2020新人教版八年级数学下册知识点总结归纳
2020年春人教版初中数学八年级下册同步课件 第十八章 18.2 18.2.1 第2课时 矩形的判定

下页
3.下列命题中,假命题是( ) A.有一组对角是直角且一组对边平行的四边形是矩形 B.有一组对角是直角且一组对边相等的四边形是矩形 C.有两个内角是直角且一组对边平行的四边形是矩形 D.有两个内角是直角且一组对边相等的四边形是矩形 解析:有一组对角是直角且一组对边平行可得到两组对边平行或四个角均是直角,故四 边形是矩形;有一组对角是直角且一组对边相等可以得到其两组对边平行,四边形是矩 形;有两个内角是直角且一组对边平行的四边形可能是矩形,也可能是直角梯形;有两 个内角是直角且一组对边相等可以得到其两组对边相等,所以该四边形是矩形. 答案:C
返回导航 上页
下页Biblioteka 判定矩形的方法“图示”八年级数学 ·下
返回导航 上页
下页
[学以致用] 如图所示,在▱ABCD中,AC,BD相交于点O,△AOB是等边三 角形,AB=4 cm. (1)判断▱ABCD是否为矩形,说明你的理由; (2)求▱ABCD的面积.
八年级数学 ·下
返回导航 上页
下页
解析:(1)▱ABCD是矩形.理由如下: ∵△AOB是等边三角形,∴OA=OB=AB=4 cm.∵四边形ABCD是平行四边形,∴ AC=2OA,BD=2OB,∴AC=BD,∴平行四边形ABCD是矩形. (2)由(1)知OA=AB=4 cm,AC=2OA=8 cm,∵四边形ABCD是矩形,∴∠ABC= 90°.在Rt△ABC中,由勾股定理得BC= AC2-AB2= 82-42=4 3, ∴▱ABCD的面积是AB×BC=4×4 3=16 3 (cm2).
八年级数学 ·下
返回导航 上页
下页
[核心素养] 1.数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组的4 位同学拟订的方案,其中正确的是( ) A.测量对角线是否互相平分 B.测量两组对边是否分别相等 C.测量一组对角是否都为直角 D.测量三个角是否为直角
2020--2021学年人教版八年级数学下册第18章:平行四边形的性质与判定 (1)

平行四边形(第一讲:性质与判定)[知识点梳理与例题讲解]一、平行四边形定义1、平行四边形:两组对边分别平行的四边形叫做平行四边形(如图),记作“□ABCD ”。
2、平行四边形的表示:一般按一定的方向依次 表示各顶点,如上图的平行四边形不能表示成□ACBD ,也不能表示成□ADBC 。
二、平行四边形的性质1、平行四边形的对边平行且相等;2、平行四边形相邻的角互补,对角相等;3、平行四边形的对角线互相平分;4、平行四边形是中心对称图形,对称中心是对角线的交点;5、四个相等,四组全等:DOA DOC BOC AOB S S S S ∆∆∆∆===COD AOB ∆≅∆;COB AOD ∆≅∆;CDA ABC ∆≅∆;DAB BCD ∆≅∆. 常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线 的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
[例1]如图,在□ABCD 中,已知AD =8cm ,AB =6cm ,DE 平分∠ADC 交BC 边于点E ,则BE 等于_________cm 。
[例2]如图,□ABCD 中,AC ,BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为________.[例3](1)已知□ABCD 的周长为60cm,对角线AC、BD 相交于O 点,△AOB 的周长比△BOC 的周长多8cm,则AB 的长度为_________cm。
⑵已知△ABC,若存在点D 使得以A、B、C、D 为顶点的四边形是平行四边形,这样的点D 有______个。
⑶接上题,若已知△ABC 的周长为3,则以所有D 点围成的多边形周长为________。
[例4]如图,在□ABCD 中,E、F 是对角线BD 上的两个点且DF=BE,试猜想AE 与CF 有何数量关系及位置关系并加以证明。
[例5]如图,当点 E、F 分别在线段BD、DB 的延长线上时,仍有DF=BE,此时AE 与CF 的数量关系及位置关系有变化吗?[例6](1)如图,□ABCD 中,平行于边的两条线段EF,GH 把□ABCD 分成四部分,分别记这四部分的面积为S1、S2、S3 和S4,这下列等式一定成立的是( )A.S1=S3 B.S1+S3=S2+S4C.S3-S1=S2-S4 D.S1×S3=S2×S4(2)如图,□ABCD 中,P 是中间任意一点,△ABP,△BCP,△CDP,△ADP的面积分别为S1、S2、S3、S4,则一定成立的是( )A.S1+S2>S3+S4 B.S1+S2=S3+S4C.S1+S2<S3+S4 D.S1+S3=S2+S4三、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形;(2)定理1:两组对角分别相等的四边形是平行四边形;(3)定理2:两组对边分别相等的四边形是平行四边形;(4)定理3:对角线互相平分的四边形是平行四边形;(5)定理4:一组对边平行且相等的四边形是平行四边形。
人教版2020年初中(7-9年级)数学知识点全总结(打印版)

人教版2020年初中(7-9年级)数学知识点全总结(打印版)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
2020年春人教版初中数学八年级下册同步课件 第十九章 19.2 19.2.2 第3课时 待定系数法

x(千克)之间的函数图象由线段 OA 和射线 AB 组成,则一次
购买 3 千克这种苹果比分三次每次购买 1 千克这种苹果可
节省( )
A.1 元
B.2 元
C.3 元
D.4 元
八年级数学 ·下
返回导航 上页
下页
解析:设 OA 的解析式为 y1=k1x(k1≠0),∵OA 过 A(2,20),∴20=2k1,解得 k1=10, ∴y1=10x,∴x=1 时,y1=10;设 AB 的解析式为 y2=k2x+b(k2≠0),∵AB 过 A(2,20)、 B(4,36),
下页
2.如图所示,是“村村通”工程中,某村修筑的公路长度 y(米)与时间 x(天)之间的关 系的图象,根据图象可知 8 天共修筑的公路长为________.
八年级数学 ·下
返回导航 上页
下页
解析:当 x≥2 时设直线 AB 的函数解析式为 y=kx+b, ∵点(2,150),(4,250)在图象上, ∴24kk+ +bb= =125500 ,解得:kb= =5500 , ∴y=50x+50, 当 x=8 时,y=50×8+50=450.
得b3=k+2,b=0,
解得k=-23, b=2,
故直线 l 对应的函数解析式为 y=-23x+2.
返回导航 上页
下页
八年级数学 ·下
返回导航 上页
下页
知识点二 利用一次函数解决实际问题 [例 2] 某市规定了每月用水 18 立方米以内(含 18 立方米) 和用水 18 立方米以上两种不同的收费标准,该市的用户每 月应交水费 y(元)是用水量 x(立方米)的函数,其图象如图所 示. (1)若某月用水量为 18 立方米,则应交水费多少元? (2)求当 x>18 时,y 关于 x 的函数解析式,若小敏家某月交水费 81 元,则这个月用水 量为多少立方米?
最新人教版八年级数学下册第16章二次根式全套课件PPT(完美版)

A≥0且B≠0.
A 1有意义的条件:
B
巩固练习
2. x取何值时,下列二次根式有意义?
(1) x 1
x≥1
(4) 1 x x>0
(2) 3x
x≤0
(5) x3
x≥0
(3) 4x2
x为全体实数
(6) 1 x2 x≠0
(7)
x 1 x3
(
x
2)0
(8)
x 2 (9) x2 1
x
∴当x=1时, x2 2x 1 在实数范围内有意义. (2)∵无论x为任何实数,-x2-2x-3=-(x+1)2-2<0, ∴无论x为任何实数, x2 2x 3 在实数范围内都无意义.
归纳小结:被开方数是多项式时,需要对组成多项式的项 进行恰当分组凑成含完全平方的形式,再进行分析讨论.
探究新知
归纳总结
一般地,我们把形如 a (a 0) 的式子叫做二 次根式. “ ”称为二次根号.
注意:a可以是数,也可以是式.
两个必备特征
①外貌特征:含有“ ” ②内在特征:被开方数a ≥0
探究新知
素养考点 1 利用二次根式的定义识别二次根式
例1 下列各式中,哪些是二次根式?哪些不是?
(1) 14 ; (2)81; (3) - 0.8 ;(4)-3x (x 0)
(1) 32
是
(2) -12 不是
(3)3 8
(4)4 a2
不是
不是
(5) - m (m 0) 是
(8) - x2 1
不是
(6) 2a 1 不是
(9)4 2
是
(7) a2 2a 3
是
1
八年级下册数学重要知识点初二下册数学知识点

八年级下册数学重要知识点初二下册数学知识点
初二下册数学的重要知识点包括:
1. 直角三角形的性质:勾股定理、正弦定理、余弦定理等;
2. 平面直角坐标系中的图形:直线的方程、点的坐标、图形的性质等;
3. 二次根式与分式的运算:根式的化简、根式的加减乘除、分式的化简等;
4. 平面图形的性质:正方形、长方形、平行四边形、三角形等的性质;
5. 一元一次方程与不等式:一元一次方程与不等式的解、方程的应用等;
6. 几何变换:平移、旋转、对称等的基本概念与性质;
7. 数据统计与概率:频数、频率、平均数、中位数、众数等的计算与应用;
8. 线性函数:函数的概念、函数图像、函数关系、函数表示、函数应用等;
9. 集合:集合的基本概念、集合的关系与运算等。
以上只是初二下册数学的一部分重要知识点,具体的教材内容可能会有所不同。
学生
在学习数学时,需要根据教材的安排和教师的指导来有重点地学习和复习相关知识点。
八年级下册数学知识点总结归纳

⼋年级下册数学知识点总结归纳 为了⽅便同学们进⾏2020年中考数学考试复习备考,下⾯是⼩编为⼤家整理的关于⼋年级下册数学知识点总结,希望对您有所帮助。
欢迎⼤家阅读参考学习! 第1章分式 ⼀.知识框架 ⼆.知识概念 1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。
其中A叫做分式的分⼦,B叫做分式的分母。
2.分式有意义的条件:分母不等于0 3.约分:把⼀个分式的分⼦和分母的公因式(不为1的数)约去,这种变形称为约分。
4.通分:异分母的分式可以化成同分母的分式,这⼀过程叫做通分。
分式的基本性质:分式的分⼦和分母同时乘以(或除以)同⼀个不为0的整式,分式的值不变。
⽤式⼦表⽰为:A/B=A_/B_ A/B=A÷C/B÷C (A,B,C为整式,且C≠0) 5.最简分式:⼀个分式的分⼦和分母没有公因式时,这个分式称为最简分式.约分时,⼀般将⼀个分式化为最简分式. 6.分式的四则运算:1.同分母分式加减法则:同分母的分式相加减,分母不变,把分⼦相加减.⽤字母表⽰为:a/c±b/c=a±b/c 2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进⾏计算.⽤字母表⽰为:a/b±c/d=ad±cb/bd 3.分式的乘法法则:两个分式相乘,把分⼦相乘的积作为积的分⼦,把分母相乘的积作为积的分母.⽤字母表⽰为:a/b _c/d=ac/bd 4.分式的除法法则:(1).两个分式相除,把除式的分⼦和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc (2).除以⼀个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b_/c 7.分式⽅程的意义:分母中含有未知数的⽅程叫做分式⽅程. 8.分式⽅程的解法:①去分母(⽅程两边同时乘以最简公分母,将分式⽅程化为整式⽅程);②按解整式⽅程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式⽅程化为整式⽅程的过程中,扩⼤了未知数的取值范围,可能产⽣增根). 分式和分数有着许多相似点。
人教版八年级数学下册专题01 二次根式的有关概念和性质 题型归纳 (解析版)

专题01 二次根式的有关概念和性质【思维导图】◎考点题型1 求二次根式的值例.(2022·浙江·九年级专题练习)当0x =时, )A .4B .2CD .0【答案】B 【解析】 【分析】把0x = 【详解】解:把0x =2= 故选:B . 【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.变式1.(2020·山东定陶·八年级期末)当 x =-3 时, )A .3B .-3C .±3D 【答案】A【分析】把x =-3代入二次根式进行化简即可求解. 【详解】解:当x =-3时3=. 故选A. 【点睛】本题考查了二次根式的计算,正确理解算术平方根的意义是关键. 变式2.(2020·北京·一模)如果31a ,那么代数式21(1)11aa a +÷--的值为( )A .3BCD 2【答案】B 【解析】 【分析】先根据分式的混合运算法则化简原式,再把a 的值代入化简后的式子计算即可. 【详解】 解:原式=()()111a a a a a ÷--+=()()1111a a a a a a-+⨯=+-;当31a时,原式11+=故选:B . 【点睛】本题考查了分式的化简求值,属于常考题型,熟练掌握分式的混合运算法则是解题关键.变式3.(2020·湖北鄂城· )A B .2 C .22 D .2±【答案】B 【解析】 【分析】根据乘方和开方的运算法则进行计算即可. 【详解】2=故答案为:B .本题考查了开方和乘方的运算问题,掌握乘方和开方的运算法则是解题的关键.◎考点题型2 求二次根式中的参数例.(山东阳谷·,则正整数n的最小值是()A.2B.4C.6D.8【答案】C【解析】【分析】,=则6n是完全平方数,满足条件的最小正整数n为6.【详解】解:24n=,∴,即6n是完全平方数;∴n的最小正整数值为6.故选:C.【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答变式1.(全国·,最小的正整数n是()A.6B.3C.4D.2【答案】B【解析】【分析】根据题意,算数平方根是正整数,可得被开方数是能开方的正整数.【详解】是正整数,所以n 的最小正整数是3,故选:B.【点睛】本题主要考查了二次根式的定义,利用开方运算是解答本题的关键.变式2.(2020·四川三台·,则正整数n 的最小值是( ) A .2 B .3C .4D .6【答案】B 【解析】 【分析】,然后再判断n 的最小正整数值. 【详解】=,,则也是整数; ∴n 的最小正整数值是3; 故选B . 【点睛】变式3.(2020·江西南丰·20b -=,则2019()a b +的值是( ). A .1 B .-1C .2019D .-2019【答案】B 【解析】 【分析】利用非负数的性质列出方程组,求出方程组的解得到a 与b 的值,代入原式计算即可求出值. 【详解】20b -=,∴3020a b +=⎧⎨-=⎩, ∴32a b =-⎧⎨=⎩, ∴20192019()(32)1a b +=-+=-, 故选择:B. 【点睛】此题考查了非负数的性质及二元一次方程组,熟练掌握几个非负数的和为零,则每一个非负数都为零是解本题的关键.◎考点题型3 二次根式有意义的条件例.(2022·河北·在实数范围内有意义,则x 的值可能为( ) A .0 B .﹣2 C .﹣1 D .1【答案】D 【解析】 【分析】,可列不等式组10,10x x 得到不等式组的解集,再逐一分析各选项即可. 【详解】解: , 1010x x ①②由①得:1,x ≥ 由②得:1,x ≠- 所以:1,x ≥故A,B,C 不符合题意,D 符合题意, 故选D 【点睛】本题考查的是分式有意义的条件,二次根式有意义的条件,掌握“分式与二次根式的综合形式的代数式有意义的条件”是解本题的关键.变式1.(2022·湖南岳阳·,则实数x 的取值范围是( ) A .1x ≥- B .0x ≠C .1≥xD .0x >【答案】C 【解析】 【分析】根据二次根式的被开方数为非负数解答.解:由题意得10x -≥, 解得1≥x , 故选:C . 【点睛】此题考查了二次根式的非负数,解题的关键是熟练掌握二次根式的双重非负性列式进行解答.变式2.(2022·福建惠安·有意义,则x 的取值范围为( ) A .1x ≥- B .1x >- C .1≥x D .1x ≤【答案】A 【解析】 【分析】根据二次根式有意义的条件分析即可. 【详解】, ∴10x +≥ 解得1x ≥- 故选A 【点睛】本题考查了二次根式有意义的条件,理解被开方数为非负数是解题的关键.变式3中x 的取值范围是( ) A .x >2 B .x ≥﹣2C .x ≠2D .x ≥﹣2且x ≠2【答案】D 【解析】 【分析】根据二次根式及分式有意义的条件可直接进行求解. 【详解】 解:由题意得:20x +≥且20x -≠,解得:2x ≥-且2x ≠; 故选D .本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式及分式有意义的条件是解题的关键.◎考点题型4 利用二次根式的性质化简例.(2022·贵州松桃·八年级期末)下列各式中正确的是( )A 2=-B 2=±C .22= D .(22=-【答案】C 【解析】 【分析】根据二次根式的性质即可依次判断. 【详解】A. 2,故错误;B. 2=,故错误;C.22=,正确;D. (22=,故错误;故选C . 【点睛】此题主要考查二次根式的计算,解题的关键是熟知二次根式的性质.变式1.(2022·江苏·2x =-成立,则x 的取值范围是( ) A .2x ≤ B .2x ≥C .02x ≤≤D .任意实数【答案】A 【解析】 【分析】根据实数的性质及去绝对值的方法即可求解. 【详解】22x x =-=-∴x -2≤0故选A . 【点睛】此题主要考查实数的性质,解题的关键是熟知平方根的性质及去绝对值的方法. 变式2.(上海奉贤·七年级期末)下列计算错误的是( )A 2=-B 2C 2D .2(2=【答案】A 【解析】 【分析】直接利用二次根式的性质以及二次根式的乘法运算法则化简,进而判断即可. 【详解】解:A 2,故此选项计算错误,符合题意;B 2=,故此选项计算正确,不合题意;C 2=,故此选项计算正确,不合题意;D .2(2=,故此选项计算正确,不合题意; 故选:A . 【点睛】此题考查了二次根式的性质及二次根式的乘法运算法则,熟记乘法法则是解题的关键.变式3.(2022·2的结果是( ) A .61x -- B .1-C .61x +D .1【答案】D 【解析】 【分析】x 的取值范围,,利用二次根式的性质去根号,然后合并同类项即可. 【详解】0x ≥∴31=+x故原式化简为:3131x x +-=. 故选:D . 【点睛】本题主要是考查了去二次根号以及二次根式的基本性质,熟练掌握二次根式的性质,求解该题的关键.◎考点题型5 复合二次根式的化简例.(浙江滨江·八年级期中)对式子,使根号外不含字母m ,正确的结果是( )A B .C .D 【答案】C 【解析】 【分析】直接利用二次根式的性质化简求出答案. 【详解】解:由题意可得:30m -≥,∴0m ≤∴=故选:C 【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.变式1.(河南原阳· )AB C .D .【答案】D 【解析】 【分析】根据二次根式成立的条件确定x 的取值,从而利用二次根式的性质进行化简. 【详解】解:由题意可得:x <0∴(11x x x⋅=⋅-故选:D . 【点睛】本题考查二次根式的化简,理解二次根式成立的条件及二次根式的性质正确化简计算是解题关键.变式2.(湖北鄂州·八年级期末)把(2-x) 2-x )适当变形后移入根号内,得( )AB C . D .【答案】D 【解析】 【分析】由题意易得x>2,然后根据二次根式的性质可进行求解. 【详解】 解:由题意得: 102x >-,解得:x>2,∴(2x -= 故选D . 【点睛】本题主要考查二次根式的性质,熟练掌握二次根式的性质是解题的关键.变式3.(2018·全国·2得( ) A .2 B .﹣4x+4C .xD .5x ﹣2【答案】C 【解析】 【分析】根据二次函数的性质求解可得答案. 【详解】解:1-3x≥0,x≤13,∴2x-1≤1-3<0,∴原式-(1-3x)=1-2x-1+3x=x, 故选C. 【点睛】主要考查了根据二次根式的意义及化简.:当a >0时=a;当a<0时,=-a.二次根式2=a,(a≥0).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章 二次根式1.二次根式:一般地,式子)0a (,a ≥叫做二次根式. 注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式;(2)a 是一个重要的非负数,即;a ≥0.2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.重要公式:(1))0a (a )a (2≥=,(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ;注意使用)0a ()a (a 2≥=.(3)积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求. 4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=⋅. 5.二次根式比较大小的方法: (1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小; (3)分别平方,然后比大小. 6.商的算术平方根:)0b ,0a (ba b a >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则: (1))0b ,0a (bab a >≥=; (2))0b ,0a (b a b a >≥÷=÷;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8.常用分母有理化因式: a a 与,b a b a +-与, b n a m b n a m -+与,它们也叫互为有理化因式.9.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题.11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.第十七章勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a, b, c满足a2+b2=c2。
,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)4.直角三角形的性质(1)、直角三角形的两个锐角互余。
可表示如下:∠C=90°⇒∠A+∠B=90°(2)、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°1AB可表示如下:∠C=90°⇒BC=2(3)、直角三角形斜边上的中线等于斜边的一半∠ACB=90°1AB=BD=AD可表示如下: D为AB的中点⇒CD=25、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90°BD2=CD•ADCD⊥AB AB2BD=BC•6、常用关系式由三角形面积公式可得:AB•CD=AC•BC7、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长a,b,c有关系22c2+,那么这a=b个三角形是直角三角形。
8、命题、定理、证明1、命题的概念判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
2、命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
3、公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
4、定理用推理的方法判断为正确的命题叫做定理。
5、证明判断一个命题的正确性的推理过程叫做证明。
6、证明的一般步骤(1)根据题意,画出图形。
(2)根据题设、结论、结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
9、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
10数学口诀.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
第十八章四边形一基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.二定理:中心对称的有关定理※1.关于中心对称的两个图形是全等形.※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. ※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.三 公式:1.S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高)2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高)3.S 梯形 =21(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线)四 常识:※1.若n 是多边形的边数,则对角线条数公式是:2)3n (n.2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系.4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.※5.梯形中常见的辅助线: ※6.几个常见的面积等式和关于面积的真命题:平行四边形矩形菱形正方形.第十八章一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。
二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数文档收集于互联网,已重新整理排版.word版本可编辑.欢迎下载支持. 的图象.五、用描点法画函数的图象的一般步骤1、列表(表中给出一些自变量的值及其对应的函数值。
)注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:(1)列表法(2)图像法(3)解析式法七、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b (k,b为常数,且k≠0)的函数叫做一次函数.当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:(1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。
(2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。
九、求函数解析式的方法:待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。
1.一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0.2.求ax+b=0(a,b是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b与x 轴交点的横坐标3.一次函数与一元一次不等式:解不等式ax+b>0(a,b是常数,a≠0) .从“数”的角度看,x为何值时函数y= ax+b 的值大于0.4.解不等式ax+b>0(a,b是常数,a≠0) .从“形”的角度看,求直线y= ax+b 在x 轴上方的部分(射线)所对应的的横坐标的取值范围.十、一次函数与正比例函数的图象与性质一次函数重点知识归纳:1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。