作业(二)答案:单自由度机械系统动力学等效转动惯量等效力矩

合集下载

【大二学习笔记】机械原理第八章 机械的运转及其速度波动的调节

【大二学习笔记】机械原理第八章 机械的运转及其速度波动的调节

ω
ωmax
ωmin
平均角速度:m
1
T
T d
0
φ
T
工程上常采用算术平均值:
ωm=(ωmax +ωmin)/2
ωmax-ωmin 表示了机器主轴速度波动范围的大小,称为
绝对不均匀度。
定义:δ=(ωmax-ωmin)/ ωm 为机器运转速度不均匀系数, 它表示了机器速度波动的程度。
由ωm=(ωmax +ωmin)/2 以及上式可得:
力矩所作功及动能变化:
Md Mr
ab c d E
e a' φ
φ ω
φ
区间
a-b b-c c-d
d-e
e-a’
外力矩所作功
Md<Mr 亏功“-”
Md>Mr Md<Mr 盈功“+”亏功“-”
Md>Mr Md<Mr 盈功“+” 亏功“-”
主轴的ω





动能E





机械运转的平均速度和不均匀系数
已知主轴角速度:ω=ω( )
二、机械运转过程的三个阶段
稳定运转阶段的状况有:
①匀速稳定运转:ω=常数
②周期变速稳定运转:ω(t)=ω(t+T) 注意:Wd = Wr
③非周期变速稳定运转
m
m
t
起动 稳定运转 停车
起动
稳定运转
t
停车
二、机械运转过程的三个阶段
阶段
名称
运动特征
功能关系
起 动
稳定 运转
停 车
角速度ω由零逐渐上升至 稳定运转时的平均角速 Wd Wr

第七章 机械系统的动力学分析

第七章 机械系统的动力学分析

§7-2 单自由度机械系统动力学分析
3、等效动力学模型的意义
等效力学模型
等效构件 + 等效质量(转动惯量) + 等效力(力矩)
Je
Me

注意: 、、S、V是某构件的真实运动;
Me是系统的等效力矩;
Je是系统的等效转动惯量。
Fe
me
ve
Fe是系统的等效力; me是系统的等效质量。
例题:图示机构。已知z1=20,J1;z2=60,质量中心在B点,
§7-1 概 述
机构力分析的目的和方法
目的: 1)求驱动力。用以确定所需功率,选择合适的电动机。
2)求生产阻力。根据原动件上驱动力的大小,确定机
械所能克服的生产阻力。 3)求机构运动副中的反力。该力大小和性质是零件设
计计算和强度计算的重要依据。
方法:图解法和解析法
§7-1 概 述
二、机械的运转过程 机械运转中的功能关系 Wd - Wc = E2 – E1 其中:Wc = Wr+ Wf 1、 起动阶段: ω=0,↗ωm , 则:E1 =0,↗E2, W= E=E2-E1 >0 故:Wd > Wc = Wr +Wf 主动件作加速运动。


Wd-Wc=E2-E1>0
稳定运行
Wd-Wc=E2-E1=0


原动件速度从正常工作速 度值下降到零
Wd-Wc=E2-E1<0
§7-2 单自由度机械系统动力学分析
为了便于讨论机械系统在外力作用下作 功和动能变化,将整个机械系统多个构件运
动问题根据能量守恒原理转化成对某个构件
的运动问题进行研究。为此引入等效转动惯
等效力可以根据等效前后功率相等的原则求取。

机械原理习题及答案

机械原理习题及答案

第二章 机构的结构分析一.填空题1.组成机构的基本要素是 和 。

机构具有确定运动的条件是: 。

2.在平面机构中,每一个高副引入 个约束,每一个低副引入 个约束,所以平面机构自由度的计算公式为F = 。

应用该公式时,应注意的事项是: 。

3.机构中各构件都应有确定的运动,但必须满足的条件是: 。

二.综合题1.根据图示机构,画出去掉了虚约束和局部自由度的等效机构运动简图,并计算机构的自由度。

设标有箭头者为原动件,试判断该机构的运动是否确定,为什么?2.计算图示机构的自由度。

如有复合铰链、局部自由度、虚约束,请指明所在之处。

(a ) (b )ADECHGF IBK1234567893.计算图示各机构的自由度。

(a)(b)(c)(d)(e)(f)4.计算机构的自由度,并进行机构的结构分析,将其基本杆组拆分出来,指出各个基本杆组的级别以及机构的级别。

(a)(b)(c)(d)5.计算机构的自由度,并分析组成此机构的基本杆组。

如果在该机构中改选FG 为原动件,试问组成此机构的基本杆组是否发生变化。

6.试验算图示机构的运动是否确定。

如机构运动不确定请提出其具有确定运动的修改方案。

(a)(b)第三章平面机构的运动分析一、综合题1、试求图示各机构在图示位置时全部瞬心的位置(用符号P直接在图上标出)。

ij2、已知图示机构的输入角速度ω1,试用瞬心法求机构的输出速度ω3。

要求画出相应的瞬心,写出ω3的表达式,并标明方向。

3、在图示的齿轮--连杆组合机构中,试用瞬心法求齿轮1与3的传动比ω1/ω2。

4、在图示的四杆机构中,AB l =60mm, CD l =90mm, AD l =BC l =120mm, 2ω=10rad/s ,试用瞬心法求:(1)当ϕ=165°时,点C 的速度c v ;(2)当ϕ=165°时,构件3的BC 线上速度最小的一点E 的位置及其速度的大小; (3)当0c v =u u u v时,ϕ角之值(有两个解)。

第7章机械动力学

第7章机械动力学

第 7 章机械动力学7.1概述一.机械动力学的研究内容及意义1)机械的摩擦及效率;2)机械的平衡;3)分析、计算机械系统的速度波动,周期性波动的调速方法和有关的调速零件的设计。

二.机械中作用的力作为发动机的曲柄滑块机构P-驱动力(爆发力)Mr –阻力矩(工作阻力矩)G2 –连杆重力重心上升-阻力,重心下降-驱动力F S2、 M S2 - 惯性力与惯性力矩,N、F f –正压力与摩擦力7.2 机械中的摩擦及效率一.机械中的摩擦(一)移动副中的摩擦1.平面摩擦摩擦力产生的条件:(1)两物体直接接触,彼此间有正压力;(2)有相对运动或相对运动的趋势。

作用:阻止两物体产生有相对运。

设摩擦系数为u,F21=uN 21F21tg,φ-摩擦角N21将 F21与 N21合成为 R21R21-总反力(全反力)P X P分解为 P和 P ,tgX Y P Y( P X P sin、 P Y P cos )F21P X,有F21tgY 方向平衡: Py=N 21,即:tg tg P Xtg讨论:①总反力 R21恒与相对速度V 12成 90° +φ②当β >φ, P X > F21,滑块作加速运动;当β =φ, P X = F21,动则恒动,静则恒静;当β <φ, P X < F21,原来运动,作减速运动,原来静止,永远静止,称自锁。

③ 自锁条件:β≤φβ=φ,条件自锁(静止);β<φ,无条件自锁。

2.斜面摩擦斜面机构如图,滑块置于升角α的斜面上,摩擦角为φ,作用于滑块上的铅垂力为Q,求滑块等速上升和下降时所需水平平衡力P 和 P’。

(1)求等速上升水平平衡力 PP-驱动力, Q-阻力PQ R 21 0 ,tg ()P,P Qtg () (1)Q( 2)求等速下降水平平衡力 P ’Q -驱动力, P ’-阻力P'Q R 21 0 ,tg () P ',P 'Qtg () (2)Q讨论:① 欲求下滑 (反行程) P ’,只需将式 ( 1)中 P →P ’,φ→ (-φ )② 下滑时,当α >φ, P ’为平衡力α <φ, P ’为负,成为驱动力的一部分,该条件下,若无 P ’,则无论 Q 多大,滑块不下滑,称自锁,自锁条件:α≤φ。

结构动力学习题解答

结构动力学习题解答
̇̇ = hδ ( t ) ; θ 0
然后积分求初始速度
̇̇ d t = θ̇0 = θ 0
0+ 0+ 0+

0
∫ hδ ( t ) d t = h ∫ δ ( t ) d t = h
0 0 0+

再积分求初位移
̇̇ d t == h )d t = 0 ; θ0 = θ 0
0+

0

0
̇̇ 、 θ̇ 和 θ 的瞬态响应 这样方程(6)的解就是系统对于初始条件 θ 0 0 0
1.6 求图 1-35 所示系统的固有频率。图中磙子半径为 R,质量为 M,作纯滚动。弹簧刚度 为K 。 解:磙子作平面运动, 其动能 T=T 平动 +T 转动 。
K R M 图 1-35 x
T平动 = T转动
1 ̇2; Mx 2 2 2 ̇ ⎞ 1 ⎛ MR 2 ⎞ ⎛ x ̇⎞ 1 ⎛x = I⎜ ⎟ = ⎜ ⎟⎜ ⎟ ; 2 ⎝R⎠ 2 ⎝ 2 ⎠⎝ R ⎠
U= r 2 1 1 1 1⎛ K A ϕ A 2 + K B ϕ B 2 = K Aϕ A 2 + K B ϕ B 2 = ⎜ K A + K B A 2 2 2 2 2⎜ rB ⎝
(
)
⎞ 2 ⎟ϕ ; ⎟ A ⎠
系统的机械能为
T +U = r 2 1 1⎛ ̇ A2 + ⎜ K A + K B A (m A + m B )rA 2ϕ 4 2⎜ rB 2 ⎝
d (T + U ) = 0 ,进一步得到系 dt
统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤: (1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷 的幅值 Ai 、 Ai +1 。 (2)由对数衰减率定义 δ = ln(

第一章单自由度机械系统动力学建模解析

第一章单自由度机械系统动力学建模解析
在机械动力学发展历史上,提出了四种分析 方法:
静力分析(static) 动态静力分析(kinetio-static) 动力分析(dynamic) 弹性动力分析(elastodynamic)
1 静力分析
对低速机械,运动中产生的惯性可以忽略不计,对机 械的运动过程中的各个位置,可以用静力学方法求出 为平衡载荷而需在驱动构件上施加的驱动力或力矩, 以及各运动副中的约束反力,可用此进行原动机功率 的计算、构件和运动副承载能力的计算。
v32
(M1
1
v3
F3 )v3
me
n i 1
mi
vsi v
2
等 J效si质 量vi
2 me
Fe
n i 1
Fi
程,其维数等于机构的自由度数目; 另一类是含运动副约束反力的代数与微分混合型
方程,其维数大于机构的自由度数目。
机构动力学分析的发展与现状
建立复杂机构动力学模型的常用力学方法有: * 牛顿-欧拉(Newton-Euler)法 * 拉格朗日(Lagrange)法 * 虚功原理法 * 凯恩(Kane)法 * 旋量法和R-W法等。
机械系统动力学
绪论
机械系统动力学是应用力学的基本理论解决 机械系统中动力学问题的一门学科,其核心 问题是建立机械系统的运动状态与其内部参 数、外部条件之间的关系,找到解决问题的 途径
三体机械臂
可伸展卫星太阳能电池板
汽车
五轴并联机床
机械动力学研究内容 :
机械原理由三部分组成:
机械结构学、机构运动学和机械动力学
4 弹性动力分析
随着机械系统向高速轻质化发展,构件的柔度加大,惯 性力急剧加大,构件的弹性变形可能给机械的运动输出 带来误差。机械系统柔度 系统的固有频率 ,机械 运转速度 激振频率 可能会发生共振,破坏运动精度 ,影响疲劳强度,引发噪声。

作业(二)答案:单自由度机械系统动力学等效转动惯量等效力矩

作业(二)答案:单自由度机械系统动力学等效转动惯量等效力矩

作业(二)单自由度机械系统动力学等效转动惯量等效力矩1.如题图1所示的六杆机构中,已知滑块5的质量为m 5=20kg ,l AB =l ED =100mm ,l BC =l CD =l EF =200mm ,φ1=φ2=φ3=90o ,作用在滑块5上的力P=500N .当取曲柄AB 为等效构件时,求机构在图示位置的等效转动惯量和力P的等效力矩.图1答案:解此题的思路是:①运动分析求出机构处在该位置时,质心点的速度及各构件的角速度.②根据等效转动惯量,等效力矩的公式求出.做出机构的位置图,用图解法进行运动分析.V C =V B =ω1×l AB ω2=0V D =V C =ω1×l AB 且ω3=V C /l CD =ω1V F =V D =ω1×l AB (方向水平向右) ω4=0由等效转动惯量的公式:e J =m 5(V F /ω1)2=20kg ×(ω1×l AB /ω1)2=0.2kgm 2由等效力矩的定义: e M =500×ω1×l AB ×cos180o/ω1=-50Nm (因为VF 的方向与P方向相反,所以α=180o )2.题图2所示的轮系中,已知各轮齿数:z 1=z 2’=20,z 2=z 3=40,J 1=J 2’=0.01kg ·m 2,J 2=J 3=0.04kg ·m 2.作用在轴O3上的阻力矩M3=40N ·m .当取齿轮1为等效构件时,求机构的等效转动惯量和阻力矩M3的等效力矩.图2答案:该轮系为定轴轮系.i 12=ω1/ω2=(-1)1z 2/z 1∴ ω2=-ω1/2=-0.5×ω1ω2’=ω2=-0.5×ω1i 2’3=ω2’/ω3=(-1)1z 3/z 2’ ∴ ω3=0.25×ω1根据等效转动惯量公式e J = J 1×(ω1/ω1)2+J 2×(ω2/ω1)2+J 2’×(ω2’/ω1)2+J 3×(ω3/ω1)2 ∑=+=n i i Si Si i e J v m J 12121]()([ωωω∑=±=n i i i i i i e M v F M 111)]()(cos [ωωωα∑=+=n i i Si Si i e J v m J 12121]()([ωωω=J 1+J 2/4+J 2’/4 +J 3/16=0.01+0.04/4+0.01/4+0.04/16=0.025 kg ·m 2根据等效力矩的公式: e M =M 3×ω3/ω1=40×0.25ω1/ω1=10N ·m3.在题图3所示减速器中,已知各轮的齿数:z 1=z 3=25,z 2=z 4=50,各轮的转动惯量J 1=J 3=0.04kg ·m 2,J 2=J 4=0.16kg ·m 2,(忽略各轴的转动惯量),作用在轴Ⅲ上的阻力矩M 3=100N ·m .试求选取轴Ⅰ为等效构件时,该机构的等效转动惯量J 和M 3的等效阻力矩M r .图3答案:i 12=ω1/ω2=z 2/z 1 ω2=ω1/2 ω3=ω2=ω1/2 i 34=ω3/ω4=z 4/z 3ω4=ω1/4等效转动惯量:J=J 1(ω1/ω1)2+J 2(ω2/ω1)2+J 3(ω3/ω1)2+J 4(ω4/ω1)2=0.042+0.16×(1/2)2+0.04×(1/2)2+0.16×(1/4)2=0.04+0.04+0.01+0.01=0.1 kg ·m 2等效阻力矩:M r =M 3×ω4/ω1=100/4=25(N ·m)4.题图4所示为一简易机床的主传动系统,由一级带传动和两级齿轮传动组成.已知直流电动机的转速n 0=1500r/min ,小带轮直径d =100mm ,转动惯量J d =0.1kg ·m 2,大带轮直径D =200mm ,转动惯量J D =0.3kg ·m 2.各齿轮的齿数和转动惯量分别为:z 1=32,J 1=0.1kg ·m 2,z 2=56,J 2=0.2kg ·m 2,z 2’=32,J 2’=0.4kg ·m 2,z 3=56,J 3=0.25kg ·m 2. 要求在切断电源后2秒,利用装在轴上的制动器将整个传动系统制动住.求所需的制动力矩M 1.图4∑=±=n i i i i i i e M v F M 111()(cos [ωωωα答案:电机的转速n0=1500r/min其角速度ω0=2π×1500/60=50π(rad/s)三根轴的转速分别为:ω1=d×ω0/D=25π(rad/s)ω2=z1×ω1/z2=32×25π/56=1429π(rad/s)ω3=z2’×ω2/z3=32×1429π/56=816π(rad/s)轴的等效转动惯量:J V=J d×(ω0/ω1)2+J D×(ω1/ω1)2+J1×(ω1/ω1)2+J2×(ω2/ω1)2+ J2’×(ω2/ω1)2+ J3×(ω3/ω1)2∴J V=0.1×(50π/25π)2+0.3×12+0.1×12+(0.2+0.1)×(14.29π/25π)2+0.25×(8.16π/25π)2=0.4+0.4+0.098+0.027=0.925 (kg·m2)轴制动前的初始角速度ω1=25π,制动阶段做减速运动,即可求出制动时的角加速度∴ωt=ω0-εt即0=25π-2εε=12.5π则在2秒内制动,其制动力矩M为:M=J V×ε=0.925×12.5=36.31 (kg·m)5.在题图5所示定轴轮系中,已知各轮齿数为:z1=z2’=20,z2=z3=40;各轮对其轮心的转动惯量分别为J1=J2’=0.01kg·m2,J2=J3=0.04kg·m2;作用在轮1上的驱动力矩M d=60N·m,作用在轮3上的阻力矩M r=120N·m.设该轮系原来静止,试求在M d和M r作用下,运转到t=15s时,轮1的角速度ω1和角加速度α1.图5答案:i12=ω1/ω2=(-1)1×z2/z1 ω2=-ω1/2i13=ω1/ω3=(-1)2×z2×z3/z1×z2’ω3=20×20×ω1/40×40=ω1/4轮1的等效力矩M为:M=M d×ω1/ω1+M r×ω3/ω1 =60×1-120/4=30 N·m轮1的等效转动惯量J为:J=J1(ω1/ω1)2+(J2’+J2)(ω2/ω1)2+J3(ω3/ω1)2=0.01×1+(0.01+0.04)/4+0.04/16=0.025 (kg·m2)∵M=J ×ε∴角加速度ε=M/J=1200 (rad/s2)初始角速度ω0=0 ∴ω1=ω0+ε×tω=1200×1.5=1800(rad/s)。

单自由度机械系统动力学——牛头刨床运动例题

单自由度机械系统动力学——牛头刨床运动例题

单自由度机械系统动力学作业题目:图1所示为一牛头刨床。

各构件长度为:1110L mm =,3540L mm =,4135L mm =;尺寸580H mm =,1380H mm =。

导杆3重量3200G N =,质心3S 位于导杆中心,导杆绕3S 的转动惯量23 1.1J kg m =⋅。

滑枕5的重量5700G N =。

其余构件重量均可不计。

电动机型号为Y100L2-4,电动机轴至曲柄1的传动比23.833i =,电动机转子及传动齿轮等折算到曲柄上的转动惯量21133.3J kg m =⋅。

刨床的平均传动效率0.85η=。

空行程时作用在滑枕上的摩擦阻力50f F N =,切削某工件时的切削力和摩擦阻力如图2所示。

1)求空载启动后曲柄的稳态运动规律; 2)求开始刨削工件的加载过程,直至稳态。

图1 牛头刨床 图2 牛头刨床加工某工件时的负载图 解:(1)运动分析可以用解析法列出各杆角速度、各杆质心速度的表达式。

但为简便起见,现调用改自课本附录Ⅰ中的Matlab 子程序来进行计算。

图1中给出了构件和运动副的编号。

先调用子程序crank 分析点②的运动学参数,再调用子程序vosc 进行滑块2—导杆3这一杆组的运动学分析,然后再调用子程序vguide 进行小连杆4—滑枕5这一杆组的运动学分析。

这一段的Matlab 程序如下:crank(1,2,L(1),TH(1),W(1)); vosc(2,3,4,L(3)); vguide(4,5,L(4)); 其中:L(i)、TH(i)、W(i)分别表示第i 个杆的长度、位置角、角速度。

(2)等效转动惯量和等效力矩取曲柄1为等效构件,等效转动惯量为2223335513111()()()S e J J J G v G v g g ωωωω=+++ (a) 式中:g 为重力加速度,3S v 为导杆3质心的速度,5v 为滑枕的速度。

等效驱动力矩可由电动机机械特性导出,设m M 、de M 分别为电动机输出力矩和等效驱动力矩,两者有如下关系:de m M iM = (b)式中i 为电动机轴和曲轴间的传动比。

机械原理练习册

机械原理练习册
机械原理作业册
班级学号姓名
8、如图所示已知曲柄的长度L、转角 卜、等角速度3及中心距-要求确定导杆的转角 肌、角 速度33和角加速度3,以及滑块在导杆上的位置S、滑动速度VB2B3及加速度aE233o(用复数矢量法, 推导出方程式即可)
第四章平面机构的力分析
一、是非、填空与选择题
1、 按照力对运动的影响,可将力分为和_
2、 在机械运动中总是有摩擦力存在,因此,机械的效率总是。
3、 具有自锁性的机构其正行程运动,反行程运动。
4、 下列式子中不是机械效率表达式的是一 _
AMWVdB、Pf/FdC、Fo/FD、M/M
5、 三角螺纹的摩擦力矩⑴方牙螺纹的摩擦力矩,因此,它多用于(2)。
(1)A、小于B、等于C、大于
(2)A、传递动力B、紧固联接
7、下图所示的正切机构中,已知h=500mm3i=10rad/s(为常数),构件3的重量Q=10N重心在其轴线上,生产阻力R=100N其余构件的重力和惯性力均略去不计。试求当 『=60°时,需 加在构件1上的平衡力矩M。
第五章 机械的效率和自锁
一、选择与填空题
1在机械运转过程中,考虑摩擦的转动副,总反力作用线总于摩擦圆。
2、有一楔形滑块沿倾斜V形导路滑动,见图,已知,=35°,0=60°,摩擦系数f=0.13,载 荷Q=1000N试求滑块等速上升和下降时的P和P、效率n和n'及反行程自锁条件。
5、已知机构各构件的长度LacLbc,原动件1以等角速度31逆时针转动,用矢量方程图解法求图 示位置构件2、构件3的角速度32、33和角加速度2、3(列出相关的速度和加速度矢量方程
式;作出速度图和加速度图)。
机械原理作业册
班级学号姓名
6、下图所示的摇杆机构中,如果Lab=0.03mLac=0.1m, bd=0.05mLd=0.04m曲柄1以等角速度

单自由度机械系统动力学

单自由度机械系统动力学
11
•位移和转角叫广义坐标, •速度和角速度叫广义速度。
vk
,
j
; vk v
, j v
称为传动速比。
12
Confucius said: “A gentleman neither worries nor fears.”
v
13
Confucius said: “A gentleman neither worries nor fears.”
for(i=0;i<37;i++)
{
phi1=i*h;
//Euler(double phi1);
Runge_Kutta(phi1);
printf("%3.0f %8.3f\n",phi1*180/pi,omega10);
omega10=omega1;
}
}
66
欧拉法:
void Euler(double phi1) {
❖ 研究方法: 等效力学模型
2
2.2 驱动力和工作阻力
2.2.1 系统受力 主要受力有:驱动力、惯性力、工作阻力、介质阻
力、重力和摩擦阻力等。 ❖驱动力:原动机产生的力,做正功。
驱动力的变化规律为:1)常数;2)是位移的函 数;3)是速度的函数。 ❖工作阻力:工作构件的阻力,做负功。
工作阻力的变化规律为:1)常数;2)是位移的 函数;3)是速度的函数;4)是时间的函数。
#define pi 3.1416
#define h 10*pi/180
30
double l1,l2,ls2,e,J01,J2,m2,m3;
double phi1,Je,dJe,omega1,Vc;
int i;

自由度机械系统动力学

自由度机械系统动力学

1. 解析法
d
t t0 Je 0 Me()
(3.4.6)

Me()ab

再求出其 反函数
t
t0
Je b
ln ab ab0
f (t)
(3.4.7)

d
tt0Je 0abc2
演讲完毕,感谢观 看
(3.4.8)
一、等效力和等效力矩 二、等效质量和等效转动惯量
等效力学模型
等效原则: 等效构件具有的动能=各构件动能之和
M e
n j 1
m
j
vSj v
2
J
j
j
v
2
J e
n j 1
m
j
vSj
2
J
j
j
2
(3.3.3)
等效质量和等效转动惯量与传动比有关, 而与机械驱动构件的真实速度无关
2W()
Je()
(3.4.3)

是以表达式
给出,且为可积函数时,
(3.4.3)可得到解析解。
但是
常常是以线
图或表格形式给出,则只
能用数值积分法来求解。
常用的数值积分法有梯形
法和辛普生法。
运动方程式的求解方法
一、等效力矩是位置的函数时运动方程的求解
二、等效转动惯量是常数、等效力矩是角速度的函数时运动方程
单自由度机械系统可以采用等效力学模型来进行研究,即系统的动力学问题转化为一个等效构件的动力学问题来研究,可以 使问题得到简化。
当取作定轴转动的构件作为等效构件时,作用于系统上 的全部外力折算到该构件上得到等效力矩,系统的全部 质量和转动惯量折算到该构件上得到等效转动惯量。
当取作直线运动的构件作为等效构件时,作用于系统上 的全部外力折算到该构件上得到等效力,系统的全部质 量和转动惯量折算到该构件上得到等效质量。

结构动力计算课后习题答案

结构动力计算课后习题答案

结构动力计算课后习题答案结构动力计算是土木工程和机械工程领域中的一个重要分支,它涉及到结构在动力作用下的响应分析。

这门课程的课后习题通常要求学生运用所学的理论,解决实际工程问题。

以下是一些可能的习题答案示例,请注意,这些答案是基于假设的习题内容,实际的习题答案应根据具体的题目来确定。

习题1:单自由度系统的动力响应假设有一个单自由度系统,其质量为m,阻尼系数为c,刚度系数为k。

系统受到一个简谐激励F(t) = F0 * sin(ωt),其中F0是激励力的幅值,ω是激励频率。

求系统的稳态响应。

答案:对于单自由度系统,其运动方程可以表示为:\[ m\ddot{x}(t) + c\dot{x}(t) + kx(t) = F_0 \sin(\omega t) \]稳态响应可以通过求解上述方程的特解来获得。

特解的形式为:\[ x(t) = X \sin(\omega t + \phi) \]其中,振幅X和相位角φ可以通过以下公式计算:\[ X = \frac{F_0}{\sqrt{(\omega^2 m - \omega^2)^2 +(c\omega)^2}} \]\[ \phi = \arctan\left(\frac{c\omega}{\omega^2 m -\omega^2}\right) \]习题2:多自由度系统的模态分析考虑一个两自由度系统,其质量矩阵、刚度矩阵和阻尼矩阵分别为:\[ M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix},\quad K = \begin{bmatrix} k_1 & k_c \\ k_c & k_2\end{bmatrix}, \quad C = \begin{bmatrix} c_1 & 0 \\ 0 & c_2\end{bmatrix} \]求系统的自然频率和模态形状。

机械动力学第二章作业(答案)

机械动力学第二章作业(答案)

第二章习题2- 1如图2-1所示,长度为L 、质量为m 的均质刚性杆由两根刚度为k 的弹簧系住,求杆绕O 点微幅振动的微分方程。

222...2..011T J 2231V 2(sin )(1cos )222()0m 0322ml L Lk mg dT V dtmg k L θθθθθθθ==⋅=⋅+-+=⎛⎫++= ⎪⎝⎭解:设系统处于静平衡位置时势能为,当杆顺时针偏转角时动能:势能:由能量守恒原理,得化简得:2- 2如图2-2所示,质量为m 、半径为r 的圆柱体,可沿水平面作纯滚动,它的圆心O 用刚度为k 弹簧相连,求系统的振动微分方程。

22 (2)2..0111T J ,2221V ()2()03m 02m r J mr k r dT V dtk θθθθθθ⎛⎫=+= ⎪⎝⎭=+=+=解:设系统处于静平衡位置时势能为,当杆顺时针偏转角时动能:势能:由能量守恒原理,得化简得:2- 3如图2-3所示,质量为m 、半径为R 的圆柱体,可沿水平面作纯滚动,与圆心O 距离为a 处用两根刚度为k 的弹簧相连,求系统作微振动的微分方程。

图2- 1 图2- 22.222..220111T J ,2221V (2)[()]2()032()02m R J mR k R a dT V dt mR k R a θθθθθ⎛⎫=+= ⎪⎝⎭=⋅++=++=解:设系统处于静平衡位置时势能为动能:势能:由能量守恒原理,得化简得: 2- 4求图2-4所示弹簧-质量-滑轮系统的振动微分方程(假设滑轮与绳索间无滑动)。

2.222....0111T J ,2221V ()2()0()02m r J Mr k r dT V dt x r x r M m x kx θθθθθ⎛⎫=+= ⎪⎝⎭=⋅+===++=解:设系统处于静平衡位置时势能为动能:势能:由能量守恒原理,得其中,,化简得: 2- 5质量可忽略的刚性杆-质量-弹簧-阻尼器系统参数如图2-5所示,2L 杆处于铅垂位置时系统静平衡,求系统作微振动的微分方程。

机械动力学第二章作业(答案)

机械动力学第二章作业(答案)

第二章习题2- 1如图2-1所示,长度为L 、质量为m 的均质刚性杆由两根刚度为k 的弹簧系住,求杆绕O 点微幅振动的微分方程。

222...2..011T J 2231V 2(sin )(1cos )222()0m 0322ml L Lk mg dT V dtmg k L θθθθθθθ==⋅=⋅+-+=⎛⎫++= ⎪⎝⎭解:设系统处于静平衡位置时势能为,当杆顺时针偏转角时动能:势能:由能量守恒原理,得化简得:2- 2如图2-2所示,质量为m 、半径为r 的圆柱体,可沿水平面作纯滚动,它的圆心O 用刚度为k 弹簧相连,求系统的振动微分方程。

22 (2)2..0111T J ,2221V ()2()03m 02m r J mr k r dT V dtk θθθθθθ⎛⎫=+= ⎪⎝⎭=+=+=解:设系统处于静平衡位置时势能为,当杆顺时针偏转角时动能:势能:由能量守恒原理,得化简得:2- 3如图2-3所示,质量为m 、半径为R 的圆柱体,可沿水平面作纯滚动,与圆心O 距离为a 处用两根刚度为k 的弹簧相连,求系统作微振动的微分方程。

图2- 1 图2- 22.222..220111T J ,2221V (2)[()]2()032()02m R J mR k R a dT V dt mR k R a θθθθθ⎛⎫=+= ⎪⎝⎭=⋅++=++=解:设系统处于静平衡位置时势能为动能:势能:由能量守恒原理,得化简得: 2- 4求图2-4所示弹簧-质量-滑轮系统的振动微分方程(假设滑轮与绳索间无滑动)。

2.222....0111T J ,2221V ()2()0()02m r J Mr k r dT V dt x r x r M m x kx θθθθθ⎛⎫=+= ⎪⎝⎭=⋅+===++=解:设系统处于静平衡位置时势能为动能:势能:由能量守恒原理,得其中,,化简得: 2- 5质量可忽略的刚性杆-质量-弹簧-阻尼器系统参数如图2-5所示,2L 杆处于铅垂位置时系统静平衡,求系统作微振动的微分方程。

第2章 刚性构件组成的单自由度机械系统动力学

第2章 刚性构件组成的单自由度机械系统动力学

第二章刚性构件组成的单自由度机械系统动力学§2.1 引言本章和第三章首先研究忽略构件弹性变形的理想机械系统的动力学问题。

即在研究时,近似认为组成这类理想机械系统的构件都是刚体,并忽略运动副中间隙的影响,运动副中的摩擦在通常情况也是被忽略的。

作出上述简化的目的是为了能够忽略一些次要因素,以突出问题的主要方面。

当机械中各构件的刚度较大且运转速度不是很高时,作出这些简化是合理的,所得到的结果有很好的实用价值。

本章将研究单自由度机械系统的动力学问题。

目前单自由度机械应用最为广泛,然而由于各种自动机和机器人的出现,刚性构件组成的多自由度机械系统动力学的研究也变得越来越重要,所以在下一章还要进一步研究二自由度机械系统动力学问题。

考虑构件弹性变形时的动力学问题将在后续章节中研究。

本章主要介绍用等效力学模型进行研究的方法,该方法适用于单自由度系统的研究,目前在工程上被广泛应用。

在研究时,首先把实际机械系统简化成等效的单构件力学模型,并根据该模型列出运动方程式,然后对运动微分方程式进行求解和讨论。

§2.2 驱动力和工作阻力除重力、摩擦力之外,作用在机械上的力主要还有工作阻力和驱动力,它们随着机械工作情况及使用的原动机的不同而多种多样。

为了研究在力作用下机械的运动,可将作用力按机械特性进行分类。

所谓机械特性是指力(或力矩)和运动学参数(位移、速度、时间等)之间的关系。

本书中,所有的外力都假设为是预先已知的,即假设发动机和工作机的机械特性是预先给定的。

在工作机械中,按机械特性来分,常见的工作阻力有以下几种:1)工作阻力是常数。

如起重机的有效工作负荷为起吊重量(为常数),机床的制动力矩,通常也可简化为常数。

2)工作阻力随位移而变化。

如往复式压缩机中活塞上作用的阻力,曲柄压力机滑块上受到的阻力等。

3)工作阻力随速度而变化。

如鼓风机、离心泵的工作阻力。

4)工作阻力随时间而变化。

如揉面机的工作阻力。

在发动机中,按其机械特性进行分类,常见的驱动力有以下几种:1)驱动力是常数。

第三章_单自由度机械系统动力学

第三章_单自由度机械系统动力学

2. 等效构件的角加速度
d d d d dt d dt d
二、等效转动惯量是常数,等效力矩是速度的函数时
以电动机驱动的鼓风机、搅拌机、离心泵以及车床等之类机械属于这种情况。这些 机器的驱动力是速度的函数,而生产阻力是常数或者是速度的函数,机器的速比是常 数。因此,其等效力矩仅仅是速度的函数,而等效转动惯量是常数,此时,用力矩形 式的运动方程式求解比较方便。
广义坐标为一个角位移时,广义力F为一等效力矩Me,它可按下式计算:
m j Fk vk cos k F Me ( ) ( M j ) q q k 1 j 1 m
、vk / q 是由机构的尺度和位置决定的, Me表示式中的广义传动比 j / q 的变化无关。 Me仅仅是机构广义坐标q的函数,与广义速度 q
单自由度机械系统的动力学方程2 q
三、等效力学模型
机械系统是复杂多样的,在进行动力学研究时,通常要将复杂 的机械系统,按一定的原则简化为一个便于研究的等效动力学模型。 为了研究单自由度机械系统的真实运动,可将机械系统等效转 化为只有一个独立运动的等效构件,等效构件的运动与机构中相应 构件的运动一致。
§3.1 概 述
机械的真实运动规律是由作用于机械上的外力、各 构件的质量、尺寸及转动惯量等因素决定的,而研究机 械在外力作用下的真实运动则是机械动力学的基本问题 (机械动力学的正问题)。本章主要研究两个问题: 第一,研究单自由度机械系统在外力作用下的真实 运动规律,即机械系统的运动随时间的变化规律。掌握 通过建立动力学模型建立力与运动参数之间的运动微分 方程来研究真实运动规律的方法。
例题P72
§3.4 动力学方程式的求解
注意:关键是确定等效转动惯量和等效力矩的关系式(解析式、图表形式等)

第四章 单自由度机械系统动力学

第四章 单自由度机械系统动力学

摩擦力:由运动副表面摩擦产生的有害阻力, 摩擦力 由运动副表面摩擦产生的有害阻力,作负功 ; 由运动副表面摩擦产生的有害阻力 一些效率较低的机构则应计入摩擦力的影响 在动力分析中主要涉及的力是驱动力和生产阻力
常见的生产阻力有: 常见的生产阻力有: 生产阻力为常数:如起重机的起吊重量; 生产阻力为常数:如起重机的起吊重量; 生产阻力随位移而变化: 生产阻力随位移而变化:如往复式压缩机中活塞上 作用的阻力; 作用的阻力; 生产阻力随速度而变化:如鼓风机 离心泵的生产阻力 生产阻力随速度而变化 如鼓风机,离心泵的生产阻力; 如鼓风机 离心泵的生产阻力; 生产阻力随时间而变化:如揉面机的生产阻力。 生产阻力随时间而变化:如揉面机的生产阻力。 驱动力与发动机的机械特性有关,有如下几种情况: 驱动力与发动机的机械特性有关,有如下几种情况: 驱动力是常数:如以重锤作为驱动装置的情况; 驱动力是常数:如以重锤作为驱动装置的情况; 驱动力是位移的函数:如用弹簧作驱动件时, 驱动力是位移的函数:如用弹簧作驱动件时,驱动力 与变形成正比; 驱动力是速度的函数:如一般电动机,机械特性均表 驱动力是速度的函数:如一般电动机, 示为输出力矩随角速度变化的曲线。 示为输出力矩随角速度变化的曲线。
??d2deeeeejjjmjt???引入变换dd???dd??ddddtt????21????d??2deee?mjj??令21????2??eee?mjfj??则d????df?可利用龙格库塔法求解求出各值下的3加平衡机构法用加齿轮机构的方法平衡惯性力时平衡效果好但采用平衡机构将使结构复杂机构尺寸加大这是此方法的缺点
4.2单自由度系统等效力学模型 单自由度系统等效力学模型 对单自由度系统,可以采用等效力学模型来研究, 对单自由度系统,可以采用等效力学模型来研究,将系统 的动力学问题转化为一个等效构件的动力学问题。 的动力学问题转化为一个等效构件的动力学问题。 过程如下: 取做直线运动的构件作为等效构件时,作用于系统 过程如下: 取做直线运动的构件作为等效构件时, 上的全部外力折算到该构件上得到等效力, 上的全部外力折算到该构件上得到等效力,系统的 (1)选取等效构件,通常选主动构件为等效构件; )选取等效构件,通常选主动构件为等效构件; 全部质量和转动惯量折算到该构件上得到等效质量 (2)计算等效力,根据做功相等的原则进行; )计算等效力,根据做功相等的原则进行; (3)计算等效质量,根据动能相等的原则,将各个 )计算等效质量,根据动能相等的原则, 构件向等效构件进行等效; 构件向等效构件进行等效; 取做定轴转到的构件作为等效构件时, 取做定轴转到的构件作为等效构件时,作用于系统 (4)对等效构件列运动方程; )对等效构件列运动方程; 上的全部外力折算到该构件上得到等效力矩, 上的全部外力折算到该构件上得到等效力矩,系统 5)解方程。 (的全部质量和转动惯量折算到该构件上得到等效转 )解方程。 动惯量

单自由度机械系统的动力学分析

单自由度机械系统的动力学分析

§3 单自由度机械系统的动力学分析1e 21111111d d 21F qq J q J =+ 一、基于拉格朗日方程的动力学方程☐若 q 1 为位移,则 J 11 称为等效质量 ( m e ),F e1称为等效力 ( F e ) ;☐若 q 1 为角位移,则 J 11 称为等效转动惯量 ( J e ),F e1称为等效力矩 ( M e ) 。

∑∑==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫⎝⎛=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=n j j S S j n j jS S S jq J q v m q J q y q x m J j j j j j 12121121212111d d d d d d ωϕ∑∑∑∑====±+=±+⎪⎪⎭⎫ ⎝⎛+=l j m k k kj j j lj m k kk j jy j jx q M q v F q M q y F q x F F 1111111111e cos ωθω单自由度机械系统的动力学分析“±” 取决于 M k 与的方向是否相同,相同为“+”, 相反则为“-” 。

k ω1. 等效动力学模型二、基于等效动力学模型的动力学方程单自由度机械系统的动力学分析☐单自由度机械系统仅有一个广义坐标,无论其组成如何复杂,均可将其简化为一个等效构件。

等效构件的角位移(位移)即为系统的广义坐标。

☐等效构件的等效质量(等效转动惯量)所具有的动能,应等于机械系统的总动能;等效构件上的等效力(等效力矩)所产生的功率,应等于机械系统的所有外力与外力矩所产生的总功率。

单自由度机械系统的动力学分析定轴转动构件 直线移动构件求出位移 S 或角位移的变化规律,即可获得系统中各构件的真实运动。

等效转动惯量等效质量等效力等效力矩☐等效量不仅与各运动构件的质量、转动惯量及作用于系统的外力、外力矩有关,而且与各运动构件与等效构件的速比有关,但与机械系统的真实运动无关;☐等效力(等效力矩)只是一个假想的力(力矩),并非作用于系统的所有外力的合力(外力矩的合力矩);等效质量(等效转动惯量)也只是一个假想的质量(或转动惯量),它并不是系统中各构件的质量(或转动惯量)的总和。

单自由度机械系统动力学

单自由度机械系统动力学

为保证等效构件的运动与等效前的
M1
实际机构的运动完全一致,必须将作
用于原机构上的所有外力、所有的质
F3
量和转动惯量等效(转换)到等效构
件上,
等效的原理(功能原理):即在某 一时间间隔内作用在原系统上所有外力 的功等于系统动能的改变量。
机械动力学
Chapter3单自由度机械系统动力学
§3-3等效力学模型
机械动力学
Chapter3单自由度机械系统动力学
§3-2作用在机械上的力
二、三相异步电机的机械特性
1、图示的特性:
▼AC段:运转稳定。当外载荷↑机 械减速时→输出力矩↑→并与外载 荷达到新的平衡 ▼AD段:运转不稳定。
当外载荷↑机械减速时→输出力矩 ↓→与外载荷不能达到新的平衡→ 转速进一步↓→停车。
其中:
MH
9550PH nH
,H
30
nH
,
0
30 n0
M K M H , M D 1M H ,K 0 (0 H )( 2 1)
机械动力学
Chapter3单自由度机械系统动力学
§3-2作用在机械上的力
二、三相异步电机的机械特性
2、三相异步电机相关数据
▼特性曲线上的四个特征点及坐标:
A: (MK ,K ),B : (MH ,H ), C : (0,0 ), D : (M D,0)
▼为计算方便,常取作定轴转动或直线运动的构件作为等效构件。 实际应用中,多取驱动构件作为等效构件。
▼确定等效构件位置的变量称为广义坐标。若能求出该广义坐标, 则机构中其他构件的真实运动即可求出。
▼当取直线运动的构件为等效构件时,作用在系统上的所有外力 折算到等效构件上为等效力;质量折算后为等效质量。

机械动力学答案

机械动力学答案




76、部分平衡、完全平衡、优化综合平衡
77、动力学反问题、动力学正问题
78、静力分析、动态静力分析、动态分析、弹性动态分析
79、广义质量代换法、线性独立矢量法、质量矩替代法、有限位置法
80、启动阶段、稳定运转阶段、停车阶段
81、操作机设计、控制器设计、动态性能分析
82、执行机构、驱动装置、控制系统、传感系统


78、动力学的分析方法按水平分类,可分为




79、用质量再分配实现摆动力的完全平衡,其分析方法主要有




80、机械系统运转的全过程可分为


这几个阶段。
81、机器人动力学是机器人


的基础。
82、工业机器人通常由



组成。
83、二自由度系统的等效转动惯量是系统的



的函数。
84、实现摆动力完全平衡的方法有
一、判断题(每小题 2 分,共 30 题,共 60 分)
1-5√×√×√
6-10×√√√√
11-15 ×√××× 16-20 ×√√×√
21-25 √××√× 26-30 √××√√
1、机构平衡问题在本质上是一种以动态静力分析为基础的动力学综合,或动力学设计。
()
2、平衡是在运动设计完成之前的一种动力学设计。( )
的功。( )
14、机器人操作机是一个多自由度的闭环的空间机构。( )
15、速度越快,系统的固有频率越大。( )
16、两点动代换后的系统与原有系统在静力学上是完全等效的。( )
17、质量代换是将构件的质量用若干集中质量来代换,使这些代换质量与原有质量在运
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业(二)单自由度机械系统动力学等效转动惯量等效力矩
1.如题图1所示的六杆机构中,已知滑块5的质量为m 5=20kg ,l AB =l ED =100mm ,l BC =l CD =l EF =200mm ,φ1=φ2=φ3=90o ,作用在滑块5上的力P=500N .当取曲柄AB 为等效构件时,求机构在图示位置的等效转动惯量和力P的等效力矩.
图1
答案:解此题的思路是:①运动分析求出机构处在该位置时,质心点的速度及各构件的角速度.
②根据等效转动惯量,等效力矩的公式求出.
做出机构的位置图,用图解法进行运动分析.
V C =V B =ω1×l AB ω2=0
V D =V C =ω1×l AB 且ω3=V C /l CD =ω1
V F =V D =ω1×l AB (方向水平向右) ω4=0
由等效转动惯量的公式: e J =m 5(V F /ω1)2=20kg ×(ω1×l AB /ω1)2=0.2kgm 2
由等效力矩的定义: e M =500×ω1×l AB ×cos180o /ω1=-50Nm (因为VF 的方向与P方向相反,所以α=180o )
∑=+=n i i Si Si i e J v m J 121
21])()(
[ωωω∑=±=n i i i i i i e M v F M 11
1)]()(
cos [ωωωα
2.题图2所示的轮系中,已知各轮齿数:z 1=z 2’=20,z 2=z 3=40,J 1=J 2’=0.01kg ·m 2,J 2=J 3=0.04kg ·m 2.作用在轴O3上的阻力矩M3=40N ·m .当取齿轮1为等效构件时,求机构的等效转动惯量和阻力矩M3的等效力矩.
图2
答案:该轮系为定轴轮系.
i 12=ω1/ω2=(-1)1z 2/z 1 ∴ ω2=-ω1/2=-0.5×ω1 ω2’=ω2=-0.5×ω1
i 2’3=ω2’/ω3=(-1)1z 3/z 2’ ∴ ω3=0.25×ω1 根据等效转动惯量公式
e J = J 1×(ω1/ω1)2+J 2×(ω2/ω1)2+J 2’×(ω2’/ω1)2+J 3×(ω3/ω1)2 =J 1+J 2/4+J 2’/4 +J 3/16
=0.01+0.04/4+0.01/4+0.04/16
=0.025 kg ·m 2
根据等效力矩的公式: e M =M 3×ω3/ω1=40×0.25ω1/ω1=10N ·m
3.在题图3所示减速器中,已知各轮的齿数:z 1=z 3=25,z 2=z 4=50,各轮的转动惯量J 1=J 3=0.04kg ·m 2,J 2=J 4=0.16kg ·m 2,(忽略各轴的转动惯量),作用在轴Ⅲ上的阻力矩M 3=100N ·m .试求选取轴
∑=+=n i i Si Si i e J v m J 121
21])((
[ωωω∑=±=n i i i i i i e M v F M 11
1)]()(
cos [ωωωα
Ⅰ为等效构件时,该机构的等效转动惯量J和M3的等效阻力矩M r.
图3
答案:i12=ω1/ω2=z2/z1ω2=ω1/2 ω3=ω2=ω1/2
i34=ω3/ω4=z4/z3ω4=ω1/4
等效转动惯量:
J=J1(ω1/ω1)2+J2(ω2/ω1)2+J3(ω3/ω1)2+J4(ω4/ω1)2
=0.042+0.16×(1/2)2+0.04×(1/2)2+0.16×(1/4)2
=0.04+0.04+0.01+0.01
=0.1kg·m2
等效阻力矩:
M r=M3×ω4/ω1=100/4=25(N·m)
4.题图4所示为一简易机床的主传动系统,由一级带传动和两级齿轮传动组成.已知直流电动机的转速n0=1500r/min,小带轮直径d=100mm,转动惯量J d=0.1kg·m2,大带轮直径D=200mm,转动惯量J D=0.3kg·m2.各齿轮的齿数和转动惯量分别为:z1=32,
J1=0.1kg·m2,z2=56,J2=0.2kg·m2,z2’=32,J2’=0.4kg·m2,z3=56,J3=0.25kg·m2.
要求在切断电源后2秒,利用装在轴上的制动器将整个传动系统制动住.求所需的制动力矩M1.
图4
答案:电机的转速n0=1500r/min
其角速度ω0=2π×1500/60=50π(rad/s)
三根轴的转速分别为:
ω1=d×ω0/D=25π(rad/s)
ω2=z1×ω1/z2=32×25π/56=1429π(rad/s)
ω3=z2’×ω2/z3=32×1429π/56=816π(rad/s)
轴的等效转动惯量:
J V=J d×(ω0/ω1)2+J D×(ω1/ω1)2+J1×(ω1/ω1)2+J2×(ω2/ω1)2+ J2’×(ω2/ω1)2+ J 3×(ω3/ω1)2
∴J V=0.1×(50π/25π)2+0.3×12+0.1×12+(0.2+0.1)×(14.29π/25π)2+0.25×(8.16π/25π)2
=0.4+0.4+0.098+0.027
=0.925 (kg·m2)
轴制动前的初始角速度ω1=25π,制动阶段做减速运动,即可求出制动时的角加速度
∴ωt=ω0-εt即0=25π-2ε
ε=12.5π
则在2秒内制动,其制动力矩M为:
M=J V×ε=0.925×12.5=36.31 (kg·m)
5.在题图5所示定轴轮系中,已知各轮齿数为:z1=z2’=20,z2=z3=40;各轮对其轮心的转动惯量分别为J1=J2’=0.01kg·m2,J2=J3=0.04kg·m2;作用在轮1上的驱动力矩M d=60N·m,作用在轮3上的阻力矩M r=120N·m.设该轮系原来静止,试求在M d和M r 作用下,运转到t=15s时,轮1的角速度ω1和角加速度α1.
图5
答案:i12=ω1/ω2=(-1)1×z2/z1 ω2=-ω1/2
i13=ω1/ω3=(-1)2×z2×z3/z1×z2’ω3=20×20×ω1/40×40=ω1/4
轮1的等效力矩M为:
M=M d×ω1/ω1+M r×ω3/ω1 =60×1-120/4=30 N·m
轮1的等效转动惯量J为:
J=J1(ω1/ω1)2+(J2’+J2)(ω2/ω1)2+J3(ω3/ω1)2=0.01×1+(0.01+0.04)/4+0.04/16=0.025 (kg·m2)
∵M=J ×ε∴角加速度ε=M/J=1200 (rad/s2)
初始角速度ω0=0 ∴ω1=ω0+ε×t
ω
=1200×1.5=1800(rad/s)。

相关文档
最新文档