初中常见轨迹问题解题策略
九年级专题突破:轨迹问题
![九年级专题突破:轨迹问题](https://img.taocdn.com/s3/m/6606efe226fff705cc170a52.png)
九年级专题突破:轨迹问题考点梳理(1)旋转型轨迹问题这一类动点问题的特点是:所求的点是从动点,是先有其他点在动,然后所求动点才动,而且主动点和从动点会有一个定点作为“旋转中心”,旋转的情形满足下列两种之一:第一种是主动点、从动点和旋转中心三点共线;(运动路径是线段)第二种是主动点与旋转中心的连线和从动点与旋转中心的连线夹角固定,而且两条线段之间的比例不变。
这时,要求从动点的轨迹,只需要求出主动点的轨迹就可以确定运动路径是圆。
因为根据几何画板,他们的轨迹形状相同,长度成比例。
(2)定角对定长这一类动点问题的特点是:以该动点为顶点的某个角度大小是固定不变的,而且该固定角度所对的某一条边是固定的。
由圆周角的特点可知,这个动点的轨迹就是一个圆周或者一段弧。
而且这个固定角度就是圆周角,这个固定边就是弦。
如果需要求轨迹长的话,再把圆心角和半径算出来就行了。
不过有一点需要注意,这时需要把起始点和终点找到才能准确求出圆心角。
对于这种题型,找圆心可以用三角形外心的结论:锐角三角形的外心在三角形内部,直角三角形的外心在斜边中点,钝角三角形的外心在三角形外部。
所以,当这个固定角度是锐角时,圆心和动点位于固定边的同侧;当这个固定角度是直角时,圆心就在固定边的中点;当这个固定角度是钝角时,圆心和动点位于固定边的两侧。
题型分类题型一 运动路径是线段(动点与某条直线的距离始终保持不变) 例1 如图:已知AB =10,点C 、D 在线段AB 上且AC =DB =2;P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作正方形APEF 和正方形PBGH ,点O 1和O 2是 两个正方形的中心,连接O 1O 2,设O 1O 2的中点为Q ; 当这点P 从点C 运动到点D 时,则点Q 移动路径的长 是___________.例2 如图,已知线段AB =6,C 、D 是AB 上两点,且AC =DB =1,P 是线段CD 上一动点,在AB 同侧分别作等边三角形APE 和等边三角形PBF ,G 为线段EF 的中点,点P 由点C 移动到点D 时,G 点移动的路径长度为_______.PC变式 如图,正方形ABCD 的边长为2,CD 边上一动点P ,连接BP ,过点P 作PQ ⊥BP ,截取PQ=BP ,当点P 从点C 运动到点D 时,求Q 的轨迹长QDCA BP题型二 运动路径是圆弧(动点到定点的距离等于定长)要点:这一类动点问题的特点是:所求的动点到某一个定点的距离是不变的。
中考热点题型:最常见轨迹问题解题策略靠套路就能拿高分!
![中考热点题型:最常见轨迹问题解题策略靠套路就能拿高分!](https://img.taocdn.com/s3/m/4b2ae8ce185f312b3169a45177232f60ddcce71f.png)
中考热点题型:最常见轨迹问题解题策略靠套路就能拿高分!对于初中数学中动点轨迹的问题,一般有两种情况:线段或圆弧。
在研究动点问题时,可以在运动中寻找不变的量,即不变的数量关系或位置关系:如果动点的轨迹是一条线段,那么其中不变的量便是该动点到某条直线的距离始终保持不变;如果动点的轨迹是一段圆弧,那么其中不变的量便是该动点到某个定点的距离始终保持不变。
因此,解决此类动点轨迹问题便可转化为寻找定直线或定点。
轨迹问题三部曲:猜测轨迹形状——证明轨迹形状——代入图形应用其中第二步很重要,初中证明轨迹有两种证明方法:几何法和解析法。
所谓几何法就是通过纯几何证明,抓紧不变量,得出轨迹形状,一般是圆或直线(线段)证明方法:01圆弧——圆周角法已知Rt△ABC,AB=6cm,BC=8cm,AC=10cm,∠ABC=90°。
半径为1cm的圆,若将圆心由点A沿ABCA的方向运动回到点A,求圆扫过的区域面积为。
02圆弧——定义法如图,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.(1)求点D的坐标(用含m的代数式表示);(2)当△APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交予点E,过点O作直线ME的垂线,垂足为H(如图7).当点P从点O向点C运动时,点H也随之运动,请直接写出点H所经过的路径长.(不必写解答过程)解析此题中主动点是P,动点H是因点P的变化而变化.动点P在运动过程中始终保持不变的量是OH始终垂直ME,即日始终为垂足.而求动点H的运动轨迹,则需考虑点H是到某条直线的距离始终不变,还是到某个定点的距离始终保持不变.由于OH⊥ME,连结OM后,△AMH始终为直角三角形,而斜边OM不变,因此根据直角三角形的性质容易得到动点日到DM的中点的距离始终不变,从而可得到点H 的运动轨迹是一段圆弧。
轨迹问题的解法大全
![轨迹问题的解法大全](https://img.taocdn.com/s3/m/02163050cf84b9d528ea7a2f.png)
轨迹问题的求法
一、直接法
当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程,称之直接法.
定义法是指先分析、说明动点的轨迹满足某种特殊曲线(如圆、椭圆、双曲线、抛物线等)的定义或特征,再求出该曲线的相关参量,从而得到轨迹方程.
将直线与圆锥曲线的交点代入圆锥曲线的方程并对所得两式作差,得到一个与弦的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为"点差法"。
四、几何法
几何法是指利用平面几何或解析几何知识分析图形性质,发现动点的运动规律和要满足的条件,从而得到动点的轨迹方程.
五、参数法
参数法是指先引入一个中间变量(参数),使所求动点的横、纵坐标间建立起联系,然后再从所求式子中消去参数,得到间的直接关系式,即得到所求轨迹方程
例3.【2017年全国二卷文科】
六、交轨法
求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程,称之交轨法.
七、代入法
当题目中有多个动点时,将其他动点的坐标用所求动点的坐标来表示,再代入到其他动点要满足的条件或轨迹方程中,整理即得到动点的轨迹方程,称之代入法,也称相关点法、转移法
.。
初中常见轨迹问题解题策略
![初中常见轨迹问题解题策略](https://img.taocdn.com/s3/m/1bc79a8526fff705cd170a3c.png)
初中常见路径(轨迹)问题之解决策略一、 动点到定点的距离等于定长这一类动点问题的特点是:所求的动点到某一个定点的距离是不变的。
根据圆的定义,这时容易发现该动点的轨迹是一个圆周或者一段弧。
而且该圆或者弧的圆心就是定点,半径就是定长。
知道圆心和半径之后就容易求解了。
1. 如图,矩形ABCD 中,AB=2,E 是AD 边上一动点,将△ABE 沿BE折叠至△PBE ,在点E 从A 到D 的过程中,求P 点轨迹长。
2. 如图,在△ABC 中,∠ACB=90°,∠ABC=30°,AC=2。
将△ABC 绕顶点C 顺时针旋转,得到△A′B′C ,AC 中点为D ,A′B′中点为E ,连接DE ,当旋转角为_______°时,DE 长度最大,最大值为__________.3. 如图,OA ⊥OB ,垂足为O ,P 、Q 分别是射线OA 、OB 上两个动点,点C 是线段PQ的中点,且PQ=4.则动点C 运动形成的路径长是______二、定角对定长这一类动点问题的特点是:以该动点为顶点的某个角度大小是固定不变的,而且该固定角度所对的某一条边是固定的。
由圆周角的特点可知,这个动点的轨迹就是一个圆周或者一段弧。
而且这个固定角度就是圆周角,这个固定边就是弦。
如果需要求轨迹长的话,再把圆心角和半径算出来就行了。
不过有一点需要注意,这时需要把起始点和终点找到才能准确求出圆心角。
对于这种题型,找圆心可以用三角形外心的结论:锐角三角形的外心在三角形内部,直角三角形的外心在斜边中点,钝角三角形的外心在三角形外部。
所以,当这个固定角度是锐角时,圆心和动点位于固定边的同侧;当这个固定角度是直角时,圆心就在固定边的中点;当这个固定角度是钝角时,圆心和动点位于固定边的两侧。
4.如图,点E,F是正方形ABCD的边AD上两个动点,满足AE=DF。
连接CF交BD于点G,连接BE交AG于点H。
若正方形的边长为2,则线段DH的最小值是___.5.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P.若BF=CE,当点E从点A运动到点C时,试求点P经过的路径长.6.如图,正方形ODEF的边长为2,以O为圆心,AB为直径的半圆经过点D,连接AF,BD相交于点P,将正方形ODEF从OD与OA重合的位置开始,绕着点O逆时针旋转90°,求交点P运动的路径长.7.如图,圆O的直径AB=4,C为圆周上一点,AC=2。
初中常见的动点轨迹问题归纳与突破策略
![初中常见的动点轨迹问题归纳与突破策略](https://img.taocdn.com/s3/m/6edd78bdc850ad02df804176.png)
②“定边对定
角”的动点轨迹为在以定边为弦且经过定点的圆弧
上 . 直线型中常见的有四种 :①动点到定直线的距离
相等 ,那么该动点的轨迹为平行与该直线的直线 ;
②
一、动点的运动轨迹为圆弧型
同弧所对的圆周角相等 ,反之 ,如图 1,如果一个
动点 M ,
以 M 为顶点的角 ∠AMB 始终不变 ,
动点轨迹;圆弧型;直线型;定边对定角;夹角定位法
初中数学动点轨迹问题是一个比较抽象的问题,
动点轨迹问题在初中数学的学习中,
以及以后高中数
学的学习中都是非常重要的 . 动点轨迹问题的解决策
略是化动为静,
寻找运动过程中的不变量 .
初中阶段常见的动点轨迹有圆弧型与直线型 . 圆
弧型中又分为两种 :①动点到定点的距离等于定长 ,
且这个定角的对边是定边 .
动点到线段两个端点的距离相等,
该动点的轨迹为该
线段的垂直平分线(线段垂直平分线的判定定理);
③
动点到角两边距离相等,
该动点的轨迹为这个角的角
平分线(角平分线的判定定理);
④动点与定点的连线
与定直线的夹角为定角,
那么该动点的轨迹为这个夹
角的另一边 .
图1
图2
由于“圆弧型中动点到定点的距离等于定长 ,那
角的动点轨迹)进行分析讲解:题目中如能找到定边对定角,则该动点的运动轨迹为在以定边为弦且经过定点的圆弧上,
这一类型关键的突破口是求出定边对面角的具体度数,为定值 . 而题目中如出现动点与定点的连线与定直线的夹角为定
关键词
角时,则该动点的轨迹为直线型(这个夹角的另一边),解决这一类型的方法为夹角定位法 .
求轨迹方程的思路,方法和对应的题型
![求轨迹方程的思路,方法和对应的题型](https://img.taocdn.com/s3/m/52829470590216fc700abb68a98271fe910eaf1f.png)
求轨迹方程的思路,方法和对应的题型全文共四篇示例,供读者参考第一篇示例:求轨迹方程是解析几何中的一个重要内容,它是描述一个物体在运动过程中的路径的数学方法。
在数学中,求轨迹方程的过程通常需要经过一系列的思路和方法,且会涉及到不同类型的题目。
本文将介绍求轨迹方程的思路、方法以及对应的题型,希望对读者有所帮助。
一、思路在求解轨迹方程时,我们首先需要明确物体的运动规律和路径,然后通过数学方法来描述它的运动状态。
通常来说,我们可以采用以下思路来求解轨迹方程:1. 分析运动规律:首先我们需要分析物体的运动规律,包括其运动方向、速度和加速度等。
了解物体的运动规律有助于我们更好地建立数学模型。
2. 建立数学模型:根据物体的运动规律,我们可以建立数学模型,一般是通过对其位置、速度和加速度等数据进行分析得到。
建立好数学模型后,我们就可以利用数学方法来求解轨迹方程。
3. 求解轨迹方程:根据建立的数学模型,我们可以利用数学方法如微积分、几何等来求解轨迹方程。
最终得到的轨迹方程可以描述物体在运动过程中的路径。
4. 验证结果:最后我们还需要验证求解得到的轨迹方程是否准确,通常可以通过数学推导和实际运动情况进行验证。
三、对应的题型在求解轨迹方程的过程中,我们会遇到不同类型的题目,包括但不限于以下几种:1. 直线运动问题:给定物体在直线运动过程中的速度和加速度,求解其轨迹方程。
2. 圆周运动问题:给定物体在圆周运动过程中的角速度和半径,求解其轨迹方程。
3. 曲线运动问题:给定物体在曲线运动过程中的运动规律,求解其轨迹方程。
4. 三维空间运动问题:给定物体在三维空间中的运动规律,求解其轨迹方程。
第二篇示例:求轨迹方程是数学中一个常见的问题,涉及到函数、几何和代数等多个方面的知识。
在解决这类问题时,我们需要掌握一定的思路和方法,同时要能灵活应用这些知识来解决具体的题目。
本文将介绍求轨迹方程的思路、方法以及几种常见的题型,并给出相应的解题思路和步骤。
求轨迹方程问题—6大常用方法
![求轨迹方程问题—6大常用方法](https://img.taocdn.com/s3/m/9617716aee06eff9aff8072b.png)
求轨迹方程问题—6大常用方法知识梳理:(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。
4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。
来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。
圆的轨迹问题,有迹可循,突破难点有绝招
![圆的轨迹问题,有迹可循,突破难点有绝招](https://img.taocdn.com/s3/m/baa1fe4489eb172dec63b70b.png)
圆的轨迹问题,有迹可循,突破难点有绝招动点轨迹问题、最值问题历来是中考的难点和热点。
学生需要在考场短时间思考出动点的运动轨迹确实不是一件容易的事情,如果平时不能有对图形本质的理解和把握,很难在考试中解决此类问题。
在初中阶段,我们会遇到两种轨迹问题,一个是圆弧,一个是线段。
它们分别对应不同的知识点。
圆弧上的点到定点的距离等于定长,线段上的点到直线的距离也等于定长。
但是在实际的考查过程中,我们往往不是事先知道动点所形成的轨迹。
而需要我们结合题目中的条件,来分析出问题是不是轨迹问题,是哪种轨迹问题,它们常见的处理方法又是什么呢?首先我们先给轨迹下个定义,简单的说就是:动点在空间或者平面内移动,它所通过的全部路径叫做这个点的轨迹。
我们在理解这个定义时,可从下列几个方面考虑:(1)符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。
(2)凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性)。
(3)另外凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。
初中阶段会接触到的曲轨迹一般是圆或者圆弧,比如旋转问题中;当然动点也可能在双曲线或者抛物线上运动,这都属于曲轨迹;类型1 圆的问题中隐含圆的轨迹问题1.如图,扇形AOD中,∠AOD=90°,OA=6,点P为弧AD上任意一点(不与点A和D重合),PQ⊥OD于Q,点I为△OPQ的内心,过O,I和D三点的圆的半径为r.则当点P在弧AD上运动时,r的值满足()A.0<r<3 B.r=3 C.3<r<3√3 D.r=3√2【解析】连OI,PI,DI,由△OPH的内心为I,可得到∠PIO=180°﹣∠IPO﹣∠IOP=180°﹣1/2(∠HOP+∠OPH)=135°,并且易证△OPI≌△ODI,得到∠DIO=∠PIO=135°,所以点I在以OD为弦,并且所对的圆周角为135°的一段劣弧上;过D、I、O三点作⊙O′,如图,连O′D,O′O,在优弧AO取点P′,连P′D,P′O,可得∠DP′O=180°﹣135°=45°,得∠DO′O=90°,O′O =3√2.故选:D.2.如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC的底边BC所在直线经过点D.若⊙O的半径等于1,则OC的长不可能为()A.2﹣√3 B.√3﹣1 C.2 D.√3+1【解析】利用圆周角定理确定点C的运动轨迹,进而利用点与圆的位置关系求得OC长度的取值范围.如图,连接OA、OD,则△OAD为等边三角形,边长为半径1.作点O关于AD的对称点O′,连接O′A、O′D,则△O′AD也是等边三角形,边长为半径1,3.如图,在△ABC中,AC=4√3,BC=9,∠ACB=60°,AM∥BC,点P在射线AM上运动,连BP交△APC的外接圆于点E,则AE的最小值为.【解析】:如图,连接CE.∵AM∥BC,∴∠MAC=∠ACB=60°,∴∠CEP=∠CAP=60°,∴∠BEC=120°,4.(2020•武汉模拟)如图,⊙O的半径为1,点D为优弧AB上一动点,AC⊥AB交直线BD于C,且∠B=30°,当△ACD的面积最大时,∠BAD的度数为.【解析】连接OA、OD,如图,根据圆周角定理得到∠AOD=2∠B=60°,则△OAD为等边三角形,所以AD=OA=1,而∠C=60°,利用圆周角定理可判断点C在AD为弦,圆周角为60°的弧上运动,根据三角形面积公式,当C在弧AD的中点时△ADC的面积最大,此时∠CAD=60°,从而得到∠BAD=30°.类型2 非圆问题中隐含圆的轨迹问题5.(2019秋•罗湖区期末)如图,矩形ABCD中,AB=20,AD=30,点E,F 分别是AB,BC边上的两个动点,且EF=10,点G为EF的中点,点H为AD边上一动点,连接CH、GH,则GH+CH的最小值为.【解析】:由已知,点G在以B圆心,5为半径的圆在与长方形重合的弧上运动.作C关于AD的对称点C′,连接C′B,交AD于H,交以D为圆心,以5为半径的圆于G。
解轨迹问题4种方法
![解轨迹问题4种方法](https://img.taocdn.com/s3/m/7610d60d763231126edb11e6.png)
解轨迹问题4种方法求轨迹方程常用的方法:(1)结合解析几何中某种曲线的定义,从定义出发寻找解决问题的方法;(2)利用几何性质,若所求的轨迹与图形的性质相关,利用三角形或圆的性质来解问题;(3)如果点P 的运动轨迹或所在曲线已知,又点Q 与点P 之间的坐标可以建立某种关系,则借助点P 的轨迹可以得到点Q 的轨迹; (4)参数法. ●点击双基1.动点P 到直线x =1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是 A.中心在原点的椭圆 B.中心在(5,0)的椭圆C.中心在原点的双曲线D.中心在(5,0)的双曲线 解析:直接法. 答案:B2.(2005年春季北京,6)已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=2,则该双曲线的方程是A.22x -32y =1B.32x -22y =1C.42x -y 2=1D.x 2-42y =1解析:设双曲线的方程为22a x -22by =1.由题意||PF 1|-|PF 2||=2a ,|PF 1|2+|PF 2|2=(25)2.又∵|PF 1|·|PF 2|=2,∴a =2,b =1.故双曲线方程为42x -y 2=1.答案:C3.已知A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,椭圆的另一个焦点F 的轨迹方程是A.y 2-482x =1(y ≤-1) B.y 2-482x =1 C.y 2-482x =-1 D.x 2-482y =1解析:由题意|AC |=13,|BC |=15,|AB |=14,又|AF |+|AC |=|BF |+|BC |,∴|AF |-|BF |=|BC |-|AC |=2.故F 点的轨迹是以A 、B 为焦点,实轴长为2的双曲线下支.又c =7,a =1,b 2=48,所以轨迹方程为y 2-482x =1(y ≤-1).答案:A4.F 1、F 2为椭圆42x +32y =1的左、右焦点,A 为椭圆上任一点,过焦点F 1向∠F 1AF 2的外角平分线作垂线,垂足为D ,则点D 的轨迹方程是________________.解析:延长F 1D 与F 2A 交于B ,连结DO ,可知DO =21F 2B =2,∴动点D 的轨迹方程为x 2+y 2=4.答案:x 2+y 2=45.已知△ABC 中,B (1,0)、C (5,0),点A 在x 轴上方移动,且tan B +tan C =3,则△ABC 的重心G 的轨迹方程为________________.解析:设A (x 0,y 0),∵tan B +tan C =3,∴100-x y -500-x y =3,点A 的轨迹方程为y 0=-43(x 02-6x 0+5)(x 0≠1且x 0≠5).若 G (x ,y )为△ABC 的重心,则由重心坐标公式:x =3510x ++,y =30y,∴x 0=3x -6,且y 0=3y .代入A 点轨迹方程得G 的轨迹方程为y -1=-49(x -3)2(x ≠37且x ≠311).答案:y -1=-49(x -3)2(x ≠37且x ≠311)●典例剖析【例1】 在△PMN 中,tan ∠PMN =21,tan ∠MNP =-2,且△PMN 的面积为1,建立适当的坐标系,求以M 、N 为焦点,且过点P 的椭圆的方程.M N剖析:如上图,以直线MN 为x 轴,线段MN 的垂直平分线为y 轴,建立平面直角坐标系,则所求椭圆方程为22a x +22by =1.显然a 2、b 2是未知数,但a 2、b 2与已知条件没有直接联系,因此应寻找与已知条件和谐统一的未知元,或改造已知条件.解法一:如上图,过P 作PQ ⊥MN ,垂足为Q ,令|PQ |=m ,于是可得|MQ |=|PQ |cot ∠PMQ =2m ,|QN |=|PQ |cot ∠PNQ =21m . ∴|MN |=|MQ |-|NQ |=2m -21m =23m . 于是S △PMN =21|MN |·|PQ |=21·23m ·m =1.因而m =34,|MQ |=234,|NQ |=31,|MN |=3.|MP |=22||||PQ MQ +=34316+=3152,|NP |=22||||PQ NQ +=3431+=315.以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设椭圆方程为22a x +22b y =1(a >b >0).则2a =|MP |+|NP |=15,2c =|MN |=3,故所求椭圆方程为1542x +32y =1.解法二:设M (-c ,0)、N (c ,0),P (x ,y ),y >0,c x y + =21,cx y -=2, y ·c =1, 解之,得x =635,y =332,c =23.设椭圆方程为b 2x 2+a 2y 2=a 2b 2,则b 2·(635)2+a 2(332)2=a 2b 2, a 2-b 2=43, 解之,得a 2=415,b 2=3.(以下略)评述:解法一选择了与a 较接近的未知元|PM |、|PN |,但需改造已知条件,以便利用正弦定理和面积公式;解法二以条件为主,选择了与条件联系最直接的未知元x 、y 、c .本题解法较多,但最能体现方程思则想方法的、学生易于理解和接受的是这两种解法.深化拓展若把△PMN 的面积为1改为PM ·PN =38,求椭圆方程. 提示:由tan ∠PMN =21,tan ∠MNP =-2,易得sin ∠MPN =53,cos ∠MPN =54. 由PM ·PN =38,得|PM ||PN |=310.易求得|PM |=3152,|PN |=315.进而求得椭圆方程为1542x +32y =1.【例2】 (2004年福建,22)如下图,P 是抛物线C :y =21x 2上一点,直线l 过点P 且与抛物线C交于另一点Q .若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程.xyOQMTP Sl 剖析:欲求PQ 中点M 的轨迹方程,需知P 、Q 的坐标.思路一,P 、Q 是直线l 与抛物线C 的交点,故需求直线l 的方程,再与抛物线C 的方程联立,利用韦达定理、中点坐标公式可求得M 的轨迹方程;思路二,设出P 、Q 的坐标,利用P 、Q 的坐标满足抛物线C 的方程,代入抛物线C 的方程相减得PQ 的斜率,利用PQ 的斜率就是l 的斜率,可求得M 的轨迹方程.解:设P (x 1,y 1)、Q (x 2,y 2)、M (x 0,y 0),依题意知x 1≠0,y 1>0,y 2>0.由y =21x 2, ① 得y ′=x . ∴过点P 的切线的斜率k 切=x 1, ∴直线l 的斜率k l =-切k 1=-11x ,直线l 的方程为y -21x 12=-11x (x -x 1). ②方法一:联立①②消去y ,得x 2+12x x -x 12-2=0.∵M 为PQ 的中点, x 0=221x x +=-11x ,y 0=21x 12-11x (x 0-x 1). 消去x 1,得y 0=x 02+221x +1(x 0≠0), ∴PQ 中点M 的轨迹方程为y =x 2+221x +1(x ≠0). 方法二:由y 1=21x 12,y 2=21x 22,x 0=221x x +,得y 1-y 2=21x 12-21x 22=21(x 1+x 2)(x 1-x 2)=x 0(x 1-x 2),则x 0=2121x x y y --=k l =-11x ,∴x 1=-01x .将上式代入②并整理,得y 0=x 02+221x +1(x 0≠0), ∴∴PQ 中点M 的轨迹方程为y =x 2+221x+1(x ≠0). 评述:本题主要考查了直线、抛物线的基础知识,以及求轨迹方程的常用方法.本题的关键是利用导数求切线的斜率以及灵活运用数学知识分析问题、解决问题.深化拓展当点P 在抛物线C 上移动时,求点M 到x 轴的最短距离. 提示:∵x ≠0,x 2>0,∴y =x 2+221x +1≥221+1=2+1,当且仅当x 2=221x ,x =±214时等号成立,即点M 到x 轴的最短距离为2+1.【例3】 (2000年春季全国)已知抛物线y 2=4px (p >0),O 为顶点,A 、B 为抛物线上的两动点,且满足OA ⊥OB ,如果OM ⊥AB 于M 点,求点M 的轨迹方程.剖析:点M 是OM 与AB 的交点,点M 随着A 、B 两点的变化而变化,而A 、B 为抛物线上的动点,点M 与A 、B 的直接关系不明显,因此需引入参数.解法一:设M (x 0,y 0),则k OM =00x y ,k AB =-00y x ,直线AB 方程是y =-00y x(x -x 0)+y 0. 由y 2=4px 可得x =py 42,将其代入上式,整理,得x 0y 2-(4py 0)y -4py 02-4px 02=0. ①此方程的两根y 1、y 2分别是A 、B 两点的纵坐标,∴A (p y 421,y 1)、B (py422,y 2).∵OA ⊥OB ,∴k OA ·k OB =-1.∴14y p ·24y p=-1.∴y 1y 2=-16p 2. 根据根与系数的关系,由①可得y 1·y 2=02020)(4x y x p +-,∴02020)(4x y x p +-=16p 2.化简,得x 02+y 02-4px 0=0,即x 2+y 2-4px =0(除去原点)为所求.∴点M 的轨迹是以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点. 解法二:设A 、B 两点坐标为A (pt 12,2pt 1)、B (pt 22,2pt 2). ∴k OA =12t ,k OB =22t ,k AB =212t t +.∵OA ⊥OB ,∴t 1·t 2=-4.∴AB 方程是y -2pt 1=212t t +(x -pt 12), ① 直线OM 的方程是y =-221t t +x . ② ①×②,得(px )t 12+2pyt 1-(x 2+y 2)=0. ③ ∴直线AB 的方程还可写为 y -2pt 2=212t t +(x -pt 22). ④ 由②×④,得(px )t 22+(2py )t 2-(x 2+y 2)=0. ⑤由③⑤可知t 1、t 2是方程(px )t 2+(2py )t 2-(x 2+y 2)=0的两根.由根与系数的关系可得t 1t 2=pxy x )(22+-.又t 1·t 2=-4,∴x 2+y 2-4px =0(原点除外)为所求点M 的轨迹方程.故M 的轨迹是以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点. 解法三:设M (x ,y ),直线AB 方程为y =kx +b ,由OM ⊥AB 得k =-yx. 由y 2=4px 及y =kx +b 消去y ,得k 2x 2+x (2kb -4p )+b 2=0.所以x 1x 2=22k b .消去x ,得ky 2-4py +4pb =0.所以y 1y 2=k pb4.由OA ⊥OB ,得y 1y 2=-x 1x 2,所以k pk4=-22kb ,b =-4kp .故y =kx +b =k (x -4p ).用k =-yx代入,得x 2+y 2-4px =0(x ≠0). 解法四:设点M 的坐标为(x ,y ),直线OA 的方程为y =kx ,显然k ≠0,则直线OB 的方程为y =-k1x . y =kx , y 2=4px , 类似地可得B 点的坐标为(4pk 2,-4pk ), 从而知当k ≠±1时,yxABM Ok AB =)1(4)1(422k kp k k p -+=kk -11.故得直线AB 的方程为y +4pk =k k-11(x -4pk 2),即(k1-k )y +4p =x , ① 直线OM 的方程为y =-(k1-k )x . ② 可知M 点的坐标同时满足①②,由①及②消去k 便得4px =x 2+y 2,即(x -2p )2+y 2=4p 2,但x ≠0,当k =±1时,容易验证M 点的坐标仍适合上述方程. 故点M 的轨迹方程为(x -2p )2+y 2=4p 2(x ≠0), 它表示以点(2p ,0)为圆心,以2p 为半径的圆.评述:本题考查了交轨法、参数法求轨迹方程,涉及了类比、分类讨论等数学方法,消参时又用到了整体思想法,对含字母的式子的运算能力有较高的要求,同时还需要注意轨迹的“完备性和纯粹性”.此题是综合考查学生能力的一道好题.深化拓展本题中直线AB 恒过定点(4p ,0),读者不妨探究一番. ●闯关训练由 解得A 点的坐标为(24k p ,kp4),夯实基础1.已知M (-2,0)、N (2,0),|PM |-|PN |=4,则动点P 的轨迹是 A.双曲线 B.双曲线左边一支 C.一条射线 D.双曲线右边一支 解析:利用几何性质.答案:C2.(2003年河南)已知双曲线中心在原点且一个焦点为F (7,0),直线y =x -1与其相交于M 、N 两点,MN 中点的横坐标为-32,则此双曲线的方程是 A.32x -42y =1 B.42x -32y =1 C.52x -22y =1 D.22x -52y =1解析:设双曲线方程为22a x -22b y =1.将y =x -1代入22a x -22b y =1,整理得(b 2-a 2)x 2+2a 2x -a 2-a 2b 2=0.由韦达定理得x 1+x 2=2222b a a -,221x x +=222ba a -=-32.由c 2=a 2+b 2求得a 2=2,b 2=5.答案:D 3.曲线x 2+4y 2=4关于点M (3,5)对称的曲线方程为____________.解析:代入法(或相关点法).答案:(x -6)2+4(y -10)2=44.与圆x 2+y 2-4x =0外切,且与y 轴相切的动圆圆心的轨迹方程是____________.解析:若动圆在y 轴右侧,则动圆圆心到定点(2,0)与到定直线x =-2的距离相等,其轨迹是抛物线;若动圆在y 轴左侧,则动圆圆心轨迹是x 负半轴.答案:y 2=8x (x >0)或y =0(x <0)5.自抛物线y 2=2x 上任意一点P 向其准线l 引垂线,垂足为Q ,连结顶点O 与P 的直线和连结焦点F 与Q 的直线交于R 点,求R 点的轨迹方程.解:设P (x 1,y 1)、R (x ,y ),则Q (-21,y 1)、F (21,0), ∴OP 的方程为y =11x y x , ① FQ 的方程为y =-y 1(x -21). ② 由①②得x 1=x x212-,y 1=xy 212-,代入y 2=2x ,可得y 2=-2x 2+x . 6.求经过定点A (1,2),以x 轴为准线,离心率为21的椭圆下方的顶点的轨迹方程.解:设椭圆下方的焦点F (x 0,y 0),由定义2||AF =21,∴|AF |=1,即点F 的轨迹方程为(x 0-1)2+(y 0-2)2=1. 又设椭圆下方顶点为P (x ,y ),则x 0=x ,y 0=23y , ∴点P 的轨迹方程是(x -1)2+(23y -2)2=1. 培养能力7.AB 是圆O 的直径,且|AB |=2a ,M 为圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使|OP |=|MN |,求点P 的轨迹.解:以圆心O 为原点,AB 所在直线为x 轴建立直角坐标系(如下图),则⊙O 的方程为x 2+y 2=a 2,设点P 坐标为(x ,y ),并设圆与y 轴交于C 、D 两点,作PQ ⊥AB 于Q ,则有||||OM OP =||||MN PQ .∵|OP |=|MN |,∴|OP |2=|OM |·|PQ |. ∴x 2+y 2=a |y |,即 x 2+(y ±2a )2=(2a)2. 轨迹是分别以CO 、OD 为直径的两个圆.8.过抛物线y 2=4x 的焦点的直线l 与抛物线交于A 、B 两点,O 为坐标原点.求△AOB 的重心G 的轨迹C 的方程.解:抛物线的焦点坐标为(1,0),当直线l 不垂直于x 轴时,设方程为y =k (x -1),代入y 2=4x , 得k 2x 2-x (2k 2+4)+k 2=0.设l 方程与抛物线相交于两点, ∴k ≠0.设点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),根据韦达定理,有x 1+x 2=22)2(2kk +,从而y 1+y 2=k (x 1+x 2-2)=k 4. 设△AOB 的重心为G (x ,y ),x =3021x x ++=32+234k,y =3021y y ++=k34,∴y 2=34x -98.当l 垂直于x 轴时,A 、B 的坐标分别为(1,2)和(1,-2),△AOB 的重心G (32,0),也适合y 2=34x -98,因此所求轨迹C 的方程为y 2=34x -98.探究创新9.(2004年春季安徽)已知k >0,直线l 1:y =kx ,l 2:y =-kx .(1)证明:到l 1、l 2的距离的平方和为定值a (a >0)的点的轨迹是圆或椭圆; (2)求到l 1、l 2的距离之和为定值c (c >0)的点的轨迹. (1)证明:设点P (x ,y )为动点,则221||k kx y +-+221||kkx y ++=a ,整理得2222)1(k a k x ++2)1(22a k y +=1. 因此,当k =1时,动点的轨迹为圆;当k ≠1时,动点的轨迹为椭圆. (2)解:设点P (x ,y )为动点,则|y -kx |+|y +kx |=c 21k +.当y ≥k |x |时,y -kx +y +kx =c 21k +,即y =21c 21k +; 当y ≤-k |x |时,kx -y -y -kx =c 21k +,即y =-21c 21k +;当-k |x |<y <k |x |,x >0时,kx -y +y +kx =c 21k +,即x =k21c 21k +;则消去k ,得x =32+34(43y )2,当-k |x |<y <k |x |,x <0时,y -kx -y -kx =c 21k +,即x =-k21c 21k +. 综上,动点的轨迹为矩形. ●思悟小结1.求轨迹方程的一般步骤是:建系、设点、列式、代入、化简、检验.检验就是要检验点的轨迹的纯粹性和完备性.2.如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法.3.如果能够确定动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法.4.如果轨迹动点P (x ,y )依赖于另一动点Q (a ,b ),而Q (a ,b )又在某已知曲线上,则可先列出关于x 、y 、a 、b 的方程组,利用x 、y 表示出a 、b ,把a 、b 代入已知曲线方程便得动点P 的轨迹方程.此法称为代入法.5.如果轨迹动点P (x ,y )的坐标之间的关系不易找到,也没有相关点可用时,可先考虑将x 、y 用一个或几个参数来表示,消去参数得轨迹方程,此法称为参数法.参数法中常选变角、变斜率等为参数.6.注意参数的取值范围对方程的影响. 教学点睛1.已知曲线求方程或已知方程画曲线是解析几何中的两个基本问题.如何探求动点的轨迹方程呢?①从定义出发,还本索源.在探求动点的轨迹方程时,如能结合解析几何中某种曲线的定义,也就能寻找到解决问题的钥匙;②利用平面几何的性质.动点的轨迹与图形的性质相关,若某些轨迹与直线或圆有关,则可以利用三角形或圆的性质来帮助分析;③伴随曲线的思想和方法.如果点P 的运动轨迹或所在的曲线已知,又点P 与点Q 的坐标之间可以建立起某种关系,则借助于点P 的运动轨迹,我们便可以得到点Q 的运动轨迹,这便是伴随曲线的思想方法.2.在探求轨迹的过程中,需要注意的是轨迹的“完备性”和“纯粹性”,也就是说既不能多,也不能少,因此,在求得轨迹方程之后,要深入地再思考一下:①是否还遗漏了一些点?是否还有另一个满足条件的轨迹方程存在?②在所求得的轨迹方程中,x 、y 的取值范围是否有什么限制?拓展题例【例1】 是否存在同时满足下列条件的抛物线?若存在,求出它的方程;若不存在,请说明理由. (1)准线是y 轴; (2)顶点在x 轴上;(3)点A (3,0)到此抛物线上动点P 的距离最小值是2. 解:假设存在这样的抛物线,顶点为(a ,0),则方程为y 2=4a (x -a )(a ≠0), 设P (x 0,y 0),则y 02=4a (x 0-a ),|AP |2=(x 0-3)2+y 02 =[x 0-(3-2a )]2+12a -8a 2,令f (a )=|AP |2, ①当a >0时,有x 0≥a ,当3-2a ≥a 即a ∈(0,1]时,|AP |2=f (3-2a ),∴a =1或a =21;抛物线方程为y 2=4(x -1)或y 2=2(x -21). 当3-2a <a 即a >1时,|AP |2=f (a ).∴a =5或a =1(舍),抛物线方程为y 2=20(x -5).②当a <0时,显然与已知矛盾,∴所求抛物线方程为y 2=4(x -1)或y 2=2(x -21)或y 2=20(x -5). 【例2】 (2003年太原市模拟题)已知椭圆的焦点为F 1(-1,0)、F 2(1,0),直线x =4是它的一条准线.(1)求椭圆的方程;(2)设A 1、A 2分别是椭圆的左顶点和右顶点,P 是椭圆上满足|P A 1|-|P A 2|=2的一点,求tan ∠A 1P A 2的值;(3)若过点(1,0)的直线与以原点为顶点、A 2为焦点的抛物线相交于点M 、N ,求MN 中点Q 的轨迹方程.解:(1)设椭圆方程为22a x +22by =1(a >b >0).c =1,ca 2=4,c =1, a =2,所求椭圆方程为42x +32y =1.(2)由题设知,点P 在以A 1、A 2为焦点,实轴长为2的双曲线的右支上.由(1)知A 1(-2,0),A 2(2,0),设双曲线方程为22mx -22n y =1(m >0,n >0).2m =2, m =1,m 2+n 2=4, n =3.∴双曲线方程为x 2-32y =1.由42x +32y =1, x 2-32y =1,解得P 点的坐标为(5102,553)或(5102,-553).当P 点坐标为(5102,553)时,tan∠A 1P A 2=12121PA PA PA PA k k k k +-=-45.同理当P 点坐标为(5102,-353)时,tan ∠A 1P A 2=-45. 故tan ∠A 1P A 2=-45.(3)由题设知,抛物线方程为y 2=8x .设M (x 1,y 1)、N (x 2,y 2),MN 的中点Q (x ,y ), 当x 1≠x 2时,有y 12=8x 1, ① y 22=8x 2, ②x =221x x +, ③ y =221y y +, ④2121x x y y --=1-x y. ⑤①-②,得2121x x y y --(y 1+y 2)=8,将④⑤代入上式,有1-x y·2y =8,即y 2=4(x -1)(x ≠1).当x 1=x 2时,MN 的中点为(1,0),仍满足上式.故所求点Q 的轨迹方程为y 2=4(x -1).由题设有解得 ∴b 2=3.则解得。
中学奥数“行程问题”类型归纳及解题技巧总结
![中学奥数“行程问题”类型归纳及解题技巧总结](https://img.taocdn.com/s3/m/5a9c42c2bdeb19e8b8f67c1cfad6195f312be8de.png)
中学奥数“行程问题”类型归纳及解题技巧总结本文将对中学奥数中常见的“行程问题”类型进行归纳并总结解题技巧。
1. 单程问题单程问题是指求解一个人或一个物体从出发地到目的地的最短路径或最快时间的问题。
解决单程问题需要根据给定的条件,运用数学知识进行计算和推理。
解题技巧:- 确定出发地和目的地;- 根据给定的条件,使用数学公式或方法计算最短路径或最快时间;- 注意考虑各种限制条件,如速度、距离等。
2. 往返问题往返问题是指一个人或一个物体在两个地点之间来回行程的问题。
解决往返问题需要考虑来回行程的距离、时间及其他相关条件。
解题技巧:- 确定往返的两个地点;- 分别计算去程和回程的距离或时间;- 综合考虑两次行程的条件,计算总距离或总时间。
3. 多次行程问题多次行程问题是指一个人或一个物体从多个地点之间进行多次行程的问题。
解决多次行程问题需要考虑多个地点之间的顺序、距离以及其他相关条件。
解题技巧:- 确定多次行程的起点和终点;- 根据给定的条件,以最优的方式确定行程的顺序;- 分别计算每次行程的距离或时间,然后求和得出总距离或总时间。
4. 排列组合问题排列组合问题是指在给定的一组元素中,通过排列或组合的方式选择其中的一部分元素的问题。
解决排列组合问题需要根据给定条件,运用组合数学的知识进行计算。
解题技巧:- 确定元素的个数和要选择的个数;- 根据给定的条件,使用组合数公式计算排列或组合的种类数;- 注意考虑元素的顺序或是否允许重复选择。
5. 时间约束问题时间约束问题是指在行程中,需要考虑到时间限制的问题。
解决时间约束问题需要根据给定的行程和时间限制,综合考虑时间与距离之间的关系。
解题技巧:- 确定行程的起点和终点;- 根据给定的时间限制,计算在限定时间内可到达的最远距离;- 注意考虑行程的速度和其他约束条件。
以上是中学奥数中常见的“行程问题”类型及解题技巧的总结。
通过熟练掌握这些技巧,可以更好地解决各类行程问题。
轨迹方程的求法及典型例题含答案
![轨迹方程的求法及典型例题含答案](https://img.taocdn.com/s3/m/a3a6d5849fc3d5bbfd0a79563c1ec5da50e2d6b4.png)
轨迹方程的求法及典型例题(含答案) 轨迹方程是描述一条曲线在平面上的运动轨迹的方程。
在二维平面上,轨迹方程通常由一元二次方程、三角函数方程等形式表示。
在三维空间中,轨迹方程可能会更加复杂,可以由参数方程或参数化表示。
一、轨迹方程的求解方法:1. 根据题目给出的条件,确定轨迹上的点的特点或特殊性质。
2. 将轨迹上的点的坐标表示为一般形式。
3. 将坐标表示代入到方程中,消去多余的变量,得到轨迹方程。
二、典型例题及其解答:【例题1】已知点P(x,y)到坐标原点O的距离为定值d,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,根据勾股定理,可以得到点P到原点O的距离公式:d = √(x^2 + y^2)3. 将坐标表示代入到距离公式中,得到轨迹方程:d^2 = x^2 + y^2【例题2】已知点P(x,y)到直线Ax+By+C=0的距离为定值d,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,点P到直线Ax+By+C=0的距离公式为:d = |Ax+By+C| / √(A^2 + B^2)3. 将点P的坐标表示代入到距离公式中,得到轨迹方程:(Ax+By+C)^2 = d^2(A^2 + B^2)【例题3】已知点P(x,y)满足|x|+|y|=a,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,可以得到两种情况下的轨迹方程:当x≥0,y≥0时,有x+y=a,即y=a-x;当x≥0,y<0时,有x-y=a,即y=x-a;当x<0,y≥0时,有-x+y=a,即y=a+x;当x<0,y<0时,有-x-y=a,即y=-a-x。
3. 将上述四种情况合并,得到轨迹方程:|x|+|y|=a【例题4】已知点P(x,y)满足y = a(x^2 + b),求点P的轨迹方程。
轨迹问题方法与例题大全
![轨迹问题方法与例题大全](https://img.taocdn.com/s3/m/4e8f251fbe1e650e52ea99e9.png)
轨迹问题一、什么是轨迹?轨迹就是目标点的横纵坐标之间的一个等量关系二、求轨迹的一般方法:1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法。
用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。
3.代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x’,y’)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x’,y’表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。
4.参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。
5.交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。
可以说是参数法的一种变种。
6.几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律和动点满足的条件,然而得出动点的轨迹方程。
三、注意事项:1.直接法是基本方法;定义法要充分联想定义、灵活动用定义;化入法要设法找到关系式x’=f(x,y), y’=g(x,y);参数法要合理选取点参、角参、斜率参等参数并学会消参;交轨法要选择参数建立两曲线方程;几何法要挖掘几何属性、找到等量关系。
2.要注意求得轨迹方程的完备性和纯粹性。
在最后的结果出来后,要注意挖去或补上一些点等。
3.求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
四、例题分析:(一)、直接法题型:1、在平面直角坐标系中,点、,动点满足.求点的轨迹的方程.2、(2009湖南)在平面直角坐标系xOy中,点P到点F(3,0)的距离的4倍与它到直线x=2的距离的3倍之和记为d,当P点运动时,d恒等于点P的横坐标与18之和,求点P的轨迹C;3、(2009海南)已知椭圆的中心为直角坐标系的原点,焦点在轴上,它的一个项点到两个焦点的距离分别是7和1(1)求椭圆的方程‘(2)若为椭圆的动点,为过且垂直于轴的直线上的点,(e为椭圆C的离心率),求点的轨迹方程,并说明轨迹是什么曲线。
例谈轨迹方程的几种常见求法
![例谈轨迹方程的几种常见求法](https://img.taocdn.com/s3/m/df7a160452d380eb62946d23.png)
例谈轨迹方程的几种常见求法石阡县第三高级中学 张军求曲线的轨迹方程是解析几何最基本、最重要的课题之一,是用代数的方法研究几何问题的基础。
这类题目把基本知识、方法技巧、逻辑思维能力、解题能力融于一体,因此也是历届高考考查的重要内容之一。
一般地,求轨迹方程有直接和间接两种方式,本文将以例题的形式浅谈轨迹方程的几种常见求法:一、直接法当动点直接与已知条件发生联系时,在设曲线上动点的坐标为(),x y 后,可根据题设条件将普通语言运用基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、面积公式等)变换成表示动点,x y 间的关系式(等式)的数学语言,从而得到轨迹方程。
这种求轨迹方程的方法称为直接法,这是探求轨迹刚才最基本的方法。
例1.在平面直角坐标系xoy 中,点P 到点()3,0F 的距离的4倍与它到直线2x =的距离的3倍之和记为d .当点p 运动时,d 恒等于点p 的横坐标与18之和.求点p 的轨迹C .解 设点p 的坐标为(),x y , 则32d x =+- 由题设知,18d x =+,即3218x x +-=+ ①当2x >时,由①得162x =-, 化简得2213627x y +=. 当2x ≤时,由①得3x =+, 化简得212y x =.故点p 的轨迹C 是由椭圆221:13627x y C +=在直线2x =的右侧部分与抛物线22:12C y x =在直线2x =的左侧部分(包括它与直线x =2的交点)所组成的曲线(如图所示)。
评注:本题考查了求轨迹方程的基本方法及两点间的距离公式、点到直线的距离等基础知识,同时也考查了绝对值的运算。
直接法是求轨迹方程最常用也是最基本的方法之一,它的步骤是:①建系;②设点;③列式;④化简;⑤证明。
二、定义法当动点轨迹的条件符合某一基本轨迹定义(如圆、椭圆、双曲线、抛物线),我们可以直接根据定义写出动点的轨迹方程,这种方法称为定义法。
例2.已知圆()221:31C x y ++=和圆()222:39C x y -+=,动圆M 同时与圆1C 及圆2C 相外切,求动圆圆心M 的轨迹方程.解 如图所示,设动圆M 与圆1C 及圆2C 分别外切于点A 和B ,根据两圆外切的条件,得11MC AC MA -=,22MC BC MB -=. ∵MA MB =, ∴1122MC AC MC BC -=-, 即212MC MC -=.这表明动点M 与两定点2C 、1C 的距离的差是常数2,根据双曲线的定义,动点M 的轨迹为双曲线的左支(点M 与2C 的距离大,与1C 的距离小),这里1,3a c ==,则28b =,设点M 的坐标为(),x y ,其轨迹方程为()22108y x x -=<. 评注:如果在题设中有关于到两个定点距离之和为定值;到两个定点距离之差(或差的绝对值)为定值;到定点和到定直线的距离相等等,可以考虑利用圆锥曲线的定义直接写出所求曲线的轨迹方程。
初三轨迹问题解题技巧
![初三轨迹问题解题技巧](https://img.taocdn.com/s3/m/3d0e29c170fe910ef12d2af90242a8956becaafb.png)
初三轨迹问题解题技巧如下:
1. 直接法:根据动点所满足的等量关系列出方程,通过化简得到轨迹方程。
2. 定义法:根据各种已知曲线(直线、圆、圆锥曲线等)的定义,结合题意直接设出这些曲线的方程,再利用已知条件求出方程中各项系数的方法。
3. 相关点法:当曲线上一个动点的变动与另外一个动点相关时,可用曲线上该动点的坐标表示出另外一个点的坐标,把此点的坐标代入制约条件就可得到所求曲线的方程,这种方法就叫相关点法(又叫代入法)。
4. 参数法:参数法就是把曲线上动点的坐标先用相关参数表示出来,然后消去参数就得到。
以上是初三轨迹问题解题的一些技巧,希望对解决您的问题有所帮助。
圆的轨迹问题,有迹可循,突破难点有绝招
![圆的轨迹问题,有迹可循,突破难点有绝招](https://img.taocdn.com/s3/m/baa1fe4489eb172dec63b70b.png)
圆的轨迹问题,有迹可循,突破难点有绝招动点轨迹问题、最值问题历来是中考的难点和热点。
学生需要在考场短时间思考出动点的运动轨迹确实不是一件容易的事情,如果平时不能有对图形本质的理解和把握,很难在考试中解决此类问题。
在初中阶段,我们会遇到两种轨迹问题,一个是圆弧,一个是线段。
它们分别对应不同的知识点。
圆弧上的点到定点的距离等于定长,线段上的点到直线的距离也等于定长。
但是在实际的考查过程中,我们往往不是事先知道动点所形成的轨迹。
而需要我们结合题目中的条件,来分析出问题是不是轨迹问题,是哪种轨迹问题,它们常见的处理方法又是什么呢?首先我们先给轨迹下个定义,简单的说就是:动点在空间或者平面内移动,它所通过的全部路径叫做这个点的轨迹。
我们在理解这个定义时,可从下列几个方面考虑:(1)符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。
(2)凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性)。
(3)另外凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。
初中阶段会接触到的曲轨迹一般是圆或者圆弧,比如旋转问题中;当然动点也可能在双曲线或者抛物线上运动,这都属于曲轨迹;类型1 圆的问题中隐含圆的轨迹问题1.如图,扇形AOD中,∠AOD=90°,OA=6,点P为弧AD上任意一点(不与点A和D重合),PQ⊥OD于Q,点I为△OPQ的内心,过O,I和D三点的圆的半径为r.则当点P在弧AD上运动时,r的值满足()A.0<r<3 B.r=3 C.3<r<3√3 D.r=3√2【解析】连OI,PI,DI,由△OPH的内心为I,可得到∠PIO=180°﹣∠IPO﹣∠IOP=180°﹣1/2(∠HOP+∠OPH)=135°,并且易证△OPI≌△ODI,得到∠DIO=∠PIO=135°,所以点I在以OD为弦,并且所对的圆周角为135°的一段劣弧上;过D、I、O三点作⊙O′,如图,连O′D,O′O,在优弧AO取点P′,连P′D,P′O,可得∠DP′O=180°﹣135°=45°,得∠DO′O=90°,O′O =3√2.故选:D.2.如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC的底边BC所在直线经过点D.若⊙O的半径等于1,则OC的长不可能为()A.2﹣√3 B.√3﹣1 C.2 D.√3+1【解析】利用圆周角定理确定点C的运动轨迹,进而利用点与圆的位置关系求得OC长度的取值范围.如图,连接OA、OD,则△OAD为等边三角形,边长为半径1.作点O关于AD的对称点O′,连接O′A、O′D,则△O′AD也是等边三角形,边长为半径1,3.如图,在△ABC中,AC=4√3,BC=9,∠ACB=60°,AM∥BC,点P在射线AM上运动,连BP交△APC的外接圆于点E,则AE的最小值为.【解析】:如图,连接CE.∵AM∥BC,∴∠MAC=∠ACB=60°,∴∠CEP=∠CAP=60°,∴∠BEC=120°,4.(2020•武汉模拟)如图,⊙O的半径为1,点D为优弧AB上一动点,AC⊥AB交直线BD于C,且∠B=30°,当△ACD的面积最大时,∠BAD的度数为.【解析】连接OA、OD,如图,根据圆周角定理得到∠AOD=2∠B=60°,则△OAD为等边三角形,所以AD=OA=1,而∠C=60°,利用圆周角定理可判断点C在AD为弦,圆周角为60°的弧上运动,根据三角形面积公式,当C在弧AD的中点时△ADC的面积最大,此时∠CAD=60°,从而得到∠BAD=30°.类型2 非圆问题中隐含圆的轨迹问题5.(2019秋•罗湖区期末)如图,矩形ABCD中,AB=20,AD=30,点E,F 分别是AB,BC边上的两个动点,且EF=10,点G为EF的中点,点H为AD边上一动点,连接CH、GH,则GH+CH的最小值为.【解析】:由已知,点G在以B圆心,5为半径的圆在与长方形重合的弧上运动.作C关于AD的对称点C′,连接C′B,交AD于H,交以D为圆心,以5为半径的圆于G。
初中---轨迹问题(直线型,弧形)
![初中---轨迹问题(直线型,弧形)](https://img.taocdn.com/s3/m/202bed724693daef5ff73d07.png)
轨迹问题(1)---直线型路径解题策略:“直线生直线”,抓三点:起点,终点,中间点【引例】如图,△APQ 是等腰直角三角形,∠PAQ=90°且AP=AQ ,当点P 在直线BC 上运动时,求Q 点轨迹?【典型例题】《题型1》路径长例1.如图,在ABC ∆中,BC =8,M 是BC 上的一动点,连接AM ,取AM 的中点P ,随着点M 从点B 运动到点C ,则动点P 的路径长为。
例2.已知E 、F 为等边ABC ∆边AB ,AC 上的两动点,连接EF.若AF=BE ,且等边ABC ∆的边长为8,则线段EF 中点Q 的运动路径长为:。
例3.如图,已知点A 是第一象限内横坐标为3的一个定点,AC ⊥x 轴于点M ,交直线y=-x 于点N.若点P 是线段ON 上的一个动点,APB ∠=30°,PA BA ⊥,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.求当点P 从点O 运动到点N 时,点B 运动路径长是。
例4.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是________.《题型2》路径中找最值例5.如图,在平面直角坐标系中,A(-3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.例6.如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.【巩固练习】1.如图,矩形ABCD的边AB=3,AD=4,点E从点A出发,沿射线AD移动,以CE为直径作圓O,点F为圓O与射线BD的公共点,连接EF、CF,过点E作EG EF,EG与圓O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圓O与射线BD相切时,点E停止移动,在点E移动过程中,矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;求点G移动路线的长.2.如图:已知AB=10,点C、D在线段AB上且AC=DB=2,P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形APEF和正方形PBGH,点O1和O2是这两个正方形的中心,连接O1O2,设O1O2的中点为Q;当点P从点C运动到点D时,则点Q移动路径的长是_____________.3.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB匀速移动到点B,动点Q从点B开始沿边BC匀速移动到点C,如果P、Q两点分别从A、B两点同时出发,同时到达终点,则线段PQ的中点的运动路径长为____________mm.4.如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为___________.5.如图,Rt△ABC中,AC=6,BC=8,∠C=90°.点P是AB边上一动点,D是AC延长线上一点,且AC=CD,连接PD,过点D作DE⊥PD,连接PE,且tan∠DPE=.则当点P从点A 运动到B点时,点E运动的路径长为_______________.6.已知线段AB=10,C.D是AB上两点,且AC=DB=2,P是线段CD上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为__________.7.如图,平面直角坐标系中,A(a,0)、B(0,b),其中a、b满足a=++6,连接AB.(1)求AB的长;(2)若M为x轴上一点,且△ABM为等腰三角形,求点M的坐标;(3)若AB上一动点P从点B开始运动,到A点停止,以OP为边在OB的右侧作等边△OPQ,求在点P运动过程中点Q运动的路径长.轨迹问题(2)---弧型路径(隐形圓)解题策略:找定点,作圆心;求定长,作半径---“定点定长,定角定弦”、“圓生圓”【引例】(圓生圓)1.如图,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?(定角定弦)2.如图,在直线上有两点A,B,在直线外再找一点Q,使∠AQB=60°,则点Q的轨迹是?(定点定长)3.如图,OA⊥OB,垂足为O,排P,Q分别是射线OA,OB上两个动点,点C是线段PQ的中点,且PQ=4,则动点C运动形成的路径长是____________________。
三段行程问题解题技巧和方法
![三段行程问题解题技巧和方法](https://img.taocdn.com/s3/m/509446b57d1cfad6195f312b3169a4517723e591.png)
三段行程问题解题技巧和方法摘要:一、行程问题概述二、行程问题解题技巧1.利用速度、时间和距离的关系2.利用相对速度解决相遇问题3.利用时间、距离和速度的复合条件求解三、行程问题实用方法1.画图法2.代数法3.列举法四、总结与建议正文:行程问题主要包括相遇问题、追及问题、绕行问题和多次相遇问题等。
在解决这些问题时,可以运用以下解题技巧:一、行程问题概述行程问题涉及到速度、时间和距离三个基本要素。
理解这些概念及它们之间的关系是解决行程问题的基础。
二、行程问题解题技巧1.利用速度、时间和距离的关系速度、时间和距离之间的关系为:速度=距离/时间。
通过这个关系,可以求出未知量,如速度、时间或距离。
2.利用相对速度解决相遇问题相遇问题的特点是两个物体在同一路线上行驶,且其中一个物体速度大于另一个物体。
解决相遇问题只需计算两个物体的相对速度,然后根据时间求出相遇时的距离。
3.利用时间、距离和速度的复合条件求解在解决行程问题时,有时需要同时考虑时间、距离和速度三个因素。
根据题意列出方程组,然后求解方程组,得出未知量的值。
三、行程问题实用方法1.画图法对于复杂行程问题,可以通过画图来帮助理解问题,从而找到解题思路。
画图能直观地表示物体间的相对位置和运动轨迹,有助于解决问题。
2.代数法代数法是解决行程问题的常用方法。
通过列出方程,将未知量表示为字母,然后求解方程得到未知量的值。
3.列举法列举法适用于题意明确、条件有限的行程问题。
通过列举可能的情况,逐一验证得出正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中常见路径(轨迹)问题
之解决策略
一、 动点到定点的距离等于定长
这一类动点问题的特点是:所求的动点到某一个定点的距离是不变的。
根据圆的定义,这时容易发现该动点的轨迹是一个圆周或者一段弧。
而且该圆或者弧的圆心就是定点,半径就是定长。
知道圆心和半径之后就容易求解了。
1. 如图,矩形ABCD 中,AB=2,
E 是AD 边上一动点,将△ABE 沿BE
折叠至△PBE ,在点E 从A 到D 的过程中,求P 点轨迹长。
2. 如图,在△ABC 中,∠ACB=90°,∠ABC=30°,AC=2。
将△ABC 绕顶点C 顺时针旋
转,得到△A′B′C ,AC 中点为D ,A′B′中点为E ,连接DE ,当旋转角为_______°时,DE 长度最大,最大值为__________.
3. 如图,OA ⊥OB ,垂足为O ,P 、Q 分别是射线OA 、OB 上两个动点,点C 是线段PQ
的中点,且PQ=4.则动点C 运动形成的路径长是______
二、定角对定长
这一类动点问题的特点是:以该动点为顶点的某个角度大小是固定不变的,而且该固定角度所对的某一条边是固定的。
由圆周角的特点可知,这个动点的轨迹就是一个圆周或者一段弧。
而且这个固定角度就是圆周角,这个固定边就是弦。
如果需要求轨迹长的话,再把圆心角和半径算出来就行了。
不过有一点需要注意,这时需要把起始点和终点找到才能准确求出圆心角。
对于这种题型,找圆心可以用三角形外心的结论:锐角三角形的外心在三角形内部,直角三角形的外心在斜边中点,钝角三角形的外心在三角形外部。
所以,当这个固定角度是锐角时,圆心和动点位于固定边的同侧;当这个固定角度是直角时,圆心就在固定边的中点;当这个固定角度是钝角时,圆心和动点位于固定边的两侧。
4.如图,点E,F是正方形ABCD的边AD上两个动点,满足AE=DF。
连接CF交BD
于点G,连接BE交AG于点H。
若正方形的边长为2,则线段DH的最小值是___.
5.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于
点P.若BF=CE,当点E从点A运动到点C时,试求点P经过的路径长.
6.如图,正方形ODEF的边长为2,以O为圆心,AB为直径的半圆经过点D,连接
AF,BD相交于点P,将正方形ODEF从OD与OA重合的位置开始,绕着点O逆时针旋转90°,求交点P运动的路径长.
7.如图,圆O的直径AB=4,C为圆周上一点,AC=2。
P为半圆AB上一动点,连接
PC,过点C作PC的垂线交PB的延长线于点Q,求AQ的最大值。
8.如图,等边△ABC和等边△DEF边长都为2,EF和BC互相平分交于点O,直线FC
交直线AD于点P,当△DEF绕点O旋转时,求BP的最大值和最小值。
9.如图,半径为2cm,圆心角为90°的扇形OAB的弧AB上有一运动的点P.从点P
向半径OA引垂线PH交OA于点H.设△OPH的内心为I,当点P在弧AB上从点A
运动到点B时,内心I所经过的路径长为______.
【例4】如图,Rt△ABC中,∠C=90°,AC=2,BC=4,点A、B分别在x轴正半轴和y轴正半轴上。
当AB边在坐标轴上滑动时,求C点的轨迹长。
三、旋转型轨迹问题
这一类动点问题的特点是:所求的点是从动点,是先有其他点在动,然后所求动点才动,而且主动点和从动点会有一个定点作为“旋转中心”,旋转的情形满足下列两种之一:第一种是主动点、从动点和旋转中心三点共线;第二种是主动点与旋转中心的连线和从动点与旋转中心的连线夹角固定,而且两条线段之间的比例不变。
这时,要求从动点的轨迹,只需要求出主动点的轨迹就行。
因为根据几何画板,他们的轨迹形状相同,长度成比例。
10.如图,正方形ABCD的边长为2,CD边上一动点P,连接BP,过点P作PQ⊥BP,
截取PQ=BP,当点P从点C运动到点D时,求Q的轨迹长
11.如图,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M为
PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是________
12.如图,AB为⊙O的直径,AB=8,点C为圆上任意一点,OD⊥AC于D,当点C在⊙
O上运动一周,点D运动的路径长为_______
13.如图,正方形ABCD的边长是2,E是AD的中点,点F从点A出发,沿AB运动到
点B停止.连接FE,过E作EF的垂线交射线BC于点G,连结EG,P是EG的中点,请直接写出点P运动路线的长.
14. 如图,在矩形ABCD 中,点F 在AD 上,AB=2,AF=1,E 是AB 上的一个动点,连
接FE ,过点F 作FE 的垂线交BC 于点G ,连接EG ,设EG 的中点为P ,当点E 从点B 运动到点A 时,点P 移动的路径的长是__________.
15. 如图,已知线段AB =6,C 、D 是AB 上两点,且AC =DB =1,P 是线段CD 上一动
点,在AB 同侧分别作等边三角形APE 和等边三角形PBF ,G 为线段EF 的中点,点P 由点C 移动到点D 时,G 点移动的路径长度为_______.
16. 如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,动点P 从点A 开始沿边AC 向点
C 以1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,在整个运动过程中,求出线段PQ 中点M 所经过的路径长.
17. 如图,直角坐标系中,已知点A (2,4),B (5,0),动点P 从B 点出发沿BO 向终
点O 运动,动点Q 从A 点出发沿AB 向终点B 运动.两点同时出发,速度均为每秒1个单位,记PQ 的中点为G .请直接写出点G 随点P ,Q 运动所经过的路线的长度.
A
C。