平面向量基本定理与平面向量正交分解及坐标表示

合集下载

232233平面向量的正交分解及坐标表示和运算

232233平面向量的正交分解及坐标表示和运算
a b 2,13,4 5,3
3a 4b 32,1 4 3,4 6,3 12,16 = 6,19
例5:如图,已知□ ABCD 的三个顶点A、B、C的坐标分别是
(-2,1)、(-1,3)、(3,4),试求顶点D的坐标。
解法1:设点D的坐标为(x,y) AB (1,3) (2,1) (1, 2)
解: AB OB OA
y
(x2 , y2 ) (x1, y1)
A
(x2 x1, y2 y1)
B
O
x
一个向量的坐标等于表示此向量的有向线段的终点的坐标减 去起点的坐标。
例4:已知 a (2,1),b (3, 4) ,求 a b, a b, 3a 4b 的坐标。
解 : a b 2,1 3,4 1,5
(2)若用 i, j 来表示OC,OD ,则: OC _3_i___4__j _, OD __5_i___7__j_ .
y
7
D
4
C
B
jo i A 3 5 x
(3)向量 CD 能否由 i, j 表示出来?可以的话,如何表示? CD 2 i 3 j
平面向量的坐标表示
如图,i, j 是分别与x轴、y轴方向相同 的单位向量,若以 i, j 为基底,则
它们的坐标。
解:如图可知
A2
a AA1 AA2 2i 3 j a (2,3)
同理Biblioteka AA1b 2i 3 j (2,3); c 2i 3 j (2, 3); d 2i 3 j (2, 3).
思考:已知 a (x1, y1),b (x2, y2) ,你能得出 a b, a b, a
解法2:由平行四边形法则可得
y
C
B
BD BA BC

2.3.2 平面向量的正交分解及坐标表示

2.3.2 平面向量的正交分解及坐标表示

-3
y
如图, i, j是分别与X轴、 Y轴方向相同的单位向量 , 若以向量i,j为基底,则:
A
C
a
B
j o i
x
对于该平面内的任意向 量a , 有且只有一对实数 x, y, 使得:
a xi y j
a xi y j
① a (x,y)
i (1,0) j (0,1) 0 (0,0)
向量 a的分解 不是唯一的!
e2
a
e1
e4
平行四边形法则
e3
a e1 e2
a e3 e4
如图所示,
重力的分解
F1 F2
G
G F1 F2
向量的分解不是唯一的! 把一个向量分解为两个互相垂直的向量, 叫做把向量正交分解。
如图,向量i, j是两个互相垂直的单位 向量, 而向量a与i的夹角为30,且 a 4, 以向量i, j为基底,向量a应如何用 i, j来表示?
2.3.2
平面向量的正交分解以及坐标表示
(1)平向量基本定理
(2)基底
如果e1 , e2是同一平面内两个不共 线向量, 那么对于这一平面内的 任意向量a,
有且只有 一对实数1,2,使得:
a 1 e1 2 e2
把不共线的向量 e1 , e2 叫作这一平面内所有向 量a的一组基底!
向量的夹角与垂直:
j
O
a ( x, y)
i
x
x
j 表示向量 a 、 例1:如图,分别用基底 i , c 、, b、 d 并求出它们的坐标.
A2
解:如图可知
a = AA1 + AA2 = 2i + 3j a = (2, 3)

平面向量的基本定理及坐标表示-说课稿

平面向量的基本定理及坐标表示-说课稿

平面向量的基本定理及坐标表示说课稿第一课时各位评委、各位老师,大家好。

我是....今天,我说课的内容是:人教A版必修四第二章第三节《平面向量的基本定理及坐标表示》第一课时,下面,我将从教材分析、教法分析、学法指导、教学过程以及设计说明五个方面来阐述一下我对本节课的设计。

一、教材分析:1、教材的地位和作用:向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。

本课时内容包含“平面向量基本定理”和“平面向量的正交分解及坐标表示”.此前的教学内容由实际问题引入向量概念,研究了向量的线性运算,集中反映了向量的几何特征,而本课时之后的内容主要是研究向量的坐标运算,更多的是向量的代数形态。

平面向量基本定理是坐标表示的基础,坐标表示使平面中的向量与它的坐标建立起了一一对应的关系,这为通过“数”的运算处理“形”的问题搭起了桥梁,也决定了本课内容在向量知识体系中的核心地位.2、教学目标:根据教学内容的特点,依据新课程标准的具体要求,我从以下三个方面来确定本节课的教学目标。

(1)知识与技能了解向量夹角的概念,了解平面向量基本定理及其意义,掌握平面向量的正交分解及其坐标表示。

(2)过程与方法通过对平面向量基本定理的探究,以及平面向量坐标建立的过程,让学生体验数学定理的产生、形成过程,体验由一般到特殊、类比以及数形结合的数学思想,从而实现向量的“量化”表示。

(3)情感、态度与价值观引导学生从生活中挖掘数学内容,培养学生的发现意识和应用意识,提高学习数学的兴趣,感受数学的魅力。

3、教学重点和难点:根据教材特点及教学目标的要求,我将教学重点确定为———平面向量基本定理的探究,以及平面向量的坐标表示教学难点:对平面向量基本定理的理解及其应用二、教法分析:针对本节课的教学目标和学生的实际情况,根据“先学后教,以学定教”原则,本节课采用由“自学—探究—点拨—建构—拓展”五个环节构成的诱导式学案导学方法。

三、学法指导教学矛盾的主要方面是学生的学。

向量基本定理

向量基本定理
A N M C L
B
向量的夹角 两个非零向量 则AOB
(0 180 )
B
a 和 b ,作 OA a, OB b,
叫做向量a 和
b 的夹角
b
O
b

a
a
A
注意:在两向量的夹角 定义中,两向量必须是 同起点的 B
a
O
a
O A B b 180 A
b

b B
O
a

0
90
A
a 与 b 同向
a 与 b 反向
a 与 b 垂直,
记作
ab
向量的正交分解
一个平面向量用一组基底e1 , e2 表示成 a 1 e1 2 e2 的形式,我们称它为向量的分解。当e1 , e2互相垂直时, 就称为向量的正交分解。
在平面上,如果选取互相垂直的向量作 为基底时,会为我们研究问题带来方便
N
B
请大家动手,从图中的线段AD、AB、BC、DC、 MN对应的向量中确定一组基底,将其它向 量用这组基底表示出来.
学以致用
M D 解、如图,已知梯形ABCD, AB//CD,且AB= 2DC,M、N分 别是DC、AB的中点. 2
C
e
参考答案:
1 DC e1 ; 2
A
N
解:取 AB e1, AD e2 为基底 ,则有
e1
B
1 1 BC BA AD DC e1 e2 e1 e1 e2 2 2
1 1 MN MD DA AN e1 e2 e1 4 2
1 e1 e2 4
练习
2、下列说法中,正确的有: ( 2、3 )

平面向量的正交分解及坐标表示

平面向量的正交分解及坐标表示
平面对量旳正交分解及坐标 表达
复习:
1.向量旳数乘运算:实数λ与向量a旳积是一种向 量,记作λa, 它旳长度和方向要求如下:
(1) |λa|=|λ| |a|
(2) 当λ>0时,λa旳方向与a方向相同; 当λ<0时,λa旳方向与a方向相反;
尤其地,当λ=0或a=0时, λa=0
设a,b为任意向量,λ,μ为任意实数,则有: ①λ(μa)=(λμ) a ②(λ+μ) a=λa+μa ③λ(a+b)=λa+λb

a b (x1 x2 , y1 y2 )

a b (x1 x2 , y1 y2 )
两个向量和与差旳坐标分别等于这 两个向量相应坐标旳和与差
(2) 若 A(x1, y1 ) B(x2 , y2 )
则 AB x2 x1, y2 y1
一种向量旳坐标等于表达此向量旳 有向线段旳终点坐标减去始点旳坐 标
(3)若 a (x, y) 和实数
则 a (x, y)
实数与向量旳积旳坐标等于用这个实 数乘原来向量旳相应坐标
例5.已知 a=(2,1),
b =(例-354,.4)已,知求例6a b
3a 4b 旳坐标.
ab
作业P101习题A1,B1,3,4 P118A3,4B4
尤其地:
()a (a) (a)
(a b) a b
向量 b 与非零向量 a 共线当且仅当 有且只有一种实数λ,使得 b=λa
新课讲解
设e1、e2是同一平面内旳两个不共
线旳向量,a 是这一平面内旳任历来量,
我们研究 a 与 e1、e2之间旳关系.
e1
a
研究
e2
OC = OM + ON = 1OA + 2OB

平面向量的基本定理及坐标运算

平面向量的基本定理及坐标运算

一、平面向量的基本定理(1)平面向量基本定理:如果1e 和2e 是一平面内的两个不平行的向量,那么该平面内的任一向量a ,存在唯一的一对实数1a ,2a ,使a =1122a e a e +.(2) 基底:我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记作{}12,e e .1122a e a e +叫做向量a 关于基底{}12,e e 的分解式. 注:①定理中1e ,2e 是两个不共线向量;②a 是平面内的任一向量,且实数对1a ,2a 是惟一的; ③平面的任意两个不共线向量都可作为一组基底.(3)平面向量基本定理的证明:在平面内任取一点O ,作11OE e =,22OE e =,OA a =.由于1e 与2e 不平行,可以进行如下作图:过点A 作2OE 的平行(或重合)直线,交直线1OE 于点M ,过点A 作1OE 的平行(或重合)直线,交直线2OE 于点N ,于是依据平行向量基本定理,存在两个唯一的实数1a 和2a 分别有11OM a e =,22ON a e =,所以1122a OA OM ON a e a e ==+=+证明表示的唯一性:如果存在另对实数x ,y 使12OA xe ye =+,则112212a e a e xe ye +=+,即1122()()0x a e y a e -+-=,由于1e 与2e 不平行,如果1x a -与2y a -中有一个不等于0,不妨设20y a -≠,则1212x a e e y a -=--,由平行向量基本定理,得1e 与2e 平行,这与假设矛盾,因此10x a -=,20y a -=,即1x a =,2y a =.二、向量的正交分解与向量的直角坐标运算:(1)向量的直角坐标:如果基底的两个基向量1e ,2e 互相垂直,则称这个基底为正交基底.在正交基底下分解向量,叫做正交分解.(2)向量的坐标表示:在直角坐标系中,一点A 的位置被点A 的位置向量OA 所唯一确定.设点A 的坐标为(,)x y ,由平面向量基本定理,有12(,)OA xe ye x y =+=,即点A 的位置向量OA 的坐标(,)x y ,也就是点A 的坐标;反之,点A 的坐标也是点A 相对于坐标原点的位置向量OA 的坐标.E 2E 1e 2e 1O ANMae1e 2axyO O yxae 2e 1平面向量的基本定理及坐标运算(3)向量的直角坐标运算:设12(,)a a a =,12(,)b b b =,则 ①1122(,)a b a b a b +=++;②1122(,)a b a b a b -=--;③1212(,)(,)a a a a a λλλλ==注:①两个向量的和与差的坐标等于两个向量相应坐标的和与差;②数乘向量的积的坐标等于数乘以向量相应坐标的积.(4)若11(,)A x y ,22(,)B x y ,则向量2121(,)AB OB OA x x y y =-=--;即:一个向量的坐标等于向量的终点的坐标减去始点的坐标.(5)用平面向量坐标表示向量共线条件:设12(,)a a a =,12(,)b b b =,则12210a b a b -=就是两个向量平行的条件.若向量b 不平行于坐标轴,即10b ≠,20b ≠,则两个向量平行的条件是,相应坐标成比例.题型一、平面向量的基本定理【例1】 若已知1e 、2e 是平面上的一组基底,则下列各组向量中不能作为基底的一组是( )A .1e 与2e -B .31e 与22eC .1e +2e 与1e —2eD .1e 与21e【例2】 线段与互相平分,则可以表示为( )A .B .C .D . 【例3】 已知ABCD □的两条对角线交于点O ,设AB a =,AD b =,用向量a 和b 表示向量BD ,AO .【例4】 如图,平行四边形ABCD 中,E F 、分别是BC DC 、的中点,G 为DE BF 、的交点,若AB =a ,AD =b ,试以a ,b 为基底表示DE 、BF 、CG .AB CD BD AB CD -1122AB CD -+1()2AB CD -()AB CD --GFE DCBA【例5】 设P 是正六边形OABCDE 的中心,若OA a =,OE b =,试用向量a ,b 表示OB 、OC 、OD【例6】 已知向量a ,b 不共线,()R c ka b k =+∈,d a b =-,如果c d ∥,那么( )A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向【例7】 已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP 等于( )A .()AB AD λ+,(01)λ∈, B .()AB BC λ+,202λ⎛⎫∈ ⎪ ⎪⎝⎭, C .()AB AD λ+,202λ⎛⎫∈ ⎪ ⎪⎝⎭,D .()AB BC λ-,202λ⎛⎫∈ ⎪ ⎪⎝⎭, 【例8】 已知向量a b ,不共线,m n ,为实数,则当0ma nb +=时,有m n += 【例9】 在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点.若AC AE AF λμ=+,其中λ,R μ∈,则λμ+= .【例10】证明:若向量,,OA OB OC 的终点A B C 、、共线,当且仅当存在实数,λμ满足等式1λμ+=,使得OC OB OA λμ=+.POE DCBAFEDCBAOCBA题型二、平面向量的坐标表示与运算【例11】设向量(23),AB =,且点A 的坐标为(12),,则点B 的坐标为 . 【例12】若(21),a =,(34),b =-则34a b +的坐标为_________. 【例13】设平面向量()()3,5,2,1a b ==-,则2a b -=( )A .()6,3B .()7,3C .()2,1D .()7,2【例14】已知(2,3),(1,2)a x b y =-=+,若a b =,则x = ,y = . 【例15】若()0,1A ,()1,2B ,()3,4C ,则AB -2BC = 【例16】若()3,2M -,()5,1N --且12MP =MN ,求P 点的坐标.【例17】已知向量()1,0a =,()0,1b =,()R c ka b k =+∈,d a b =-,如果那么( )A .且与同向B .且与反向C .且与同向D .且与反向【例18】已知向量()11a =,,()2b x =,若a b +与42b a -平行,则实数的值是( ) A .2- B .0 C .1 D .2【例19】在平面直角坐标系xoy 中,四边形ABCD 的边AB DC ∥,AD BC ∥,已知点()2,0A -,()6,8B ,()8,6C ,则D 点的坐标为___________.【例20】已知向量()3,1a =,()1,3b =,(),7c k =,若()a c -∥b ,则= . 【例21】已知()12a =,,()32b =-,,当ka b +与3a b -平行,k 为何值( )A .14 B .-14 C .-13 D .13【例22】已知(1,2),(3,2)a b ==-,当实数k 取何值时,k a +2b 与2a -4b 平行?//c d 1k =c d 1k =c d 1k =-c d 1k =-c d x k【例23】点(23),A 、(54),B 、(710),C ,若()R AP AB AC λλ=+∈,试求λ为何值时,点P 在一、三象限角平分线上.【练1】 在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( )A .2133b c +B .5233c b -C .2133b c -D .1233b c +【练2】 如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为.【练3】 已知两个向量()()121a b x ==,,,,若a b ∥,则x 的值等于( ) A .12-B .12C .2-D .2【练4】 若平面向量a ,b 满足1a b +=,a b +平行于轴,()21b =-,,则a = .DCBAONMCBAx 随堂练习【题1】 若向量()1,1a =,()1,1b =-,()4,2c =,则c = ( )A .3a +bB . 3a -bC .-a +3bD .a +3b【题2】 已知a =(4,2),b =(x ,3),且a ∥b ,则x 等于( )A .9B .6C .5D .3【题3】 已知平面向量a =(x ,1),b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第一、四象限的角平分线【题4】 已知向量e 1与e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 等于( )A .3B .-3C .0D .2【题5】 已知向量(1,2)a =,(0,1)b =,设u a kb =+,2v a b =-,若u ∥v ,则实数k 的值为( )A .-1B .-12C .12D .1【题6】 设点A (2,0),B (4,2),若点P 在直线AB 上,且|AB |=2|AP |,则点P 的坐标为( )A .(3,1)B .(1,-1)C .(3,1)或(1,-1)D .无数多个【题7】 设(1,2),(2,3),a b ==若向量a b λ+与向量(4,7)c =--共线,则λ=.【题8】 已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.【题9】 已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN→=-2b .(1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .【题10】 在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( ) A .14a +12b B .23a +13b C .12a +14bD .13a +23b课后作业。

2.3.2平面向量的正交分解及坐标表示

2.3.2平面向量的正交分解及坐标表示

1.请写出下列各向量的坐标
i _(1_,0_) , j _(0_,1_) ,0 _(0_,0_) .
2.若向量
a
3i
4
j
,则向量
a 的坐标
是 (3,-4) .
3.若向量a
(x
2,3)与向量b
(1,
y
2)相等,
则(B)
A.x=1, y=3 B.x=3, y=1 C.x=1, y=-5 D.x=5, y=-1
i3_, _juiur__+来_4_表u_jur_示,OuuuDOr C=,_O_5D_uiu_r _+,_7_则u_jur_:.
y
7
D
4
C
B
j
o
r i
A
35
x
(3)向量
uuur CD
rr
能否由 i, j
表示出来?
有且只有一对实数x, y , 使得
a
xi
yj
y
A
j
Oi
B
a
x
如图,在平面直角坐标系中, 分别取与x轴、y轴方向相同的
两个单位向量 i、j 作为基底.
对于平面内的一个向量 a
由平面向量基本定理可知,
有且只有一对实数x, y ,使得
a
xi
yj
y
yj
A2
B
a
A
A1
j
Oi
xi
x
向量的坐标表示
产生理论联系实际的价值取向和理论来 源于实践、服务于实践的认识观念.
教学重难点
重点: 向量的正交分解及坐标表示
问题1.如图,光滑的斜面上一个木块受到重力 G
的作用,会产生哪两个效果?

2.3.1平面向量基本定理、正交分解及坐标表示_1

2.3.1平面向量基本定理、正交分解及坐标表示_1
引入 进行 小结 作业
(2)当 时, a与b ____; (3)当 时, a与b ____ . 2
EXIT
2014年7月5日星期六

新课
y
首页 向量的坐标表示 :
(1)i ____;
a
j
o
教学过程
引入 进行 小结 作业
(2) j ____; (3)0 ____ .
i
x
EXIT a xi y j
a ( x, y)
2014年7月5日星期六

新课
(1)a b ____; (2)a b ____; (3) a ____ .
首页 若a ( x1 , y1 ), b ( x2 , y2 ), 则 :
引入 进行 小结 作业
引入 进行 小结 作业
例2、已知平行四边形ABCD的三个顶点 A, B, C的坐标分别是(2,1), (1,3), (3,4), 试 求顶点 D 的坐标 . EXIT
2014年7月5日星期六

小结
首页
引入 进行 小结 作业
教学过程
EXIT
2014年7月5日星期六


首页
首页
引入 进行 小结 作业
教学过程
§ 2.3.1 平面向量基本定理 、正交分解及坐标表示
EXIT
2014年7月5日星期六

引入
首页 力学中力的分解 :
引入 进行 小结 作业
教学过程
F1
F
F2
EXIT
2014年7月5日星期六

新课
首页 设e1 , e2是同一平面内两个不共线的向量,
引入 进行 小结 作业

平面向量的正交分解及坐标表示

平面向量的正交分解及坐标表示

其中,x叫做a在x轴上的坐标,y叫做a在y轴上的坐标.
在平面直角坐标系内,每一个平面向量 都可以用一组有序实数对唯一表示 .
y
y
A
a
j Oi x
uuur a ? OA? xi+yj
x
a ? (x, y)
把一个向量分解为两个互相垂直的向 量,叫做把向量正交分解.
正交分解时向量分解中常见的一种情形.
思考:
我们知道,在平面直角坐标系中,每一个点 都可用一对有序实数(即它的坐标)表示 .对直 角坐标平面内的每一个向量该如何表示呢?
思考:如图,在直角坐标系中,
y
已知A(1,0),B(0,1),C(3,4),D(5,7).
2.3.2平面向量的正交分解 及坐标表示
回顾:
1.什么是平面向量基本定理?
2.什么是向量的夹角?夹角的范围是多 少?夹角为多少度时两向量垂直?
导入:
光滑斜面上一个木块受到重力 G 的作用, 如图,它的效果等价于 F1 和 F2 的合力效果,
即 G=F 1 ? F2 , G=F 1 ? F2 叫做把重力 G 分解.
的坐标,y叫做a在y轴 上的坐标,上式叫做向量 y
的坐标表示.那么x、y的
ya
几何意义如何?
j
x
Oi
x
平面向量的坐标表示
y
如图,i,j是分别与x轴,y轴方向相
D a
同的单位向量,若以i,j为基底,则
C
A
对于该平面内的任一向量a,
有且只有一对实数x,y,可使
j
x
oi B
a=x i +y j
这里,我们把(x,y)叫做向量a的坐标,记作 a =(x,y)

2.3.1平面向量基本定理、正交分解及坐标表示

2.3.1平面向量基本定理、正交分解及坐标表示

教学过程
EXIT A( x , y ), B( x , y ) AB ( x x , y y ). 1 1 2 2 2 1 2 1
2014年7月7日星期一

新课
首页 例1、已知a (2,1), b (3,4), 求a b, a b ,3a 4b的坐标. 教学过程
i
x
EXIT a xi y j
a ( x, y)
2014年7月7日星期一

新课
(1)a b ____; (2)a b ____; (3) a ____ .
首页 若a ( x1 , y1 ), b ( x2 , y2 ), 则 :
引入 进行 小结 作业

首页
首页
引入 进行 小结 作业
教学过程
§ 2.3.1 平面向量基本定理 、正交分解及坐标表示
EXIT
2014年7月7日星期一

引入
首页 力学中力的分解 :
引入 进行 小结 作业
教学过程
F1
F
F2
EXIT
2014年7月7日星期一

首页 平面向量基本定理 :
引入 进行 小结 作业
教学过程
a 1 e1 2 e2 .
EXIT
基底 :
不共线的向量e1 , e2 , 称之.
2014年7月7日星期一

新课
首页 向量的夹角 : 使两个向量的起点重合. [0, ] 教学过程 (1)当 0时, a与b ____;
引入 进行 小结 作业
(2)当 时, a与b ____; (3)当 时, a与b ____ . 2
EXIT
2014年7月7日星期一

5.2 平面向量的基本定理及坐标表示

5.2 平面向量的基本定理及坐标表示

5.2 平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使_______________________________.我们把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组__________.2.向量的夹角(1)已知两个________向量a 和b ,作OA →=a , OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角(如图).(2)向量夹角θ的范围是_______________.a 与b 同向时,夹角θ=________;a 与b 反向时,夹角θ=____________.(3)如果向量a 与b 的夹角是____________,我们就说a 与b 垂直,记作____________.3.平面向量的正交分解及坐标表示 (1)平面向量的正交分解把一个向量分解为两个____________的向量,叫做向量的正交分解.(2)在平面直角坐标系内,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x ,y ,使得a =x i +y j .则实数对__________叫做向量a 的(直角)坐标,记作a =__________,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,该式叫做向量的坐标表示.与a 相等的向量的坐标也为________.显然,i =__________, j =__________,0=__________.4.平面向量的坐标运算(1)已知a =(x 1,y 1),b =(x 2,y 2),则a ±b =___________________________________________.(2)如果A (x 1,y 1),B (x 2,y 2),则AB →=___________________________________________.(3)若a =(x ,y ),则λa =____________.(4)如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ∥b的充要条件是____________________.自查自纠: 1.a =λ1e 1+λ2e 2 基底2.(1)非零 (2)0°≤θ≤180° 0° 180° (3)90° a ⊥b3.(1)互相垂直 (2)(x ,y ) (x ,y ) (x ,y ) (1,0) (0,1) (0,0)4.(1)(x 1±x 2,y 1±y 2) (2)(x 2-x 1,y 2-y 1) (3)(λx ,λy ) (4)x 1y 2-x 2y 1=0在△ABC 中,已知A (2,1),B (0,2),BC →=(1,-2),则向量AC →= ( )A .(0,0)B .(2,2)C .(-1,-1)D .(-3,-3) 解:因为A (2,1),B (0,2),所以AB →=(-2,1).又因为BC →=(1,-2),所以AC →=AB →+BC →=(-2,1)+(1,-2)=(-1,-1).故选C .(2017·杭州模拟)已知e 1,e 2是表示平面内所有向量的一组基底,则下列四组向量中,不能作为一组基底的是 ( )A .e 1+e 2和e 1-e 2B .3e 1-2e 2和4e 2-6e 1C .e 1+2e 2和e 2+2e 1D .e 2和e 1+e 2解:因为4e 2-6e 1=-2(3e 1-2e 2),所以3e 1-2e 2与4e 2-6e 1共线,又作为一组基底的两个向量一定不共线,所以它们不能作为一组基底.故选B .(2018·北京朝阳高三一模)已知平面向量 a =(x ,1),b =(2,x -1)且a ∥b ,则实数x 的值是( )A .-1B .1C .2D .-1或2 解:由a =(x ,1),b =(2,x -1)且a ∥b ,可以得到x (x -1)=2,即(x -2)(x +1)=0,所以x =-1或x =2.故选D .(2017·全国卷Ⅲ)已知向量a =(-2,3), b =(3,m ),且a ⊥b ,则m =________.解:由题意可得,-2×3+3m =0,所以m =2.故填2.在正方形ABCD 中,M ,N 分别是BC ,CD的中点,若AC →=λAM →+μBN →,则实数λ+μ=________.解法一:因为AC →=AB →+BC →,AM →=AB →+BM →=AB →+12BC →,BN →=BC →+CN →=BC →-12AB →,所以由AC →=λAM →+μBN →有⎩⎨⎧1=λ-12μ,1=12λ+μ,解得⎩⎨⎧λ=65,μ=25,所以λ+μ=85. 解法二:不妨设正方形边长为2,以A 为坐标原点,AB →方向为x 轴正方向,AD →方向为y 轴正方向建立平面直角坐标系,则AC →=(2,2),AM →=(2,1),BN →=(-1,2).由AC →=λAM →+μBN →有⎩⎪⎨⎪⎧2λ-μ=2,λ+2μ=2,解得λ=65,μ=25,λ+μ=85.故填85.类型一 向量共线充要条件的坐标表示(1)(2018·全国卷Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ),若c ∥(2a +b ),则λ=________.解:由题可得2a +b =(4,2),因为c ∥(2a +b ),c =(1,λ),所以4λ-2=0,即λ=12.故填12.(2)已知平面向量a =(2m +1,3),b =(2,m ),且a 与b 反向,则|b |等于( )A .1027B .2 2C .52D .52或2 2解:根据题意a ∥b 知m (2m +1)-3×2=0,解得m =-2或m =32.当m =32时,a =(4,3),b =⎝⎛⎭⎫2,32,则a =2b ,此时两向量同向,与已知不符,故m =-2,此时b =(2,-2),故|b |=22.故选B .点 拨:两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0;②a ∥b (a ≠0),当且仅当唯一一个实数λ,使b =λa .向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.(1) (2017·郑州月考)已知向量a = (1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ,若a ∥b ,则锐角 θ=________.解:由a ∥b ,得(1-sin θ)(1+sin θ)=12,所以cos 2θ=12,所以cos θ=22或cos θ=-22,又θ为锐角,所以θ=45°.故填45°.(2)已知向量OA →=(1,-3),OB →=(2,-1), OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 的取值范围是________.解:若点A ,B ,C 能构成三角形,则向量AB →,AC →不共线.因为AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1),所以1×(k +1)-2k ≠0,解得k ≠1. 故填{k |k ∈R ,且k ≠1}.类型二 平面向量基本定理及其应用(1)如图,已知平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若 OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________.解法一:以λOA →和μOB →为邻边作平行四边形OB 1CA 1,如图,则OC →=OB 1→+OA 1→.因为OA →与OB →的夹角为120°, OA →与OC →的夹角为30°,所以∠B 1OC =90°,在Rt △OB 1C 中,|OC →|=23,所以|OB 1→|=2,|B 1C →|=4,所以|OA 1→|=|B 1C →|=4, 所以OC →=4OA →+2OB →,即λ+μ=6. 解法二:以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),C (23cos30°,23sin30°),B (cos120°,sin120°).即A (1,0),C (3,3),B ⎝⎛⎭⎫-12,32.由OC →=λOA →+μOB →=λ(1,0)+μ⎝⎛⎭⎫-12,32=⎝⎛⎭⎫λ-12μ,32μ,即⎝⎛⎭⎫λ-12μ,32μ=(3,3),得⎩⎨⎧λ-12μ=3,32μ=3,所以⎩⎪⎨⎪⎧μ=2,λ=4, 即λ+μ=6.故填6.(2)已知向量AC →,AD →和AB →在正方形网格中的位置如图所示,若AC →=λAB →+μAD →,则λμ=________.解:建立如图所示的平面直角坐标系xAy ,则 AC →=(2,-2),AB →=(1,2),AD →=(1,0).由题意可知(2,-2)=λ(1,2)+μ(1,0),即⎩⎪⎨⎪⎧2=λ+μ,-2=2λ, 解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λμ=-3.故填 -3.点 拨:应用平面向量基本定理应注意:①平面向量基本定理中的基底必须是两个不共线的向量;②选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来;③强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等;④在基底未给出的情况下,合理地选取基底会给解题带来方便.(1)设向量a ,b 不平行,向量λa +b与a +2b 平行,则实数λ=________.解:由于λa +b 与a +2b 平行,且a +2b ≠0,所以存在唯一的实数μ∈R ,使得λa +b =μ(a +2b ),即(λ-μ)a +(1-2μ)b =0.因为a ,b 不平行,所以⎩⎪⎨⎪⎧λ-μ=0,1-2μ=0, 解得λ=μ=12.故填12.(2)向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.解:设i ,j 分别为水平向右和竖直向上的单位向量,则a =-i +j ,b =6i +2j ,c =-i -3j ,所以-i -3j =λ(-i +j )+μ(6i +2j ),即-i -3j =(-λ+6μ)i +(λ+2μ)j ,根据平面向量基本定理得⎩⎪⎨⎪⎧-1=-λ+6μ,-3=λ+2μ, 解得⎩⎪⎨⎪⎧λ=-2,μ=-12.所以λμ=4.故填4.类型三 求向量的坐标已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解:因为在梯形ABCD 中,DC =2AB ,AB ∥CD ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x ,2-y ), AB →=(2,1)-(1,2)=(1,-1),所以(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),所以⎩⎪⎨⎪⎧4-x =2,2-y =-2, 解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).故填(2,4).点 拨:平面向量坐标运算的技巧:①向量的坐标运算常建立在向量的线性运算的基础之上,若已知有向线段两端点的坐标,则应考虑坐标运算;②解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)进行求解.已知三点A (a ,0),B (0,b ),C (2,2),其中a >0,b >0.(1)若O 是坐标原点,且四边形OACB 是平行四边形,试求a ,b 的值;(2)若A ,B ,C 三点共线,试求1a +1b 的值.解:(1)因为四边形OACB 是平行四边形,所以OA →=BC →,即(a ,0)=(2,2-b ),⎩⎪⎨⎪⎧a =2,2-b =0, 解得⎩⎪⎨⎪⎧a =2,b =2. 故a =2,b =2.(2)因为AB →=(-a ,b ),BC →=(2,2-b ), 由A ,B ,C 三点共线,得AB →∥BC →, 所以-a (2-b )-2b =0,即2(a +b )=ab , 因为a >0,b >0, 所以1a +1b =12.类型四 向量坐标的应用(2018·天津)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E 为边CD 上的动点,则AE →·BE →的最小值为 ( )A .2116B .32C .2516D .3解法一:以点A 为原点,以AB 所在的直线为x 轴,建立如图(1)所示的平面直角坐标系,依题意得,A (0,0),B (1,0).因为AD =1,∠BAD =120°,所以D ⎝⎛⎭⎫-12,32,且直线CD 的倾斜角为30°,所以直线CD 的方程为y -32=33⎝⎛⎭⎫x +12,即y =33(x +2).由⎩⎪⎨⎪⎧y =33(x +2),x =1,得⎩⎨⎧x =1,y =3,所以点C 的坐标为(1,3).因为点E 为边CD 上的动点,故可设E ⎝⎛⎭⎫t ,33(t +2),-12≤t ≤1,所以AE →=⎝⎛⎭⎫t ,33(t +2),BE →=⎝⎛⎭⎫t -1,33(t +2),所以AE →·BE →=t (t -1)+⎣⎡⎦⎤33(t +2)2=43⎝⎛⎭⎫t +182+2116,所以当t =-18时,AE →·BE →取最小值,为2116.图(1) 图(2)解法二:易知DC =3,∠CAD =60°,设DE =x (0≤x ≤3),则AE →·BE →=(AD →+DE →)·(BA →+AD →+DE →)=1×1×cos60°+12+0+x ×1×cos150°+0+x 2=⎝⎛⎭⎫x -342+2116≥2116.解法三:如图(2),取AB 的中点F ,连接EF ,则AE →·BE →=EA →·EB →=(EF →+F A →)·(EF →-F A →)=EF →2- F A →2=EF →2-14.可知当且仅当|EF →|最小时AE →·BE →取最小值,分别过F ,B 作CD 的垂线,垂足分别为H ,G ,当点E 与H 重合时,EF 取到最小值,易知EF 为梯形DABG 的中位线,由已知得|BG |=32,|AD |=1,则|HF |=|EF |=12(|BG |+|AD |)=54.故AE →·BE →的最小值为2116.故选A .点 拨:向量的坐标运算,往往能降低推理的难度,与向量相关的最值、范围问题,可优先考虑坐标运算.用向量法解决平面几何相关问题的步骤是:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算,研究几何元素之间的关系,如长度、距离、夹角等问题;③把运算结果“翻译”成几何关系,从而解决问题.(2017·安徽联考)在边长为1的正△ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD →·AE →等于 ( )A .16B .29C .1318D .13解法一:建立如图所示的直角坐标系,则A ⎝⎛⎭⎫0,32,D ⎝⎛⎭⎫-16,0,E ⎝⎛⎭⎫16,0,所以AD →=⎝⎛⎭⎫-16,-32,AE →=⎝⎛⎭⎫16,-32,AD →·AE →=-16×16+⎝⎛⎭⎫-32×⎝⎛⎭⎫-32=1318.解法二:取BC 中点O ,则AD →·AE →=(AO →+OD →)·(AO →+OE →)=AO →2-OE →2=34-136=1318.解法三:如图,|AB →|=|AC →|=1,〈AB →,AC →〉=60°.因为D ,E 是边BC 的两个三等分点,所以AD →·AE →=⎝⎛⎭⎫AB →+13BC →·⎝⎛⎭⎫AC →+13CB →=AB →·AC →-13AB →·BC →+13BC →·AC →-19BC →2=1×1×cos60°-13×1×1×cos120°+13×1×1×cos60°-19=12+16+16-19=1318.故选C .1.对平面向量基本定理的理解(1)平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量坐标表示的基础.(2)平面向量的一组基底是两个不共线向量,平面向量基底可以有无穷多组.(3)用平面向量基本定理可将平面中任一向量分解成形如a =λ1e 1+λ2e 2(λ1,λ2∈R ,e 1,e 2为同一平面内不共线的两个向量)的形式,它是向量线性运算知识的延伸.(4)如果e 1,e 2是同一平面内的一组基底,且λ1e 1+λ2e 2=0(λ1,λ2∈R ),那么λ1=λ2=0.2.对两向量夹角的理解两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角.若起点不同,则应通过平移,使其起点相同.3.向量的坐标表示向量用坐标表示后,向量的计算和证明都归结为数的运算,这使问题大大简化.一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标,当且仅当向量的起点为原点时,向量的坐标才等于其终点的坐标.两个向量相等,当且仅当其坐标相同.4.向量坐标的应用向量具有代数和几何的双重特征,如向量运算的平行四边形法则、三角形法则、平面向量基本定理等都可以认为是从几何的角度来研究向量的特征;而引入坐标后,就可以通过代数运算来研究向量,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.在处理很多与向量有关的问题时,坐标化是一种常见的思路,利用坐标可以使许多问题的解决变得更加简捷.1.下列向量组中,能作为表示它们所在平面内所有向量的一组基底的是 ( )A .a =(1,2),b =(0,0)B .a =(1,-2),b =(3,5)C .a =(3,2),b =(9,6)D .a =⎝⎛⎭⎫-34,12, b =(3,-2) 解:在平面内,根据向量基底的定义知,两个向量不共线即可作为基底.故选B .2.设向量a =(2,4)与向量b =(x ,6)共线,则实数x = ( )A .2B .3C .4D .6 解:因为a ∥b ,所以2×6-4x =0,解得x =3.故选B .3.(2017·抚州模拟)若向量a =(1,1),b =(-1,1),c =(4,2),则c = ( )A .3a +bB .3a -bC .-a +3bD .a +3b解法一:设c =m a +n b ,则(4,2)=(m -n ,m +n ),所以⎩⎪⎨⎪⎧m -n =4,m +n =2, 所以⎩⎪⎨⎪⎧m =3,n =-1, 所以c =3a -b .解法二:代入验证法.对于A ,3a +b =3(1,1)+(-1,1)=(2,4)≠c ,故A 不正确;同理选项C 、D 也不正确;对于B ,3a -b =(4,2)=c ,故B 正确.故选B .4.已知M (3,-2),N (-5,-1),且MP →=12MN →,则P 点的坐标为 ( )A .(-8,1)B .⎝⎛⎭⎫-1,-32 C .⎝⎛⎭⎫1,32 D .(8,-1) 解:设P (x ,y ),则MP →=(x -3,y +2), 而12MN →=12(-8,1)=⎝⎛⎭⎫-4,12, 所以⎩⎪⎨⎪⎧x -3=-4,y +2=12, 解得⎩⎪⎨⎪⎧x =-1,y =-32.所以P 点坐标为⎝⎛⎭⎫-1,-32.故选B . 5.如图,e 1,e 2为互相垂直的单位向量,向量a ,b 如图,则向量a -b 可表示为 ( )A .3e 2-e 1B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2解:由图易知a -b =-3e 2+e 1=e 1-3e 2.故选C .6.(2018·浙江)已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为π3,向量b满足b 2-4e ·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2- 3解:不妨设e =(1,0),b =(x ,y ),则由b 2-4e ·b +3=0⇒(x -2)2+y 2=1,再由a 与e 的夹角为π3可知,所求为如图两条射线上的点到圆上的点距离的最小值,即为2sin60°-1=3-1.故选A . 7.已知向量e 1,e 2是两个不共线的向量,若a =2e 1-e 2与b =e 1+λe 2共线,则λ=________. 解:若a =2e 1-e 2与b =e 1+λe 2共线,则 2e 1-e 2=k (e 1+λe 2)=k e 1+λk e 2,得⎩⎪⎨⎪⎧k =2,λk =-1, 解得λ=-12.故填-12.8.(2018·山东菏泽高三一模)已知在△ABC 中,D 为边BC 上的点,且BD =3DC ,点E 为AD 的中点,BE →=mAB →+nAC →,则m +n =________.解:BE →=BD →+DE →=BD →-12AD →=BD →-12(AB →+BD →)=12BD →-12AB →=12×34BC →-12AB →=38BC →-12AB →=38(AC →-AB →)-12AB →=-78AB →+38AC →.又BE →=mAB →+nAC →,所以mAB →+nAC →=-78AB→+38AC →.又因为AB →与AC →不共线,所以m =-78,n =38,所以m +n =-12.故填-12. 9.已知a =(1,0),b =(2,1).求:(1)|a +3b |;(2)当k 为何实数时,k a -b 与a +3b 平行,平行时它们是同向还是反向?解:(1)因为a =(1,0),b =(2,1), 所以a +3b =(7,3),故|a +3b |=72+32=58.(2)k a -b =(k -2,-1),a +3b =(7,3), 因为k a -b 与a +3b 平行, 所以3(k -2)+7=0,即k =-13.此时k a -b =(k -2,-1)=⎝⎛⎭⎫-73,-1, a +3b =(7,3),则a +3b =-3(k a -b ),即此时向量a +3b 与k a -b 方向相反.10.已知点O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,试问: (1)当t 为何值时,P 在x 轴上?P 在y 轴上?P在第三象限内?(2)四边形OABP 能否成为平行四边形?若能,求出t 的值;若不能,请说明理由. 解:(1)依题意,得AB →=(3,3),所以OP →=OA →+tAB →=(1+3t ,2+3t ),即P (1+3t ,2+3t ).若P 在x 轴上,则2+3t =0,所以t =-23;若P 在y 轴上,则1+3t =0,所以t =-13;若P 在第三象限内,则⎩⎪⎨⎪⎧1+3t <0,2+3t <0, 所以t <-23. (2)因为OA →=(1,2),PB →=(3-3t ,3-3t ),若OABP 是平行四边形,则OA →=PB →,所以⎩⎪⎨⎪⎧3-3t =1,3-3t =2. 此方程无解.故四边形OABP 不可能成为平行四边形. 11.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),求第四个顶点的坐标.解:如图所示,令A (-1,0),B (3,0),C (1,-5),D (x ,y ).(1)若四边形ABCD 1为平行四边形, 则AD 1→=BC →,且AD 1→=(x +1,y ),BC →=(-2,-5).所以⎩⎪⎨⎪⎧x +1=-2,y =-5,解得⎩⎪⎨⎪⎧x =-3,y =-5. 所以D 1(-3,-5).(2)若四边形ACD 2B 为平行四边形,则AB →=CD 2→,且AB →=(4,0),CD 2→=(x -1,y +5).所以⎩⎪⎨⎪⎧x -1=4,y +5=0, 解得⎩⎪⎨⎪⎧x =5,y =-5. 所以D 2(5,-5).(3)若四边形ACBD 3为平行四边形,则AD 3→=CB →,且AD 3→=(x +1,y ),CB →=(2,5),所以⎩⎪⎨⎪⎧x +1=2,y =5, 解得⎩⎪⎨⎪⎧x =1,y =5. 所以D 3(1,5).综上所述,平行四边形第四个顶点的坐标为(-3,-5)或(5,-5)或(1,5).如图所示,在△ABC 中,点M 是AB的中点,且AN →=12NC →,BN 与CM 相交于点E ,设AB →=a ,AC →=b ,用基底a ,b 表示向量AE →=________.解:易得AN →=13AC →=13b ,AM →=12AB →=12a ,由N ,E ,B 三点共线知,存在实数m ,满足AE →=mAN →+ (1-m )AB →=13m b +(1-m )a .由C ,E ,M 三点共线知存在实数n ,满足AE →=nAM →+(1-n )AC →=12n a +(1-n )b .所以13m b +(1-m )a =12n a +(1-n )b .由于a ,b为基底,所以⎩⎨⎧1-m =12n ,13m =1-n ,解得⎩⎨⎧m =35,n =45. 所以AE →=25a +15b .故填25a +15b .5.2 平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使_______________________________.我们把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组__________.2.向量的夹角(1)已知两个________向量a 和b ,作OA →=a , OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角(如图).(2)向量夹角θ的范围是_______________.a 与b 同向时,夹角θ=________;a 与b 反向时,夹角θ=____________.(3)如果向量a 与b 的夹角是____________,我们就说a 与b 垂直,记作____________.3.平面向量的正交分解及坐标表示 (1)平面向量的正交分解把一个向量分解为两个____________的向量,叫做向量的正交分解.(2)在平面直角坐标系内,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x ,y ,使得a =x i +y j .则实数对__________叫做向量a 的(直角)坐标,记作a =__________,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,该式叫做向量的坐标表示.与a 相等的向量的坐标也为________.显然,i =__________, j =__________,0=__________.4.平面向量的坐标运算(1)已知a =(x 1,y 1),b =(x 2,y 2),则a ±b =___________________________________________.(2)如果A (x 1,y 1),B (x 2,y 2),则AB →=___________________________________________.(3)若a =(x ,y ),则λa =____________.(4)如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ∥b 的充要条件是____________________.自查自纠: 1.a =λ1e 1+λ2e 2 基底2.(1)非零 (2)0°≤θ≤180° 0° 180° (3)90° a ⊥b3.(1)互相垂直 (2)(x ,y ) (x ,y ) (x ,y ) (1,0) (0,1) (0,0)4.(1)(x 1±x 2,y 1±y 2) (2)(x 2-x 1,y 2-y 1) (3)(λx ,λy ) (4)x 1y 2-x 2y 1=0在△ABC 中,已知A (2,1),B (0,2),BC →=(1,-2),则向量AC →= ( )A .(0,0)B .(2,2)C .(-1,-1)D .(-3,-3) 解:因为A (2,1),B (0,2),所以AB →=(-2,1).又因为BC →=(1,-2),所以AC →=AB →+BC →=(-2,1)+(1,-2)=(-1,-1).故选C .(2017·杭州模拟)已知e 1,e 2是表示平面内所有向量的一组基底,则下列四组向量中,不能作为一组基底的是 ( )A .e 1+e 2和e 1-e 2B .3e 1-2e 2和4e 2-6e 1C .e 1+2e 2和e 2+2e 1D .e 2和e 1+e 2解:因为4e 2-6e 1=-2(3e 1-2e 2),所以3e 1-2e 2与4e 2-6e 1共线,又作为一组基底的两个向量一定不共线,所以它们不能作为一组基底.故选B .(2018·北京朝阳高三一模)已知平面向量 a =(x ,1),b =(2,x -1)且a ∥b ,则实数x 的值是( )A .-1B .1C .2D .-1或2 解:由a =(x ,1),b =(2,x -1)且a ∥b ,可以得到x (x -1)=2,即(x -2)(x +1)=0,所以x =-1或x =2.故选D .(2017·全国卷Ⅲ)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________.解:由题意可得,-2×3+3m =0,所以m =2.故填2.在正方形ABCD 中,M ,N 分别是BC ,CD的中点,若AC →=λAM →+μBN →,则实数λ+μ=________.解法一:因为AC →=AB →+BC →,AM →=AB →+BM →=AB →+12BC →,BN →=BC →+CN →=BC →-12AB →,所以由AC →=λAM →+μBN →有⎩⎨⎧1=λ-12μ,1=12λ+μ,解得⎩⎨⎧λ=65,μ=25,所以λ+μ=85. 解法二:不妨设正方形边长为2,以A 为坐标原点,AB →方向为x 轴正方向,AD →方向为y 轴正方向建立平面直角坐标系,则AC →=(2,2),AM →=(2,1),BN →=(-1,2).由AC →=λAM →+μBN →有⎩⎪⎨⎪⎧2λ-μ=2,λ+2μ=2,解得λ=65,μ=25,λ+μ=85.故填85.类型一 向量共线充要条件的坐标表示(1)(2018·全国卷Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ),若c ∥(2a +b ),则λ=________.解:由题可得2a +b =(4,2),因为c ∥(2a +b ),c =(1,λ),所以4λ-2=0,即λ=12.故填12.(2)已知平面向量a =(2m +1,3),b =(2,m ),且a 与b 反向,则|b |等于( )A .1027B .2 2C .52D .52或2 2解:根据题意a ∥b 知m (2m +1)-3×2=0,解得m =-2或m =32.当m =32时,a =(4,3),b =⎝⎛⎭⎫2,32,则a =2b ,此时两向量同向,与已知不符,故m =-2,此时b =(2,-2),故|b |=22.故选B .点 拨:两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0;②a ∥b (a ≠0),当且仅当唯一一个实数λ,使b =λa .向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.(1) (2017·郑州月考)已知向量a = (1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ,若a ∥b ,则锐角 θ=________.解:由a ∥b ,得(1-sin θ)(1+sin θ)=12,所以cos 2θ=12,所以cos θ=22或cos θ=-22,又θ为锐角,所以θ=45°.故填45°.(2)已知向量OA →=(1,-3),OB →=(2,-1), OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 的取值范围是________.解:若点A ,B ,C 能构成三角形,则向量AB →,AC →不共线.因为AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1),所以1×(k +1)-2k ≠0,解得k ≠1. 故填{k |k ∈R ,且k ≠1}.类型二 平面向量基本定理及其应用(1)如图,已知平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若 OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________.解法一:以λOA →和μOB →为邻边作平行四边形OB 1CA 1,如图,则OC →=OB 1→+OA 1→.因为OA →与OB →的夹角为120°, OA →与OC →的夹角为30°,所以∠B 1OC =90°,在Rt △OB 1C 中,|OC →|=23,所以|OB 1→|=2,|B 1C →|=4,所以|OA 1→|=|B 1C →|=4, 所以OC →=4OA →+2OB →,即λ+μ=6. 解法二:以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),C (23cos30°,23sin30°),B (cos120°,sin120°).即A (1,0),C (3,3),B ⎝⎛⎭⎫-12,32.由OC →=λOA →+μOB →=λ(1,0)+μ⎝⎛⎭⎫-12,32=⎝⎛⎭⎫λ-12μ,32μ,即⎝⎛⎭⎫λ-12μ,32μ=(3,3),得⎩⎨⎧λ-12μ=3,32μ=3,所以⎩⎪⎨⎪⎧μ=2,λ=4, 即λ+μ=6.故填6.(2)已知向量AC →,AD →和AB →在正方形网格中的位置如图所示,若AC →=λAB →+μAD →,则λμ=________.解:建立如图所示的平面直角坐标系xAy ,则 AC →=(2,-2),AB →=(1,2),AD →=(1,0).由题意可知(2,-2)=λ(1,2)+μ(1,0),即⎩⎪⎨⎪⎧2=λ+μ,-2=2λ, 解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λμ=-3.故填 -3.点 拨:应用平面向量基本定理应注意:①平面向量基本定理中的基底必须是两个不共线的向量;②选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来;③强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等;④在基底未给出的情况下,合理地选取基底会给解题带来方便.(1)设向量a ,b 不平行,向量λa +b与a +2b 平行,则实数λ=________.解:由于λa +b 与a +2b 平行,且a +2b ≠0,所以存在唯一的实数μ∈R ,使得λa +b =μ(a +2b ),即(λ-μ)a +(1-2μ)b =0.因为a ,b 不平行,所以⎩⎪⎨⎪⎧λ-μ=0,1-2μ=0, 解得λ=μ=12.故填12.(2)向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.解:设i ,j 分别为水平向右和竖直向上的单位向量,则a =-i +j ,b =6i +2j ,c =-i -3j ,所以-i -3j =λ(-i +j )+μ(6i +2j ),即-i -3j =(-λ+6μ)i +(λ+2μ)j ,根据平面向量基本定理得⎩⎪⎨⎪⎧-1=-λ+6μ,-3=λ+2μ, 解得⎩⎪⎨⎪⎧λ=-2,μ=-12.所以λμ=4.故填4.类型三 求向量的坐标已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解:因为在梯形ABCD 中,DC =2AB ,AB ∥CD ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x ,2-y ), AB →=(2,1)-(1,2)=(1,-1),所以(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),所以⎩⎪⎨⎪⎧4-x =2,2-y =-2, 解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).故填(2,4).点 拨:平面向量坐标运算的技巧:①向量的坐标运算常建立在向量的线性运算的基础之上,若已知有向线段两端点的坐标,则应考虑坐标运算;②解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)进行求解.已知三点A (a ,0),B (0,b ),C (2,2),其中a >0,b >0.(1)若O 是坐标原点,且四边形OACB 是平行四边形,试求a ,b 的值;(2)若A ,B ,C 三点共线,试求1a +1b 的值.解:(1)因为四边形OACB 是平行四边形,所以OA →=BC →,即(a ,0)=(2,2-b ),⎩⎪⎨⎪⎧a =2,2-b =0, 解得⎩⎪⎨⎪⎧a =2,b =2. 故a =2,b =2.(2)因为AB →=(-a ,b ),BC →=(2,2-b ), 由A ,B ,C 三点共线,得AB →∥BC →, 所以-a (2-b )-2b =0,即2(a +b )=ab , 因为a >0,b >0, 所以1a +1b =12.类型四 向量坐标的应用(2018·天津)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E 为边CD 上的动点,则AE →·BE →的最小值为 ( )A .2116B .32C .2516D .3解法一:以点A 为原点,以AB 所在的直线为x 轴,建立如图(1)所示的平面直角坐标系,依题意得,A (0,0),B (1,0).因为AD =1,∠BAD =120°,所以D ⎝⎛⎭⎫-12,32,且直线CD 的倾斜角为30°,所以直线CD 的方程为y -32=33⎝⎛⎭⎫x +12,即y =33(x +2).由⎩⎪⎨⎪⎧y =33(x +2),x =1,得⎩⎨⎧x =1,y =3,所以点C 的坐标为(1,3).因为点E 为边CD 上的动点,故可设E ⎝⎛⎭⎫t ,33(t +2),-12≤t ≤1,所以AE →=⎝⎛⎭⎫t ,33(t +2),BE →=⎝⎛⎭⎫t -1,33(t +2),所以AE →·BE →=t (t -1)+⎣⎡⎦⎤33(t +2)2=43⎝⎛⎭⎫t +182+2116,所以当t =-18时,AE →·BE →取最小值,为2116.图(1) 图(2)解法二:易知DC =3,∠CAD =60°,设DE =x (0≤x ≤3),则AE →·BE →=(AD →+DE →)·(BA →+AD →+DE →)=1×1×cos60°+12+0+x ×1×cos150°+0+x 2=⎝⎛⎭⎫x -342+2116≥2116.解法三:如图(2),取AB 的中点F ,连接EF ,则AE →·BE →=EA →·EB →=(EF →+F A →)·(EF →-F A →)=EF →2- F A →2=EF →2-14.可知当且仅当|EF →|最小时AE →·BE →取最小值,分别过F ,B 作CD 的垂线,垂足分别为H ,G ,当点E 与H 重合时,EF 取到最小值,易知EF 为梯形DABG 的中位线,由已知得|BG |=32,|AD |=1,则|HF |=|EF |=12(|BG |+|AD |)=54.故AE →·BE →的最小值为2116.故选A .点 拨:向量的坐标运算,往往能降低推理的难度,与向量相关的最值、范围问题,可优先考虑坐标运算.用向量法解决平面几何相关问题的步骤是:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算,研究几何元素之间的关系,如长度、距离、夹角等问题;③把运算结果“翻译”成几何关系,从而解决问题.(2017·安徽联考)在边长为1的正△ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD →·AE →等于 ( )A .16B .29C .1318D .13解法一:建立如图所示的直角坐标系,则A ⎝⎛⎭⎫0,32,D ⎝⎛⎭⎫-16,0,E ⎝⎛⎭⎫16,0,所以AD →=⎝⎛⎭⎫-16,-32,AE →=⎝⎛⎭⎫16,-32,AD →·AE →=-16×16+⎝⎛⎭⎫-32×⎝⎛⎭⎫-32=1318.解法二:取BC 中点O ,则AD →·AE →=(AO →+OD →)·(AO →+OE →)=AO →2-OE →2=34-136=1318.解法三:如图,|AB →|=|AC →|=1,〈AB →,AC →〉=60°.因为D ,E 是边BC 的两个三等分点,所以AD →·AE →=⎝⎛⎭⎫AB →+13BC →·⎝⎛⎭⎫AC →+13CB →=AB →·AC →-13AB →·BC →+13BC →·AC →-19BC →2=1×1×cos60°-13×1×1×cos120°+13×1×1×cos60°-19=12+16+16-19=1318.故选C .1.对平面向量基本定理的理解(1)平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量坐标表示的基础.(2)平面向量的一组基底是两个不共线向量,平面向量基底可以有无穷多组.(3)用平面向量基本定理可将平面中任一向量分解成形如a =λ1e 1+λ2e 2(λ1,λ2∈R ,e 1,e 2为同一平面内不共线的两个向量)的形式,它是向量线性运算知识的延伸.(4)如果e 1,e 2是同一平面内的一组基底,且λ1e 1+λ2e 2=0(λ1,λ2∈R ),那么λ1=λ2=0.2.对两向量夹角的理解两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角.若起点不同,则应通过平移,使其起点相同.3.向量的坐标表示向量用坐标表示后,向量的计算和证明都归结为数的运算,这使问题大大简化.一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标,当且仅当向量的起点为原点时,向量的坐标才等于其终点的坐标.两个向量相等,当且仅当其坐标相同.4.向量坐标的应用向量具有代数和几何的双重特征,如向量运算的平行四边形法则、三角形法则、平面向量基本定理等都可以认为是从几何的角度来研究向量的特征;而引入坐标后,就可以通过代数运算来研究向量,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.在处理很多与向量有关的问题时,坐标化是一种常见的思路,利用坐标可以使许多问题的解决变得更加简捷.1.下列向量组中,能作为表示它们所在平面内所有向量的一组基底的是 ( )A .a =(1,2),b =(0,0)B .a =(1,-2),b =(3,5)C .a =(3,2),b =(9,6)D .a =⎝⎛⎭⎫-34,12, b =(3,-2) 解:在平面内,根据向量基底的定义知,两个向量不共线即可作为基底.故选B .2.设向量a =(2,4)与向量b =(x ,6)共线,则实数x = ( )A .2B .3C .4D .6 解:因为a ∥b ,所以2×6-4x =0,解得x =3.故选B .3.(2017·抚州模拟)若向量a =(1,1),b =(-1,1),c =(4,2),则c = ( )A .3a +bB .3a -bC .-a +3bD .a +3b解法一:设c =m a +n b ,则(4,2)=(m -n ,m +n ),所以⎩⎪⎨⎪⎧m -n =4,m +n =2, 所以⎩⎪⎨⎪⎧m =3,n =-1, 所以c =3a -b .解法二:代入验证法.对于A ,3a +b =3(1,1)+(-1,1)=(2,4)≠c ,故A 不正确;同理选项C 、D 也不正确;对于B ,3a -b =(4,2)=c ,故B 正确.故选B .4.已知M (3,-2),N (-5,-1),且MP →=12MN →,则P 点的坐标为 ( )A .(-8,1)B .⎝⎛⎭⎫-1,-32 C .⎝⎛⎭⎫1,32 D .(8,-1) 解:设P (x ,y ),则MP →=(x -3,y +2), 而12MN →=12(-8,1)=⎝⎛⎭⎫-4,12, 所以⎩⎪⎨⎪⎧x -3=-4,y +2=12, 解得⎩⎪⎨⎪⎧x =-1,y =-32.所以P 点坐标为⎝⎛⎭⎫-1,-32.故选B . 5.如图,e 1,e 2为互相垂直的单位向量,向量a ,b 如图,则向量a -b 可表示为 ( )A .3e 2-e 1B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2解:由图易知a -b =-3e 2+e 1=e 1-3e 2.故选C .6.(2018·浙江)已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为π3,向量b满足b 2-4e ·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2- 3解:不妨设e =(1,0),b =(x ,y ),则由b 2-4e ·b +3=0⇒(x -2)2+y 2=1,再由a 与e 的夹角为π3可知,所求为如图两条射线上的点到圆上的点距离的最小值,即为2sin60°-1=3-1.故选A . 7.已知向量e 1,e 2是两个不共线的向量,若a =2e 1-e 2与b =e 1+λe 2共线,则λ=________. 解:若a =2e 1-e 2与b =e 1+λe 2共线,则 2e 1-e 2=k (e 1+λe 2)=k e 1+λk e 2,得⎩⎪⎨⎪⎧k =2,λk =-1, 解得λ=-12.故填-12.8.(2018·山东菏泽高三一模)已知在△ABC 中,D 为边BC 上的点,且BD =3DC ,点E 为AD 的中点,BE →=mAB →+nAC →,则m +n =________.解:BE →=BD →+DE →=BD →-12AD →=BD →-12(AB →+BD →)=12BD →-12AB →=12×34BC →-12AB →=38BC →-12AB →=38(AC →-AB →)-12AB →=-78AB →+38AC →.又BE →=mAB →+nAC →,所以mAB →+nAC →=-78AB→+38AC →.又因为AB →与AC →不共线,所以m =-78,n =38,所以m +n =-12.故填-12. 9.已知a =(1,0),b =(2,1).求:(1)|a +3b |;(2)当k 为何实数时,k a -b 与a +3b 平行,平行时它们是同向还是反向?解:(1)因为a =(1,0),b =(2,1), 所以a +3b =(7,3),故|a +3b |=72+32=58.(2)k a -b =(k -2,-1),a +3b =(7,3), 因为k a -b 与a +3b 平行, 所以3(k -2)+7=0,即k =-13.此时k a -b =(k -2,-1)=⎝⎛⎭⎫-73,-1, a +3b =(7,3),则a +3b =-3(k a -b ),即此时向量a +3b 与k a -b 方向相反.10.已知点O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,试问: (1)当t 为何值时,P 在x 轴上?P 在y 轴上?P在第三象限内?(2)四边形OABP 能否成为平行四边形?若能,求出t 的值;若不能,请说明理由. 解:(1)依题意,得AB →=(3,3),所以OP →=OA →+tAB →=(1+3t ,2+3t ),即P (1+3t ,2+3t ).若P 在x 轴上,则2+3t =0,所以t =-23;若P 在y 轴上,则1+3t =0,所以t =-13;若P 在第三象限内,则⎩⎪⎨⎪⎧1+3t <0,2+3t <0, 所以t <-23. (2)因为OA →=(1,2),PB →=(3-3t ,3-3t ),若OABP 是平行四边形,则OA →=PB →,所以⎩⎪⎨⎪⎧3-3t =1,3-3t =2. 此方程无解.故四边形OABP 不可能成为平行四边形. 11.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),求第四个顶点的坐标.解:如图所示,令A (-1,0),B (3,0),C (1,-5),D (x ,y ).(1)若四边形ABCD 1为平行四边形, 则AD 1→=BC →,且AD 1→=(x +1,y ),BC →=(-2,-5).所以⎩⎪⎨⎪⎧x +1=-2,y =-5,解得⎩⎪⎨⎪⎧x =-3,y =-5. 所以D 1(-3,-5).(2)若四边形ACD 2B 为平行四边形,则AB →=CD 2→,且AB →=(4,0),CD 2→=(x -1,y +5).所以⎩⎪⎨⎪⎧x -1=4,y +5=0, 解得⎩⎪⎨⎪⎧x =5,y =-5. 所以D 2(5,-5).(3)若四边形ACBD 3为平行四边形,则AD 3→=CB →,且AD 3→=(x +1,y ),CB →=(2,5),所以⎩⎪⎨⎪⎧x +1=2,y =5, 解得⎩⎪⎨⎪⎧x =1,y =5. 所以D 3(1,5).综上所述,平行四边形第四个顶点的坐标为(-3,-5)或(5,-5)或(1,5).如图所示,在△ABC 中,点M 是AB的中点,且AN →=12NC →,BN 与CM 相交于点E ,设AB →=a ,AC →=b ,用基底a ,b 表示向量AE →=________.解:易得AN →=13AC →=13b ,AM →=12AB →=12a ,由N ,E ,B 三点共线知,存在实数m ,满足AE →=mAN →+ (1-m )AB →=13m b +(1-m )a .由C ,E ,M 三点共线知存在实数n ,满足AE →=nAM →+(1-n )AC →=12n a +(1-n )b .所以13m b +(1-m )a =12n a +(1-n )b .由于a ,b为基底,所以⎩⎨⎧1-m =12n ,13m =1-n ,解得⎩⎨⎧m =35,n =45. 所以AE →=25a +15b .故填25a +15b .。

平面向量的正交分解坐标表示及坐标运算

平面向量的正交分解坐标表示及坐标运算

变式练习: 变式练习 a + b = (−4,−3), a − b = (2,1), 求a, b.
探究三: 探究三:点的坐标与向量坐标的关系
2.如图 如图, 例r 如图,已知 A ( x1 , y1 ), B ( x 2 , y 2 ) uuu 这是一个重要结论! 这是一个重要结论! 的坐标。 求 AB 的坐标。 y uuu uuu uuu r r r 解:
r r a = b ⇔ x1 = x2且y1 = y2
r r a + b = ( x1 + x 2 , y 1 + y 2 ) r r a − b = ( x1 − x 2 , y 1 − y 2 )
2 加、减法法则 减法法则.
3 实数与向量积的运算法则 实数与向量积的运算法则: λa =λ(x +y )=(λx,λy ) i j( 4 向量坐标 向量坐标.
BD = BA + BC = (−2 − (−1),1 − 3) + (3 − (−1), 4 − 3) = (3, −1)
D A O x
而 uuur uuu uuu r r OD = OB + BD = (−1,3) + (3, −1) = (2, 2) 所以顶点D的坐标为 , ) 的坐标为( 所以顶点 的坐标为(2,2)
思考1: 思考1:
分别与x 轴方向相同的两单位向量i 分别与 轴、y 轴方向相同的两单位向量 、j 能否作为平面向量的基底? 能否作为平面向量的基底
y a j O x
任一向量a ,用这组基底 任一向量 能不能表示? 能不能表示
i
探究一、平面向量的坐标表示 探究一、平面向量的坐标表示: r r r y a = xi +y j

平面向量基本定理正交分解和坐标表示教案

平面向量基本定理正交分解和坐标表示教案

平面向量基本定理、平面向量的正交分解和坐标表示及运算教案东宁县绥阳中学教学目的:(1)了解平面向量基本定理;理解平面向量的坐标的概念;(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理.教学难点:平面向量基本定理的理解与应用. 向量的坐标表示的理解及运算的准确性. 教学过程:一、复习引入:1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa =02.运算定律结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa ,λ(a +b )=λa +λb 3. 向量共线定理向量b 与非零向量a 共线则:有且只有一个非零实数λ,使b =λa .二、讲解新课:1.思考:(1)给定平面内两个向量1e ,2e ,请你作出向量31e +22e ,1e -22e ,(2)同一平面内的任一向量是否都可以用形如λ11e +λ22e 的向量表示?平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e .2.探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;(4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量3.讲解范例:例1 已知向量1e ,2e 求作向量 2.51e +32e 例2 本题实质是4.练习1:1.设e 1、e 2是同一平面内的两个向量,则有( D )A.e 1、e 2一定平行B.e 1、e 2的模相等C.同一平面内的任一向量a 都有 a =λe 1+μe 2(λ、μ∈R) D.若e 1、e 2不共线,则同一平面内的任一向量a 都有 a =λe 1+ue 2(λ、u ∈R)2.已知向量 a =e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a+b 与c =6e 1-2e 2的关系(B)A.不共线B.共线C.相等D.无法确定3.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1不共线,a 与e 2不共线..),R (,OP OB OA t AB t AP OB OA 表示,用且不共线、如图,OA B P.1,n m OB n OA m OPAB P B A O 且上,则在直线若点三点不共线,、、已知。

人教版高中数学必修第二册6.3.1-6.3.3 平面向量基本定理、正交分解及坐标表示 同步精练

人教版高中数学必修第二册6.3.1-6.3.3 平面向量基本定理、正交分解及坐标表示 同步精练

人教版高中数学必修第二册6.3.1-6.3.3平面向量基本定理、正交分解及坐标表示、加、减运算的坐标表示同步精练【考点梳理】考点一:平面向量基本定理1.平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e2.2.基底:若e 1,e 2不共线,我们把{e 1,e 2}叫做表示这一平面内所有向量的一个基底.考点二平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解.考点三平面向量的坐标表示1.在平面直角坐标系中,设与x 轴、y 轴方向相同的两个单位向量分别为i ,j ,取{i ,j }作为基底.对于平面内的任意一个向量a ,由平面向量基本定理可知,有且只有一对实数x ,y ,使得a =x i +y j .平面内的任一向量a 都可由x ,y 唯一确定,我们把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ).,在直角坐标平面中,i =(1,0),j =(0,1),0=(0,0).考点三平面向量加、减运算的坐标表示设a =(x 1,y 1),b =(x 2,y 2),数学公式文字语言表述向量加法a +b =(x 1+x 2,y 1+y 2)两个向量和的坐标分别等于这两个向量相应坐标的和向量减法a -b =(x 1-x 2,y 1-y 2)两个向量差的坐标分别等于这两个向量相应坐标的差已知点A (x 1,y 1),B (x 2,y 2),那么向量AB →=(x 2-x 1,y 2-y 1),即任意一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标.【题型归纳】题型一:基底的概念问题1.(2021·全国·高一课时练习)已知向量12,e e 不共线,则下列各对向量可以作为平面内的一组基底的是()A .12e e -与21e e -B .1223e e -与1232-e e C .122--e e 与1224+e e D .122e e -与122e e -2.(2021·全国·高一课时练习)设12e e ,是不共线的两个向量,则下列四组向量不能构成基底的是()A .1e 与12e e +B .12e 2e -与21e 2e -C .12e 2e -与214e 2e -D .12e e +与12e e -3.(2021·河北巨鹿中学高一阶段练习)设12{,}e e 是平面内所有向量的一个基底,则下面四组向量中不能作为基底的是()A .122e e +和12e e -B .1242e e +和2124e e -C .122e e -和2142e e -D .122e e +和122e e +题型二:基底表示向量问题4.(2021·全国·高一课时练习)我国东汉末数学家赵夾在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若BC a =,BA b =,3BE EF =,则BF =()A .1292525a b +B .16122525a b +C .4355a b+D .3455a b+5.(2021·全国·高一课时练习)如图所示,等腰梯形ABCD 中,3AB BC CD AD ===,点E 为线段CD 上靠近C 的三等分点,点F 为线段BC 的中点,则FE =()A .1151818AB AC -+B .1111189AB AC -+C .114189AB AC -+D .1526AB AC -+6.(2021·广东高州·高一期末)如图,四边形ABCD 中,22BC AE ED ==,34BF BE =,则CF =()A .3548BA CB+B .3143BA BC-C .1548BA BC-+D .3548BA BC+题型三:平面向量基本定理7.(2021·重庆·西南大学附中高一阶段练习)如图所示,已知点G 是ABC 的重心,过点G 作直线分别与AB ,AC 两边交于M ,N 两点(点N 与点C 不重合),设xAB AM =,y AC AN =,则11x y+的值为()A .3B .4C .5D .68.(2021·湖南·长沙市湘郡长德实验学校高一阶段练习)在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,A N A B A C λμ=+u u u r u u u r u u u r,则λμ+的值为()A .12B .13C .14D .19.(2021·江苏·盐城中学高一阶段练习)如图,在ABC 中,23AN NC =,P 是BN 上一点,若13AP AB AC λ=+,则实数λ的值为()A .13B .16C .23D .14题型四:平面向量的坐标表示10.(2021·重庆实验外国语学校高一期中)设i 、j 是平面直角坐标系内分别与x 轴、y 轴正方向相同的两个单位向量,O 为坐标原点,若2OA i j =+,34OB i j =+,则32OA OB +的坐标是()A .()8,11B .()9,14C .()7,6D .()5,2--11.(2020·四川省遂宁市第二中学校高一期中(理))已知点A (1,3)-,B ()2,2-,O 为坐标原点,则下列结论错误的是()A .AB 的坐标是()3,5-B .35BA i j =-+,其中(1,0),(0,1)i j ==C .若线段AB 的中点为M ,则OM =11,22⎛⎫⎪⎝⎭D .OA 在OB 上的投影是2212.(2021·云南·昆明八中高一期中)已知四边形ABCD 是边长为2的正方形,P 为平面ABCD 内一点,则()()PA PB PC PD +⋅+的最小值为().A .1-B .2-C .4-D .6-题型五:由向量线性运算结果求参数13.(2021·全国·高一课前预习)已知a =(-5,6),b =(-3,2),c =(x ,y ),若a -3b +2c =0,则c 等于()A .(-2,6)B .(-4,0)C .(7,6)D .(-2,0)14.(2021·全国·高一课时练习)已知12(2,1),(1,3),(1,2)===-e e a ,若1122a e e λλ=+,则实数对1(λ,2)λ为()A .(1,1)B .(1,1)-C .(1,1)--D .无数对15.(2021·全国·高一课时练习)已知在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,AB=BC=2,AD=1,梯形所在平面内一点P 满足BA BC +=2BP ,则PC PD =()A .-2B .-1C .-2D .-22题型六:由向量线性运算解决几何问题16.(2021·河南焦作·高一期中)如图,A ,B ,C 是圆О上的三个不同点,且120AOB ∠=︒,30AOC ∠=︒,则OC =().A .232333OA OB +B .232333OA OB -C .3333OA OB +D .3333OA OB -17.(2021·江苏南京·高一期末)在Rt ABC 中,90BAC ∠=︒,1AB =,2AC =,D 是ABC 内一点,且45DAB ∠=︒设(,)AD AB AC R λμλμ=+∈,则()A .20λμ+=B .20λμ-=C .2λμ=D .2μλ=18.(2021·天津·南开中学高一期末)如图,在矩形ABCD 中,3,4,AB BC E ==为AD 上一点,BE AC ⊥,若BA BE AC λμ=+,则λμ-的值为()A .15B .725C .1625D .1题型七:由向量线性运算解决最值和范围问题19.(2021·浙江温州·高一期末)已知平面向量a ,b ,c (a 与b 不共线),满足2a b c -==,1c a c b -=-=,设(),c a b λμλμ=+∈R ,则λμ+的取值范围为()A .[)2,2,3⎛⎤-∞+∞ ⎥⎝⎦B .2,23⎡⎤⎢⎥⎣⎦C .[)2,+∞D .(],2-∞20.(2021·江苏·南京师大附中高一期末)在扇形OAB 中,o 60AOB ∠=,1OA =,C 为弧AB 上的一个动点,且OC xOA yOB =+.则4x y +的取值范围为()A .[1,4)B .[1,4]C .[2,3)D .[2,3]21.(2021·湖南·高一期中)已知ABC 的边BC 的中点为D ,点G 为AD 的中点,GBC 内一点P (P 点不在GBC 边界上)满足,AP AB AC λμλμ=+∈R ,,则λμ+的取值范围是()A .1,12⎛⎫ ⎪⎝⎭B .2,13⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .()1,2题型八:利用坐标求向量的模22.(2021·山东邹城·高一期中)已知向量()1,0a =,()2,4b =r,则a b +=()A .5B .5C .7D .2523.(2021·全国·高一课前预习)已知向量1(2,0),(,1),2==-a b 则2a b +=()A .3B .5C .23D .524.(2021·辽宁丹东·高一期末)在ABC 中,π3A =,4AB =,则4CB AB →→-的最小值是()A .42B .43C .62D .63【双基达标】一、单选题25.(2021·全国·高一课时练习)若{}12e e ,是平面内的一个基底,则下列四组向量能作为平面向量的基底的是()A .12e e -,21e e -B .12e e -,12e e +C .212e e -,212e e -+D .122e e +,124e 2e +26.(2021·全国·高一课时练习)在ABC 中,点D 在CB 的延长线上,且4CD BD ==r AB sAC +,则r s -等于()A .0B .45C .83D .327.(2021·全国·高一课时练习)已知()3,1AB =uu u r,()4,3AC =--,则BC =()A .()7,4--B .()7,4C .()1,4-D .()1,428.(2021·全国·高一课时练习)已知i 、j 分别是方向与x 轴正方向、y 轴正方向相同的单位向量,O 为坐标原点,设()()()2211OA x x i x x j x =++--+∈R ,则点A 位于()A .第一象限B .第二象限C .第三象限D .第四象限29.(2021·全国·高一课时练习)已知(1,3)a =-,且(1,3),(2,6)A B --,下列等式:①a OA =;②2OB a =-uu u r r ;③3AB a =-;④0OA OB a ++=.其中,正确的有()A .l 个B .2个C .3个D .4个30.(2021·全国·高一单元测试)设m R ∈,向量(1,2)a =-,(,1)b m n =-.若2a b a +=,则m ,n 的值分别是()A .1,-1B .1,-3C .1,-2D .1,231.(2021·全国·高一单元测试)在ABC 中,(3,1)A ,AB 的中点为(2,4)D ,ABC 的重心(3,4)G ,则B ,C 的坐标分别为()A .(1,7),(4,5)B .(1,7),(5,4)C .(7,1),(4,5)D .(7,1),(5,4)32.(2021·全国·高一课时练习)已知向量i =(1,0),j =(0,1),对于该坐标平面内的任一向量a ,给出下列四个结论:①存在唯一的一对实数x ,y ,使得a =(x ,y );②若x 1,x 2,y 1,y 2∈R ,a =(x 1,y 1)≠(x 2,y 2),则x 1≠x 2且y 1≠y 2;③若x ,y ∈R ,a =(x ,y ),且a ≠0,则a 的始点是原点O ;④若x ,y ∈R ,a ≠0,且a 的终点坐标是(x ,y ),则a =(x ,y ).其中正确结论的个数是()A .1B .2C .3D .4【高分突破】一:单选题33.(2021·全国·高一课时练习)如图所示,在ABC 中,2AB =,3BC =,60ABC ∠=︒,AD 为BC 边上的高,M 为AD 的中点,若AM AB BC λμ=+,则λμ+的值为()A .53B .12-C .12D .2334.(2021·全国·高一课时练习)如图所示,在ABC 中,2BD DC =.若AB a =,AC b =,则AD =()A .2133a b+r r B .2133a b-C .1233a b+D .1233a b-35.(2021·江西赣州·高一期中)已知1,0OA OB OA OB ==⋅=,点C 满足(),OC OA OB R λμλμ+=+∈且AOC 30∠=,则λμ等于()A .13B .1C .33D .336.(2021·湖南·高一期末)已知对任意的平面向量(),AB a b =,把AB 绕其起点沿逆时针方向旋转φ角得到向量(cos sin ,sin cos )AP a b a b φφφφ=-+,叫着把点B 绕点A 沿逆时针方向旋转φ角得到点P .已知()1,2A ,()12,222B -+,把点B 绕点A 沿顺时针方向旋转4π得到点P ,则P 的坐标为()A .()1,3B .()0,1C .()2,5D .()1,3--37.(2021·浙江师范大学附属东阳花园外国语学校高一阶段练习)已知平行四边形ABCD 中,AD =(3,7)-,(4,3)AB =,对角线AC ,BD 交于点O ,则CO 的坐标为()A .1,52⎛⎫ ⎪⎝⎭B .1,52⎛⎫- ⎪⎝⎭C .1,52⎛⎫-- ⎪⎝⎭D .1,52⎛⎫- ⎪⎝⎭38.(2021·安徽·宣城市励志中学高一阶段练习)“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦5”的问题,毕达哥拉斯发现勾股定理早了500多年,如图,在矩形ABCD 中,ABC 满足“勾3股4弦5”,且3AB =,E 为AD 上一点,.BE AC ⊥若BE BA BC λμ=+,则1λμ+的值为()A .925-B .725C .1625D .1二、多选题39.(2021·全国·高一课时练习)设a 是已知的平面向量,向量a ,b ,c 在同一平面内且两两不共线,其中真命题是()A .给定向量b ,总存在向量c ,使a b c =+;B .给定向量b 和c ,总存在实数λ和μ,使a b c λμ=+;C .给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a b c λμ=+;D .若||2a =,存在单位向量b ,c 和正实数λ,μ,使a b c λμ=+,则336λμ+>.40.(2021·广东·江门市新会第二中学高一阶段练习)如果12,e e 是平面α内两个不共线的向量,那么下列说法中正确的是()A .λ1e +μ2e (λ,μ∈R )可以表示平面α内的所有向量B .对于平面α内任一向量a ,使a =λ1e +μ2e 的实数对(λ,μ)有无穷多个C .若向量λ11e +μ12e 与λ21e +μ22e 共线,则λ1μ2-λ2μ1=0D .若实数λ,μ使得12λμ+=0e e ,则λ=μ=041.(2021·全国·高一课时练习)设向量()2,0a =,()1,1b =r,则()A .a b=r r B .()//a b b -C .()a b b-⊥D .a 与b 的夹角为4π42.(2021·湖南·长沙市第二十一中学高一期中)已知向量(),3a m =,()2,4b =-,若()a b a +⊥,则()A .1m =或3m =-B .1m =-或3m =C .2a b +=或10a b +=rr D .2a b +=或26a b +=43.(2021·全国·高一课时练习)已知向量()1,0i =,()0,1j =,对平面内的任一向量a ,下列结论中错误的是()A .存在唯一的一对实数x ,y ,使得(),a x y =rB .若1x ,2x ,1y ,2y ∈R ,()()1122,,a x y x y =≠,则12x x ≠,且12y y ≠C .若x ,y R ∈,(,)a x y =,且0a ≠,则a 的起点是原点OD .若x ,y R ∈,0a ≠,且a 的终点坐标是(),x y ,则(),a x y =r44.(2021·广东普宁·高一期中)设1234A A A A 、、、是平面直角坐标系中相异的四点,若1312()A A A A λλ=∈R ,1412()A A A A μμ=∈R ,且112λμ+=,则称34,A A 调和分割12,A A ,已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是()A .A 、B 、C 、D 四点共线B .D 可能是线段AB 的中点C .C 、D 可能同时在线段AB 上D .C 、D 不可能同时在线段AB 的延长线上三、填空题45.(2021·全国·高一单元测试)已知点()3,1A -,()4,2B --,点P 是直线AB 上一点,且满足2AP PB =,则点P 的坐标是___________.46.(2021·浙江·宁波市北仑中学高一期中)已知两点12(2,1),(1,3)P P --,点P 在直线12PP 上,且满足122||||3PP PP =,则点P 的坐标为___________.47.(2021·全国·高一课时练习)设点A (1,3),()3,B n -,()2,1C m +-.若2AB BC =-,则mn 的值为________.48.(2021·北京市西城区教委高一阶段练习)如图,在ABC 中,点D ,E 分别在BC ,AC 上,且,2BD DC AE EC ==,若DE x AB y AC =+,则x y +=___________.49.(2021·江西·景德镇一中高一期中)在ABC 中,,M N 分别是边,AB AC 的中点,点O 是线段MN 上,异于端点的一点,且()400OA OB OC λλ++=≠,则λ=____________.四、解答题50.(2021·全国·高一课时练习)(1)已知a =(-1,2),b =(1,-1),c =(3,-2),且有c =p a +q b ,试求实数p ,q 的值;(2)已知a =(2,1),b =(1,-3),c =(3,5),把a ,b 作为一组基底,试用a ,b 表示c .51.(2021·全国·高一课时练习)如图,已知边长为1的正方形ABCD 中,AB 与x 轴正半轴成30°角,求AC 和BD 的坐标.52.(2021·全国·高一课时练习).如图,在△OAB 中,11,42OC OA OD OB ==,AD 与BC 交于点M ,设,OA a OB b→==在线段AC 上取一点E ,在线段BD 上取一点F ,使EF 过M 点,设OE =p OA ,OF =q OB ,求证:17p +37q=1.53.(2021·浙江省桐庐中学高一期中)如图,在平面四边形ABCD 中,2AC CD AD BC ====,BC CA ⊥.(1)求BA BD ⋅的值;(2)若P 是线段AD 上一点(含端点),求3PC PD +的取值范围.【答案详解】1.D 【分析】根据基底不共线原则判断即可.【详解】解:只要两向量不共线便可作为基底,故对于A 选项,()1221e e e e -=--,共线,不满足;对于B 选项,121232322⎛⎫-=- ⎪⎝⎭e e e e ,共线,不满足;对于C 选项,()12122422+=---e e e e 共线,不满足;对于D 选项,122e e -与122e e -不共线,故满足.故选:D.2.C 【分析】在同一平面内,只要两个向量不共线,就可以作为这个平面的一组基底,逐项判断即可.【详解】对于A 选项:设121e e e =λ+,12e e ,是不共线的两个向量,1=1=0λ⎧∴⎨⎩,无解,1e ∴与12e e +不共线,1e ∴与12e e +可以构成一组基底;对于B 选项:设()1221=e 2e 2e e λ--,12e e ,是不共线的两个向量,1=22=λλ-⎧∴⎨-⎩,无解,12e 2e ∴-与21e 2e -不共线,12e 2e ∴-与21e 2e -可以构成一组基底;对于C 选项:设()1221=e 24e 2e e λ--,12e e ,是不共线的两个向量,1=21=2=42λλλ-⎧∴∴-⎨-⎩,,()21212e 2e 1=4e 2e ∴---,12e 2e ∴-与214e 2e -共线,12e 2e ∴-与214e 2e -不能构成一组基底;对于D 选项:设()1212=e e e e λ-+,12e e ,是不共线的两个向量,1=1=λλ⎧∴⎨-⎩,无解,12e e +∴与12e e -不共线,12e e +∴与12e e -可以构成一组基底;故选:C3.C 【分析】根据基底不共线的性质,判断各选项是否存在实数λ使基底有线性关系,若存在即共线,不可作为基底.【详解】作基底的两个向量一定不共线,A 、B 、D :不存在实数λ,使11222()e e e e λ+=-、122142(24)e e e e λ+=-、12122(2)e e e e λ+=+,故可以作基底;C :21122(4)22e e e e =---,即存在2λ=-,故它们共线,不能作为基底.故选:C 4.B 【分析】由题意结合平面向量基本定理可得33()44BF BC BF BA =+-+,从而可求得结果【详解】因为此图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,且BC a =,BA b =,3BE EF =,所以34BF BC CF BC EA =+=+3()4BC EB BA =++33()44BC BF BA =+-+93164BC BF BA =-+,解得16122525BF BC BA =+,即16122525BF a b =+,故选:B 5.A 【分析】利用平面向量的加法和减法以及平面向量的基本定理求解.【详解】1123FE FC CE BC CD =+=+,112()233AC AB BA CB ⎛⎫=-++ ⎪⎝⎭,1122122993AC AB AB AC AB =-+--,1151818AB AC =-+,故选:A.6.A 【分析】依据图形,结合向量的加法,减法,数乘运算的运算律利用BA ,BC 表示CF .【详解】3313344248BF BE BA BC BA BC ⎛⎫==+=+ ⎪⎝⎭,3348CF BF BC BA BC BC =-=+-=35354848BA BC BA CB -=+.故选:A.7.A 【分析】由G 为ABC 的重心,可得()13AG AB AC =+,结合AM x AB =,AN y AC =,根据M G N ,,三点共线,得到x y ,的关系式,即可得到答案【详解】延长AG 交BC 与点H ,H 为BC 中点,G 为ABC 的重心,()()2211133333111123AG AH AB AC AB AC AM AN A x yx y M AN ⎛⎫∴==⨯+=+=+=+ ⎪⎝⎭M G N 、、三点共线11133x y +=,113x y+=故选:A 8.A 【分析】设BM tBC =,可根据向量关系得出()1AM t AB t AC =-+,即可得出.【详解】由题可设BM tBC =,则()()1AM AB BM AB tBC AB t AC AB t AB t AC =+=+=+-=-+,N 为AM 中点,()1111222AN AM t AB t AC ∴==-+,又A N A B A C λμ=+u u u r u u u r u u u r,()11=1,22t t λμ∴-=,12λμ∴+=.故选:A.9.B 【分析】由题意,可根据向量运算法则得到()215AP m AC m AB =+-,从而由向量分解的唯一性得出关于λ的方程,求出λ的值.【详解】由题意及图:()()1AP AB BP AB mBN AB m AN AB mAN m AB =+=+=+-=+-,又23AN NC =,所以25AN AC =,所以()215AP m AC m AB =+-,又13AP AB AC λ=+,所以12153m m λ-=⎧⎪⎨=⎪⎩,解得:51,66m λ==.故选:B.10.B 【分析】写出OA 、OB 的坐标,利用平面向量线性运算的坐标表示可求得结果.【详解】由已知条件可得()1,2OA =,()3,4OB =,因此,()()()3231,223,49,14OA OB +=+=.故选:B.11.D 【分析】利用向量的坐标运算逐一判断.【详解】解:对A :()()2,2(1,3)3,5AB =---=-,故正确;对B :当(1,0),(0,1)i j ==时,35(3,0)(0,5)(3,5)i j BA -+=-+=-=,故正确;对C :由已知线段AB 的中点坐标为11,22⎛⎫ ⎪⎝⎭,则OM =11,22⎛⎫⎪⎝⎭,故正确;对D :OA 在OB 上的投影为22262222OB OBOA --==-+⋅,故错误.故选:D .【点睛】本题考查向量的坐标运算,考查向量的几何意义,是基础题.12.C 【分析】建立如图所示的直角坐标系,设(),P x y ,求出()()PA PB PC PD +⋅+224(1)4(1)4x y =-+--,即得解.【详解】建立如图所示的直角坐标系,则()0,0A ,()2,0B ,()2,2C ()0,2D .设(),P x y ,则(),PA x y =--,()2,PB x y =--,()2,2PC x y =--,(),2PD x y =--,所以()()()()()2222,222,422248PA PB PC PD x y x y x y y+⋅+=--⋅--=-+-224(1)4(1)4x y =-+--.所以当1x =,1y =时,()()PA PB PC PD +⋅+取得最小值4-.故选:C 【点睛】本题主要考查平面向量的坐标运算,考查平面向量的数量积的计算,意在考查学生对这些知识的理解掌握水平.13.D 【分析】根据平面向量加减、数乘运算的坐标表示列出方程组,解方程组即可.【详解】∵a -3b +2c =0,∴(-5,6)-(-9,6)+(2x ,2y )=(0,0),即2-590-226-600x x y y +==⎧⎧∴⎨⎨+==⎩⎩,,,,即c =(-2,0).故选:D .14.B 【分析】由1122a e e λλ=+表示出坐标关系,利用向量相等建立关系即可求解.【详解】()11221212,23e e λλλλλλ+=++,1122a e e λλ=+,∴12121223λλλλ-=+⎧⎨=+⎩,解得1211λλ=-⎧⎨=⎩.∴实数对1(λ,2)(1λ=-,1).故选:B .15.B 【分析】建立如图所示的平面直角坐标系,根据BA BC +=2BP ,求得点P 的坐标,从而可求得,PC PD 的坐标,即可得出答案.【详解】解:建立如图所示的平面直角坐标系,因为AD ∥BC ,∠ABC=90°,AB=BC=2,AD=1,所以B (0,0),A (0,2),C (2,0),D (1,2),所以BA =(0,2),BC =(2,0),因为BA BC +=2BP ,所以2BP =(0,2)+(2,0)=(2,2),故BP =(1,1),故P (1,1),PD =(0,1),PC =(1,-1),所以()01111·PC PD =⨯+⨯-=-.故选:B .16.D 【分析】如图,建立直角坐标系,设圆的半径为1,则可求出,,A B C 的坐标,即可得到向量,,OA OB OC 的坐标,由于,OA OB 不共线,所以利用平面向量基本定理进行求解即可【详解】解:如图,建立直角坐标系,设圆的半径为1,因为120AOB ∠=︒,30AOC ∠=︒,所以1331(1,0),,,,2222A B C ⎛⎫⎛⎫--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以1331(1,0),,,,2222OA OB OC ⎛⎫⎛⎫=-==-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为,OA OB 不共线,所以由平面向量基本定理可知存在一对有序实数,λμ,使OC OA OB λμ=+,所以3113,(1,0),2222λμ⎛⎫⎛⎫--=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以13223122λμμ⎧-+=-⎪⎪⎨⎪=-⎪⎩,解得3333λμ⎧=⎪⎪⎨⎪=-⎪⎩,所以3333OC OA OB =-,故选:D17.B 【分析】根据Rt △ABC 构建平面直角坐标系,可知B 、C 的坐标分别为(1,0)、(0,2),应用含参数的坐标表示向量AD ,由平面向量基本定理(,)AD AB AC R λμλμ=+∈,坐标运算求得参数λ、μ的关系即可求判断选项.【详解】如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系则B 点的坐标为(1,0),C 点的坐标为(0,2)∵∠DAB =45°,所以设D 点的坐标为(m ,m )(m ≠0)(,)(1,0)(0,2)(,2)AD m m AB AC λμλμλμ==+=+=则λ=m ,且μ=12m ,∴2λμ=,即20λμ-=故选:B 18.D 【分析】借助于矩形建立直角坐标系,利用坐标法求解.【详解】建立如图示坐标系,由3,4,AB BC ==则有:()()()()0,0,4,0,0,3,4,3,B C A D 因为E 为AD 上一点,可设(),3,E x 所以()()()=0,3,=,3,=4,3BA BE x AC -.因为BE AC ⊥,所以=0BE AC ,即490x -=,解得:94x =,所以9,34E ⎛⎫⎪⎝⎭.由BA BE AC λμ=+得:94=0433=3λμλμ⎧+⎪⎨⎪-⎩,解得:16=259=25λμ⎧⎪⎪⎨⎪-⎪⎩,所以=1λμ-.故选:D 19.A 【分析】设,,a OA b OB c OC ===,由已知条件判断出222AC BC AB +=,即ABC 是等腰直角三角形,以C 为坐标原点,OA OB 、所在的边为x y 、轴的正半轴建立平面直角坐标系,则()()1,00,1A B 、,(),O x y ,得222x y +=,再由(),c a b λμλμ=+∈R 得111x y λμ++-+=,设2cos ,2sin x y θθ==,求出x y +范围可得答案【详解】设,,a OA b OB c OC ===,则2a b OA OB BA OC c -=-====,1,1c a OC OA AC c b OC OB BC -=-==-=-==,所以222AC BC AB +=,即ABC 是等腰直角三角形,以C 为坐标原点,OA OB 、所在的边为x y 、轴的正半轴建立平面直角坐标系,如图,则()()1,00,1A B 、,(),O x y ,因为2c =,所以222x y +=,因为(),c a b λμλμ=+∈R ,所以()()()1,1,,x x y x y y λμ--+--=--,所以x x x λλμ--=-,y y y μλμ--=-,两式相加得()()()x x y y λμλμλμ-+=+-++-,所以1111x yx y x y λμ+=++-+-+=,因为222x y +=,所以设2cos ,2sin x y θθ==,所以()[]2cos sin 2sin 2,24x y πθθθ⎛⎫+=+=+∈- ⎪⎝⎭,因为,a b 不共线,所以,,O A B 不共线,所以1x y +≠,所以[)(]2,11,2x y +∈-,[)(]13,00,1x y +-∈-,[)111,,13x y ⎛⎤∈+∞-∞- ⎥+-⎝⎦,所以[)2,2,3λμ⎛⎤+∈-∞+∞ ⎥⎝⎦,故选:A.20.A【分析】以O 为原点,OB 所在直线为x 轴建立平面直角坐标系,令COB θ∠=,则0,60θ⎡⎤∈⎣⎦,则234sin 4cos 3x y θθ+=-+,易知()234cos sin 3f θθθ=-为减函数,即可得出结果.【详解】以O 为原点,OB 所在直线为x 轴建立平面直角坐标系,令COB θ∠=,则0,60θ⎡⎤∈⎣⎦,因为1OA =,则()10B ,,13,22A ⎛⎫ ⎪ ⎪⎝⎭,()cos ,sin C θθ,又OC xOA yOB =+,则cos 23sin 2x y x θθ⎧=+⎪⎪⎨⎪=⎪⎩,则1cos sin 32sin 3y x θθθ⎧=-⎪⎪⎨⎪=⎪⎩,则233sin 4cos 3x y θθ+=-+,又0,60θ⎡⎤∈⎣⎦,易知()23sin 4cos 3f θθθ-+=为减函数,由单调性易得其值域为[]1,4.故选:A.21.A【分析】先以BC 为x 轴,D 为原点建立坐标系,得到对应坐标,再根据向量关系解得()222y n λμ=--,结合题意知0y n <<,即解得结果.【详解】以BC 为x 轴,D 为原点建立如图坐标系.设()()()(),,0,0,G m n B a C a P x y -,,,,则()2,2A m n ,()()()2,22,22,2AP x m y n AB a m n AC a m n =--=---=--,,,由AP AB AC λμ=+,有222222x m a m a m y n n n λλμμλμ-=--+-⎧⎨-=--⎩,故()222y n λμ=--,∵点P 在GBC 内,∴0y n <<即()0222n n λμ<--<,解得112λμ<+<.故选:A .22.B【分析】根据向量的坐标运算求解模长即可.【详解】根据题意,向量()1,0a =,()2,4b =r ,则()3,4a b +=,故9165a b +=+=.故选:B .23.B【分析】利用向量的坐标运算可得2(1,2)a b +=r r ,即得.【详解】∵向量1(2,0),(,1),2==-a b ∴12(2,0)2(,1)(1,2)2a b +=+⋅-=r r ,∴222125a b +=+=r r .故选:B.24.D【分析】建立平面直角坐标系,得到向量的坐标,转化为函数最值问题进而得出答案.【详解】如图建立平面直角坐标系,设()(),30C x x x >,∴()4,3CB x x →=--,()4,0AB →=,∴()4124,43CB AB x x →→-=--,∴22327444694444CB AB x x x ⎛⎫-=-+=-+ ⎪⎝⎭,∴34x =时,4CB AB →→-的最小值为:334632⋅=.故选:D.25.B【分析】不共线的向量能作为基底,逐一判断选项即可.【详解】不共线的向量能作为基底,因为()1221e e e e -=--,所以向量12e e -,21e e -共线,故排除A ;假设1212(e e e e λ-=+),解得=1=1λλ⎧⎨-⎩,无解,所以向量12e e -,12e e +不共线,故B 正确;因为()212122e e e e =-+--,所以212e e -,212e e +-共线,故排除C ;因为()121212422e e e e =++,所以122e e +,1224e e +共线,故排除D ,故选:B26.C【分析】根据4CD BD ==r AB sAC +,利用平面向量的基本定理求解.【详解】因为点D 在CB 的延长线上,且4CD BD =,所以444333CD CB AB AC ==-,又因为CD r AB sAC =+,所以44,33r s ==-,所以83r s -=,故选:C27.A【分析】由向量减法法则计算.【详解】(4,3)(3,1)(7,4)BC AC AB =-=---=--故选:A.28.D【分析】由向量的正交分解可得A 点坐标,由横纵坐标的符号可确定所在象限.【详解】由题意得:()221,1A x x x x ++-+-210x x ++>,210x x -+-<A ∴位于第四象限故选:D.29.D【分析】根据向量的坐标表示及运算,逐项判定,即可求解.【详解】因为向量(1,3)a =-,且(1,3),(2,6)A B --,由向量(1,3)OA =-,所以a OA =,所以①正确;由向量(2,6)OB =-,2(2,6)a -=-,所以2OB a =-uu u r r ,所以②正确;由向量(3,9)AB =-,3(3,9)a -=-,所以3AB a =-,所以③正确;由②知2OB a =-uu u r r 且a OA =,则20OA OB a OB a ++=+=,所以④正确.故选:D.30.A【分析】根据平面向量的坐标运算以及向量相等即可求出.【详解】因为()()1,3,22,4a b m n a +=+-=-,所以12,34m n +=-=-,解得,11m n ==-.故选:A .31.B【分析】根据中点坐标公式以及重心的坐标公式即可解出.【详解】设()()1122,,,B x y C x y ,所以11322142x y +⎧=⎪⎪⎨+⎪=⎪⎩,解得111,7x y ==,1212333143x x y y ++⎧=⎪⎪⎨++⎪=⎪⎩,解得225,4x y ==,所以B ,C 的坐标分别为(1,7),(5,4).故选:B .32.A【分析】根据平面向量的基本定理、向量的坐标表示,及向量始点、终点与向量坐标的关系,即可判断各项的正误.【详解】由平面向量基本定理,存在唯一的一对实数x ,y 使a xi y j =+,①正确;举反例,a =(1,0)≠(1,3),但1=1,②错误;由向量可以平移,所以a =(x ,y )与a 的始点是不是原点无关,③错误;当a 的终点坐标是(x ,y )时,a =(x ,y )是以a 的始点是原点为前提的,④错误.故选:A33.D【分析】利用平面向量的加法、数乘运算以及平面向量的基本定理即可求解.【详解】因为在ABC 中,2AB =,3BC =,60ABC ∠=︒,AD 为BC 边上的高,所以在ABD △中,112BD AB ==,又13,3BC BD BC =∴=,AD AB BD ∴=+13AB BC =+,M 为AD 的中点,111226AM AD AB BC ∴==+,11,,26AM AB BC λμλμ=+∴==,23λμ∴+=,故选:D.34.C【分析】根据2BD DC =.且AB a =,AC b =,利用平面向量的加法,减法和数乘运算求解.【详解】因为2BD DC =.且AB a =,AC b =,所以AD AC CD =+,13AC CB =+()13AC AB AC =+-,1233AB AC =+,1233a b =+.故选:C35.D【分析】建立平面直角坐标系,求得λμ,由此确定正确选项.【详解】由于1,0OA OB OA OB ==⋅=,以O 为原点建立如图所示平面直角坐标系,所以(),C λμ,则3tan 30,33μλλμ︒===.故选:D36.C【分析】由已知可得(2,22)AB =-,然后根据所给的定义可得AP 的坐标,从而可求出点P 的坐标【详解】解:由()1,2A ,()12,222B -+,得(2,22)AB =-,则由题意可得2cos()22sin(),2sin()22cos()4444AP ππππ⎛⎫=------+- ⎪⎝⎭2222222,2222222⎛⎫=-⨯+⨯⨯+⨯ ⎪ ⎪⎝⎭(1,3)=所以点P 的坐标为()2,5,故选:C37.C【分析】根据题意可得AC AB AD =+,再由12CO AC =-求出.【详解】平行四边形ABCD 中,AD =(3,7)-,(4,3)AB =,()1,10AC AB AD ∴=+=,O 为AC 中点,11,522CO AC ⎛⎫∴=-=-- ⎪⎝⎭.故选:C.38.C【分析】由题意建立如图所示的直角坐标系,设(),3E a ,根据BE AC ⊥,得490AC BE a ⋅=-=,解得94a =,再根据BE BA BC λμ=+得到94,433μλ⎧=⎪⎨⎪=⎩解之即得解.【详解】由题意建立如图所示的直角坐标系,因为3AB =,4BC =,则()0,3A ,()0,0B ,()4,0C .设(),3E a ,则()4,3AC =-,(),3BE a =,因为BE AC ⊥,所以490AC BE a ⋅=-=,解得94a =,由BE BA BC λμ=+,得()()9,30,34,04λμ⎛⎫=+ ⎪⎝⎭,所以94,43 3.μλ⎧=⎪⎨⎪=⎩解得1,916λμ=⎧⎪⎨=⎪⎩,所以11625λμ=+.故选:C .39.ABD【分析】利用平面向量基本定理依次判断,即得解【详解】对于选项A ,给定向量a 和b ,只需求得其向量差a b -即为所求的向量c ,故总存在向量c ,使a b c =+,故A 正确;对于选项B ,当向量b ,c 和a 在同一平面内且两两不共线时,向量b ,c 可作基底,由平面向量基本定理可知结论成立,故B 正确;对于选项C ,取(4,4),2,(1,0)a b μ===,无论λ取何值,向量b λ都平行于x 轴,而向量c μ的模恒等于2,要使a b c λμ=+成立,根据平行四边形法则,向量c μ的纵坐标一定为4,故找不到这样的单位向量c 使等式成立,故C 错误;对于选项D ,2222()2cos ,4a b c b c λμλμλμ=+=++<>=,又b ,c 不共线,2224λμλμ∴++>,即2()4λμ+>,即2λμ+>,3323323λμλμλμ++≥⋅=(当且仅当λμ=时等号成立),23236λμ+>⨯=,得336λμ+>,故D 正确故选:ABD .40.ACD【分析】利用平面向量的基本定理可判断A 、B 、D ;利用向量共线定理可判断C ;从而得出答案.【详解】根据平面向量的基本定理可知A 正确、B 错误;根据向量共线定理,存在唯一的非零实数λ,使得()11122122e e e e λμλλμ+=+,即1212λλλμλμ=⎧⎨=⎩,消去λ可得12210λμλμ-=,故C 正确;若实数λ,μ有一个不为0,不妨设0λ≠,则12e e μλ=-,此时12,e e 共线,这与已知矛盾,所以λ=μ=0,故D 正确.故选:ACD41.CD【分析】根据给定条件对各选项逐一推理计算并判断作答.【详解】因向量()2,0a =,()1,1b =r ,则2a =,2b =,A 不正确;()1,1a b -=-,而1111-⨯≠⨯,即a b -与b 不共线,B 不正确;而()1,1a b -=-,则()11110⨯+-⨯=,()a b b -⊥,C 正确;222221012cos ,22011a b ⨯+⨯==+⋅+,又0,a b π≤〈〉≤,于是得,4a b π〈〉=,即a 与b 的夹角为4π,D 正确.故选:CD42.AC【分析】根据向量垂直的坐标表示,由题中条件求出m ,再由向量模的坐标表示,求出a b +,即可得出结果.【详解】因为向量(),3a m =,()2,4b =-,所以()2,1b m a +=+-r r ,若()a b a +⊥,则()()2130m m +⨯+-⨯=,即2230m m +-=,解得1m =或3m =-,故A 正确,B 错;当3m =-时,()()22212b m a +=++-=;当1m =时,()()222110a b m +=++-=;故C 正确,D 错.故选:AC.43.BCD【分析】根据平面向量的定义及坐标表示一一判断可得;【详解】解:对于A :平面向量的横纵坐标是确定的,故A 正确;对于B :如果两个向量不相等,则其横纵坐标不完全相等,即1(x ,12)(y x ≠,2)y ,则12x x ≠或12y y ≠;故B 错误;对于C :平面向量是可以平移的,所以起点不一定是坐标原点,故C 错误;对于D :平面向量是由起点和终点坐标决定的,应该等于终点坐标减起点坐标,故D 错误;故选:BCD .44.AD【分析】根据题设条件可先判断出1A 、2A 、3A 、4A 四点共线,从而判断出选项A ,然后可设()0,0A 、()10B ,、(),0C c 、(),0D d ,结合题设条件可得112c d+=,然后对各选项一一判断即可.【详解】∵1312()A A A A λλ=∈R ,1412()A A A A μμ=∈R ∴1312//A A A A ,1412//A A A A ∴1A 、2A 、3A 、4A 四点共线∵平面上的点C ,D 调和分割点A ,B∴A 、B 、C 、D 四点共线,故A 正确;由题意可设()0,0A 、()10B ,、(),0C c 、(),0D d ,则()(),01,0c λ=,()(),01,0d μ=.∴c λ=,dμ=∵112λμ+=∴112c d+=对于B ,若D 是线段AB 的中点,则12d =,代入到112c d+=,c 不存在,故B 错误;对于C ,若C 、D 同时在线段AB 上,则01c ≤≤,01d ≤≤,代入到112c d+=,可得1c d ==,此时C 、D 重合,与题意不符,故C 错误;对于D ,若C 、D 同时在线段AB 的延长线上,则1c >,1d >,所以112c d +<,与112c d+=矛盾,故C 、D 不可能同时在线段AB 的延长线上,故D 正确.故选:AD.45.55,33⎛⎫-- ⎪⎝⎭【分析】先求出AP 的坐标,再得点P 坐标.【详解】由已知(7,1)AB =--,由2AP PB =得2142(,)333AP AB ==--,所以P 点坐标为14255(,)(3,1)(,)3333--+-=--.故答案为:55,33⎛⎫-- ⎪⎝⎭46.43,55⎛⎫ ⎪⎝⎭或【分析】分点P 在线段12PP 的反向延长线、点P 在线段12PP 上以及点P 在线段12PP 的延长线上三种情况,结合平面向量的线性坐标运算即可求出结果.【详解】若点P 在线段12PP 的反向延长线上,又因为122||||3PP PP =,则有1223PP PP =-,设(),P x y ,则()()122,1,1,3PP x y PP x y =-+=---,所以()()22132133x x y y ⎧-=---⎪⎪⎨⎪+=--⎪⎩,解得89x y =⎧⎨=-⎩,即()8,9P -;若点P 在线段12PP 上,又因为122||||3PP PP =,则有1223PP PP =设(),P x y ,则()()122,1,1,3PP x y PP x y =-+=---,所以()()22132133x x y y ⎧-=--⎪⎪⎨⎪+=-⎪⎩,解得4535x y ⎧=⎪⎪⎨⎪=⎪⎩,即43,55P ⎛⎫ ⎪⎝⎭;若点P 在线段12PP 的延长线上,又因为122||||3PP PP =,则显然不成立;故答案为:43,55⎛⎫ ⎪⎝⎭或(8,9)-.47.15【分析】根据A ,B ,C 三点的坐标可求出(4,3),2(210,22)AB n BC m n =---=--+,根据2AB BC =-,即可得出2104223m n n --=-⎧⎨+=-⎩,从而可求出m ,n 的值,进而求出mn 的值.【详解】(4,3),(5,1)AB n BC m n =--=+--,2(210,22)BC m n -=--+;2AB BC =-;∴2104223m n n --=-⎧⎨+=-⎩;解得35m n =-⎧⎨=-⎩;15mn ∴=.故答案为:15.48.13-【分析】根据向量的加减运算化简可得.【详解】因为,2BD DC AE EC ==,则()111111232326DE DC CE BC AC AC AB AC AB AC =+=-=--=-+,所以11,26x y =-=,则13x y +=-.故答案为:13-.49.5【分析】利用向量线性运算可化简得到()5280OA OM ON λ-++=,设OM tON =,整理可得()()5280OA t ON λ-++=,由向量,OA ON 不共线可构造方程求得结果.【详解】M 是AB 中点,2OM OA OB ∴=+;同理可得:2ON OA OC =+;()()4242OA OB OC OA OM OA ON OA λλ∴++=+-+-()5280OA OM ON λ=-++=,,,M O N 三点共线,∴可设OM tON =,()()5280OA t ON λ∴-++=,,OA ON 不共线,50280t λ-=⎧∴⎨+=⎩,解得:54t λ=⎧⎨=-⎩,5λ∴=.故答案为:5.50.(1)p ,q 的值分别为1,4;(2)c =2a -b .【分析】(1)用坐标表示出p a +q b ,由向量相等可求得,p q ;(2)设c =m a +n b ,用坐标表示后,再由向量相等可得,m n ,从而得结论.【详解】解因为a =(-1,2),b =(1,-1),c =(3,-2),所以p a +q b =p (-1,2)+q (1,-1)=(-p +q ,2p -q ).又因为c =p a +q b ,所以3,22,p q p q -+=⎧⎨-=-⎩解得1,4.p q =⎧⎨=⎩故所求p ,q 的值分别为1,4.(2)设c =m a +n b ,m ,n ∈R.因为m a +n b =m (2,1)+n (1,-3)=(2m +n ,m -3n ),且c =m a +n b =(3,5),所以23,35,m n m n +=⎧⎨-=⎩解得2,1.m n =⎧⎨=-⎩故c =2a -b51.3131(,)22AC -+=,3131(,)22BD ---=【分析】依题意B ,D 分别是30°,120︒角的终边与单位圆的交点,设()11,B x y ,()22,D x y .由三角函数的定义,求出B 、D 的坐标,再根据向量的坐标表示和向量的加减运算可得.【详解】解:由题知B ,D 分别是30°,120︒角的终边与单位圆的交点.设()11,B x y ,()22,D x y .由三角函数的定义,得13cos302x ︒==,11sin 302y ︒==,∴31,22B ⎛⎫ ⎪⎝⎭.21cos1202x ︒==-,23sin1202y ︒==,∴13,22D ⎛⎫- ⎪ ⎪⎝⎭.()0,0A ∴31,22AB ⎛⎫= ⎪⎝⎭,13,22AD ⎛⎫=- ⎪⎝⎭.∴3131(,)22AC AB AD -+=+=,3131(,)22BD AD AB ---=-=52.证明见解析【分析】由,,B M C 三点共线计算可得1(1)4OM ma m b →=+-,由,,A M D 三点共线,计算可得1(1)2OM na n b →=+-,即可求得1377OM a b →→=+,由,,E M F 三点共线,计算可得()1(1)OM OE OF b p a q λλλλ→→=+-=+-,消去λ,即可证得结果.【详解】因为,,B M C 三点共线,所以存在实数m ,使得11(1)(1)(1)44OM mOC m OB m OA m OB ma m b →=+-=⋅+-=+-,又,,A M D 三点共线,所以存在实数n ,使得1(1)(1)2OM nOA n OD na n b →=+-=+-,由于,a b →→不共线,所以1411(1)2m n m n ⎧=⎪⎪⎨⎪-=-⎪⎩,解得4717m n ⎧=⎪⎪⎨⎪=⎪⎩.故1377OM a b →→=+.因为,,E M F 三点共线,所以存在实数λ,使得()1(1)OM OE OF b p a q λλλλ→→=+-=+-,1,73(1),7p q λλ⎧=⎪⎪⎨⎪-=⎪⎩消去λ,得17p +37q =1.53.(1)236+(2)33,213PC PD ⎡⎤+∈⎣⎦【分析】(1)利用基底法求向量的数量积;(2)设PD AD λ=uu u r uuu r ,[]0,1λ∈,化简可得2136438PC PD λ⎛⎫+=-+ ⎪⎝⎭,从而确定3PC PD +的取值范围.(1)解:因为2AC CD AD BC ====,所以ACD △是边长为2等边三角形,因为BC CA ⊥,所以ACB △是直角边长为2等腰直角三角形,且22BA =,45BAC ∠=︒,60CAD ∠=︒,所以()BA BD BA BA AD BA BA BA AD⋅=⋅+=⋅+⋅()()()222cos 1806045842cos 4530BA AD =+⋅︒-︒-︒=+︒+︒23218422362222⎛⎫=+⨯-⨯=+ ⎪ ⎪⎝⎭;(2)解:由P 是线段AD 上一点(含端点),设PD AD λ=uu u r uuu r ,[]0,1λ∈,222344168PC PD PD DC AD DC AD AD DC DC λλλ+=+=+=+⋅+,有222cos 23AD DC π⋅=⨯⨯=-,故2213641646438PC PD λλλ⎛⎫+=-+=-+ ⎪⎝⎭,当18λ=时,3PC PD +取最小值为3;当1λ=时,3PC PD +取最小值为213.。

第2节 平面向量基本定理及坐标表示

第2节 平面向量基本定理及坐标表示

第2节 平面向量基本定理及坐标表示知识梳理1.平面向量的基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. 3.平面向量的坐标运算(1)向量加法、减法、数乘运算及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →| 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0.1.平面内不共线向量都可以作为基底,反之亦然.2.若a 与b 不共线,λa +μb =0,则λ=μ=0.3.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( )(2)设a ,b 是平面内的一组基底,若实数λ1,μ1,λ2,μ2满足λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( )(3)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可以表示成x 1x 2=y 1y 2.( ) (4)平面向量不论经过怎样的平移变换之后其坐标不变.( ) 答案 (1)× (2)√ (3)× (4)√ 解析 (1)共线向量不可以作为基底. (3)若b =(0,0),则x 1x 2=y 1y 2无意义.2.若P 1(1,3),P 2(4,0),且P 是线段P 1P 2的一个三等分点(靠近点P 1),则点P 的坐标为( ) A.(2,2)B.(3,-1)C.(2,2)或(3,-1)D.(2,2)或(3,1)答案 A解析 由题意得P 1P →=13P 1P 2→且P 1P 2→=(3,-3), 设P (x ,y ),则(x -1,y -3)=(1,-1), 所以x =2,y =2,则点P (2,2).3.已知向量a =(-1,3),b =(2,1),则3a -2b =( ) A.(-7,7) B.(-3,-2) C.(6,2)D.(4,-3)答案 A解析 3a -2b =(-3,9)-(4,2)=(-7,7).4.(2020·长沙调研)已知向量a =(m ,1),b =(3,m -2),则m =3是a ∥b 的( ) A.充分不必要条件 B.必要不充分条件 C.既不充分也不必要条件 D.充要条件 答案 A解析 ∵a =(m ,1),b =(3,m -2),若a ∥b ,则m (m -2)-3=0, 得m =3或m =-1,所以“m =3”是“a ∥b ”的充分不必要条件.5.(2020·合肥质检)设向量a =(-3,4),向量b 与向量a 方向相反,且|b |=10,则向量b 的坐标为( ) A.⎝ ⎛⎭⎪⎫-65,85 B.(-6,8)C.⎝ ⎛⎭⎪⎫65,-85 D.(6,-8)答案 D解析 因为向量b 与a 方向相反,则可设b =λa =(-3λ,4λ),λ<0,则|b |=9λ2+16λ2=5|λ|=10,∴λ=-2,b =(6,-8).6.(2021·济南模拟)如图,在平行四边形ABCD 中,F 是BC 的中点,CE →=-2DE →,若EF→=xAB →+yAD →,则x +y =( )A.1B.6C.16D.13答案 C解析 因为四边形ABCD 是平行四边形, 所以AB→=DC →,AD →=BC →,因为CE→=-2DE →,所以ED →=-13DC →=-13AB →, 连接AF ,在△AEF 中,所以EF→=EA →+AF →=ED →-AD →+AB →+BF →=-13AB →-AD →+AB →+12BC →=23AB →-12AD →, 又因为EF→=xAB →+yAD →,所以x =23,y =-12,故x +y =16.考点一 平面向量的坐标运算1.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( ) A.⎝ ⎛⎭⎪⎫2,72 B.⎝ ⎛⎭⎪⎫2,-12 C.(3,2)D.(1,3)答案 A解析 设D (x ,y ),AD →=(x ,y -2),BC →=(4,3),又BC →=2AD →,所以⎩⎨⎧4=2x ,3=2(y -2),解得⎩⎪⎨⎪⎧x =2,y =72,故选A.2.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=( )A.1B.2C.3D.4答案 D解析 以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO→=(-1,1),b =OB →=(6,2),c =BC →=(-1,-3), ∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2), 则⎩⎨⎧-λ+6μ=-1,λ+2μ=-3,解得⎩⎪⎨⎪⎧λ=-2,μ=-12,∴λμ=-2-12=4.3.(2020·西安调研)在平面直角坐标系中,O 为坐标原点,OA→=⎝ ⎛⎭⎪⎫32,12,若OA →绕点O 逆时针旋转60°得到向量OB →,则OB →=( )A.(0,1)B.(1,0)C.⎝ ⎛⎭⎪⎫32,-12D.⎝ ⎛⎭⎪⎫12,-32答案 A解析 ∵OA→=⎝ ⎛⎭⎪⎫32,12,∴OA →与x 轴的夹角为30°, 依题意,向量OB →与x 轴的夹角为90°, 则点B 在y 轴正半轴上,且|OB →|=|OA →|=1,∴点B (0,1),则OB→=(0,1).4.(2021·重庆检测)如图,原点O 是△ABC 内一点,顶点A 在x 轴上,∠AOB =150°,∠BOC =90°,|OA →|=2,|OB →|=1,|OC →|=3,若OC→=λOA →+μOB →,则μλ=( )A.-33B.33C.-3D.3答案 D解析 由三角函数定义,易知A (2,0),B ⎝ ⎛⎭⎪⎫-32,12,C (3cos 240°,3sin 240°),即C ⎝ ⎛⎭⎪⎫-32,-332, 因为OC→=λOA →+μOB →,所以⎝ ⎛⎭⎪⎫-32,-332=λ(2,0)+μ⎝ ⎛⎭⎪⎫-32,12, 所以⎩⎪⎨⎪⎧2λ-32μ=-32,12μ=-332,解得⎩⎨⎧λ=-3,μ=-3 3.所以μλ= 3.感悟升华 1.向量的坐标表示把点与数联系起来,实际上是向量的代数表示,即引入平面向量的坐标可以使向量运算代数化,成为数与形结合的载体,可以使很多几何问题的解答转化为我们熟知的数量运算.2.向量的坐标运算主要是利用向量的加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用. 考点二 平面向量基本定理及其应用【例1】如图所示,已知在△OCB 中,A 是CB 的中点,D 是将OB →分成2∶1的一个内分点,DC 和OA 交于点E ,设OA →=a ,OB→=b . (1)用a 和b 表示向量OC →,DC →;(2)若OE→=λOA →,求实数λ的值. 解 (1)依题意,A 是BC 的中点,∴2OA→=OB →+OC →,即OC →=2OA →-OB →=2a -b . DC→=OC →-OD →=OC →-23OB → =2a -b -23b =2a -53b . (2)设OE→=λOA →(0<λ<1), 则CE→=OE →-OC →=λa -(2a -b )=(λ-2)a +b . ∵CE→与DC →共线, ∴存在实数k ,使CE→=kDC →, (λ-2)a +b =k ⎝ ⎛⎭⎪⎫2a -53b ,解得λ=45.感悟升华 1.应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.2.用平面向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【训练1】 (1)在△ABC 中,M ,N 分别是边AB ,AC 的中点,点O 是线段MN 上异于端点的一点,且满足λOA →+3OB →+4OC →=0(λ≠0),则λ=________.(2)(多选题)(2021·威海调研)设a 是已知的平面向量且a ≠0,关于向量a 的分解,有如下四个命题(向量b ,c 和a 在同一平面内且两两不共线),则真命题是( ) A.给定向量b ,总存在向量c ,使a =b +cB.给定向量b 和c ,总存在实数λ和μ,使a =λb +μcC.给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a =λb +μcD.给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μc 答案 (1)7 (2)AB解析 (1)法一 由已知得OA →=-3λOB →-4λOC →,① 由M ,O ,N 三点共线,知∃t ∈R ,使OM →=tON →,故2OM →=2tON →,故OA →+OB →=t (OA →+OC →), 整理得OA→=1t -1OB →+t 1-tOC →,② 对比①②两式的系数,得⎩⎪⎨⎪⎧-3λ=1t -1,-4λ=t 1-t ,解得⎩⎪⎨⎪⎧t =-43,λ=7. 法二 因为M 是AB 的中点,所以OM→=12(OA →+OB →),于是OB→=2OM →-OA →,同理OC →=2ON →-OA →, 将两式代入λOA→+3OB →+4OC →=0,整理得(λ-7)OA→+6OM →+8ON →=0,因为M ,O ,N 三点共线,故∃p ∈R ,使得OM →=pON →,于是(λ-7)OA→+(6p +8)ON →=0,显然OA→,ON →不共线,故λ-7=6p +8=0,故λ=7. (2)∵向量b ,c 和a 在同一平面内且两两不共线,∴b ≠0,c ≠0, 给定向量a 和b ,只需求得其向量差a -b ,即为所求的向量c ,故总存在向量c ,使a =b +c ,故A 正确;当向量b ,c 和a 在同一平面内且两两不共线时,向量b ,c 可作基底, 由平面向量基本定理可知结论成立,故B 正确; 取a =(4,4),μ=2,b =(1,0),无论λ取何值,向量λb 都平行于x 轴,而向量μc 的模恒等于2, 要使a =λb +μc 成立,根据平行四边形法则,向量μc 的纵坐标一定为4, 故找不到这样的单位向量c 使等式成立,故C 错误;因为λ和μ为正数,所以λb 和μc 代表与原向量同向的且有固定长度的向量, 这就使得向量a 不一定能用两个单位向量的组合表示出来, 故不一定能使a =λb +μc 成立,故D 错误.故选AB. 考点三 平面向量共线的坐标表示角度1 利用向量共线求向量或点的坐标【例2】已知点A (4,0),B (4,4),C (2,6),O 为坐标原点,则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC→=OC →-OA →=(-2,6), 由AP→与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3), 所以点P 的坐标为(3,3).法二 设点P (x ,y ),则OP→=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y4,即x =y .又AP→=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3).角度2 利用向量共线求参数【例3】 (1)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.(2)(2021·福州联考)设向量OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0),其中O 为坐标原点,且a >0,b >0,若A ,B ,C 三点共线,则1a +2b 的最小值为( ) A.8B.9C.6D.4答案 (1)12 (2)A解析 (1)由题意得2a +b =(4,2),因为c =(1,λ),且c ∥(2a +b ),所以4λ-2=0,即λ=12.(2)由题意知AB→=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).因为A ,B ,C 三点共线,设AB →=λAC →,则(a -1,1)=λ(-b -1,2).∴⎩⎨⎧a -1=λ(-b -1),1=2λ,得2a +b =1. 又a >0,b >0,则1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=2+2+b a +4ab ≥4+2b a ·4ab =8,当且仅当b a =4ab ,即a =14,b =12时,等号成立. ∴1a +2b 的最小值为8.感悟升华 1.两平面向量共线的充要条件有两种形式:(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0; (2)若a ∥b (b ≠0),则a =λb .2.向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【训练2】 (1)(2020·太原联考)已知向量e 1=(1,1),e 2=(0,1),若a =e 1+λe 2与b =-(2e 1-3e 2)共线,则实数λ=________.(2)(2021·安徽江南十校调研)在直角坐标系xOy 中,已知点A (0,1)和点B (-3,4),若点C 在∠AOB 的平分线上,且|OC →|=310,则向量OC →的坐标为________.答案 (1)-32 (2)(-3,9)解析 (1)由题意知a =e 1+λe 2=(1,1+λ), b =-(2e 1-3e 2)=(-2,1).由于a ∥b ,所以1×1+2(1+λ)=0,解得λ=-32. (2)因为点C 在∠AOB 的平分线上,所以存在λ∈(0,+∞),使得OC →=λ⎝ ⎛⎭⎪⎪⎫OA →|OA →|+OB →|OB →|. ∴OC→=λ(0,1)+λ⎝ ⎛⎭⎪⎫-35,45=⎝ ⎛⎭⎪⎫-35λ,95λ, 又|OC→|=310,所以⎝ ⎛⎭⎪⎫-35λ2+⎝ ⎛⎭⎪⎫95λ2=(310)2,解得λ=5.故向量OC→=(-3,9).A 级 基础巩固一、选择题1.设A (0,1),B (1,3),C (-1,5),D (0,-1),则AB →+AC →等于( )A.-2AD →B.2AD→ C.-3AD →D.3AD→ 答案 C解析 由题意得AB →=(1,2),AC →=(-1,4),AD →=(0,-2),所以AB →+AC →=(0,6)=-3(0,-2)=-3AD→.2.已知向量a =(2,1),b =(3,4),c =(1,m ),若实数λ满足a +b =λc ,则λ+m 等于( ) A.5 B.6C.7D.8答案 B解析 由平面向量的坐标运算法则可得a +b =(5,5), λc =(λ,λm ),据此有⎩⎨⎧λ=5,λm =5,解得λ=5,m =1,∴λ+m =6.3.(2020·郑州质检)已知向量AB →=(1,4),BC →=(m ,-1),若AB →∥AC →,则实数m的值为( ) A.14 B.-4C.4D.-14答案 D解析 ∵向量AB →=(1,4),BC →=(m ,-1), ∴AC→=AB →+BC →=(1+m ,3), 又AB →∥AC →,所以1×3-4(1+m )=0,解得m =-14. 4.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为第一象限内一点,且∠AOC =π4,且|OC |=2,若OC →=λOA →+μOB →,则λ+μ=( ) A.22 B.2C.2D.42答案 A解析 因为|OC |=2,∠AOC =π4,所以C (2,2),又OC →=λOA →+μOB →,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.5.(2021·济南调研)在△ABC 中,AN→=14NC →,若P 是直线BN 上的一点,且满足AP →=mAB→+25AC →,则实数m 的值为( ) A.-4 B.-1C.1D.4答案 B解析 根据题意设BP →=nBN →(n ∈R ),则AP →=AB →+BP →=AB →+nBN →=AB →+n (AN →-AB →)=AB→+n ⎝ ⎛⎭⎪⎫15AC →-AB →=(1-n )AB →+n 5AC →.又AP →=mAB →+25AC →,∴⎩⎪⎨⎪⎧1-n =m ,n 5=25,解得⎩⎨⎧n =2,m =-1.6.(2021·东北师大附中等五校联考)已知向量a =⎝ ⎛⎭⎪⎫13,tan α,b =(cos α,1),α∈⎝ ⎛⎭⎪⎫π2,π,且a ∥b ,则sin ⎝ ⎛⎭⎪⎫α-π2=( )A.-13B.13C.223D.-223答案 C解析 向量a =⎝ ⎛⎭⎪⎫13,tan α,b =(cos α,1),且a ∥b ,则13=tan α·cos α=sin α, 又α∈⎝ ⎛⎭⎪⎫π2,π,知cos α=-223,所以sin ⎝ ⎛⎭⎪⎫α-π2=-cos α=223.7.(2020·西安质检)已知在Rt △ABC 中,∠BAC =90°,AB =1,AC =2,D 是△ABC 内一点,且∠DAB =60°,设AD→=λAB →+μAC →(λ,μ∈R ),则λμ=( )A.233B.33C.3D.23答案 A解析 如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,则B 点的坐标为(1,0),C 点的坐标为(0,2),因为∠DAB =60°,所以设D 点的坐标为(m ,3m )(m >0).AD→=(m ,3m )=λAB →+μAC →=λ(1,0)+μ(0,2)=(λ,2μ),则λ=m ,且μ=32m , 所以λμ=233.8.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,m =(a ,b ),n =(cos B ,cos A ),则“m ∥n ”是“△ABC 是等腰三角形”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 D解析 由m ∥n 得b cos B -a cos A =0,即sin B cos B =sin A cos A ,可得sin 2B =sin 2A ,因为角A ,B ,C 分别是△ABC 的内角,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2,可得△ABC 是等腰三角形或直角三角形. 因此,由“m ∥n ”不能推出“△ABC 是等腰三角形”.因为由“△ABC 是等腰三角形”不能推出“A =B ”,所以由“△ABC 是等腰三角形”也不能推出“m ∥n ”.故“m ∥n ”是“△ABC 是等腰三角形”的既不充分也不必要条件. 二、填空题9.已知A (2,3),B (4,-3),点P 在线段AB 的延长线上,且|AP |=32|BP |,则点P 的坐标为________. 答案 (8,-15)解析 设P (x ,y ),由点P 在线段AB 的延长线上, 则AP→=32BP →,得(x -2,y -3)=32(x -4,y +3), 即⎩⎪⎨⎪⎧x -2=32(x -4),y -3=32(y +3).解得⎩⎨⎧x =8,y =-15.所以点P 的坐标为(8,-15).10.(2021·武汉联考)已知非零向量a =(2x ,y ),b =(1,-2),且a ∥b ,则x y =________. 答案 -14解析 因为a =(2x ,y ),b =(1,-2),且a ∥b ,所以2x ·(-2)-y ·1=0,所以xy =-14.11.已知矩形ABCD 的两条对角线交于点O ,点E 为线段AO 的中点,若DE →=mAB →+nAD→,则m +n 的值为________.答案 -12解析 如图所示,因为点E 为线段AO 的中点, 所以DE→=12(DA →+DO →)=12DA →+14DB → =-12AD →+14AB →-14AD →=14AB →-34AD →. 又DE→=mAB →+nAD →, 所以m =14,n =-34,故m +n =-12.12.已知向量OA→=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________. 答案 k ≠1解析 若点A ,B ,C 能构成三角形, 则向量AB→,AC →不共线.∵AB→=OB →-OA →=(2,-1)-(1,-3)=(1,2), AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1), ∴1×(k +1)-2k ≠0,解得k ≠1.B 级 能力提升13.(多选题)(2021·济南调研)已知向量e 1,e 2是平面α内的一组基向量,O 为α内的定点,对于α内任意一点P ,当OP →=x e 1+y e 2时,则称有序实数对(x ,y )为点P 的广义坐标.若平面α内的点A ,B 的广义坐标分别为(x 1,y 1),(x 2,y 2),则下列命题正确的是( )A.线段AB 的中点的广义坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22B.A ,B 两点间的距离为(x 1-x 2)2+(y 1-y 2)2C.向量OA →平行于向量OB →的充要条件是x 1y 2=x 2y 1D.向量OA →垂直于向量OB →的充要条件是x 1y 2+x 2y 1=0 答案 AC解析 设线段AB 的中点为M ,则OM →=12(OA →+OB →)=12(x 1+x 2)e 1+12(y 1+y 2)e 2,所以点M 的广义坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,知A 正确;由于该坐标系不一定是平面直角坐标系,因此B 错误;由向量平行得OA →=λOB →,即(x 1,y 1)=λ(x 2,y 2),所以x 1y 2=x 2y 1,得C 正确;OA →与OB →垂直,则OA →·OB →=0,所以x 1x 2e 21+(x 1y 2+x 2y 1)e 1·e 2+y 1y 2e 22=0,即x 1y 2+x 2y 1=0不是OA→与OB →垂直的充要条件,因此D 不正确.故选AC. 14.(多选题)(2021·日照调研)如图1,“六芒星”由两个全等的正三角形组成,中心重合于点O 且三组对边分别平行,点A ,B 是“六芒星”(如图2)的两个顶点,动点P 在“六芒星”上(包含内部以及边界),若OP →=xOA →+yOB →,则x +y 的取值可能是( )A.-6B.1C.5D.9答案 BC解析 设OA →=a ,OB →=b ,求x +y 的范围,只需考虑图中6个向量的情况即可,讨论如下:(1)若P 在A 点,∵OA→=a ,∴(x ,y )=(1,0);(2)若P 在B 点,∵OB→=b ,∴(x ,y )=(0,1); (3)若P 在C 点,∵OC→=OA →+AC →=2b +a ,∴(x ,y )=(1,2);(4)若P 在D 点,∵OD →=OA →+AE →+ED →=a +b +(2b +a )=2a +3b ,∴(x ,y )=(2,3);(5)若P 在E 点,∵OE→=OA →+AE →=a +b ,∴(x ,y )=(1,1);(6)若P 在F 点,∵OF →=OA →+AF →=a +3b ,∴(x ,y )=(1,3).∴x +y 的最大值为2+3=5.根据对称性,可知x +y 的最小值为-5. 故选BC.15.已知点P 为四边形ABCD 所在平面内一点,且满足AB →+2CD →=0,AP →+BP →+4DP →=0,AP →=λAB →+μBC →(λ,μ∈R ),则λμ=________. 答案 13解析 如图,取AB 的中点O ,连接DO . 由AB→+2CD →=0,知AB ∥CD ,AB =2CD , 所以CD 綉OB ,所以四边形OBCD 为平行四边形. 又由AP→+BP →+4DP →=0,得-2PO →+4DP →=0, 即PO →=2DP →,所以D ,P ,O 三点共线,且P 为OD 上靠近D 的三等分点, 所以AP→=AO →+OP →=12AB →+23OD →=12AB →+23BC →, 所以λ=12,μ=23,所以λμ=13.16.在△ABC 中,点D ,E 是线段BC 上的两个动点,且AD →+AE →=xAB →+yAC →,则xy 的最大值为________. 答案 1解析 设DE 的中点为M ,连接AM (如图). 则AD→+AE →=2AM →=xAB →+yAC →, 所以AM→=x 2AB →+y 2AC →, 又B ,C ,M 三点共线, 所以x +y =2,且x >0,y >0,又x +y ≥2xy ,当且仅当x =y =1时,取等号,∴xy≤1,即xy的最大值为1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号:001 §2.3.1平面向量基本定理
§2.3.2平面向量正交分解及坐标表示
班级: 姓名:
【学习目标】1. 掌握平面向量基本定理;了解平面向量基本定理的意义;
2. 掌握平面向量的正交分解及其坐标表示.
【重难点】平面向量基本定理;正交分解下的坐标表示. 【学习过程】 一、自主学习 (一)知识链接:
复习1:向量b 、()
0a a ≠是共线的两个向量,则a 、b 之间的关系可以表示为 . 复习2:给定平面内任意两个向量1e 、2e (如下图),请同学们作出向量1232e e +、122e e -.
(二)自主探究:(预习教材P93—P96) 探究:平面向量基本定理
学法指导: 在物理中我们研究了力的合成与分解,力的合成与分解互为逆运算,都符合平行四边形
法则:如果用表示两个共点力F1和F2的线段为邻边作平行四边形,那么合力F 的大小和方向就可以用F1、F2所夹的角的大小来表示。

(注:已知分力要求合力,叫做力的合成。

已知合力要求分力叫做力的分解。


即力的合成就是由平行四边形的两邻边求对角线的问题。

力的分解是力的合成的逆运算,同样遵循的平行四边形定则。

力的分解就是由对角线求两邻边的问题,这是我们在物理中学过的知识。

在数学中,物理中的力,本质上就是我们数学中的向量,如果已知平面内的某一向量m (其中m 为非零向量),就可以按照平行四边形法则,将其分解到两个向量1e ,2e (其中1e ,2e 为非零向量)两个方向。

分解到1e 方向的向量记为a ,则a 与1e 共线,即11a e λ=,分解到2e 方向的向量记为b ,则b 与2e 共线,即22b e λ=,那么1122m a b e e λλ=+=+.
问题1:复习2中,平面内的任一向量是否都可以用形如1122e e λλ+的向量表示呢?
1.平面向量的基本定理:如果1e ,2e 是同一平面内两个 的向量,a
是这一平面内的任一向量,那么有且只有一对实数1λ,2λ,使 。

其中,不共线的这两个向量,1e 2e
叫做表示这一平面内所有向量的基底。

问题2:如果两个向量不共线,则它们的位置关系我们怎么表示呢?
2.两向量的夹角与垂直::我们规定:已知两个非零向量a b ,作=OA a ,=OB b
,则 叫
做向量a 与b
的夹角。

如果,θ=∠AOB 则θ的取值范围是 。

当 时,
表示a 与b 同向;当 时,表示a 与b 反向;当 时,表示a 与b
垂直。

记作:a b ⊥.在不共线的两个向量中,90θ=,即两向量垂直是一种重要的情形,把一个向量分解为
_____________,叫做把向量正交分解。

问题3:平面直角坐标系中的每一个点都可以用一对有序实数(即它的坐标)表示. 对于
直角坐标平面内的每一个向量,如何表示呢?
3、向量的坐标表示:在平面直角坐标系中,分别取与x 轴、y 轴方向相同于两个_______作为基为基底。

对于平面内的任一个向量,由平面向量基本定理可知,有且只有一对实数x 、y ,使得____________,这样,平面内的任一向量a 都可由__________唯一确定,我们把有序数对________叫做向量的坐标,记作=___________此式叫做向量的坐标表示,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标。

几个特殊向量的坐标表示:i =__________,j =__________,0=__________ 二、合作探究
学法引领:首先画图分析,然后寻找表示。

【例1】(见课本P94例1)
【例2】已知梯形ABCD 中,//AB DC ,且2AB CD =,E 、F 分别是DC 、AB 的中点,设AD a =,
AB b =。

试用,a b 为基底表示DC 、BC .
【例3】(见课本P96例2)
【例4】已知O 是坐标原点,点A 在第一象限,43OA =60xOA ∠=,求向量OA 的坐标.
(注:xOA ∠即为向量OA 与x 轴的正方向的夹角.)
【规律性方法总结】
三、课堂反馈
1、在矩形ABCD 中,AC 与BD 交于点O ,若15BC e =,23DC e =,则OC 等于多少?
2、已知点A 时坐标为(2,3),点B 的坐标为(6,5),O 为原点,则OA =________,OB =_______.
3、已知向量a 的方向与x 轴的正方向的夹角是30°,且a =4,则a
的坐标为__________. 4、已知两向量1e 、2e 不共线,122a e e =+,1232b e e λ=-,若a 与b 共线,则实数λ= .
四、达标检测(A 组必做,B 组选做)
A 组
1. 设O 是平行四边形ABCD 两对角线AC 与BD 的交点,下列向量组,其中可作为这个平行四边形所在平面表示所有向量的基底的是( )
①AD 与AB ②DA 与BC ③CA 与DC ④OD 与OB A.①② B.③④ C.①③ D.①④
2. 已知向量1e 、2e 不共线,实数x 、y 满足()()1212342363x y e x y e e e -+-=+,则x y -的值等于( )
A.3
B.3-
C.0
D.2 3. 若O 、A 、B 为平面上三点,C 为线段AB 的中点,则( ) A.OC OA OB =+ B.()12OC OA OB =
+ C.2AB OC = D.()
1
2
OC OA OB =- 4.已知,1e 2e 是同一平面内两个不共线的向量,且AB =21e +k 2e ,CB =1e +32e ,CD =21e

2e
,如果A 、B 、D 三点共线,则k 的值为
B 组
1、已知AM 是ABC ∆的BC 边上的中线,若AB =a
,AC =b ,则AM =( )
A.21(a -b ) B.-21(a -b ) C.-21(a +b ) D.2
1(a +b )
2、已知点A (2,2),B (-2,2),C (4,6),D (-5,6),E (-2,-2),F (-5,-6),在平面直角坐标系中,分别作出向量AC 、BD 、EF ,并求出向量AC 、BD 、EF 的坐标。

【学习(教学)反思】:(反思静悟,体验成功)。

相关文档
最新文档