知点高程的方法,称为高差法。从上图中可以得出计算公式:H B=H A+h AB 或H B = H A +(a-b) 2、视线高法也称仪高法 当安置一次仪器,根据一个后视点的高程,需要测定多个前视点的高程时,利用仪器高程来计算多个未知点高程的方法,称为视线高法,也称为仪器高法。从上图中可以得出各未知点高程的计算公式为:视线高程:H i=H A+a B点高程:H B=H i-b 用文字表示,前视点高程等于仪高减去前视读数。仪高法是计算次仪高,就可以简便地测算几个前视点的高程。因此,当安置一次仪器时,同时需要测出数个前视点的高程时,使用仪高法是比较简便的。 三、水准仪测高差的缺点

四等水准测量步骤

三、四等水准测量(2008-10-10 23:27:42) 标签:教育 三、四等水准测量 控制测量除了要完成平面控制测量外,还要进行高程控制测量。小区域地形测图或施工测量中,多采用三、四等水准测量作为高程控制测量的首级控制。 一、三、四等水准测量(leveling)的技术要求 1、高程系统:三、四等水准测量起算点的高程一般引自国家一、二等水准点,若测区附近没有国家水准点,也可建立独立的水准网,这样起算点的高程应采用假定高程。 2、布设形式:如果是作为测区的首级控制,一般布设成闭合环线;如果进行加密,则多采用附合水准路线或支水准路线。三、四等水准路线一般沿公路、铁路或管线等坡度较小、便于施测的路线布设。 3、点位的埋设:其点位应选在地基稳固,能长久保存标志和便于观测的地点,水准点的间距一般为1—1.5km,山岭重丘区可根据需要适当加密,一个测区一般至少埋设三个以上的水准点。 4、三、四等及五等水准测量的精度要求和技术要求列于表中。 二、三、四等水准测量的观测方法 三、四等水准测量观测应在通视良好、望远镜成像清晰及稳定的情况下进行。一般采用一对双面尺。 1、三等水准一个测站的观测步骤:(后-前-前-后;黑-黑-红-红) (1)照准后视尺黑面,精平,分别读取上、下、中三丝读数,并记为(1)、(2)、(3)。 (2)照准前视尺黑面,精平,分别读取上、下、中三丝读数,并记为(4)、(5)、(6)。 (3)照准前视尺红面,精平,读取中丝读数,记为(7) (4)照准后视尺红面,精平,读取中丝读数,记为(8) 这四步观测,简称为“后一前一前一后(黑一黑一红一红)”,这样的观测步骤可消除或减弱仪器或尺垫下沉误差的影响。对于四等水准测量,规范允许采用“后一后一前一前(黑一红一黑一红)”的观测步骤。 2、一个测站的计算与检核:

2021年全站仪三角高程测量【全站仪三角高程测量新方法】

全站仪三角高程测量【全站仪三角高程测量新方法】 全站仪进行三角高程测量的新方法摘要:使用跟踪杆配合全站仪测量高程的新方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程测量的误差,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 关键词:全站仪三角高程新方法精度在工程的施工过程中,常常涉及到高程测量。传统的测量方法是水准测量、三角高程测量。两种方法虽然各有特色,但都存在着不足。水准测量是一种直接测高法,测定高差的精度是较高的,但水准测量受地形起伏的限制,外业工作量大,施测速度较慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度较快。在大比例地形图测绘、线型工程、管网工程等工程测量中广泛应用,但精度较低,且每次测量都得量取仪器高,棱镜高,麻烦而且增加了误差。这种新方法既结合了水准测量的任一置站的特点,又减少了三角高程测量的误差,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 一、三角高程测量的传统方法如图所示,设A,B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA HAB得到B点的高程HB。

图中:D为A、B两点间的水平距离а为在A点观测B点时的垂直角 i为测站点的仪器高,t为棱镜高 HA为A点高程,HB为B点高程。 V为全站仪望远镜和棱镜之间的高差(V=Dtanа)首先我们假设A,B两点相距不太远,可以将水准面看成水平面,也不考虑大气折光的影响。为了确定高差hAB,可在A点架设全站仪,在B点竖立跟踪杆,观测垂直角а,并直接量取仪器高i和棱镜高t,若A,B 两点间的水平距离为D,则hAB=V+ i-t 故 HB=HA+Dtanа+i-t (1)这就是三角高程测量的基本公式,但它是以水平面为基准面和视线成直线为前提的。因此,只有当A,B两点间的距离很短时,才比较准确。当A,B两点距离较远时,就必须考虑地球曲率和大气折光的影响。这里不叙述如何进行球差和气差的改正,只就三角高程测量新法的一般原理进行阐述。我们从传统的三角高程测量方法中可以看出,它具备以下两个特点: 1、全站仪必须架设在已知高程点上 2、要测出待测点的高程,必须量取仪器高和棱镜高。 二、三角高程测量的新方法如果我们能将全站仪象水准仪一样任意置点,而不是将它置在已知高程点上,同时又在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。如上图,假设B点的高程已知,A点的高程为,

全站仪三角高程测量方案优化设计

全站仪三角高程测量方案优化设计 论文:应用全站仪进行三角高程测量的新方法_建筑设计 关键字:全站仪三角高程测量新方法发布时间:08-29 10:54 应用全站仪进行三角高程测量的新方法 张英杰 摘要:使用跟踪杆配合全站仪测量高程的方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。经过长期摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 关键词:全站仪三角高程测量新方法 1引言 在工程的施工过程中,常常涉及到高程测量。传统的测量方法是水准测量、三角高程测量。水准测量是一种直接测高法,测定高差的精度是较高的,但水准测量受地形起伏的限制,外业工作量大,施测速度较慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度较快。广泛应用,但精度较低,且每次测量都得量取仪器高,棱镜高。麻烦而且增加了误差来源。 随着全站仪的广泛使用,使用跟踪杆配合全站仪测量高程的方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。经过长期摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 2 三角高程测量的传统方法 如图一所示,设A,B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA+ hAB得到B点的高程HB。

图一 图中: D为A、B两点间的水平距离 а为在A点观测B点时的垂直角 i为测站点的仪器高,t为棱镜高 HA为A点高程,HB为B点高程。 V为全站仪望远镜和棱镜之间的高差(V=Dtan а) 首先我们假设A,B两点相距不太远,可以将水准面看成水准面,也不考虑大气折光的影响。为了确定高差hAB,可在A点架设全站仪,在B点竖立跟踪杆,观测垂直角а,并直接量取仪器高i和棱镜高t,若A,B两点间的水平距离为D,则hAB=V+i-t 故 HB=HA+ Dtanа+ i-t (1) 这就是三角高程测量的基本公式,但它是以水平面为基准面和视线成直线为前提的。因此,只有当A,B两点间的距离很短时,才比较准确。当A,B两点距离较远时,就必须考虑地球弯曲和大气折光的影响了。这里不叙述如何进行球差和气差的改正,只就三角高程测量新法的一般原理进行阐述。我们从传统的三角高程测量方法中我们可以看出,它具备以下两个特点: 1、全站仪必须架设在已知高程点上 2、要测出待测点的高程,必须量取仪器高和棱镜高。 3 三角高程测量的新方法 如果我们能将全站仪像水准仪一样任意置点,而不是将它置在已知高程点上,同时又在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。如图一,假设B点的高程已知,A点的高程为未知,这里要通过全站仪测定其它待测点的高程。首先由(1)式可知: HA=HB-(Dtanа+i-t) (2)

四等水准测量

四等水准测量 四等水准测量 1.四等水准测量的概念 2.四等水准测量的技术要求 3?四等水准测量的方法步骤 4.四等水准测量的观测记录 5.四等水准的测量的计算 6.四等水准测量的注意事项 1.四等水准测量的概念 我们将用水准测量的方法测定的高程控制点称为水准点。 水准点记为BM(Bench Matk)。 三、四等水准测量,常作为小地区测绘大比例尺地形图和施工测量的高程基

本控制。 高程测量时测量工作三大基本内容之一。水准测量是高程测量的一种方法。 四等水准测量与普通水准测量的异同点: (1)相同点:都需要拟定水准路线、选点、埋点和观测等程序。 (2)不同点:四等水准测量必须使用双面尺观测,记录计算, 观测顺序,精度要求不同

2?四等水准测量的技术要求 四等水准路线一般沿道路布设,尽量避开土质松软地段,水准点间距 一般为2~4Km在城市建筑区为1~2Km水准点应选在地基稳固、能长久保存和便于观测的地点。 3.四等水准测量的方法步骤 (1)测量方法 四等水准测量的观测应在通视良好、望远镜成像清晰、稳定的情况下

进行。(2)观测步骤 (2)观测步骤 引入K值得概念: K为双面水准尺的红面分划与黑面分划的零点差(常数 4.687m 或4.787m),对于四等水准测量,读数差不能超过3mm 四等水准测量中,水准尺必须成对出现。 或里一红一里一红 八、、

①在测站上安置仪器,使圆水准气泡居中,后视水准尺黑面,用上、 下丝读数,记入记录表中(1)和(2);用中丝读数,记入表中 (3)。 ②翻转水准尺,后视水准尺红面,用中丝读数,记入表中(4)。 ③前视水准尺黑面,用上、下丝读数,记入表中(5)和(6),前视 水准尺黑面,用中丝读数,记入表中(7)。 ④翻转水准尺,前视水准尺红面,用中丝读数,记入表中(8)。 4.四等水准测量的观测记录 4.四等水准测量的观测记录 四等水准测量观测记录手薄

全站仪三角高程测量新方法

全站仪进行三角高程测量的新方法 摘要:使用跟踪杆配合全站仪测量高程的新方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程测量的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 关键词:全站仪三角高程新方法精度 在工程的施工过程中,常常涉及到高程测量。传统的测量方法是水准测量、三角高程测量。两种方法虽然各有特色,但都存在着不足。水准测量是一种直接测高法,测定高差的精度是较高的,但水准测量受地形起伏的限制,外业工作量大,施测速度较慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度较快。在大比例地形图测绘、线型工程、管网工程等工程测量中广泛应用,但精度较低,且每次测量都得量取仪器高,棱镜高,麻烦而且增加了误差来源。这种新方法既结合了水准测量的任一置站的特点,又减少了三角高程测量的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 一、三角高程测量的传统方法 如图所示,设A,B为地面上高度不同的两点。已知A点高程H A,只要知道A点对B点的高差 H A B即可由H B=H A H A B得到B点的高程H B。 图中:D为A、B两点间的水平距离 а为在A点观测B点时的垂直角 i为测站点的仪器高,t为棱镜高 H A为A点高程,H B为B点高程。 V为全站仪望远镜和棱镜之间的高差(V=D tanа) 首先我们假设A,B两点相距不太远,可以将水准面看成水平面,也不考虑大气折光的影响。为了确定高差

hAB,可在A点架设全站仪,在B点竖立跟踪杆,观测垂直角а,并直接量取仪器高i和棱镜高t,若A,B两点间的水平距离为D,则hAB=V+ i-t 故 H B=H A+Dtanа+i-t (1) 这就是三角高程测量的基本公式,但它是以水平面为基准面和视线成直线为前提的。因此,只有当A,B两点间的距离很短时,才比较准确。当A,B两点距离较远时,就必须考虑地球曲率和大气折光的影响。这里不叙述如何进行球差和气差的改正,只就三角高程测量新法的一般原理进行阐述。我们从传统的三角高程测量方法中可以看出,它具备以下两个特点: 1、全站仪必须架设在已知高程点上 2、要测出待测点的高程,必须量取仪器高和棱镜高。 二、三角高程测量的新方法 如果我们能将全站仪象水准仪一样任意置点,而不是将它置在已知高程点上,同时又在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。如上图,假设B点的高程已知,A点的高程为未知,这里要通过全站仪测定其它待测点的高程。首先由(1)式可知: H A=H B-(Dtanа+i-t) (2) 上式除了Dtanа=V的值可以用仪器直接测出外,i,t都是未知的。但有一点可以确定即仪器一旦置好,i值也将随之不变,同时选取跟踪杆作为反射棱镜,假定t值也固定不变。从(2)可知: H A+i-t=H B-Dtanа=W?(3) 由(3)可知,基于上面的假设,HA +i-t在任一测站上也是固定不变的,而且可以计算出它的值W。 这一新方法的操作过程如下: 1、仪器任一置点,但所选点位要求能和已知高程点通视。 2、用仪器照准已知高程点,测出V(V值可以直接读出)的值,并算出W的值。(此时与仪器高程测定有关的常数如测站点高程,仪器高,棱镜高均为任一值。施测前不必设定。) 3、将仪器测站点高程重新设定为W,仪器高和棱镜高设为0即可。 4、照准待测点测出其高程。

三角高程测量的方法与精度分析

南昌工程学院 毕业论文 水利与生态工程系(院)测绘工程专业毕业论文题目全站仪三角高程测量的方法与误差分析 学生姓名倪忠利 班级07测绘工程 学号2007101191 指导教师陈伟 完成日期2010年06月17 日

全站仪三角高程测量的方法与误差分析 Total Station trigonometric leveling method and error analysis 总计毕业设计(论文) 25 页 表格 2 个 插图 3 幅

本文介绍了三角高程测量原理以及全站仪三角高程测量的不同方法,对于每种方法所能达到的精度进行分析。在相同条件下采用不同的方法, 对高差精度的影响是不同的, 所能达到的测量精度等级要求也是不一样的。从而在实际生产应用中可针对不同的精度要求和具体的客观实际情况选择不同的测量方法。 关键词:三角高程测量单向观测对向观测中间自由设站精度分析

This paper introduces the measuring principle and triangular elevation of trigonal height measurement method for each different, the precision of the method can be analyzed.Under the same conditions used different methods, the influence of accuracy of elevation is different, can achieve the measurement precision level requirement is different.Thus in the actual production application can be in view of the different accuracy and the objective reality of specific select different measuring methods Key word: trigonometric levelling ;One-way observation ;Two-way observation ;Free among set up observation;Precision analysi

相关文档
最新文档