人教版八年级数学上册 分式 辅导讲义
人教版八年级数学上册《分式》知识点复习及典例解析
![人教版八年级数学上册《分式》知识点复习及典例解析](https://img.taocdn.com/s3/m/65dc8fdf9a89680203d8ce2f0066f5335a81672f.png)
人教版八年级数学上册《分式》知识点复习及典例解析《分式》知识点复习及典例解析一、复习目标1.理解并记住分式的乘法法则、除法法则,会进行简单的分式乘除法计算.能解决一些与分式的乘除运算有关的简单的实际问题.2.了解同分母分式的加减法法则,会进行同分母分式的加减运算,理解通分的意义,会通过通分把异分母的分式加减转化为同分母的分式加减.3.能熟练地进行分式的加减乘除混合运算,提高类比的能力和代数化归的能力.4.了解分式方程的概念,掌握解一元一次方程的分式方程的方法,了解产生增根的原因,会检捡一个数是不是分式方程的增根.5.能够列出可化为一元一次方程的分式方程解简单实际问题.二、重点难点重点:分式乘除法、加减法法则的应用. 分式方程的概念,分式方程的解法难点:异分母分式加减法. 解分式方程时,去分母可能会出现增根。
三、知识概要1. 分式的乘除乘法法则:分式乘分式时,分子的积作积的分子,分母的积作积的分母. 除法法则:分式除以分式,把除式的分子和分母颠倒位置后与被除式相乘. 式子表示:.;bcad c d b a d c b a bd ac d c b a =?=÷=? 2. 分式的加减(1)分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分.(2)法则:同分母分式相加减,分母不变,分子相加减.异分母分式相加减,先通分,变为同分母的分式,再加减.式子表示:;c b a c b c a ±=±.bdbc ad bd bc bd ad d c b a ±=±=± 3.分式方程的概念分式是一种表示具体情境中数量的模型,分式方程则是表示这些数量关系之间相等关系的模型,分式方程是分母中含有未知数的方程.4.分式方程的解法分式方程是转化为一元一次方程来求解,它是通过去分母实现转化的.主要步骤:去分母,去括号,移项,合并同类项,系数化为1,检验.因为分式方程可能产生增根,所以解分式方程最后一步“检验”,检查所解整式方程的根到底是不是分式方程的根.5.去分母的技巧解分式方程的基本思路是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.去分母是解分式方程的第一步,也是关键的一步,当分式方程中分式的分母是一次式时,可直接确定最简公分母,方程两边同乘以最简公分母后实现去分母,当各分式的分母中有二次式时,要先进行因式分解,再确定最简公分母,然后再去分母.6.验根的方法因为解分式方程可能出现增根,所以验根是必要的,验根的方法有两种,一种是把求得的未知数的值代入原方程进行检验,这种方法道理简单,而且可以检查解方程时有无计算错误,另一种是把求得的末知数的值代入最简公分母,看分母的值是否为零,这种方法比较简便,但不能检查解方程过程中出现的计算错误.7.列分式方程解决实际问题的方法步骤(1)、审:分析问题,寻找已知、未知及相相等关系,(2)、设:设恰当的未知数(3)、列:根据相等关系列出分式方程(4)、解:求出所列方程的解(5)、验:首先检验所求的解是不是分式方程的解,然后检验所求的解是否与实际符合(6)、答:写出答案.四、典例解析考点一、分式概念的运用例1.若分式||33x x --的值为零,则x 的值等于。
第1讲 分式的概念及性质 讲义 (知识精讲+典题精练)2023-2024学年人教八年级数学上册
![第1讲 分式的概念及性质 讲义 (知识精讲+典题精练)2023-2024学年人教八年级数学上册](https://img.taocdn.com/s3/m/74f35aba0875f46527d3240c844769eae009a3ec.png)
第1讲分式的概念及性质【中考考纲】【知识框架】考点课标要求知识与技能目标了解理解掌握灵活应用分式的概念分式的概念√分式有意义的条件√分式值为零的条件√分式值的符号讨论√分式的基本性质分式的基本性质√分式的概念分式的基本性质分式有意义的条件分式值为零的条件分式值的符号讨论分式分式的概念1【知识精讲】一、分式的概念1.一般地,用A ,B 表示两个整式,A B 就可以表示成BA的形式.如果B 中含有字母,式子AB就叫做分式.2.分式有意义的条件:分式的分母不为零;3.分式的值为零的条件:分式的分子为零且分母不为零;4.分式值为正的条件:分式的分子分母符号相同(两种情况);5.分式值为负的条件:分式的分子分母符号不同(两种情况).【经典例题】【例1】下列各代数式:1x ,2x ,5xy ,()12a b +,x π,211x -,22a b a b --,13a-,1x y -中,整式有_____________,分式有_____________.【例2】若分式21x -有意义,则x 的取值范围是_____________.【例3】要使式子3234x x x x ++÷--有意义,则x 的取值是_____________.【例4】使分式2211a a -+有意义的a 的取值是__________.【例5】当3x =-时,下列分式中有意义的是().A.33x x +- B.33x x -+ C.()()()()3232x x x x +++- D.()()()()3232x x x x -++-【例6】x ,y 满足关系_____________时,分式x yx y-+ 无意义.【例7】当x =_________时,分式33x x -+的值是零.【例8】当x =_________时,分式293x x --的值为零.【例9】若分式223-1244x x x ++的值为0,则x 的值为_________.【例10】x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【例11】若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【例12】若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【例13】若分式1||x a+对任何数x 的都有意义,求a 的取值范围.【例14】要使分式11x x-有意义,则x 的取值范围是_________.【例15】当x 取何值时,分式226x x -+的值恒为负?【例16】当x 取什么值时,分式25xx -值为正?2【知识精讲】一、分式的基本性质1.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.2.注意:(1)利用分式的基本性质进行分式变形是恒等变形,不改变分式值的大小,只改变形式;(2)应用基本性质时要注意0C≠,以及隐含的0B≠;(3)注意“都”,分子分母要同时乘以或除以.3.分式的通分和约分:关键是先分解因式.【经典例题】【例17】把分式yx中的x 和y 都扩大3倍,则分式的值______.【例18】如果把分式10xyx y+中的x ,y 都扩大十倍,则分式的值().A .扩大100倍B .扩大10倍C .不变D .缩小到原来的110【例19】对于分式11x -,恒成立的是().A.1212x x =--B .21111x x x +=--C .()21111x x x -=--D .1111x x -=-+【例20】下列各式中,正确的是().A .a m ab m b+=+B .0a ba b+=+C .1111ab b ac c +-=--D .221x y x y x y+=--【例21】与分式a ba b-+--相等的是().A .a b a b+-B .a b a b-+C .a b a b+--D .a b a b--+【例22】将分式253x yx y -+的分子和分母中的各项系数都化为整数,得().A .235x y x y -+B .1515610x y x y -+C .1530610x y x y -+D .253x y x y-+【例23】已知23a b =,求a bb+的值?【例24】化简:2323812a b cab c =________________.【例25】化简:22442y xy x x y-+=-________________.【例26】已知一列数1a ,2a ,3a ,4a ,5a ,6a ,7a ,且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为().A .648B .832C .1168D .1944【例27】如果115x y +=,则2522x xy y x xy y-+=++____________.【例28】已知a b c d b c d a ===,则a b c da b c d-+-+-+的值是__________.【例29】化简:43211x x x x -+++.【例30】已知2215x x =+,求241x x +的值.【随堂练习】【习题1】若分式42121x x x --+的值为0,则x 的值是___________.【习题2】求证:无论x 取什么数,分式223458x x x x ---+一定有意义.【习题3】已知()1xf x x=+,求下列式子的值.111()()()(1)(0)(1)(2)(2011)(2012)201220112f f f f f f f f f ++++++++++ 【习题4】x 取______________值时,112122x +++有意义.【习题5】已知34y x =,求代数式2222352235x xy y x xy y -++-的值.【课后作业】【作业1】已知,,0a b c ≠,且0a b c ++=,则111111a b c b c c a a b ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值是__________.【作业2】已知20y x -=,求代数式()()()()22222222xy x xy y xxy yxy+-+++-的值.【作业3】若实数x ,y 满足0xy ≠,则y xm x y=-的最大值是多少?【作业4】已知a ,b 为实数,且1ab =,设11a b P a b =---,1111Q a b =---,试比较P 和Q 的大小.【作业5】如果整数a (1a ≠)使得关于x 的一元一次方程:232ax a a x -=++的解是整数,则该方程所有整数解的和为__________.【作业6】已知分式()()811x x x -+-的值为零,则x 的值是__________.【作业7】要使分式241312a a a-++有意义,则a 的值满足__________.【作业8】已知210a a --=,且4232232932112a xa a xa a -+=-+-,求x 的值.。
人教版八年级上册15.分式的基本性质课件
![人教版八年级上册15.分式的基本性质课件](https://img.taocdn.com/s3/m/1c1e988a3086bceb19e8b8f67c1cfad6185fe966.png)
知识讲解
追问1 你认为分式通分的关键是什么?
追问2
上面问题中的分式 1 与 2a b 的公分母是什么?
3ab
2a2c
为通分要先确定各分式的公分母,一般取各分母的所有因
式的最高次幂的积作公分母,它叫做最简公分母。
追问3 分式 1 与 2a b 的最简公分母是如何确定的? 3ab 2a2c
最简公分母的确定方法:取各分母系数的最小公倍数与 各字母因式的最高次幂的乘积。
分母是多项式时,最简公分母的确定方法是: 先因式分解,再将每一个因式看成一个整体,最后确定最简公分母。
课堂练习
找出下列分式的最简公分母
2x 3x (1)x 5 x 5
(2) a 1 a2 2a 1
6 a2 1
(3)x2x21
,4 3x
,x 1 4x3
.
18
小结 【课堂小结】
请同学们回顾:
ab2c
ab2c 2a
2a2b2c
解:(2)最简公分母是 (3 x y)2.
1 3x 3y
(3 x
1 (x y) y)(x
y)
x (3 x
y, y)2
x (x y)2
3 x 3 (x y)2
3x . (3 x y)2
16
活动与探究 知识讲解
(温馨提示:规范操作、注意安全)
追问4 分式 1 与 2 的最简公分母是如何确定的? a b a2 b2
八年级数学-上册-第15章
15.1.2 分式的基本性质
难点名称:通分时最简公分母的确定
1
目录
CONTENTS
导入
知识讲解
课堂练习
小节
2
导入 一 分数的通分
新人教版-八年级(初二)数学上册-分式章节-分式的化简求值(1).讲义教师版
![新人教版-八年级(初二)数学上册-分式章节-分式的化简求值(1).讲义教师版](https://img.taocdn.com/s3/m/81448383998fcc22bcd10dca.png)
内容 基本要求略高要求较高要求分式的概念 了解分式的概念,能确定分式有意义的条件能确定使分式的值为零的条件分式的性质 理解分式的基本性质,并能进行简单的变型能用分式的性质进行通分和约分分式的运算 理解分式的加、减、乘、除运算法则会进行简单的分式加、减、乘、除运算,会运用适当的方法解决与分式有关的问题一、比例的性质: ⑴ 比例的基本性质:a cad bc b d=⇔=,比例的两外项之积等于两内项之积. ⑵ 更比性(交换比例的内项或外项): ( ) ( ) ( )a bc d a c d cb d b a d bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩交换内项 交换外项 同时交换内外项⑶ 反比性(把比例的前项、后项交换):a c b db d a c=⇒=⑷ 合比性:a c a b c d b d b d ±±=⇒=,推广:a c a kb c kdb d b d±±=⇒=(k 为任意实数) ⑸ 等比性:如果....a c m b d n ===,那么......a c m ab d n b+++=+++(...0b d n +++≠)二、基本运算分式的乘法:a c a cb d b d⋅⋅=⋅分式的除法:a c a d a db d bc b c⋅÷=⨯=⋅乘方:()n nn nn a a aa a aa ab b bb b bb b ⋅=⋅=⋅个个n 个=(n 为正整数) 整数指数幂运算性质:⑴m n m n a a a +⋅=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数)知识点睛中考要求分式的化简求值(1)⑷m n m n a a a -÷=(0a ≠,m 、n 为整数) 负整指数幂:一般地,当n 是正整数时,1n n a a-=(0a ≠),即n a -(0a ≠)是n a 的倒数 分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,a b a bc c c+±=异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bcb d bd bd bd±±=±=分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.结果以最简形式存在.一、化简后直接代入求值【例1】 先化简再求值:2111x x x---,其中2x = 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖南郴州【解析】原式()()111x x x x x =---()111x x x x-==-当2x =时,原式112x ==【答案】12【例2】 已知:2221()111a a a a a a a ---÷⋅-++,其中3a =【考点】化简后直接代入求值 【难度】2星 【题型】解答 【关键词】【解析】222221(1)()4111(1)a a a a a a a a a ---+÷⋅=-=--++-【答案】4-【巩固】先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =- 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,安徽省中考例题精讲【解析】()2221144211122a a a a a a a a a a a a --+-⎛⎫-÷=⋅= ⎪----⎝⎭- 当1a =-时,原式112123a a -===---【答案】13【例3】 先化简,再求值:211(1)(2)11x x x -÷+-+-,其中x =【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖北省十堰市中考试题【解析】原式()()()111121x x x x x +-=⋅+-+-+ ()()12x x x =-+-22x =-当x 时,原式224=-=.【答案】4【例4】 先化简,后求值:22121(1)24x x x x -++÷--,其中5x =-. 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,广东省肇庆市中考试题【解析】22121(1)24x x x x -++÷--=221(1)2(2)(2)x x x x x -+-÷-+- =21(2)(2)2(1)x x x x x -+-⋅-- =21x x +- 当5-=x 时,原式21x x =+-521512+-=-=-. 【答案】12【巩固】先化简,再计算:231124a a a +⎛⎫+÷ ⎪--⎝⎭,其中3a =. 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖南省岳阳市中考试题【解析】原式2223221a a a a a a +--⎛⎫=+⨯⎪--+⎝⎭()()22121a a a a a +-+=⨯-+ 2a =+【答案】2a +【例5】 当12x =-时,求代数式22226124111x x x x x x x x ⎛⎫++-+-+÷ ⎪--+⎝⎭的值 【考点】化简后直接代入求值【难度】3星 【题型】解答 【关键词】【解析】原式2224(1)1(1)(1)2413x x x x x x x x x x -++=⨯==+--+- 【答案】13【例6】 先化简分式22222936931a a a a a a a a a ---÷-+-+-,然后在0,1,2,3中选一个你认为合适的a 值,代入求值.【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,广东省深圳市中考试题【解析】原式()()()()223332313a a a a a a a a a a a a +-+-=⋅-=+=--+ 当0123a =,,,时,原式0246=,,, 【答案】0,2,4,6【巩固】先化简:22222a b ab b a a ab a⎛⎫-+÷+ ⎪-⎝⎭,当1b =-时,再从22a -<<的范围内选取一个合适的整数a 代入求值.【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,贵州省贵阳市中考试题【解析】原式()()()()22221a b a b a ab b a b a a a b a a a ba b +-+++=÷=⋅=-++在22a -<<中,a 可取的整数为101-,,,而当1b =-时,①若1a =-,分式222a b a ab--无意义;②若0a =,分式22ab b a +无意义;③若1a =,分式1a b+无意义. 所以a 在规定的范围内取整数,原式均无意义(或所求值不存在)【答案】a 在规定的范围内取整数,原式均无意义(或所求值不存在)【巩固】已知212242xA B C x x x ===--+,,将它们组合成()A B C -÷或A B C -÷的形式,请你从中任选一种进行计算,先化简,再求值其中3=x . 【考点】化简后直接代入求值 【难度】3星 【题型】解答【关键词】2010年,河南省中考试题【解析】选一:()()()21221242222x x x A B C x x x x x x x +⎛⎫-÷=-÷=⨯= ⎪--++--⎝⎭ 当3x =时,原式1132==- 选二:()21212124222x A B C x x x x x x x -÷=-÷=-=--+--,当3x =时,原式13=【答案】选一:当3x =时,原式1132==- 选二:当3x =时,原式13=【例7】 先化简,再求值:224125(2)2[2()](34)(2)a a a a a a a a +++÷--÷-+,其中4a =【考点】化简后直接代入求值【难度】3星 【题型】解答 【关键词】【解析】原式2224(3)5(2)(2)[2](34)(2)a a a a a a a a +++=÷--÷-+4(3)(2)(2)5(34)(2)2a a a a a a +-+-=÷-++ 4(3)2(34)(2)(3)(3)a a a a a a ++=⋅-+-+4(34)(3)a a =-- 当4a =时,原式441(34)(3)(344)(43)2a a ===--⨯--本题含分式乘方、加、减、乘、除混合运算;与分式四则混合运算类似,分式的四则混合运算 的顺序是:先算乘方,再算乘除,后算加减,如有括号,括号内先算. 【答案】12【例8】 已知22a b ==a bb a-的值. 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖北荆门市中考试题【解析】∵22a b =+=∴4a b +=,a b -=,1ab =而a b b a -22()()a b a b a b ab ab -+-==∴a b b a -=()()a b a b ab+-==【答案】【例9】 先化简,再求值:()()x yy x y x x y -++,其中11x y ==,. 【考点】化简后直接代入求值 【难度】2星 【题型】解答【关键词】2010年,湖南湘潭市中考试题【解析】原式()()22x y xy x y xy x y =-++ ()22x y xy x y -=+()()()x y x y xy x y -+=+x y xy-=当 11x y ==,时,11221x yxy--=== 【答案】2【例10】 化简,再求值:11-a b b a ⎛⎫+ ⎪+⎝⎭ab a b ÷+.其中1a =, b =. 【考点】化简后直接代入求值 【难度】3星 【题型】解答【关键词】2010年,黄石市中考试题【解析】原式()()()()()2b a a b a b a b b a ab a b b++-+=⋅=-+-∵1a b ==,∴原式1b ==,∴=【巩固】先化简,再求值:22112b a b a b a ab b⎛⎫-÷ ⎪-+-+⎝⎭,其中11a b ==-【考点】化简后直接代入求值 【难度】3星 【题型】解答【关键词】2010年,宣武一模试题【解析】原式()()()()()()22a b a b a b a b a b a b b a b+----=⋅=-++当11a b ==-==【答案】【例11】 先化简,再求值:22211x yx y x y x y ⎛⎫+÷ ⎪-+-⎝⎭,其中11x y ==, 【考点】化简后直接代入求值 【难度】3星 【题型】解答【关键词】2010年,广西桂林中考试题 【解析】原式2222222x y x y x yx y x y x y ⎛⎫+-=+÷ ⎪---⎝⎭ 22222x y x y x y x y x y++--=⨯- 222x x y xy==当11x y ==,原式22131xy====-【答案】1【例12】 求代数式()()22222222222a b c a b c ab ac a a ab ab a b a b -----+⋅÷-++-的值,其中1a =,12b =-,23c =- 【考点】化简后直接代入求值 【难度】3星 【题型】解答 【关键词】【解析】()()22222222222a b ca b c ab ac a a ab ab a b a b -----+⋅÷-++-()()()()2a b c a a b c a b c a b a b a a b a b c a b c a b -+-+--+-=⋅⋅-+--++a b ca b --=+. ∴当1a =,12b =-,23c =-时,原式12123112++=-1313263=⨯=. 【答案】133二、条件等式化简求值1. 直接换元求值【例13】 已知:2244a b ab +=(0ab ≠),求22225369a b a b ba b a ab b a b--÷-++++的值. 【考点】直接换元求值(分式) 【难度】3星 【题型】解答【关键词】2010年,石景山二模【解析】由2244a b ab +=得2b a =原式2a ba b-=+当2b a =时,原式42a aa a-=+1=-【答案】1-【例14】 已知:34x y =,求2222222x y xy y x xy y x xy -+÷-+-的值【考点】直接换元求值(分式)【难度】3星 【题型】解答 【关键词】【解析】2222222()()()32()()4x y xy y x y x y y x y x x xy y x xy x y x x y y -++-+÷=÷==-+--- 【答案】34【巩固】已知x y z ,,满足235x y z z x ==-+,则52x yy z-+的值为( ) A.1 B.13C.13-D.12【考点】直接换元求值(分式) 【难度】4星 【题型】选择【关键词】2007年,全国初中数学联赛试题【解析】B ;由235x y z z x ==-+得332y x z x ==,,∴55312333x y x x y z x x --==++ 【答案】13【例15】 已知12=x y ,求2222222-⋅+-++-x x y y x xy y x y x y 的值. 【考点】直接换元求值(分式)【难度】2星 【题型】解答【关键词】2010年,海淀一模【解析】y x y y x y x y xy x x-++-⋅+-2222222 22()()2()x x y x y yx y x y x y -+=⋅++--22()x y x y x y =+--2()()x y x y +=-.当21=y x 时,x y 2=. 原式2(2)6(2)x x x x +==--.【答案】6-【例16】 已知221547280x xy y -+=,求xy的值. 【考点】直接换元求值(分式) 【难度】3星 【题型】解答 【关键词】【解析】221547280x xy y -+=,∴(37)(54)0x y x y ++=,∴370x y +=或540x y +=,由题意可知:0y ≠,73x y =-或45x y =-. 【答案】45-【巩固】已知22690x xy y -+=,求代数式 2235(2)4x yx y x y+⋅+-的值. 【考点】直接换元求值(分式) 【难度】3星 【题型】解答【关键词】2010年,海淀二模【解析】22690x xy y -+=,2(3)0x y -=.∴ 3x y =. ∴原式35(2)(2)(2)x yx y x y x y +=⋅++-352x yx y +=-3(3)52(3)y yy y+=-145=. 【答案】145【例17】 已知x =,求351x x x ++的值.【考点】条件等式化简求值 【难度】4星 【题型】解答【关键词】降次,整体置换【解析】21x -=21x x =+,0x ≠.则()233245555111x x x x x x x x x x x++++=====【例18】 已知123a b c a c ==++,求ca b+的值. 【考点】直接换元求值(分式) 【难度】4星 【题型】解答【关键词】第8届,华罗庚金杯复赛【解析】23b c a a c a +=⎧⎨+=⎩22b c a c a +=⎧⇒⎨=⎩02b c a =⎧⇒⎨=⎩,所以220c aa b a ==++.【答案】2【例19】 已知22(3)0x y a b -+-=,求32223322232332a x ab y b xya x ab y b xy++++的值.【考点】直接换元求值(分式)【难度】3星【题型】解答【关键词】第9届,华罗庚金杯总决赛1试【解析】由已知可得:2y x =,3a b =,故原式7297=. 【答案】7297【巩固】已知2232a b ab -=,0a >,0b >,求证:252a b a b +=- 【考点】直接换元求值(分式)【难度】4星【题型】解答【关键词】【解析】由已知可得22230a ab b --=,则(3)()0a b a b -+=,所以3a b =或a b =-∵0a >,0b >,∴3a b =,则23255322a hb b b a b b b b ++===-- 【答案】52【巩固】已知分式1x y xy+-的值是m ,如果用x ,y 的相反数代入这个分式,那么所得的值为n ,则m 、n 是什么关系?【考点】直接换元求值(分式)【难度】3星【题型】解答【关键词】 【解析】由题可知:()()()1.1x y m xy x y n x y +⎧=⎪-⎪⎨-+-⎪=⎪---⎩,①② 由②得:11x y x y n m xy xy--+==-=---. ∴m n =-,∴0m n +=.所以m n ,的关系为互为相反数.【答案】m n ,的关系为互为相反数【例20】 已知:233mx y +=,且()22201nx y x y -=≠≠-,.试用x y ,表示m n. 【考点】直接换元求值(分式)【难度】4星【题型】解答【关键词】【解析】∵0x ≠,∴由233mx y +=,得:()()231133y y y m x x +--==.由222nx y -=,得:222122y y n x x ++==. ∵1y ≠-,∴0n ≠, ∴()()()231121y y y m n x x +-+=÷()()()231121y y x x y +-=⋅+()312x y -=. 【答案】()312x y -【例21】 已知:230a b c -+=,3260a b c --=,且0abc ≠,求3332223273a b c ab bc a c-++-的值. 【考点】直接换元求值(分式)【难度】4星【题型】解答【关键词】【解析】由题意可知:2303260a b c a b c -+=⎧⎨--=⎩,解得43a c b c =⎧⎨=⎩,333322233215173453a b c c ab bc a c c -+-==-+- 【答案】13-【巩固】已知方程组:230230x y z x y z -+=⎧⎨-+=⎩(0xyz ≠),求:::x y z 【考点】直接换元求值(分式)【难度】3星【题型】解答【关键词】【解析】把z 看作已知数,解关于x 、y 的方程组,解得5y z =,7x z =,所以::7:5:1x y z =.【答案】::7:5:1x y z =【例22】 设自然数x 、y 、m 、n 满足条件58x y m y m n ===,求的x y m n +++最小值. 【考点】直接换元求值(分式)【难度】5星【题型】解答【关键词】黄冈市初中数学竞赛 【解析】58x y =,58y m =,85m y =,864525n m y ==,从而y 是825200⨯=的倍数,当200y = 586412520032051211578525x y m n y y y y +++=+++=+++= 【答案】1157【例23】 设有理数a b c ,,都不为0,且0a b c ++=, 则222222222111b c a c a b a b c +++-+-+-的值为___________。
人教版八年级上册数学《分式方程》分式教学说课复习课件
![人教版八年级上册数学《分式方程》分式教学说课复习课件](https://img.taocdn.com/s3/m/d6bb5eaaaff8941ea76e58fafab069dc51224741.png)
则 x ,k(x+2)=5.
k
1
解得 k ,所以x=8.
2
经检验,x=8是原方程的解.
解:方法四(分子对等法):
20
20
.
将分子化相等,得
4( x 2) 5 x
由分母相等,得4(x+2)=5x,解得x=8.
经检验,x=8是原方程的解.
八年级上册 RJ
分式方程
第2课时
课件
知识回顾
2
A. − = 0
一元一次方程
4
B. = 3
C. x2-1=0
D. 2x+1=3x
一元二次方程
一元一次方程
2.(2020·海南中考)分式方程
3
−2
= 1 的解是( C
A. x=-1
B. x=1
x-2=3
C. x=5
D. x=2
x=5
解分式方程时,不要忘记检验哦.
)
1
5
3.解分式方程
.
x x+3
新知探究 跟踪训练
例2 解下列方程:
5
7
(1)
;
x x-2
2
1
(2)
.
x 3 x-1
解:(2)方程两边乘(x+3)(x-1),得2(x-1)=x+3,
解得x=5,
1
4
检验:将x=5代入原方程,左边= =右边,
因此x=-5是原分式方程的解.
随堂练习
1.下列方程是分式方程的是( B )
1
3
(1)是方程;
(2)含有分母;
(3)分母中含有未知数.三者缺一不可.
新人教版八年级数学上册第十五章分式总复习优质课件
![新人教版八年级数学上册第十五章分式总复习优质课件](https://img.taocdn.com/s3/m/2d6fbc026edb6f1aff001f68.png)
分式方程及其应用
分式的概念 及基本性质
分式的概念
A 形如 ,其中 A ,B 都是整式, B 且 B 中含有字母. B≠0 B=0
1.分式的定义:
2.分式有意义的条件: 分式无意义的条件:
3.分式值为 0 的条件:
A=0且 B ≠0
分式的概念 及基本性质
分式的基本性质
n na a 0 B. m m a n na n na a 0 a 0 D. C. m ma m ma
n n 2 A. m m
2
ab (ax 1 0) , 那么 b= 7. 如果公式 x ab ( C )
x A. ax 1 a C. ax 1
C
A、 x 1 C、 x 1 且
x3
B、 x 3 D、 x 1 或 )
x3
5、下列等式成立的是 ( D
y 1 6、下列各分式中,与 分式的值相等的是( C ) 1 x y 1 y 1 y 1 y 1 A. B. C. D. x 1 1 x x 1 x 1
=
-A ( B )
分式乘除 及 加 减
分式乘分式
a c ac b d bd
分式的乘除法法则
分式除以分式
a c a d ad b d b c bc
分式的乘方
b n bn ( ) a an
分式的加减
1.同分母分式相加减
a b ab c c c
2.异分母分式加减时需化为同分母分式加减. 这个相同的分母叫公分母. (确定公分母的方法:一般取各分母系数的最小公倍数与各分母各个 因式的最高次幂的积为公分母)
2a 9.化简: a 2 4a 4
第15章 分式的计算与化简求值 人教版八年级上册数学讲义
![第15章 分式的计算与化简求值 人教版八年级上册数学讲义](https://img.taocdn.com/s3/m/9d7c27ec2dc58bd63186bceb19e8b8f67c1cef6f.png)
第15章分式的计算与化简求值 人教版八年级上册数学讲义一、内容复习1、最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.2、通分的定义:把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这样的分式变形叫做分式的通分.通分的关键是确定最简公分母.①最简公分母的系数取各分母系数的最小公倍数.②最简公分母的字母因式取各分母所有字母的最高次幂的积.通分:,.二、知识点一 分式的乘、除法法则【知识梳理】1. 分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,用式子表示为b a ·d c =bdac . 2. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为b a ÷d c =b a ·c d =bcad . 【提醒】1. 分式与分式相乘,若分子、分母是单项式,可先将分子、分母分别相乘,然后约去公因式,化为最简分式;若分子、分母是多项式,先把分子、分母分解因式,看能否约分,然后再相乘.2.当整式与分式相乘时,要把整式(看做是分母为1的式子)与分式的分子相乘作为积的分子,分式的分母不变.当整式是多项式时,同样要先分解因式,看能否约分,然后再相乘.3.分式的除法运算可以转化为分式的乘法运算,若除式(或被除式)是整式时,可以看做是分母是1的式子,然后按照分式除法法则计算.4.分式的乘除运算结果要通过约分化为最简分式(分式的分子、分母没有公因式)或整式的形式.5.分式的乘除混合运算,如果没有其他附加条件(如括号等),则应按照由左到右的顺序进行计算.【例题精讲】例1、计算2x 3÷的结果是( )A .2x 2B .2x 4C .2xD .4【分析】原式利用除法法则变形,计算即可得到结果.【解答】解:原式=2x 3•x=2x 4,故选:B .【强化练习】1、(1)x m 86·m x 32 (2)3ab 2÷ab 62、化简的结果是( )A .B .C .D .知识点二 分式的乘方法则【知识梳理】分式的乘方法则:分式乘方要把分子、分母分别乘方。
人教版八年级上册数学《分式方程》分式说课复习(分式方程及其解法)
![人教版八年级上册数学《分式方程》分式说课复习(分式方程及其解法)](https://img.taocdn.com/s3/m/c1faafea1b37f111f18583d049649b6648d709bb.png)
x+5=10.
解得
x=5.
x=5是原分式方 程的解吗?
将x=5代入原分式方程检验,发现这时分母 x-5和x2-25的值都为0,相应的分式无意义.因 此x=5虽是整式方程x+5=10的解,但不是原分式 方程的解,实际上,这个分式方程无解.
巩固练习
练习3 解方程并检验.
1 2 . 2x x 3
解:最简公分母为
巩固练习
练习4
解关于x 的方程
x
a
a
b
1( b ≠ 1).
解:方程两边同乘x-a,得
a+b(x-a)= x-a
去括号,得 a+bx-ab =x-a
移项、合并同类项,得
(b-1)x = ab-2a
∴x
ab 2a b 1
检验:当 x
ab b
2a 1
时,∵
b
≠
1,∴b-1
≠0,
x ab 2a
方程① 当v=6时,(30+v)(30-v)≠0,这就是说,去分
母时,方程①两边乘了同一个不为0的式子,因此
方程② 所当得x=整5时式,方(程x的-5)解(与x①+的5)解=相0,同这. 就是说,去分母
时,方程②两边乘了同一个等于0的式子,这时所 得整式方程的解使②出现分母为0的现象,因此这 样的解不是②的解.
解:设该厂原来每天加工x个零件,则采用新技 术后,每天加工2x个零件,
根据完成时间的等量关系,得
100 600 100 7
x
2x
去分母,得200 + 500 =14x,
解得
x = 50.
检验:x = 50时,2x ≠ 0.
所以x = 50是原方程的根.
人教版八年级上册数学《分式方程》分式研讨复习说课教学课件
![人教版八年级上册数学《分式方程》分式研讨复习说课教学课件](https://img.taocdn.com/s3/m/fb723b9aaff8941ea76e58fafab069dc50224786.png)
x=5
解分式方程时,不要忘记检验哦.
)
1
5
3.解分式方程
.
x x+3
解:方程两边乘x(x+3),得x+3=5x,
3
4
解得x= ,
3
4
检验:将x= 代入原方程,左边=
4
3
3
因此x= 是原分式方程的解.
4
=右边,
课堂小结
概念
分母中含未知数的方程.
分式
方程
解分式方程
分式
方程
去分母
转化
整式
分式方程的解
解分式方程
1.怎么解分式方程?
2.为什么解分式方程一定要检验?
练习
解下列方程:
练习
解下列方程:
练习
解下列方程:
练习
解下列方程:
练习
解分式方程:
【答案】x=3是增根,原分式方程无解
练习
解方程:
【答案】x=0
易错点
解分式方程时容易犯的错误:
①去分母时,原方程的整式部分漏乘.
②约去分母后,分子是多项式时, 要注意添括号.
去分母
转化
整式方程
分式方程①中各分母的最简公分母是 (30+v)(30-v).把方
程①的两边乘最简公分母可化为整式方程,解这个整
式方程可得方程①的解.
解:方程①两边乘(30+v)(30-v),得90(30-v)= 60(30+v).
解得v=6.
5
2
检验:将v=6代入①中,左边= =右边,因此v= 6是分
k+3(x-2)=-(1-x)
解得
初中数学 人教版八年级上册分式的化简 求值 与证明讲义
![初中数学 人教版八年级上册分式的化简 求值 与证明讲义](https://img.taocdn.com/s3/m/52fe297fdd36a32d737581a5.png)
分式的化简 求值 与证明考点•方法•破译1. 分式的化简、求值先化简,后代入求值是代数式化简求值问题的基本策略,有条件的化简求值题,条件可直接使用,变形使用,或综合使用,要与目标紧紧结合起来;无条件的化简求值题,要注意挖掘隐含条件,或通过分式巧妙变形,使得分子为0或分子与分母构成倍分关系特殊情况,课直接求出结果.2. 分式的证明证明恒等式,没有统一的方法,具体问题还要具体分析,一般分式的恒等式证明分为两类:一类是有附加条件的,另一类是没有附加条件的,对于前者,更要善于利用条件,使证明简化.经典•考题•赏析【例1】先化简代数式(11x x -++221x x -)÷211x -,然后选取一个使原式有意义的x 的值代入求值.【解法指导】本题化简并不难,关键是x 所取的值的选择,因为原式的分母为:x +1,x 2-1,要是原式有意义,则x +1≠0且x 2-1≠0故x ≠1,因而x 可取的值很多,但不能取x ≠1解:(11x x -++221x x -)÷211x - =[2(1)(1)(1)x x x -+-+2(1)(1)x x x +-]·(x +1)(x -1)=(x -1)2+2x =x 2+1 当x =0时,原式=1. 【变式题组】01.先化简,再求值222366510252106a a a a a a a a--+÷•++++,其中a =.02.已知x =2,y =22211x y x y x y x y xy ⎛⎫⎛⎫+--•- ⎪ ⎪-+⎝⎭⎝⎭的值03.先化简:222a b a ab --÷(a +22ab b a+),当b =-1时,请你为a 任选一个适当的数代入求值.04.先将代数式(x -1x x +)÷(1+211x -)化简,再从-3<x <3的范围内选取一个合适的整数x 代入求值.【例2】已知1x+1y =5,求2322x xy y x xy y -+++的值.【解法指导】解法1:由已知条件115x y+=,知xy ≠0.将所求分式分子、分母同除以xy ,用整体代入法求解.解法2:由已知条件1x+1y =5,求得x +y =5xy ,代入求值. 解:方法1:∵1x+1y =5,,∴x ≠0,y ≠0,xy ≠0将待求分式的分子、分母同除以xy . 原式=(232)(2)x xy y xy x xy y xy -+÷++÷=112()311()2x y x y+-++=2552⨯+=1.方法2:由1x+1y =5知x ≠0,y ≠0,两边同乘以xy ,得x +y =5xy 故2322x xy y x xy y -+++=2()()2x y x y xy +++=25352xy xy xy xy ⨯-⨯+=77xy xy=1.【变式题组】 01.(天津)已知1a -1b =4,则2227a ab ba b ab---+的值等于( ) A .6 B .-6 C . 215 D . 27-02.若x +y =12,xy =9,求的22232x xy yx y xy+++值.03.若4x -3y -6z =0,x +2y -7z =0,求22222223657x y z x y z ++++的值.【例3】(广东竞赛)已知231xx x -+=1,求24291x x x -+的值. 【解法指导】利用倒数有时会收到意外的效果.解:∵2131x x x =-+∴231x x x -+=1∴x -3+1x =1∴x +1x =4. 又∵42291x x x -+=x 2-9+21x =(x -1x )2-11=16-11=5. ∴24291x x x -+=15. 【变式题目】01.若x +1x=4,求2421x x x ++的值.02.若a 2+4a +1=0,且4232133a ma a ma a++++=5求m .【例4】已知ab a b +=13,bc b c +=14,ac a c +=15,求abcab ac bc++的值. 【解法指导】将已知条件取倒数可得a b ab +=3,b c bc +=4,a cac+=5,进而可求111a b c++的值,将所求代数式也取倒数即可求值. 解:由已知可知ac 、bc 、ab 均不为零,将已知条件分别取倒数,得345a babb c bca cac+⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩,即113114115a b c b a c ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ 三式相加可得1a +1b +1c =6,将所求代数式取倒数得ab ac bc abc ++=1a +1b +1c =6,∴abc ab ac bc ++=16.【变式题组】 01.实数a 、b 、c 满足:ab a b +=13,bc b c +=14,ac a c +=15,则ab +bc +ac = . 02.已知xy x y +=2,xzx z+=3,yz y z +=4,求7x +5y -2z 的值.【例5】若a b c +=c b a +=a c b +,求()()()a b c b a c abc+++的值. 【解法指导】观察题目易于发现,条件式和所求代数式中都有a +b ,c +b ,a +c 这些比较复杂的式子,若设a b c +=c b a +=a cb+=k ,用含k 的式子表示a +b ,c +b ,a +c 可使计算简化. 解:设a b c +=c b a +=a c b+=k ,则a +b =ck ,c +b =ak ,a +c =bk ,三式相加,得2(a+b +c )=(a +c +b )k .当a +b +c ≠0时,k =2;当a +b +c =0时,a +b =-c ,1a bc+=-,∴k =-1.∴当k =2时,()()()a b c b a c abc +++=k 3=8;当k =-1时,()()()a b c b a c abc+++=k3=-1.【变式题组】01.已知x 、y 、z 满足2x=3y z -=5z x +,则52x y y z -+的值为( ) A .1 B . 13 C . 13- D . 1202.已知a 、b 、c 为非零实数,且a +b +c ≠0,若a b c c +-=a b c b -+=a b ca-++,求()()()a b b c c a abc+++的值.【例6】已知abc =1,求证:1a ab a +++1b bc b +++1cac c ++=1【解法指导】反复整体利用,选取其中一个的分母不变,将另外两个的分母化为与它的分母相同再相加.证明:∵1a ab a ++=a ab a abc ++=11b bc ++1c ac c ++=c ac c abc ++=11a ab ++=abc a abc ab ++=1cbbc b++∵1a ab a +++1b bc b +++1c ac c ++=11bc b +++1b bc b +++1bc bc b ++=1 【变式题组】01.已知1a b +=1b c +=1c a+,a ≠b ≠c 则a 2+b 2+c 2=( ) A .5 B . 72 C .1 D . 1202.已知不等于零的三个数a b c 、、满足1111a b c a b c++=++.求证:a 、b 、c 中至少有两个数互为相反数.03.若:a 、b 、c 都不为0,且a +b +c =0,求222222222111b c a c a b a b c+++-+-+-的值.演练巩固 反馈提高01.已知x -1x=3,那么多项式x 3-x 2-7x +5的值是( ) A .11 B .9 C .7 D . 5 02.若M =a +b ,N =a -b ,则式子M N M N +--M NM N-+的值是( )A . 22a b ab -B . 222a b ab -C . 22a b ab+ D . 003.已知5x 2-3x -5=0,则5x 2-2x -21525x x --= . 04.设a >b >0,a 2+b 2-6ab =0,则a b b a+-= .05.已知a =1+2n ,b =1+12n ,则用含a 的式子表示b 是 .06. a +b =2,ab =-5,则b aa b+= .07.若a =534-⎛⎫- ⎪⎝⎭,b =-534⎛⎫ ⎪⎝⎭,c =534-⎛⎫⎪⎝⎭,试把a 、b 、c 用“<”连接起来为 .08.已知1n m -⎛⎫⎪⎝⎭=53,求的222m m n m n m n m n +-+--值为 . 09.若2x =132,13y⎛⎫⎪⎝⎭=81,则x y 的值为 .10.化简24322242c b c b a b a ca -⎛⎫⎛⎫⎛⎫•-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为 .11.先化简,再求值:221122x y x y x x y x +⎛⎫--+ ⎪+⎝⎭,其中x,y =3.12.求代数式的值:222222144x x x x x x -++÷--,其中x =2.13.先化简,再求值:22121124x x x x ++⎛⎫-÷⎪+-⎝⎭,其中x =-3.14.已知:2352331x A Bx x x x -=+---+,求常数A 、B 的值. 15.若a +1a =3,求2a 3-5a 2-3+231a +的值.培优升级 奥赛检测01.若a b =20,b c =10,则a b b c++的值为( ) A . 1121 B . 2111C . 11021D . 2101102.已知x +y =x -1+y -1≠0,则xy 的值为( )A . -1B . 0C . 1D . 203.已知x +1x =7(0<x <1)的值为( ) A . -7 B .-5 C . 7 D . 5 04.已知正实数a 、b 满足ab =a +b ,则b aab a b+-=( ) A . -2 B .12 C . 12- D . 2 05.已知1a -a =1,则1a+a 的值为( )A .B .C .D .1 06.已知abc ≠0,并且a +b +c =0,则a (1b +1c )+b (1a +1c )+c (1b +1a)的值为( ) A . 0 B . 1 C . -1 D .-3 07.设x 、y 、z 均为正实数,且满足z x y x y y z z x<<+++,则x 、y 、z 三个数的大小关系是( )A . z <x <yB . y <z <xC . x <y <zD . z <y <x08.如果a 是方程x 2-3x +1=0的根,那么分式543226213a a a a a-+--的值是 .09.甲乙两个机器人同时按匀速进行100米速度测试,自动记录表表明:当甲距离终点差1米,乙距离终点2米;当甲到达终点时,乙距离终点1.01米,经过计算,这条跑道长度不标准,则这条跑道比100米多 . 10.若a +1b =1,b +1a =1,求c +1a的值.11.已知a 、b 、c 、x 、y 均为实数,且满足ab +a b =341-x y ,+bc b c =31x ,+cac a=341+x y ,++abc ab bc ca =112(y )(其中)求x 的值.12.当x 分别取值12009,12008,12007, (1)2,1,2,……2007,2008,2009时,分别计算代数式221-1+x x的值,将所得的结果相加,其和是多少?13.在一列数x 1,x 2,x 3…中,已知x 1=1,且当k ≥2时,x k =x k -1+1-4([14k --24k -])(取整符号[a ]表示不超过实a 数的最大整数,例如[2.6]=2,[0.2]=0)求x 2010的值.14. 已知对于任意正整数n ,都有a 1+a 2+…+a n =n 3,求211a -+311a -+…+10011a -的值.。
人教版数学八年级上册 分式定义及性质 讲义
![人教版数学八年级上册 分式定义及性质 讲义](https://img.taocdn.com/s3/m/02e741a8a8114431b80dd89b.png)
分式定义及性质知识点一、分式分式的概念:一般地,形如BA 的式子叫做分式,其中A 和B 均为整式,B 中含有字母。
分式是否有意义的识别方法:分式无意义的条件: ;分式值为1的条件: ; 分式有意义的条件: ;分式值为-1的条件: ; 分式为0的条件: ;二、分式的基本性质分式的分子与分母同乘以(或除以)一个不等于0的整式,分式的值不变。
(1)分式的分子与分母都乘以(或除以)的整式不能为0;(2)要充分理解基本性质中的“都”和“同”这两个字的含义,避免犯只乘分子或分母一项的错误;(3)分式的分子、分母与分式本身的符号,改变其中任意一个,分式的值不变;(4)因为分数线在分式中具有括号的作用,当分子或分母为多项式,要把它看作一个整体变号时,将多项式的各项都变号。
三、约分根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
分式约分的步骤:先把分式的分子与分母分解因式,再约去分子与分母的公因式。
(1)如果分式的分子、分母是单项式,约去分子、分母系数的最大公约数和相同因式的最低次幂;(2)如果分式的分子与分母都是多项式时,可先把分子、分母分解因式,然后约去分子与分母的公因式;(3)当分式的分子或分母的系数是负数时,应先把负号提到分式的前边。
最简分式:分子与分母没有公因式的分式,叫做最简分式。
(分子、分母都是乘积形式时,才能约分)四、通分:(1)分式通分的意义:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
(2)通分的关键是确定几个分式的公分母。
(3)取各分母所有因式的最高次幂的积作公分母,这样的公分母,叫做最简公分母。
确定公分母时应注意:系数取各分母系数的最小公倍数,字母因式取各分母所有字母因式的最高次幂的积。
(4)约分是对一个分式而言,是将分式简化;通分是对几个分式而言,是将分式化繁。
根据分式的基本性质,将分式的分子和分母都乘以同一个数,就可以使它们各项的系数化为整数;这个数显然应取分子、分母中各项系数的最小公倍数。
人教版八年级上册数学《分式方程》分式培优说课教学复习课件
![人教版八年级上册数学《分式方程》分式培优说课教学复习课件](https://img.taocdn.com/s3/m/e5d86f5c7dd184254b35eefdc8d376eeafaa1770.png)
=
+1
2x
x+ 3 x - 5
x - 25
x+1 3 x+3
与上面的方程有什么共同特征?
分母中都含有未知数.
.
探究新知
分式方程的概念:
分母中含有未知数的方程叫做分式方程.
分式方程的特征:分母中含有未知数.
追问2:你能再写出几个分式方程吗?
注意:我们以前学习的方程都是整式方程,它们
的未知数不在分母中.
2.会解含有字母系数的分式方程.
1.能找出实际问题中的等量关系,熟练地列
出相应的方程.
探究新知
知识点
列分式方程解应用题的步骤
甲、乙两人做某种机器零件,已知
甲每小时比乙多做6个,甲做90个零件
所用的时间和乙做60个零件所用的时间
相等,求甲、乙每小时各做多少个零件?
请审题
分析题意
设元
探究新知
解:设甲每小时做x个零件,则乙每小时做(x–6)个
式子——各分母的最简公分母.
探究新知
90
60
=
追问:你得到的解 v= 6 是分式方程
30+v 30-v
的解吗?
检验:把v=6代入分式方程得:
左边=
90
90 5
30 6 36 2
右边=
60
60 5
30 - 6 24 2
左边=右边,所以v=6是原方程的解.
探究新知
1
10
=
问题3: 解分式方程: x-5 x 2 - 25 .
所以,原方程的解是x=1.
探究新知
素养考点 2
解含有整式项的分式方程
数学人教版八年级上册分式教学
![数学人教版八年级上册分式教学](https://img.taocdn.com/s3/m/5fb77610f111f18583d05a30.png)
a c a d a d b d b c b c
分式的乘方:分式乘方,要把分子分母分别乘方
a n a ( ) n b b
n
分式运算中考真题 【例1】(2016·西宁)化简:
x 1 1 ( x ) 2 x x x 2 x 1
2 x 1
然后在不等式的非负整数解中选择一个适当的数代入求值
x=2
x>3或x<-2
解析:要分类考虑分子、分母同为正或同为负的情况
考点二:分式性质 分式性质:( C≠0 )
A B A B
=
A×C B×C
=
A÷C B÷C
符号变化法则
A A A A = ==B B B B
考点三:分式的通分和约分
1、通分:根据分式的基本性质,把几个异分母分式化为同分母分式,叫分式的通分 注意:通分的关键是寻找最简公分母,其方法为 ①取各分式的分母中系数的最小公倍数 ②相同字母(或因式)的最高次幂 ③各分式的分母中所有字母或因式都要取到 ④所得系数的最小公倍数与各字母(或因式)的最高次幂的积即为最简公分母 2、约分:根据分式的基本性质,把分式的分子和分母中的公因式约去,这种变形叫分式的 约分 注意:①公因式是指系数的最大公约数,相同字母(或因式)的最低次幂 ②约分前分子、分母能因式分解的先要进行因式分解,再约分 3、最简分式:一个分式的分子、分母中没有公因式 C 【例1】(2015·益阳)下列等式成立的是( ) 1 2 3 21 a b a a a A . + = B .= C . = D .= 2 a b a + b 2 a + b a + b b b a b a + b a + b
专题讲座
分式及其运算
人教版数学 八年级上 第十五章 《分式》精品讲义
![人教版数学 八年级上 第十五章 《分式》精品讲义](https://img.taocdn.com/s3/m/9861e745dd88d0d232d46a5e.png)
所以 x2 y2 z2 0. yz zx xy
【解读策略】 条件分式的求值,如需把已知条件或所示条件分式变形,必 须依据题目自身的特点,这样才能到事半功倍的效果,条件分式的求值问题体现 了整体的数学思想和转化的数学思想.
所以 (x
xyz y)( y z)(x
z)
2k k 3k 3k 4k 5k
6k 3 60k 3
1 10
.
例6 已知 x a, z c, 且 abc o ,求 a b c 的值.
yz xy
a 1 b1 c 1
解: 由已知得 1 y z , ax
所以 1 1 y z 1 x y z , 即 a 1 x y z ,
同分母分式,再进行相加减.在通分时,先确定最简公分母,然后将各分式的分
子、分母都乘以分母与最简公分母所差的因式.运算的结果应根据分式的基本性
质化为最简形式.
专题 2 有关求分式值的问题
【专题解读】对于一个分式,如果给出其中字母的值,可以先将分式进行化
简,然后将字母的值代入,求出分式的值.但对于分式的求值问题,却没有直接给
知识网络结构图
分式的概念
分式的概念 分式的意义、无意义的条件
分式的值为 0 的条件
分式的基本性质
分式的基本性质 分式的约分
分式的通分
分式的乘法规则
分式的除法规则
分式
同分母分式的加减法法则
分式的运算 分式的加减法法则
异分母分式的加减法法则
运算性质
负正数指数幂
科学记数法
公式方程的概念
解分式方程的步骤
分式方程 分式方程中使最简公分母为 0 的解
人教版八年级上册数学分式知识点
![人教版八年级上册数学分式知识点](https://img.taocdn.com/s3/m/66f6d857f08583d049649b6648d7c1c709a10b56.png)
人教版八年级上册数学分式知识点
八年级上册数学中的分式知识点主要包括以下几个方面:
1. 分式的定义:分式是一个有分子和分母的数,分子和分母都是整数,分母不能为0。
2. 分式的性质:
- 两个分式相等的条件是它们的分子与分母成比例。
- 分式的倒数是将分式的分子和分母对调得到的新分式。
3. 分式的化简:
- 将分子和分母都除以它们的最大公约数,化简成最简形式。
- 分母是1的分式可以化简成整数。
- 含有多个分数的分式可以通过通分化为一个分数。
4. 分式的四则运算:
- 分式的加法和减法:将两个分式的分母取最小公倍数作为新分母,然后按照相应的分数运算规则进行计算。
- 分式的乘法:将两个分式的分子相乘作为新的分子,分母相乘作为新的分母。
- 分式的除法:将除数的分子和被除数的分母相乘作为新的分子,除数的分母和被除数的分子相乘作为新的分母。
5. 分式的应用:
- 在解决实际问题中,可以运用分式来表示比例、倍数、平均数等关系。
以上是八年级上册数学中有关分式的主要知识点,希望能对你有所帮助。
人教版数学八年级上册分式及其基本性质教学课件
![人教版数学八年级上册分式及其基本性质教学课件](https://img.taocdn.com/s3/m/857c03cc763231126fdb1173.png)
(2)240 3600
复习分数的基本性质
分数的分子与分母同时乘以(或除以)一个不 等于零的数,分数的值不变.
人教版数学八年级上册 15.1.2 分式及其基本性质
人教版数学八年级上册 15.1.2 分式及其基本性质
分数是如何约分的?
● 1、约分:
● 约去分子与分母的最大公约数,化为最简分数。
15
21 =
人教版数学八年级上册 15.1.2 分式及其基本性质
人教版数学八年级上册 15.1.2 分式及其基本性质
例:约分
6x2 12xy 6y2 (3)
3x 3y
解:(3) 6x2 12xy 6y2
3x 3y
(6 x y)2 (3 x y)
(2 x y)
人教版数学八年级上册 15.1.2 分式及其基本性质
人教版数学八年级上册 15.1.2 分式及其基本性质
思维拓展
1、已知2x 6 y 1 0,求 2x 6 y 的值。 x2 9y2
2、已知
1 a
1 b
3 ,求分式
2a a
3ab 7ab
2b b
的值。
3、已知x 1 3,求 x 2 2 x 1 的值。
x
4x2 7x 4
人教版数学八年级上册 15.1.2 分式及其基本性质
2x-6
A. x+3 2
B. x2 +9
2
C. x2 -9
2
D. x-3
2
人教版数学八年级上册 15.1.2 分式及其基本性质
人教版数学八年级上册 15.1.2 分式及其基本性质
2.(盐城·中考)化简:x2 9 = x+3 .
x3
3.(中山·中考)化简:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、打破常规,倒数代入
【例】已知 ,求 的值.
练习:若 ,求分式 的值.
四、常规化简
【例】先化再求值: ,其中 .
分式方程的应用
找等量关系、检验
(一)工程问题
(1)工作量=工作效率×工作时间,工作效率=工作量/工作时间,工作量=工作量/工作效率
【例】甲、乙两地相距19 ,某人从甲地去乙地,先步行7 ,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度。
【例】某项工程限期完成,甲队独做正好按期完成,乙队独做则要误期三天,现两队合做2天后,余下
的工程再由乙队独做,也正好在限期内完成,问该工程限期是多少天?
3、在方程的两边同时乘_______________,可以将分式方程转化为一元一次方程求解。解分式方程一定要___________________.
4、分式方程产生增根的原因:____________________________________;
5、列分式方程的步骤:__________________________________________________________。
【例】解下列方程:
(1) (2) (3)
【例】解方程:
【例】解方程:
【例】解方程:
【例】解方程:
【例】解方程:
【例】若方程 会产生增根,试求k的值。
【例】设 ,当 为何值时, 与 的值相等?
【例】A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()
九年级数学 分式 辅导讲义
教学内容
分式和分式的性质;
分式的运算;
分式方程及分式方程的运用;
教学目标
1.了解分式的意义及分式的基本性质;
2.会利用分式的基本性质进行约分和通分;
3.会进行简单的分式加、减、乘、除运算;
4.会解可化为一元一次方程的分式方程;
5.能够根据具体问题中的数量关系,用可化为一元一次方程的分式方程解决实际问题;
教学重点
分式概念和性质;分式的运算;
教学难点
分式方程的应用;
教学过程
知识详解
【知识点1】分式的概念:
1、分式的定义:一般地,如果A、B表示两个_____________,并且___________中含有字母,那么代数式__________叫做分式。
2、分式有意义的条件:____________________;
3、分式为0的条件:______________________;
【例】1、下列各式: 中,分式有_______________
2、一件工作,甲单独做 小时完成,乙单独做 小时完成,则甲、乙合作小时完成
3、若分式 的值为0,则 的取值为_________________
4、当x时,分式 有意义,当x时,分式 无意义。
(2)完成某项任务的各工作量的和=总工作量
(二)营销问题
(1)商品利润=商品售价一商品成本;
(2)商品利润率=商品利润/商品成本价;
(3)商品销售额=商品销售价×商品销售量;
(4)商品的销售利润=(销售价一成本价)×销售量.
(三)行程问题
(1)路程=速度×时间,速度=路程/时间,时间=路程/速度;
(2)在航行问题中,其中数量关系是:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度;
3、分式的通分:同分母的分式通分:___________________________________.
异分母的分式通分:___________________________________.
对分式进行通分的关键是:___________________________.
最简公分母:____________________________________________________,
【知识点2】分式的基本性质:
1、分式的基本性质:分式的__________________都乘以(或除以)_______________________,
分式的值____________
用式子表示就是: , (其中,M是___________________)
2、分式的约分:根据_____________,把分式的_____________分别______它们的___________,叫做分式的约分。通常把分式约成_____________;
2、分式除以分式,先__________________________,再____________________。
【例】计算:(1) (2)
【知识点5】分式方程
1、分式方程:___________中含有未知数的__________叫做分式方程
2、解分式方程的步骤:_____________________________________________________________;
.
【例】翻译一份文稿,用某种电脑软件翻译的效率相当于人工翻译的效率的75倍,电脑翻译3300个字
1、同分母的分式相加减:分母_____________,分子______________
2、异分母的分式相加减:先_______________,后________________
【例】计算:(1) (2) (3)
【知识点4】分式的乘除
1、分式乘分式,__________________做积的分子,_____________做积的分母。
分母如果是多项式,应该先__________________,再__________________.
【例】1、如果把分式 中的 和 都扩大3倍,那么分式的值()
A、扩大3倍B、缩小3倍C、缩小6倍D、不变
2、填空
, ,
3、约分
, , ,
4、 的最简公分母是。
5、通分
(1) (2)
【知识点3】分式的加减:
A、 B、 C、 D、
【例】A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度
化简求值
一、着眼全局,整体代入
【例】已知 ,求 的值.
【例】已知 ,求 的值.
二、巧妙变形,构造代入
【例】已知 ,求 的值.