初中数学专题复习圆与圆的位置关系(一)

合集下载

圆与圆的位置关系有答案 (1)

圆与圆的位置关系有答案 (1)

4.2.2 圆与圆的位置关系1.圆与圆的位置关系圆与圆的位置关系有五种,分别为:外离、外切、相交、内切、内含. 温馨提示:两不相等的两圆有以上五种位置关系,它们的公切线情况如下 (1)两圆相外离,有四条公切线; (2)两圆相外切,有三条公切线; (3)两圆相交,有两条公切线; (4)两圆相内切,有一条公切线; (5)两圆相内含,没有公切线. 2.圆与圆的位置关系的判定(1)几何法:若两圆的半径分别为r 1,r 2(r 1≠r 2),两圆的圆心距为d ,则两圆的位置关系的判断方法如下: 位置关系 外离 外切 相交 内切内含图示D 与r 1、R 2的关系d >r 1+r 2 d =r 1+r 2 |r 1-r 2|<d <r 1+r 2 d =|r 1-r 2|0<d < |r 1-r 2| C 1:x 2+y 2+D 1x +E 1y +F 1=0(D 21+E 21-4F 1>0), C 2:x 2+y 2+D 2x +E 2y +F 2=0(D 22+E 22-4F 2>0),联立方程⎩⎨⎧x 2+y 2+D 1x +E 1y +F 1=0,x 2+y 2+D 2x +E 2y +F 2=0.方程组解的个数 2组 1组 0组 两圆的公共点个数 2个 1个 0个 两圆的位置关系 相交 外切或内切 外离或内含圆系方程:(1)P 、Q 两点,则过交点P 、Q 的圆的方程可设为(x 2+y 2+Dx +Ey +F )+λ(Ax +By +C )=0(λ∈R )这些圆的圆心均在公共弦PQ 的垂直平分线上且以PQ 为直径的圆最小.(2)过C 1:x 2+y 2+D 1x +E 1y +F 1=0(D 21+E 21-4F 1>0),C 2:x 2+y 2+D 2x +E 2y +F 2=0(D 22+E 22-4F 2>0)交点的圆的方程可设为x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ≠-1).当λ=-1时,所设方程为两已知相交圆的公共弦所在的直线方程.类型一 圆与圆位置关系的判断【例1】 已知圆C 1:x 2+y 2-2ax -2y +a 2-15=0,C 2:x 2+y 2-4ax -2y +4a 2=0(a >0). 试求a 为何值时两圆C 1、C 2(1)相切;(2)相交;(3)外离;(4)内含.[思路探索] 求出圆心距,与两半径的和或差比较求出a 的值. 解 对圆C 1、C 2的方程,经配方后可得: C 1:(x -a )2+(y -1)2=16, C 2:(x -2a )2+(y -1)2=1,∴圆心C 1(a,1),r 1=4;C 2(2a,1),r 2=1.∴|C 1C 2|=(a -2a )2+(1-1)2=a .(1)当|C 1C 2|=r 1+r 2=5,即a =5时,两圆外切, 当|C 1C 2|=r 1-r 2=3,即a =3时,两圆内切; (2)当3<|C 1C 2|<5,即3<a <5时,两圆相交; (3)当|C 1C 2|>5,即a >5时,两圆外离;(4)当0<|C 1C 2|<3,即0<a <3时,两圆内含.[规律方法] 判断两圆的位置关系一般有两种方法:一是代数法,一是几何法,但因代数法运算繁琐,且容易出错,因此一般采用几何法.【活学活用1】 已知圆C 1:x 2+y 2-2mx +4y +m 2-5=0,圆C 2:x 2+y 2+2x =0. (1)m =1时,圆C 1与圆C 2有什么位置关系? (2)是否存在m 使得圆C 1与圆C 2内含?解 (1)∵m =1,∴两圆的方程分别可化为: C 1:(x -1)2+(y +2)2=9, C 2:(x +1)2+y 2=1.两圆的圆心距d =(1+1)2+(-2)2=2 2. 又∵r 1+r 2=3+1=4,r 1-r 2=3-1=2, ∴r 1-r 2<d <r 1+r 2, 所以圆C 1与圆C 2相交.(2)假设存在m 使得圆C 1与圆C 2内含, 则d = (m +1)2+(-2)2<3-1, 即(m +1)2<0,显然不等式无解. 故不存在m 使得圆C 1与圆C 2内含.类型二 两相交圆的公共弦问题【例2】 求两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0的公共弦所在直线的方程及公共弦长.[思路探索] 将两圆方程相减,先得到公共弦所在直线的方程,再将两圆相交问题转化为直线与圆的相交问题求得公共弦长.也可以利用圆的半径长、弦心距、弦长的一半构成直角三角形这一性质求解.解 联立两圆的方程得方程组 ⎩⎨⎧x 2+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0.两式相减得x -2y +4=0,此即为两圆公共弦所在直线的方程. 法一 设两圆相交于点A ,B 则A ,B 两点满足方程组 ⎩⎨⎧ x -2y +4=0,x 2+y 2+2x +2y -8=0,解得⎩⎨⎧ x =-4,y =0,或⎩⎨⎧x =0,y =2.所以|AB |=(-4-0)2+(0-2)2=25,即公共弦长为2 5.法二 由x 2+y 2-2x +10y -24=0,得(x -1)2+(y +5)2=50,其圆心坐标为(1,-5),半径长r =52,圆心到直线x -2y +4=0的距离为d =|1-2×(-5)+4|1+(-2)2=3 5.设公共弦长2l ,由勾股定理得r 2=d 2+l 2,即50=(35)2+l 2,解得l =5,故公共弦长2l =2 5.[规律方法] 求两圆的公共弦所在的直线方程时,若采用相减法,必须注意两圆方程中二次项的系数是否相同,只有二次项的系数相同时,才能利用相减法来处理.若二次项的系数不相同,需先将两圆的二次项的系数调整为相同.【活学活用2】 (1)若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则a =________.(2)圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-2x -2y +1=0的公共弦所在直线被圆C 3:(x -1)2+(y -1)2=254所截得的弦长为________.解析 (1)两圆方程相减得公共弦所在直线为y =1a(a >0).由如图可知弦长|AB |=23,又OB 为圆x 2+y 2=4的半径, ∴|OB |=2,则|OC |=1,即公共弦为y =1,即1a=1,故a =1.(2)由题意圆C 1和圆C 2公共弦所在的直线l 为x +y -1=0.圆C 3的圆心为(1,1),其到l 的距离d =12.由条件知,r 2-d 2=254-12=234, ∴弦长为2×232=23. 答案 (1)1 (2)23类型三 两圆的公切问题【例3】 已知圆O 1:x 2+y 2+2x +6y +9=0与圆O 2:x 2+y 2-6x +2y +1=0.求圆O 1和圆O 2的公切线方程.[思路探索] 先判定两圆位置关系以确定公切线的条数,再设出公切线的方程,利用圆心到切线的距离等于半径求得公切线的方程,并注意考虑公切线斜率不存在的情况.解 圆O 1的圆心坐标为O 1(-1,-3),半径r 1=1,圆O 2的圆心坐标O 2(3,-1),半径r 2=3,则|O 1O 2|>r 1+r 2,∴两圆相离,有四条公切线,设公切线的方程为y =kx +b ,则有⎩⎪⎨⎪⎧|-3+k -b |1+k 2=1,①|3k +1+b |1+k 2=3,②解得⎩⎨⎧k =0,b =-4或⎩⎪⎨⎪⎧k =43,b =0或⎩⎪⎨⎪⎧k =-34,b =-52,当斜率不存在时,x =0也和两圆相切,∴所求切线的方程为y +4=0或4x -3y =0或x =0或3x +4y +10=0.[规律方法] (1)此类问题首先根据两圆的位置关系确定公切线有几条,然后设出公切线方程再利用几何性质求出公切线方程. (2)当求出的公切线数目不够时,注意考虑斜率不存在的特殊情况,并找回特殊的公切线.【活学活用3】 (1)圆C 1:x 2+y 2+4x -4y +7=0和圆C 2:x 2+y 2-4x -10y +13=0的公切线有________条. (2)已知动圆M 与y 轴相切且与定圆A :(x -3)2+y 2=9外切,则动圆的圆心M 的轨迹方程是________. 解析 (1)∵C 1(-2,2),r 1=1,C 2(2,5),r 2=4 ∴|C 1C 2|=(2+2)2+(5-2)2=5,r 1+r 2=5 ∴圆C 1、C 2外切,公共线有3条. (2)设点M (x ,y ),动圆的半径为r , 由题意,得|MA |=r +3且r =|x |,∴ (x -3)2+y 2=|x |+3.当x >0时,两边平方化简得y 2=12x (x >0); 当x <0时,两边平方化简得y =0(x <0). 答案 (1)3 (2)y 2=12x (x >0)或y =0(x <0) 类型四 圆系方程的应用【例4】 求圆心在直线x +y =0上,且过两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0的交点的圆的方程. [思路探索] 既可以先通过解方程组得到两圆的交点坐标再求解,也可以通过经过两圆交点的圆系方程求解. 解 法一 解方程组 ⎩⎨⎧x 2+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0,得交点坐标分别为(0,2),(-4,0). 设所求圆心坐标为(a ,-a ),则有a 2+(-a -2)2=(a +4)2+a 2=r , 解得a =-3,r =10,因此所求圆的方程为(x +3)2+(y -3)2=10.法二 设所求圆的方程为x 2+y 2-2x +10y -24+λ(x 2+y 2+2x +2y -8)=0,即(1+λ)x 2+(1+λ)y 2+(2λ-2)x +(2λ+10)y -8λ-24=0,因为这个圆的圆心在直线x +y =0上, 所以(2λ-2)+(2λ+10)=0,解得λ=-2. 所以圆的方程为x 2+y 2+6x -6y +8=0.[规律方法] 求过直线与圆或圆与圆交点的圆的方程问题利用圆系方程可避开求交点的复杂计算,因而常被采用. 【活学活用4】 (1)求过两圆C 1:x 2+y 2-4x +2y +1=0与C 2:x 2+y 2-6x =0的交点且过点(2,-2)的圆的方程. (2)若圆C 过点(0,2)及直线x -2y =0与圆x 2+y 2+2x -4y -4=0的交点,求圆C 的方程.解 (1)设过两圆C 1:x 2+y 2-4x +2y +1=0与C 2:x 2+y 2-6x =0的交点的方程为x 2+y 2-4x +2y +1+λ(x 2+y 2-6x )=0, 即(1+λ)x 2+(1+λ)y 2-(4+6λ)x +2y +1=0.把(2,-2)代入得4(1+λ)+4(1+λ)-2(4+6λ)-4+1=0,解得λ=-34.∴圆的方程为x 2+y 2+2x +8y +4=0.(2)设圆C 的方程为x 2+y 2+2x -4y -4+λ(x -2y )=0.又圆C 过点(0,2),代入上述方程得-8-4λ=0,即λ=-2.故圆C 的方程为x 2+y 2-4=0.易错辨析 因忽略内切情形而致错【示例】 求半径为4,与圆x 2+y 2-4x -2y -4=0相切,且和直线y =0相切的圆的方程.[错解] 由题意,设所求圆C 的方程为(x -a )2+(y -b )2=16,因为圆C 与直线y =0相切,且半径为4,故b =±4,所以圆心坐标为C (a,4)或C (a ,-4).又已知圆的方程可化为(x -2)2+(y -1)2=9,设圆心坐标为A (2,1),半径为3.若两圆相切,则|CA |=4+3=7.(1)当取C (a,4)时,(a -2)2+(4-1)2=72,故a =2±210,此时圆的方程为(x -2-210)2+(y -4)2=16或(x -2+210)2+(y -4)2=16.(2)当取C (a ,-4)时,(a -2)2+(-4-1)2=72,故a =2±26,此时圆的方程为(x -2-26)2+(y +4)2=16或(x -2+26)2+(y +4)2=16.综上,所求圆的方程为(x -2-210)2+(y -4)2=16或(x -2+210)2+(y -4)2=16或(x -2-26)2+(y +4)2=16或(x -2+26)2+(y +4)2=16.[错因分析] 上述解答由于思维定势,想当然认为两圆外切只考虑|CA |=4+3=7,遗漏掉了|CA |=4-3=1的情况,本例另一种常见错误是忽略圆心在x 轴下方的情况从而导致所求方程个数丢失一半.[正解] 由题意,设所求圆C 的方程为(x -a )2+(y -b )2=16,因为圆C 与直线y =0相切,且半径为4,故b =±4,所以圆心坐标为C (a,4)或C (a ,-4).又已知圆的方程可化为(x -2)2+(y -1)2=9,设圆心坐标为A (2,1),半径为3.若两圆相切,则|CA |=4+3=7或|CA |=4-3=1.(1)当取C (a,4)时,(a -2)2+(4-1)2=72或(a -2)2+(4-1)2=12(无解),故a =2±210,此时圆的方程为(x -2-210)2+(y -4)2=16或(x -2+210)2+(y -4)2=16.(2)当取C (a ,-4)时,(a -2)2+(-4-1)2=72或(a -2)2+(-4-1)2=12(无解),故a =2±26,此时圆的方程为(x -2-26)2+(y +4)2=16或(x -2+26)2+(y +4)2=16.综上,所求圆的方程为(x -2-210)2+(y -4)2=16或(x -2+210)2+(y -4)2=16或(x -2-26)2+(y +4)2=16或(x -2+26)2+(y +4)2=16.[防范措施] (1)涉及到两圆相切的情况,要考虑分清是内切还是外切,切莫将外切等同于相切,以免出现知识性错误. (2)可通过作图思考有哪些情况,以避免遗漏某些情形.课堂达标1.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ).A .内切B .相交C .外切D .相离解析 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d = 42+1=17.∵3-2<d <3+2,∴两圆相交.答案 B2.圆x 2+y 2=1与圆x 2+y 2+2x +2y +1=0的交点坐标为( ). A .(1,0)和(0,1) B .(1,0)和(0,-1) C .(-1,0)和(0,-1) D .(-1,0)和(0,1)解析 由⎩⎨⎧ x 2+y 2=1,x 2+y 2+2x +2y +1=0,解得⎩⎨⎧x =0,y =-1或⎩⎨⎧x =-1,y =0.答案 C3.圆x 2+y 2=1与圆(x -1)2+y 2=1的公共弦所在的直线方程为________.解析 设两圆相交于A 、B 两点,则A 、B 两点满足⎩⎨⎧x 2+y 2=1,(x -1)2+y 2=1.两式相减得-2x +1=0,即x =12.答案 x =124.圆C 1:(x +2)2+(y -m )2=9与圆C 2:(x -m )2+(y +1)2=4相切,则m 的值为________.解析 圆C 1:(x +2)2+(y -m )2=9的圆心为(-2,m ),半径长为3,圆C 2:(x -m )2+(y +1)2=4的圆心为(m ,-1),半径长为 2.当C 1、C 2外切时有(-2-m )2+(m +1)2=3+2,即m 2+3m -10=0,解得m =2或m =-5;当C 1、C 2内切时有(-2-m )2+(m +1)2=3-2,即m 2+3m +2=0解得m =-1或m =-2. 答案 -5,-2,-1,25.求以点(-3,4)为圆心且与圆x 2+y 2=4相外切的圆的标准方程. 解 设所求圆的标准方程为(x +3)2+(y -4)2=r 2(r >0), 由两圆相外切可知 (-3)2+42=2+r ,解得r =3. 故所求圆的标准方程为(x +3)2+(y -4)2=9.§9.4 直线与圆、圆与圆的位置关系一、选择题1.已知集合A ={(x ,y )|x ,y 为实数,且x 2+y 2=1},B ={(x ,y )|x ,y 为实数,且x +y =1},则A ∩B 的元素个数为( ).A .4B .3C .2D .1 解析 法一 (直接法)集合A 表示圆,集合B 表示一条直线,又圆心(0,0)到直线x +y =1的距离d =12=22<1=r ,所以直线与圆相交,故选C. 法二 (数形结合法)画图可得,故选C. 答案 C【点评】 本题法二采用数形结合法求解与法一比较显得更容易、更直观.2.过圆x 2+y 2=1上一点作圆的切线与x 轴、y 轴的正半轴交于A 、B 两点,则|AB |的最小值为( ) A. 2 B. 3 C .2D .3解析 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则切线方程为x 0x +y 0y =1. 分别令x =0,y =0得A (1x 0,0),B (0,1y 0),∴|AB |=1x 02+1y 02=1x 0y 0≥1x 20+y 202=2. 答案 C3.若直线2x -y +a =0与圆(x -1)2+y 2=1有公共点,则实数a 的取值范围( ). A .-2-5<a <-2+ 5 B .-2-5≤a ≤-2+ 5 C .-5≤a ≤ 5D .-5<a < 5 解析 若直线与圆有公共点,即直线与圆相交或相切,故有|a +2|5≤1, 解得-2-5≤a ≤-2+ 5. 答案 B4.设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=( ). A .4 B .4 2 C .8 D .8 2解析 设与两坐标轴都相切的圆的方程为(x -a )2+(y -a )2=a 2,将点(4,1)代入得a 2-10a +17=0,解得a=5±22,设C 1(5-22,5-22),则C 2(5+22,5+22),则|C 1C 2|=32+32=8. 答案 C5.直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M 、N 两点,若|MN |≥23,则k 的取值范围是( ). A.⎣⎡⎦⎤-34,0 B.⎣⎡⎦⎤-33,33 C.[]-3,3D.⎣⎡⎦⎤-23,0 解析 如图,若|MN |=23,则由圆与直线的位置关系 可知圆心到直线的距离满足d 2=22-(3)2=1.∵ 直线方程为y =kx +3,∴d =|k ·2-3+3|1+k2=1,解得 k =±33.若|MN |≥23,则-33≤k ≤33. 答案 B6.若圆(x -a )2+(y -b )2=b 2+1始终平分圆(x +1)2+(y +1)2=4的周长,则a ,b 满足的关系是( ) A .a 2+2a +2b -3=0B .a 2+b 2+2a +2b +5=0C .a 2+2a +2b +5=0D .a 2-2a -2b +5=0解析 即两圆的公共弦必过(x +1)2+(y +1)2=4的圆心,两圆相减得相交弦的方程为-2(a +1)x -2(b +1)y +a 2+1=0,将圆心坐标(-1,-1)代入可得a 2+2a +2b +5=0. 答案 C 7.直线3y kx =+与圆22(2)(3)4x y -+-=相交于,M N 两点,若23MN ≥,则k 的取值范围是( ) A .3,04⎡⎤-⎢⎥⎣⎦ B .33,33⎡⎤-⎢⎥⎣⎦C .3,3⎡⎤-⎣⎦D .2,03⎡⎤-⎢⎥⎣⎦答案 B 二、填空题8.已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :y =x -1被圆C 截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为________.解析 由题可知,设圆心的坐标为(a,0),a >0,则圆C 的半径为|a -1|,圆心到直线l 的距离为|a -1|2,根据勾股定理可得,(|a -1|2)2+(2)2=|a -1|2,解得a =3或a =-1(舍去),所以圆C 的圆心坐标为(3,0),则过圆心且与直线l 垂直的直线的方程为x +y -3=0. 答案 x +y -3=09.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,则直线l 的斜率为________. 解析 将圆的方程化成标准方程为(x -1)2+(y -1)2=1,其圆心为(1,1),半径r =1.由弦长为2得弦心距为22.设直线方程为y +2=k (x +1),即kx -y +k -2=0,∴|2k -3|k 2+1=22,化简得7k 2-24k +17=0,∴k =1或k =177.答案 1或17710.已知直线x +y +m =0与圆x 2+y 2=2交于不同的两点A 、B ,O 是坐标原点,|OA →+OB →|≥|AB →|,那么实数m 的取值范围是________.解析 方法1:将直线方程代入圆的方程得2x 2+2mx +m 2-2=0,Δ=4m 2-8(m 2-2)>0得m 2<4,即-2<m <2.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-m ,x 1x 2=m 2-22,|OA →+OB →|≥|AB →|即|OA →+OB →|≥|OB →-OA →|,平方得OA →·OB→≥0,即x 1x 2+y 1y 2≥0,即x 1x 2+(m +x 1)(m +x 2)≥0,即2x 1x 2+m (x 1+x 2)+m 2≥0,即2×m 2-22+m (-m )+m 2≥0,即m 2≥2,即m ≥2或m ≤- 2.综合知-2<m ≤-2或2≤m <2.方法2:根据向量加减法的几何意义|OA →+OB →|≥|AB →|等价于向量OA →,OB →的夹角为锐角或者直角,由于点A ,B是直线x +y +m =0与圆x 2+y 2=2的交点,故只要圆心到直线的距离大于或者等于1即可,也即m 满足1≤|m |2<2,即-2<m ≤-2或者2≤m <2. 答案 (-2,-2]∪[2,2)11.从原点向圆x 2+y 2-12y +27=0作两条切线,则该圆夹在两条切线间的劣弧长为________. 解析 (数形结合法)如图,圆x 2+y 2-12y +27=0 可化为x 2+(y -6)2=9,圆心坐标为(0,6),半径为3. 在Rt △OBC 中可得:∠OCB =π3,∴∠ACB =2π3,∴所求劣弧长为2π. 答案 2 π【点评】 数形结合法是把题中的“数”与“形”有效结合,相辅相助,解题方便、直观,在圆的有关问题中较为常见.12.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.解析 画图可知,圆上有且只有四个点到直线12x -5y +c =0的距离为1,该圆半径为2即圆心O (0,0)到直线12x -5y +c =0的距离d <1,即0<|c |13<1,∴-13<c <13.答案 (-13,13) 三、解答题13.已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且AB =22时,求直线l 的方程.解析 将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34. (2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎪⎨⎪⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |= 2.解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.14.已知圆C :x 2+y 2-2x +4y -4=0,是否存在斜率为1的直线l ,使以l 被圆截得的弦AB 为直径的圆过原点?若存在,求出直线l 的方程;若不存在,说明理由. 解析 假设存在斜率为1的直线l ,满足题意,则OA ⊥OB . 设直线l 的方程是y =x +b ,其与圆C 的交点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2)则y 1x 1·y 2x 2=-1,即x 1x 2+y 1y 2=0① 由⎩⎨⎧y =x +b ,x 2+y 2-2x +4y -4=0消去y 得:2x 2+2(b +1)x +b 2+4b -4=0,∴x 1+x 2=-(b +1),x 1x 2=12(b 2+4b -4),②y 1y 2=(x 1+b )(x 2+b )=x 1x 2+b (x 1+x 2)+b 2=12(b 2+4b -4)-b 2-b +b 2=12(b 2+2b -4).③ 把②③式代入①式,得b 2+3b -4=0,解得b =1或b =-4,且b =1或b =-4都使得Δ=4(b +1)2-8(b 2+4b -4)>0成立.故存在直线l 满足题意,其方程为y =x +1或y =x -4.。

圆与圆的位置关系(解析版)

圆与圆的位置关系(解析版)

圆与圆的位置关系(解析版)圆与圆的位置关系(解析版)圆与圆的位置关系是几何学中常见的问题。

在解析几何中,我们可以通过方程和图形的分析来确定两个圆之间的位置关系。

本文将详细介绍圆与圆的位置关系及其解析方法。

I. 两个圆的位置关系当给定两个圆的方程时,我们可以通过以下几种情况来判断它们的位置关系:1. 相离(disjoint)如果两个圆不相交,它们互相分离,也就是说没有公共点。

我们可以通过计算它们的半径之和和两个圆心之间的距离来判断。

如果半径之和小于圆心之间的距离,即 r1 + r2 < d,那么两个圆相离。

2. 外切(tangent exterior)如果两个圆的外部只有一个公共点,我们称它们相切于外部。

这意味着两个圆心之间的距离等于它们的半径之和,并且没有其他公共点。

我们可以通过计算两个圆心之间的距离和两个圆的半径之和来判断。

如果半径之和等于圆心之间的距离,即 r1 + r2 = d,那么两个圆相切于外部。

3. 内切(tangent interior)如果两个圆的内部只有一个公共点,我们称它们相切于内部。

这意味着两个圆的半径之差等于它们的圆心之间的距离,并且没有其他公共点。

我们可以通过计算两个圆的半径之差和两个圆心之间的距离来判断。

如果圆心之间的距离等于半径之差,即 d = |r1 - r2|,那么两个圆相切于内部。

4. 相交(intersect)如果两个圆有两个公共点,我们称它们相交。

这意味着两个圆心之间的距离小于半径之和,并且有两个公共点。

我们可以通过计算两个圆心之间的距离和两个圆的半径之和来判断。

如果半径之和大于圆心之间的距离,即 r1 + r2 > d,那么两个圆相交。

II. 解析方法在解析几何中,我们可以利用两个圆的方程来求解它们的位置关系。

假设第一个圆的方程为(x - h1)^2 + (y - k1)^2 = r1^2,第二个圆的方程为(x - h2)^2 + (y - k2)^2 = r2^2,其中(h1, k1)和(h2, k2)分别代表两个圆的圆心坐标,r1和r2分别代表两个圆的半径。

圆与圆的位置关系

圆与圆的位置关系

圆与圆的位置关系
圆与圆的位置关系是几何学中重要的概念之一,它描述了两个圆在平面上的相对位置和可能的相交形态。

根据圆与圆之间的位置关系,我们可以将其分为三种基本情况:相离、相切和相交。

一、相离的情况
当两个圆的距离大于它们的半径之和时,称它们为相离的圆。

在这种情况下,两个圆不会有任何交点,它们完全没有重叠的部分。

图示如下:
(图示相离的圆)
二、相切的情况
当两个圆的距离等于它们的半径之和时,称它们为相切的圆。

在这种情况下,两个圆只有一个公共的切点。

它们在这个切点相交,其他部分完全分离。

图示如下:
(图示相切的圆)
三、相交的情况
当两个圆的距离小于它们的半径之和时,称它们为相交的圆。

在这种情况下,两个圆有两个公共的交点,并且它们部分重叠。

相交的情况又可以分为内含和交叉两种特殊情况。

1. 内含的情况
当一个圆完全包含在另一个圆内部时,称它们为内含的圆。

在这种情况下,内含的圆与外部的圆相切于内部圆的边界上的一点。

图示如下:
(图示内含的圆)
2. 交叉的情况
当两个圆的内部有交集,但没有一个圆完全包含另一个圆时,称它们为交叉的圆。

在这种情况下,两个圆有两个公共的交点,并且它们部分重叠。

图示如下:
(图示交叉的圆)
综上所述,圆与圆的位置关系可以通过它们的相对位置和交集情况来判断。

相离、相切和相交是基本的分类,而相交的情况又可细分为内含和交叉两种特殊情况。

理解和熟练应用这些概念,有助于我们在解决几何问题时准确地判断和描述圆与圆之间的位置关系。

(完)。

初二数学圆与圆的位置关系与性质

初二数学圆与圆的位置关系与性质

初二数学圆与圆的位置关系与性质初二数学:圆与圆的位置关系与性质圆是数学中的重要概念之一,而研究圆与圆之间的位置关系与性质,可以帮助我们更好地理解几何学中的基本概念和定理。

本文将介绍一些常见的圆与圆的位置关系,并解析它们的性质。

1. 相交关系圆与圆之间最常见的位置关系就是相交。

当两个圆相交时,它们的圆心之间的距离小于两个圆的半径之和。

我们可以分为两种情况来讨论:1.1 两个圆相交于两个点当两个圆相交于两个点时,我们称之为相交圆。

这两个点叫做相交圆的交点,要注意的是,相交圆的交点与圆心连线垂直。

1.2 一个圆包含另一个圆当一个圆完全包含另一个圆时,我们称之为内切圆。

此时,内切圆的圆心与外切圆的圆心与交点在一条直线上,而内切圆的半径小于外切圆的半径。

2. 相离关系除了相交关系,两个圆也可以相离,即它们的圆心之间的距离大于两个圆的半径之和。

在这种情况下,我们称这两个圆为相离圆。

3. 共切关系当两个圆外切于一点时,我们称之为外切圆。

此时,外切圆的圆心与两个圆的圆心与交点在一条直线上,而外切圆的半径等于两个圆的半径之和。

类似地,当两个圆内切于一点时,我们称之为内切圆。

此时,内切圆的圆心与两个圆的圆心与交点在一条直线上,而内切圆的半径等于两个圆的半径之差。

4. 同心圆当两个圆的圆心重合时,我们称这两个圆为同心圆。

此时,两个圆的半径可以不同,但半径越小的圆位于半径较大的圆内部。

通过研究圆与圆的位置关系,我们可以得出一些重要的性质:- 外切圆与相切圆的切点与圆心连线垂直;- 内切圆的半径小于外切圆的半径;- 内切圆的半径等于两个圆的半径之差;- 外切圆的半径等于两个圆的半径之和。

总结起来,圆与圆的位置关系涉及相交、相离、内切、外切和同心等情况。

在解决相关问题时,我们可以根据这些位置关系和性质,运用相关定理,进行几何推导和计算。

初中数学中的几何学是数学的重要组成部分,圆与圆的位置关系与性质又是其中的重要内容。

通过深入研究与实践,可以提升我们的几何思维能力,并应用于实际问题中。

圆与圆得位置关系

圆与圆得位置关系
可以通过比较两个圆的圆心距和半径来判断两个圆是否重合。如果 圆心距等于两个圆的半径之和或差,则两个圆重合。
共心
定义
两个圆有共同的圆心,但半径不相等。
性质
共心的两个圆具有相同的圆心,但半径不同。它们有公共 的弦和弧。
判定
可以通过比较两个圆的圆心距和半径来判断两个圆是否共 心。如果圆心距等于两个圆的半径之和或差,则两个圆共 心。
1 2
定义
两圆的圆心之间的距离等于两圆的半径之和或差。
特征
两圆只有一个公共点。
3
示例
两个相距1厘米的圆,半径分别为3厘米和4厘米。
04
相切关系
外切
定义
两个圆心之间的距离等于两个圆 的半径之和,即两圆外切。
性质
两圆外切时,两圆的交点只有一 个,且该交点为两圆的切点。
判定
若两圆在某点相切,且该点到两 圆心的距离之和等于两圆的半径
03
相离关系
外离
定义
两个圆心之间的距离大于两圆的半径之和。
特征
两圆没有公共点。
示例
两个相距1厘米的圆,半径分别为2厘米和3厘米。
内含
定义
一个圆的圆心位于另一个圆内,或者一个圆的半径小于另一个圆 的半径。
特征
一个圆完全位于另一个圆内。
示例
一个半径为2厘米的圆完全位于Leabharlann 个半径为4厘米的圆内。相切相离
圆与圆的位置关系
contents
目录
• 圆与圆的位置关系概述 • 相交关系 • 相离关系 • 相切关系 • 特殊位置关系
01
圆与圆的位置关系概述
定义与分类
定义
两个圆之间的相对位置关系,可以通过它们之间的位置关系来描述。

第04讲 圆与圆的位置关系(原卷版)

第04讲 圆与圆的位置关系(原卷版)

第04讲圆与圆的位置关系目录考点一:圆与圆的位置关系考点二:相切两圆的性质考点三:相交两圆的性质【基础知识】一.圆与圆的位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R﹣r<d<R+r(R≥r);④两圆内切⇔d=R﹣r(R>r);⑤两圆内含⇔d<R﹣r(R>r).二.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.三.相交两圆的性质(1)相交两圆的性质:相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.注意:在习题中常常通过公共弦在两圆之间建立联系.(2)两圆的公切线性质:两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.【考点剖析】一.圆与圆的位置关系(共26小题)1.(2022春•长宁区校级月考)已知圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,要使这两圆没有公共点,那么d的值可以取( )A.11B.6C.3D.22.(2022春•青浦区校级期中)如果两圆的半径长分别为6与2,圆心距为4,那么这两个圆的位置关系是( )A.内含B.内切C.外切D.相交3.(2022春•松江区校级期中)⊙A半径为3,⊙B半径为5,若两圆相交,那么AB长度范围为( )A.3<AB<5B.2<AB<8C.3<AB<8D.2<AB<54.(2022•松江区校级模拟)已知△ABC,AB=10cm,BC=6cm,以点B为圆心,以BC为半径画圆⊙B,以点A为圆心,半径为r,画圆⊙A.已知⊙A与⊙B外离,则r的取值范围为( )A..0<r≤4B..0≤r≤4C..0<r<4D..0≤r<45.(2022•杨浦区三模)如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB的取值范围是( )A.5<OB<9B.4<OB<9C.3<OB<7D.2<OB<76.(2022春•浦东新区期中)如图,在矩形ABCD中,点E是CD的中点,联结BE,如果AB=6,BC=4,那么分别以AD、BE为直径的⊙M与⊙N的位置关系是( )A.外离B.外切C.相交D.内切7.(2022春•闵行区校级期中)如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是( )A.1<r<4B.2<r<4C.1<r<8D.2<r<88.(2022春•奉贤区校级期中)已知等腰三角形ABC中,AB=AC,BC=6,以A为圆心2为半径长作⊙A,以B为圆心BC为半径作⊙B,如果⊙A与⊙B内切,那么△ABC的面积等于 .9.(2022春•浦东新区校级期中)如果⊙O1与⊙O2内含,O1O2=4,⊙O1的半径是3,那么⊙O2的半径的取值范围是 .10.(2022春•徐汇区校级期中)已知两圆内切,一个圆的半径是3,圆心距是2,那么另一个圆的半径是 .11.(2022春•普陀区校级期中)如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为5的⊙B与⊙A内含,那么OB的取值范围是( )A.4<OB<7B.5<OB<7C.4<OB<9D.2<OB<712.(2022春•普陀区校级期中)已知点A(4,0),B(0,3),如果⊙A的半径为2,⊙B的半径为7,则两圆的位置关系是( )A.外离B.外切C.内切D.内含13.(2022•黄浦区校级二模)如果⊙O1与⊙O2内含,O1O2=4,⊙O1的半径是3,那么⊙O2的半径可以是( )A.5B.6C.7D.814.(2022春•虹口区校级期中)已知⊙A与⊙B外切,⊙C与OA、⊙B都内切,且AB=7,AC=8,BC=9,那么⊙C的半径长是( )A.12B.11C.10D.915.(2022春•黄浦区期中)如果两圆的直径长分别为4与6,圆心距为2,那么这两个圆的位置关系是( )A.内含B.内切C.外切D.相交16.(2022•徐汇区模拟)已知两圆相交,当每个圆的圆心都在在另一个圆的圆外时,我们称此两圆的位置关系为“外相交”.已知两圆“外相交”,且半径分别为2和5,则圆心距的取值可以是( )A.4B.5C.6D.717.(2022春•徐汇区校级期中)已知半径分别是3和5的两个圆没有公共点,那么这两个圆的圆心距d 的取值范围是( )A.d>2B.d>8C.0≤d<2D.d>8或0≤d<218.(2022春•虹口区期中)已知圆O1、圆O2的半径不相等,圆O1的半径长为5,若圆O2上的点A满足AO1=5,则圆O1与圆O2的位置关系是( )A.相交或相切B.相切或相离C.相交或内含D.相切或内含19.(2022•宝山区模拟)如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,DE∥BC,且AD=2CD,则以点C为圆心、DC长为半径的圆C和以点E为圆心、EB长为半径的圆E的位置关系是( )A.外离B.相交C.外切D.不能确定20.(2022•金山区校级模拟)已知⊙O的半径OA长为3,点B在线段OA上,且OB=2,如果⊙B与⊙O有公共点,那么⊙B的半径r的取值范围是( )A.r≥1B.r≤5C.1<r<5D.1≤r≤521.(2022春•静安区期中)如图,∠MON=30°,P是∠MON的平分线上一点,PQ∥ON交OM于点Q,以P为圆心,半径为8的圆与ON相切,如果以Q为圆心,半径为r的圆与⊙P相交,那么r的取值范围是 .22.(2022春•金山区月考)已知一个圆的半径长为3,另一个圆的半径长r的取值范围为0<r<6.如果两个圆的圆心距为3,那么这两个圆的公共点的个数为 .23.(2022春•松江区校级期中)如果⊙O1与⊙O2相交,⊙O1的半径是5,O1O2=3,那么⊙O2的半径r 的取值范围是 .24.(2022春•浦东新区校级期中)如图,矩形ABCD中,AB=4,AD=3,已知⊙B半径长为1,如果⊙A与⊙B内切,那么下列判断中,正确的是( )A.点C在⊙A外,点D在⊙A内B.点C在⊙A外,点D在⊙A外C.点C在⊙A上,点D在⊙A内D.点C在⊙A内,点D在⊙A外25.(2022春•普陀区校级期中)已知两圆的半径长分别为1和3,两圆的圆心距为d,如果两圆没有公共点,那么d的取值范围是 .26.(2022秋•青浦区校级月考)两圆的半径分别为3和5,当这两圆相切时,圆心距d为 .二.相切两圆的性质(共3小题)27.(2022•嘉定区二模)已知圆O1与圆O2外切,其中圆O2的半径是4cm,圆心距O1O2=6cm,那么圆O1的半径是 cm.28.(2021•上海模拟)在平面直角坐标系中,我们把半径相等且外切、连心线与直线y=x平行的两个圆,称之为“孪生圆”;已知圆A的圆心为(﹣2,3),半径为,那么圆A的所有“孪生圆”的圆心坐标为 .29.(2020秋•金山区期末)已知:如图,⊙O1与⊙O2外切于点T,经过点T的直线与⊙O1、⊙O2分别相交于点A和点B.(1)求证:O1A∥O2B;(2)若O1A=2,O2B=3,AB=7,求AT的长.三.相交两圆的性质(共6小题)30.(2022•浦东新区二模)如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r可能是( )A.r=1B.r=3C.r=5D.r=731.(2022•上海模拟)如图,在边长为1的正方形ABCD中,点O在对角线BD上,且⊙O与边AD、CD相切.点P是⊙O与线段OB的交点,如果⊙P是既与⊙O内切,又与正方形ABCD的两条边相切,那么关于⊙O的半径r的方程是( )A.2r+r•cos45°=1B.2r+2r•cos45°=1C.3r+r•cos45°=1D.3r+2r•cos45°=132.(2022•崇明区二模)Rt△ABC中,已知∠C=90°,BC=3,AC=4,以点A、B、C为圆心的圆分别记作圆A、圆B、圆C,这三个圆的半径长都是2,那么下列结论中,正确的是( )A.圆A与圆C相交B.圆B与圆C外切C.圆A与圆B外切D.圆A与圆B外离33.(2022春•杨浦区校级月考)如图,Rt△ABC中,∠C=90°,AC=4,BC=3,⊙C与AB相切,若⊙A与⊙C相交,则⊙A半径r的取值范围是 .34.(2022春•浦东新区校级期中)半径分别为3cm与cm的⊙O1与⊙O2相交于A、B两点,如果公共弦AB=4cm,那么圆心距O1O2的长为 cm.35.(2022春•嘉定区校级期中)已知:如图,⊙O1与⊙O2相交于点A和点B,AC∥O1O2,交⊙O1于点C,⊙O1的半径为5,⊙O2的半径为,AB=6.求:(1)弦AC的长度;(2)四边形ACO1O2的面积.【过关检测】一、单选题1.(2021·上海松江·二模)已知⊙O的半径OA长为3,点B在线段OA上,且OB=2,如果⊙B与⊙O有公共点,那么⊙B的半径r的取值范围是( )A.r≥1B.r≤5C.1<r<5D.1≤r≤52.(2021·上海金山·二模)已知⊙A、⊙B、⊙C的半径分别为2、3、4,且AB=5,AC=6,BC=6,那么这三个圆的位置关系( ).A.⊙A与⊙B、⊙C外切,⊙B与⊙C相交B.⊙A与⊙B、⊙C相交,⊙B与⊙C外切C.⊙B与⊙A、⊙C外切,⊙A与⊙C相交D.⊙B与⊙A、⊙C相交,⊙A与⊙C外切3.(2021·上海嘉定·二模)已知点,,如果⊙A 的半径为2,⊙B 的半径为7,那么⊙A ()4,0A ()0,3B 与⊙B 的位置关系( )A .内切B .外切C .内含D .外离4.(2021·上海静安·九年级期中)对于命题:①如果一个圆上所有的点都在另一个圆的内部,那么这个圆内含;②如果一个圆上所有的点都在另一个圆的外部,那么这个圆外离.下列判断正确的是( )A .①是真命题,②是假命题B .①是假命题,②是真命题C .①、②都是真命题D .①、②都是假命题5.(2018·上海金山·九年级期末)在Rt△ABC 中,∠ACB=90°,AC=12,BC=9,D 是AB 的中点,G 是△ABC 的重心,如果以点D 为圆心DG 为半径的圆和以点C 为圆心半径为r 的圆相交,那么r 的取值范围是( )A .r <5B .r >5C .r <10D .5<r <106.(2019·上海·九年级期末)如果两圆的圆心距为2,其中一个圆的半径为3,另一个圆的半径,1r >那么这两个圆的位置关系不可能是( )A .内含B .内切C .外离D .相交二、填空题7.(2021·上海静安·九年级期中)已知⊙与⊙两圆内含,,⊙的半径为5,那么⊙1O 2O 123O O =1O 的半径r 的取值范围是_______.2O 8.(2019·上海上海·九年级期中)已知两圆外切,圆心距为7,其中一个圆的半径为3,那么另一个圆的半径长为___.9.(2021·上海浦东新·模拟预测)已知在平面直角坐标系xOy 中,点A 的坐标为(3,4),以2为半径的圆A 与以r 为半径的圆O 相交,那么圆O 半径r 的取值范围为____.10.(2020·上海闵行·九年级期末)半径分别为3cm cm 的⊙O 1与⊙O 2相交于A 、B 两点,如果公共弦AB=cm ,那么圆心距O 1O 2的长为______cm.11.(2021·上海静安·二模)如果⊙O 1与⊙O 2相交,⊙O 1的半径是5,O 1O 2=3,那么⊙O 2的半径r 的取值范围是_____.12.(2021·上海普陀·二模)已知等腰三角形ABC 中,AB =AC ,BC =6,以A 为圆心2为半径长作⊙A ,以B 为圆心BC 为半径作⊙B ,如果⊙A 与⊙B 内切,那么△ABC 的面积等于_____.13.(2021·上海市实验学校二模)已知两圆半径分别为3和5,圆心距为d ,若两圆没有交点,则d 的取值范围是___________14.(2021·上海杨浦·三模)如图,已知在等边中,,点在边上,如果以线段为ABC 4AB =P BC PB 半径的与以边为直径的外切,那么的半径长是________.P AC O P15.(2021·上海奉贤·三模)如图,已知在等边△ABC 中,AB =4,点P 在边BC 上,如果以线段PB 为半径的⊙P 与以边AC 为直径的⊙O 外切,那么⊙P 的半径长是________________.16.(2017·上海静安·九年级期中)如图,⊙A 和⊙B 的半径分别为5和1,AB =3,点O 在直线AB 上,⊙O 与⊙A 、⊙B 都内切,那么⊙O 半径是________.17.(2018·上海长宁·九年级期末)已知⊙的半径为4,⊙的半径为R ,若⊙与⊙相切,且1O 2O 1O 2O ,则R 的值为________.1210O O =18.(2018·上海金山·九年级期末)两圆内切,其中一个圆的半径长为6,圆心距等于2,那么另一个圆的半径长等于__.19.(2019·上海嘉定·九年级期末)已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.20.(2018·上海宝山·九年级期末)⊙O 的直径AB =6,C 在AB 延长线上,BC =2,若⊙C 与⊙O 有公共点,那么⊙C 的半径r 的取值范围是______.21.(2020·上海市民办文绮中学九年级期中)在矩形中,,,点是边上一点ABCD 5AB =12BC =E AB (不与、重合),以点为圆心,为半径作,如果与外切,那么的半径的取值A B A AE A C A C r 范围是_______.三、解答题22.(2021·上海金山·一模)已知:如图,⊙与⊙外切于点,经过点的直线与⊙、⊙分1O 2O T T 1O 2O 别相交于点和点.A B (1)求证:;12//O A O B (2)若,,,求的长.12O A =23O B =7AB =AT23.(2021·上海宝山·九年级期中)如图,已知垂足分别为点、点,与,,AB BC DC BC ⊥⊥B C AC 交于点,BD P (1)如果,以点为圆心作圆,圆与直线相切,35AB CD ==,P P BC ①求圆的半径长;P ②又,以为直径作圆,试判断圆与圆的位置关系,并说明理由:8BC =BC O O P (2)如果分别以为直径的两圆外切,求证:与相似.AB CD 、ABC BCD △24.(2019·上海普陀·一模)如图,⊙和⊙相交于A 、B 两点,与AB 交于点C ,的延长线1O 2O 12O O 2O A 交⊙于点D ,点E 为AD 的中点,AE=AC ,连接.1O 1O E (1)求证:;11O E O C =(2)如果=10,,求⊙的半径长.1O 2O 16O E =2O25.(2021·上海浦东新·模拟预测)已知:如图所示,P 是∠MAN 的边AN 上的一个动点,B 是边AM 上的一个定点,以PA 为半径作圆P ,交射线AN 于点C ,过B 作直线使∥AN 交圆与D 、E 两点(点D 、点E 分l l 别在点B 的左侧和右侧),联结CE 并延长,交射线AM 于点F .联结FP ,交DE 于G ,cos∠BAP =,AB =5,AP =x ,BE =y ,35(1)求证:BG =EG ;(2)求y 关于x 的函数解析式,并写出它的定义域;(3)当△BEF 是以BF 为腰的等腰三角形时,求经过B 、E O 与圆P 的圆心距.26.(2018·上海上海·九年级期中)已知:如图,梯形ABCD中,AD∥BC,AD=2,AB=BC=CD=6.动点P 在射线BA上,以BP为半径的⊙P交边BC于点E(点E与点C不重合),联结PE、PC.设BP=x,PC= y.(1)求证:PE∥DC;(2)求y关于x的函数解析式,并写出定义域;R R(3)联结PD,当∠PDC=∠B时,以D为圆心半径为的⊙D与⊙P相交,求的取值范围.27.(2021·上海杨浦·二模)如图,已知Q 是∠BAC 的边AC 上一点,AQ =15,cot∠BAC =,点P 是射34线AB 上一点,联结PQ ,⊙O 经过点A 且与QP 相切于点P ,与边AC 相交于另一点D .(1)当圆心O 在射线AB 上时,求⊙O 的半径;(2)当圆心O 到直线AB 的距离为时,求线段AP 的长;34(3)试讨论以线段PQ 长为半径的⊙P 与⊙O 的位置关系,并写出相应的线段AP 取值范围.。

初中数学知识点精讲精析 圆和圆的位置关系

初中数学知识点精讲精析 圆和圆的位置关系

3·6圆和圆的位置关系1.圆与圆的五种位置关系:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;(3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;(4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;(5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部.外离和内含都没有公共点;外切和内切都有一个公共点,相交有两个公共点.因此只从公共点的个数来考虑,可分为相离、相切、相交三种.(2)相交2.两圆相内切或外切时,两圆的连心线一定经过切点,都是轴对称图形,对称轴是它们的连心线.3.在图(1)中,两圆相外切,切点是A.因为切点A在连心线O1O2上,所以O1O2=O1A+O2A =R+r,即d=R+r:反之,当d=R+r时,说明圆心距等于两圆半径之和,O1、A、O2在一条直线上,所以⊙O1与⊙O2只有一个交点A,即⊙O1与⊙O2外切.在图(2)中,⊙O1与⊙O2相内切,切点是B.因为切点B在连心线O1O2,所以O1O2=O1B-O2B,即d=R-r:反之,当d=R-r时,圆心距等于两半径之差,即O1O2=O1B-O2B,说明O1、O2、B在一条直线上,B既在⊙O1上,又在⊙O2上,所以⊙O1与⊙O2内切.当两圆相外切时,有d=R+r,反过来,当d=R+r时,两圆相外切,即两圆相外切 d=R+r当两圆相内切时,有d=R-r,反过来,当d=R-r时,两圆相内切,即两圆相内切d =R-r.设两圆半径分别为R和r,圆心矩为d,那么(1)两圆外离d>R+r(2)两圆外切d=R+r(3)两圆相交R-r<d<R=r(R≥r)(4)两圆内切d=R-r(R>r)(5)两圆内含d<R-r(R>r)同心圆d=04.定理:相交两圆的连心线垂直平分两圆的公共弦.1.两个同样大小的肥皂泡黏(点O,O′是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小.分析:因为两个圆大小相同,所以半径OP=O′P=OO′,又TP、NP分别为两圆的切线,所以PT⊥OP,PN⊥O′P,即∠OPT=∠O′PN=90°,所以∠TPN等于360°减去∠OPT+∠O′PN+∠OPO°即可.【解析】∵OP =OO′=PO′,∴△PO′O是一个等边三角形.∴∠OPO′=60°.又∵TP与NP分别为两圆的切线,∴∠TPO=∠NPO′=90°.∴∠TPN=360°-2× 90°-60°=120°.2.如图⊙O的半径为5cm,点P是⊙O外一点,OP=8cm.求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?【解析】(1)设⊙O与⊙P外切于点A.∴ PA=OP-OA=8-5,∴ PA=3cm.(2)设⊙O与⊙p内切于点B.∴ PB=OP+OB=8+5,∴ PB=13cm.(3)如图7-101,⊙O2与以O1为圆心的同心圆相交于A、B、C、D.3.求证:四边形ABCD是等腰梯形.分析:欲证明四边形ABCD是等腰梯形,只需证明AB∥CD,AD=BC且AB≠CD即可.【解析】证明:连结O1O2,∵⊙O2与以O1为圆心的圆相交于A、B、C、D,∴ AB⊥O1O2,DC⊥O1O2.∴ AB∥CD.在⊙O2中,∵AB∥CD,又∵ AB≠CD,∴四边形ABCD是等腰梯形.4.已知:如图7-102,A是⊙O1、⊙O2的一个交点,点P是O1O2的中点.如果过A的直线MN垂直于PA,交⊙O1于M,交⊙O2于N.那么AM与AN有什么关系呢?是O1O2中点,由平行线等分线段定理可得AC=AD,而得结论.【解析】证明:过点O1、O2分别作O1C⊥MN,O2D⊥MN,垂足为C、D,又∵ PA⊥MN,∴ PA∥O1C∥O2D,∵O1P=O2P,∴ AC=AD.∴ AM=AN.。

圆与圆的位置关系

圆与圆的位置关系

圆与圆的位置关系圆与圆的位置关系是数学中的一个重要概念。

在几何学中,圆通常由中心和半径来定义。

当两个或多个圆相互交叠、相切或不相交时,它们之间的位置关系将会有所不同。

首先,让我们考虑两个圆的相对位置。

当两个圆有一个公共点时,它们被称为相切。

相切的两个圆可以有外切和内切两种情况。

外切是指两个圆的内部不相交,但圆的外侧相接或外切。

内切是指两个圆的内部不相交,但其中一个圆可完全包含在另一个圆的内部。

在相切的情况下,两个圆的位置关系可以用中心之间的距离来描述。

当两个圆外切时,它们的中心之间的距离等于两个圆的半径之和。

当两个圆内切时,它们的中心之间的距离等于两个圆的半径之差。

如果两个圆的中心之间的距离大于两个圆的半径之和,那么这两个圆是相离的。

相离的圆没有公共点,它们之间没有交叠。

除了相切和相离的情况,两个圆还可以相交。

圆的相交分为内部交和外部交两种情况。

内部交是指两个圆的某些部分重叠在一起,而外部交是指两个圆互不包含,但它们之间有交集。

当两个圆相交时,我们可以通过观察它们的半径以及它们的中心之间的距离来判断它们的位置关系。

如果两个圆的中心之间的距离小于两个圆的半径之和但大于两个圆的半径之差,那么它们的位置关系是内部交。

如果两个圆的中心之间的距离大于两个圆的半径之和,那么它们的位置关系是外部交。

除了两个圆的位置关系,我们还可以考虑三个或更多圆的位置关系。

当有三个圆相互相交,它们的位置关系可以是外切、内切、相交或不相交。

如果三个圆的相交点都在一个平面上,则它们相互相交。

如果三个圆有一个公共外切点,则它们相互外切。

如果其中一个圆完全包含在另外两个圆内部,则它们相互内切。

总之,圆与圆的位置关系在数学中起着重要的作用。

通过观察圆之间的位置关系,我们可以推导出诸如圆的长度、面积等属性,从而加深对几何学的理解。

理解圆与圆的位置关系还有助于解决实际生活中的问题,例如在建筑、工程设计中准确测量和定位点的位置。

通过研究和探索圆与圆的位置关系,我们可以解决很多实际问题,并深入理解几何学的原理和概念。

2.5.2圆与圆的位置关系(解析版)

2.5.2圆与圆的位置关系(解析版)

2.5.2圆与圆的位置关系一、圆和圆的位置关系1.圆与圆的五种位置关系的定义 两圆外离:两个圆没有公共点,且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离. 两圆外切:两个圆有唯一公共点,并且除了这个公共点外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点. 两圆相交:两个圆有两个公共点时,叫做这两圆相交. 两圆内切:两个圆有唯一公共点,并且除了这个公共点外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点. 两圆内含:两个圆没有公共点,且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.2.两圆的位置与两圆的半径、圆心距间的数量关系: 设⊙O1的半径为r1,⊙O2半径为r2,两圆心O1O2的距离为d,则: 两圆外离d>r1+r2 两圆外切d=r1+r2 两圆相交r1-r2<d<r1+r2(r1≥r2) 两圆内切d=r1-r2(r1>r2) 两圆内含d<r1-r2(r1>r2)要点: (1) 圆与圆的位置关系,既考虑它们公共点的个数,又注意到位置的不同,若以两圆的公共点个数分类,又可以分为:相离(含外离、内含)、相切(含内切、外切)、相交; (2) 内切、外切统称为相切,唯一的公共点叫作切点; (3) 具有内切或内含关系的两个圆的半径不可能相等,否则两圆重合.A .2种B .3种C .4种D .5种【答案】A 【解析】由图形可以看出,有两种位置关系,相交和内切.故选A.题型2:根据圆与圆的位置关系求半径4.已知1O e 与2O e 相切,若1O e 的半径为3cm ,127cm O O =,,则2O e 的半径为( )A .4cm 或12cmB .10cm 或6cmC .4cm 或10cmD .6cm 或12cm【答案】C【分析】根据圆与圆的位置关系,内切时()2121d r r r r =->,外切时12d r r =+,计算即可.【解析】解:两圆内切时,2O e 的半径7310=+=(cm),外切时,2O e 的半径734=-=(cm),∴2O e 的半径为4cm 或10cm .故选:C .【点睛】本题考查了圆与圆的位置关系,熟练掌握知识点是解题的关键.5.如果两圆有两个交点,且圆心距为13,那么此两圆的半径可能为( )A .1、10B .5、8C .25、40D .20、30【答案】D【分析】先由两圆有两个交点得到两圆相交,然后根据半径与圆心距之间的关系求解即可.【解析】∵两圆有两个交点,∴两圆相交,∵圆心距为13∴两圆的半径之差小于13,半径之和大于13.A .1101113+=<,故不符合题意;B .5813+=,故不符合题意;【点睛】此题重点考查圆与圆的位置关系、线段的垂直平分线的性质、勾股定理以及数形结合与分类讨论数学思想的运用等知识与方法,正确地作出所需要的辅助线是解题的关键.9.已知两圆的半径分别为2和5,如果这两圆内含,那么圆心距A.0<d<3B.0<d<7C.3<d<7A.45°B.30°【答案】B【分析】连接O1O2,AO2,O1B,可得【解析】解:连接O1O2,AO2,O∵O 1B = O 1A∴112112O AB O BA AO O Ð=Ð=Ð ∵⊙O 1和⊙O 2是等圆,∴AO 1=O 1O 2=AO 2,∴△AO O 是等边三角形,【点睛】本题考查了相交两圆的性质以及等边三角形的判定与性质,得出21AO O D 是等边三角形是解题的关键.题型5:分类讨论13.已知圆1O 、圆2O 的半径不相等,圆1O 的半径长为5,若圆2O 上的点A 满足15AO =,则圆1O 与圆2O 的位置关系是( )A .相交或相切B .相切或相离C .相交或内含D .相切或内含【答案】A【分析】根据圆与圆的位置关系,分类讨论.【解析】解:如图所示:当两圆外切时,切点A 能满足15AO =,当两圆相交时,交点A 能满足15AO =,当两圆内切时,切点A 能满足15AO =,当两圆相离时,圆2O 上的点A 不能满足15AO =,所以,两圆相交或相切,故选:A .【点睛】本题考查了由数量关系来判断两圆位置关系的方法.14.如图,长方形ABCD 中,4AB =,2AD =,圆B 半径为1,圆A 与圆B 外切,则点C 、D 与圆A 的位置关系是( )A .点C 在圆A 外,点D 在圆C .点C 在圆A 上,点D 在圆【答案】A 【分析】先根据两圆外切求出圆A 的半径,连接【解析】解:∵4AB =,圆B 半径为【点睛】本题考查了点与圆的位置关系、圆与圆的位置关系、勾股定理,熟练掌握点与圆的位置关系是关键,还利用了数形结合的思想,通过图形确定圆的位置.15.如图,1O e ,2O e 的圆心 1O ,128cm O O =.1O e 以 1cm /s 的速度沿直线A .外切B .相交C .内切D .内含【答案】D 【分析】先求出7s 后,两圆的圆心距为1cm ,结合两圆的半径差即可得到答案.【解析】解:∵1O e 的半径为 2cm ,2O e 的半径为 3cm ,128cm O O =.1O e 以 1cm /s 的速度沿直线 l 向右运动,7s 后停止运动.∴7s 后,两圆的圆心距为1cm ,此时两圆的半径差为321cm -=,∴此时两圆内切,∴在此过程中,1O e 与 2O e 没有出现的位置关系是:内含,故选D .【点睛】本题主要考查圆与圆的位置关系,掌握d R r =+,则两圆外切,d R r =-,则两圆外切,是关键.题型6:圆的位置关系综合16.如图,∠MON =30°,p 是∠MON 的角平分线,PQ 平行ON 交OM 于点Q ,以P 为圆心半径为4的圆ON 相切,如果以Q 为圆心半径为r 的圆与P Q 相交,那么r 的取值范围是( )A .4<r <12B .2<r <12C .4<r <8D .r >4【答案】A 【分析】过点Q 作QA ⊥AN 于A ,过点P 作PB ⊥ON 于B ,得到四边形ABPQ 是矩形,QA=PB=4,根据∠MON =30°求出OQ=2QA=8,根据平行线的性质及角平分线的性质得到PQ=8,再分内切与外切两种求出半径r ,即可得到两圆相交时的半径r 的取值范围.【解析】过点Q 作QA ⊥AN 于A ,过点P 作PB ⊥ON 于B ,∵PQ ∥ON ,∴PQ ⊥PB ,∴∠QAB=∠QPB=∠PBA=90°,∴四边形ABPQ 是矩形,∴QA=PB=4,∵∠MON =30°,∴OQ=2QA=8,∵OP 平分∠MON ,PQ ∥ON ,∴∠QOP=∠PON=∠QPO ,∴PQ=OQ=8,当以Q 为圆心半径为r 的圆与P Q 相外切时,r=8-4=4,当以Q 为圆心半径为r 的圆与P Q 相内切时,r=8+4=12,∴以Q 为圆心半径为r 的圆与P Q 相交,4<r<12,故选:A.【点睛】此题考查角平分线的性质,平行线的性质,矩形的判定及性质,两圆相切的性质.17.如图,在Rt ABC V 中,90C Ð=°,4AC =,7BC =,点D 在边BC 上,3CD =,A e 的半径长为3,D e 与A e 相交,且点B 在D e 外,那么D e 的半径长r 可能是( )A .1r =B .3r =C .=5r D .7r =【答案】B 【分析】连接AD 交A e 于E ,根据勾股定理求出AD 的长,从而求出DE DB 、的长,再根据相交两圆的位置关系得出r 的范围即可.【解析】解:连接AD 交A e 于E ,如图1,在Rt ACD V 中,由勾股定理得:则532DE AD AE =-=-=,73BC CD ==Q ,,734BD \=-=,\D e A eA .142r <<B .52r <<【答案】C【分析】过点O 作OE AD ^,勾股定理求得11,OE AB OF AD ==,根据题意,画出相应的图形,即可求解.当圆O 与CD 相切时,过点O 作OF CD ^于点F ,如图所示,则162OF AD ==则1325622r =+=∴O e 与直线AD 相交、与直线CD 相离,且D e 与O e 内切时,作AD⊥BC,以A为圆心,以AD为半径画圆一、单选题1.如果两圆的半径长分别为5和3,圆心距为8,那么这两个圆的位置关系是()A.内切B.外离C.相交D.外切【答案】D【分析】根据两圆半径的和与圆心距,即可确定两圆位置关系.【解析】解:∵两圆的半径长分别为5和3,圆心距为8,538+=,∴两圆外切,故选:D .【点睛】本题考查了圆与圆的位置关系,解题的关键是掌握:外离,则d R r >+;外切,则d R r =+;相交,则R r d R r -<<+;内切,则d R r =-;内含,则d R r <-.2.两圆的半径分别为2和3,圆心距为7,则这两个圆的位置关系为( )A .外离B .外切C .相交D .内切【答案】A【分析】本题直接告诉了两圆的半径及圆心距,根据它们数量关系与两圆位置关系的对应情况便可直接得出答案.【解析】解:∵两圆的半径分别为2和3,圆心距为7,又∵7>3+2,∴两圆的位置关系是:外离.故选A .【点睛】本题主要考查了圆与圆的位置关系,解题的关键在于能够准确掌握相关知识进行求解.3.已知直径分别为6和10的两圆没有公共点,那么这两个圆的圆心距的取值范围是( )A .d >2B .d >8C .d >8或0≤d <2D .2≤d <8【答案】C【分析】分两种情况讨论:当两圆外离时,两圆没有公共点时,当两圆内含时,两圆没有公共点时,从而可得答案.【解析】解:Q 直径分别为6和10的两圆没有公共点,\ 两圆的半径分别为3和5,当两圆外离时,两圆没有公共点时,8,d >当两圆内含时,两圆没有公共点时,02,d £<综上:所以两圆没有公共点时,8d >或0 2.d £<故选C【点睛】本题考查的是两圆的位置关系,熟练的运用两圆外离与内含的定义解题是解本题的关键.4.已知点()4,0A ,()0,3B ,如果⊙A 的半径为2,⊙B 的半径为7,那么⊙A 与⊙B 的位置关系( )【点睛】本题考查了两圆外切的条件,两圆相交的条件,等腰直角三角形的性质和对称性,熟练掌握两圆D .当⊙1O 与⊙2O 没有公共点时,1202O O <≤.【答案】D【分析】根据圆与圆位置关系的性质,对各个选项逐个分析,即可得到答案.【解析】当1224O O <<时,⊙1O 与⊙2O 相交,有两个公共点,故选项A 描述正确;当⊙1O 与⊙2O 有两个公共点时,1224O O <<,故选项B 描述正确;当1202O O <≤时,⊙1O 与⊙2O 没有公共点,故选项C 描述正确;当⊙1O 与⊙2O 没有公共点时,1202O O <≤或124O O >,故选项D 描述错误;故选:D .【点睛】本题考查了圆与圆位置关系的知识;解题的关键是熟练掌握圆与圆位置关系的性质,从而完成求解.9.如图,矩形ABCD 中,AB=4,BC=6,以A 、D 为圆心,半径分别为2和1画圆,E 、F 分别是⊙A 、⊙D 上的一动点,P 是BC 上的一动点,则PE+PF 的最小值是( )A .5B .6C .7D .8【答案】C 【分析】以BC 为轴作矩形ABCD 的对称图形A′BCD′以及对称圆D′,连接AD′交BC 于P ,交⊙A 、⊙D′于E 、F′,连接PD ,交⊙D 于F ,EF′就是PE+PF 最小值;根据勾股定理求得AD′的长,即可求得PE+PF 最小值.【解析】解:如图,以BC 为轴作矩形ABCD 的对称图形A′BCD′以及对称圆D′,连接AD’交BC 于P ,则EF′就是PE+PF最小值;∵矩形ABCD中,AB=4,BC=6,圆A的半径为2,圆D的半径为1,∴A′D′=BC=6,AA′=2AB=8,AE=2,D′F′=DF=1,∴AD′=10,EF′=10-2-1=7∴PE+PF=PF′+PE=EF′=7,故选C.【点睛】本题考查了轴对称-最短路线问题,勾股定理的应用等,作出对称图形是解答本题的关键.10.如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC的底边BC所在直线经过点D.若⊙O的半径等于1,则OC的长不可能为()A.2﹣B.﹣1C.2D.+1【答案】A【解析】试题分析:利用圆周角定理确定点C的运动轨迹,进而利用点与圆的位置关系求得OC长度的取值范围.解:如图,连接OA、OD,则△OAD为等边三角形,边长为半径1.作点O关于AD的对称点O′,连接O′A、O′D,则△O′AD也是等边三角形,边长为半径1,∴OO′=×2=.由题意可知,∠ACB=∠ABC=∠AOD=30°,∴∠ACB=∠AO′D,∴点C在半径为1的⊙O′上运动.由图可知,OC长度的取值范围是:﹣1≤OC≤+1.故选A.考点:相交两圆的性质;轴对称的性质.二、填空题当1O e 位于2O e 外部,且P ,1O ,2O 位于同一条直线上时,如图所示,min 121523r O O PO =-=-=.故答案为:37r ££.【点睛】本题主要考查圆与圆的位置关系,能采用数形结合的方法和分类讨论的思想分析问题是解题的关键.16.在矩形ABCD 中,5AB =,8AD =,点E 在边AD 上,3AE =图),点F 在边BC 上,以点F 为圆心、CF 为半径作F e .如果F e【答案】4116【分析】连接EF ,作FH 股定理得到()(235r r +=-【解析】解:连接EF ,作BQe过点A,且7AB=,由函数图象可知,当即不等式①的解集为同理可得:不等式②【点睛】此题主要考查了相交两圆的性质以及勾股定理,熟练利用正三角形以及正方形的性质是解题关键.20.已知A e ,B e ,C e 【答案】A e 的半径为2厘米,(1)设AP =x ,求两个圆的面积之和S ;(2)当AP 分别为13a 和12a 时,比较S 【答案】(1)22111422a ax x p p p -+11求:(1)弦AC的长度;(2)四边形ACO1O2的面积.【答案】(1)8(2)21(2)解:在2Rt AO E △中,由勾股定理得:∴1212426O O O E O E =+=+=∴1111831222O AC S AC O D ==´´=g △,S ∴四边形ACO 1O 2的面积为:S S +(1)如图1所示,已知,点()02A ,,点()32B ,.①在点()()()123011141P P P -,,,,,中,是线段AB 的“对称平衡点”的是___________②线段AB 上是否存在线段AB 的“对称平衡点”?若存在,请求出符合要求的 “对称平衡点若不存在,请说明理由;(2)如图2,以点()02A ,为圆心,1为半径作A e .坐标系内的点C 满足2AC =,再以点作C e ,若C e 上存在A e 的“对称平衡点”,直接写出C 点纵坐标C y 的取值范围.【答案】(1)①1P ,3P ;②不存在,理由见解析(2)02c y ££∴线段AB的“对称平衡点”的是1P,故答案为:1P,3P;②不存在设P为线段AB上任意一点,则它与线段££,PA PB33点P关于x轴的对称点为P¢,它到线段,是线段AB上的任意两点,即若M N∵()()0,2,0,0A O ∴02c y ££【点睛】本题考查了对称平衡点.两圆的位置关系,点与圆的位置关系等知识,解题的关键是理解题意,学会取特殊点特殊位置解决问题.。

九年级奥数培训圆和圆的位置关系-奥数精讲与测试

九年级奥数培训圆和圆的位置关系-奥数精讲与测试

知识点、重点、难点两圆的位置关系可以是两圆相交、两圆相切(内切或外切)、两圆相离、两圆内含。

设两个圆为⊙1O 、⊙2O ,半径分别为1R 、2R ,且1R ≥2R ,1O 与2O 的距离为d ,那么,12d R R >+⇔两圆相离⇔4条公切线(2条外公切线,2条内公切线); 12d R R =+⇔两圆外切⇔3条公切线(2条外公切线,1条内公切线); 1212R R d R R -<<+⇔两圆相交⇔2条公切线(2条外公切线,无内公切线);12d R R =-⇔两圆内切⇔条公切线(1条外公切线,无内公切线); 1d R R <-⇔两圆内含⇔无公切线。

两圆的内(外)公切线的长为2212()l d R R =-+内;2212().l d R R =--外由圆的对称性知:若两圆相交,则两圆的连心线垂直平分公共弦。

若两圆有两条外(内)公切线,那么这两条外(内)公切线长相等。

若两条外(内)公切线相交,那么交点在连心线上,并且连心线平分两公切线所夹的角。

例题精讲例1:如图,过⊙O 外一点P 作⊙O 的切线PN ,N 为切点。

令PN 的中点为M ,过PM 的圆与⊙O 交于A 、B ,BA 的延长线与PM 交于点Q ,求证: PM =3MQ .解 因PN 为切线,由切割线定理知 NQ 2= QA ·QB = QM ·QP .设QM =x ,QN =y ,于是MP = MN =x +y (x >0,y >0),故QP =x +(x +y )= 2x +y ,所以2y =x (2x + y ),即222x xy y +-=0.由此得(x +y )(2x-y )=0,故2x = y 或x =-y (舍去),MP=x +y = 3x = 3MQ .例2:如图,△ABC 的内切圆切BC 边于D ,求证△ABD 和△ACD 的内切圆相外切。

解 设E 、F 为△ABC 内切圆与AC 、AB 的切点,1T 、2T 分别为⊙1O 、 ⊙2O 与AD 的切点,于是BF = BD ,CE =CD .122AB BD AB AB BD AF BFDT +-+--==.2AD AF -=同理2.2AD AEDT -=又AE = AF ,所以12DT DT =,即1T 与2T 重合.所以⊙1O 与⊙2O 切于1T 点。

圆与圆的位置关系

圆与圆的位置关系

圆与圆的位置关系圆是几何中重要的图形之一,而圆与圆之间的位置关系也是我们常常遇到的问题之一。

在几何学中,圆与圆之间的位置关系可以分为三种基本情况:相交、相切和相离。

下面将详细介绍这三种情况。

1. 相交当两个圆的半径不相等且两个圆心之间的距离小于两个圆的半径之和时,这两个圆相交于两个交点。

具体来说,若圆A的半径为r1,圆B的半径为r2,两个圆心的距离为d,则相交的条件为d < r1 + r2。

相交的情况可以进一步细分为:外切、内切和一般相交。

- 外切:当两个圆的半径之和等于两个圆心之间的距离时,这两个圆外切于一点。

即 d = r1 + r2。

- 内切:当两个圆的半径之差等于两个圆心之间的距离时,这两个圆内切于一点。

即 d = |r1 - r2|。

- 一般相交:当两个圆的半径之和大于两个圆心之间的距离、且两个圆心之间的距离小于两个圆的半径之和时,这两个圆一般相交于两个交点。

即 r1 + r2 > d > |r1 - r2|。

2. 相切当两个圆的半径相等且两个圆心之间的距离等于两个圆的半径之和时,这两个圆相切于一点。

具体而言,若圆A的半径为r,圆B的半径也为r,两个圆心的距离为d,则相切的条件为d = r1 + r2。

3. 相离当两个圆的半径不相等且两个圆心之间的距离大于两个圆的半径之和时,这两个圆相离。

即 d > r1 + r2。

相离的情况包括完全相离和部分相离。

- 完全相离:当两个圆的半径之和小于两个圆心之间的距离时,这两个圆完全相离。

即 d > r1 + r2。

- 部分相离:当两个圆的半径之和等于两个圆心之间的距离,但小于两个圆心之间的距离加上其中一个圆的半径时,这两个圆部分相离。

即 r1 + r2 < d < r1 + r2 + max(r1, r2)。

在实际问题中,掌握圆与圆的位置关系对于解决相关的几何问题非常重要。

通过对圆的半径、圆心之间的距离进行分析,我们可以确定两个圆之间的位置关系,并进一步推导出解决问题所需要的其他信息。

圆与圆的位置关系知识点

圆与圆的位置关系知识点

圆与圆的位置关系知识点圆与圆的位置关系是数学中的一个重要概念,它描述了两个圆之间的相对位置。

在几何学中,我们常常遇到需要判断两个圆是否相交、相切或者相离的问题。

下面将介绍几种常见的圆与圆的位置关系,并给出相应的判定方法。

1. 相交关系:两个圆相交,意味着它们具有共同的交点。

判断两个圆是否相交的方法有多种,其中一种常用的方法是计算两个圆心之间的距离是否小于两个圆的半径之和。

如果两个圆心之间的距离大于半径之和,则两个圆相离;如果两个圆心之间的距离等于半径之和,则两个圆相切;如果两个圆心之间的距离小于半径之和,则两个圆相交。

2. 外切关系:两个圆外切,意味着它们的外切点相同。

判断两个圆是否外切的方法是计算两个圆心之间的距离是否等于两个圆的半径之和。

如果两个圆心之间的距离等于半径之和,则两个圆外切。

3. 内切关系:两个圆内切,意味着它们的内切点相同。

判断两个圆是否内切的方法是计算两个圆心之间的距离是否等于两个圆的半径之差的绝对值。

如果两个圆心之间的距离等于两个圆的半径之差的绝对值,则两个圆内切。

4. 相离关系:两个圆相离,意味着它们没有任何公共点。

判断两个圆是否相离的方法是计算两个圆心之间的距离是否大于两个圆的半径之和。

如果两个圆心之间的距离大于半径之和,则两个圆相离。

除了以上几种常见的圆与圆的位置关系外,还有一些特殊的情况需要特别注意:5. 同心圆:两个圆的圆心重合,这种情况称为同心圆。

同心圆的半径可以相等,也可以不相等。

6. 同径圆:两个圆的半径相等,但圆心不重合,这种情况称为同径圆。

7. 内含关系:一个圆完全包含在另一个圆内部,这种情况称为内含关系。

判断两个圆是否内含的方法是计算两个圆心之间的距离是否小于两个圆的半径之差的绝对值。

如果两个圆心之间的距离小于两个圆的半径之差的绝对值,则一个圆内含在另一个圆内部。

8. 外离关系:两个圆没有任何公共点,并且一个圆不包含在另一个圆内部,这种情况称为外离关系。

2圆和圆的位置关系课件(1)

2圆和圆的位置关系课件(1)

0 d R1 R2
当两个圆的 圆心重合时, 称它们为同 心圆
..
O2 O1
两圆的位置关系的数量特征:
定义:联结两圆圆心的线段的长度 叫做两圆的圆心距.一般记为d
两圆外离
相 两圆外切

相 切
两圆相交
两圆内切
两圆内含
d>R1+R2 d=R1+R2
R1 R2 <d<R1+R2
0 d R1 R2 0 d R1 R2
.
0
例1:已知⊙O1和⊙O2的半径长分别为3和4, 根据下列条件判断⊙O1和⊙O2的位置关系:
(1) O1O2=7;(2) O1O2=4;(3) O1O2=0.5
解:分别用R1、R2、d表示⊙O1和⊙O2的半 径长及圆心距. 由R1=3,R2=4,得R1+R2=7.
∵d=7, ∴d=R1+R2 所以, ⊙O1和⊙O2的位置关系是外切.
相切,那么d=8.(
) d=8或d=2
如果两圆相离,那么圆心距一定大于0.( )
可以等于0(同心圆)
巩固练习
已知⊙O1、⊙O2的半径分别为1和3,根据下
列条件判断⊙O1与⊙O2的位置关系:
(1)O1O2=5
外离
(2) O1O2=4
外切
(3)O1O2=3 (4)O1O2=2 (5)O1O2=1
相交 内切 内含
O2

R1 R2 <d<R1+R2
内切:两个圆有唯一的公共点,并且
除了这个公共点以外,一个圆上的点 都在另一个圆的内部时,叫做这两个 圆内切.这个唯一的公共点叫做切点.
0 d R1 R2
• . .

九年级数学圆与圆的位置关系

九年级数学圆与圆的位置关系

九年级数学圆与圆的位置关系在我们学习数学的过程中,有些知识总是能让人拍案叫绝,比如说圆与圆之间的位置关系。

你想啊,两个圆就像两个好朋友,有时候紧紧相拥,有时候则是形同陌路。

今天咱们就来聊聊这些圆的“社交”动态,保准让你听了哈哈大笑,边学边乐。

首先呢,咱们得知道圆和圆之间的基本关系。

两个圆如果能够相交,形成两个交点,那就叫做“相交”。

这就好比是两位朋友在某个聚会上聊得火热,结果发现两个人的兴趣爱好还真是有那么一点点相似,嘿嘿,意外的发现吧。

如果这两个圆的距离刚刚好,让它们只轻轻碰了一下,那就叫做“相切”。

就像两个朋友在街上偶遇,点头致意一下,心照不宣,继续各自的旅程,既亲密又有些距离。

哦,对了,记得咱们的圆心距离和半径的关系。

圆心距小于半径之和,那就能相交;等于半径之和,那就相切;大于半径之和,嘿,那就各自飞了。

咱们得聊聊“相离”这种情况。

两圆如果完全不相交,远得像两个恋人各自生活在两个城市,联系得少之又少,那就是“相离”。

你想啊,两个圆心的距离大于半径之和,真是远得像是天涯海角,不同的生活方式,不同的爱好,没啥交集,生活就这么各自精彩。

想象一下,两个圆在画纸上悄悄地待着,互不干扰,彼此就是那种“风马牛不相及”的感觉。

再来看看特殊的情况。

比如,当两个圆的圆心重合,但半径不同,那就有点意思了。

想象一下,有个圆在外面转来转去,另一个圆在它的“肚子”里悄悄待着。

这个时候,内圆完全被外圆包裹住了,像极了朋友间的包容。

总有那么一个人,给你无条件的支持,虽然不总是被看到,但心里永远有那么一个位置。

可惜,这种情况可不是每个人都能理解的。

说到这里,咱们再来琢磨一下这些圆之间的关系的意义。

生活中,朋友之间的关系也好,爱人之间的互动也罢,都是那么复杂又简单。

有人总是希望彼此相交,有人则想要独立。

相交的朋友就像是在一起打游戏,总是能碰撞出各种火花,而相切的朋友则是在适当的时候给予彼此空间,既能相互支持,又能保留个人的独特性。

初中数学知识归纳圆与圆之间的位置关系

初中数学知识归纳圆与圆之间的位置关系

初中数学知识归纳圆与圆之间的位置关系圆与圆之间的位置关系是初中数学中的一个重要内容,它涉及到圆的相交关系、包含关系以及外切关系等多个方面。

通过归纳总结,我们可以更好地理解和运用这些知识点。

一、相离关系当两个圆没有任何交点时,它们被称为相离的圆。

两个相离的圆之间的最大距离等于它们的半径之和。

二、外切关系如果两个圆的半径相等,并且它们的圆心之间的距离等于两个圆的半径之和,我们称这两个圆为外切的圆。

三、相交关系相交是指两个圆的内部空间存在公共点。

根据两个圆的圆心之间的距离和半径的关系,相交的情况又可以分为四种。

1.相交于两点当两个圆的圆心之间的距离小于两个圆的半径之和,并且大于两个圆的半径之差时,两个圆相交于两个点。

2.相切于外点当两个圆的圆心之间的距离等于两个圆的半径之和时,两个圆相切于外点。

3.相切于内点当两个圆的圆心之间的距离等于两个圆的半径之差时,两个圆相切于内点。

4.相切于公切线当两个圆的圆心之间的距离等于两个圆的半径之和,并且两个圆的半径不相等时,两个圆相切于一条公切线。

四、内含关系如果一个圆的内部完全位于另一个圆内部,我们称这两个圆为内含的关系。

在内含的情况下,内含圆的半径小于包含圆的半径。

五、包含关系如果一个圆的外部完全包含另一个圆,我们称这两个圆为包含的关系。

在包含的情况下,包含圆的半径大于内含圆的半径。

通过对圆与圆之间的位置关系进行归纳整理,我们可以更好地理解和应用这些知识点。

在解决相关题目时,我们可以根据题目给出的条件和要求,运用这些位置关系进行分析和推理。

同时,我们还可以通过观察图形特点和运用相关定理来判断两个圆之间的位置关系,从而解决问题。

初中数学中的圆与圆之间的位置关系是一个基础而重要的内容,它不仅在几何学中有广泛的应用,而且在实际生活和工程中也有着重要的作用。

通过掌握和运用这些知识,我们可以更好地理解和应用数学,为解决实际问题提供有力的支持。

圆与圆的位置关系

圆与圆的位置关系

圆与圆的位置关系圆与圆的位置关系是几何学中的重要概念。

在平面几何中,圆是一个由所有到圆心距离相等的点组成的集合,而圆与圆之间的位置关系可以分为三种情况:相离、相切和相交。

本文将详细介绍这三种关系并给出相应的示例。

1. 相离:当两个圆的半径之和小于两个圆心之间的距离时,两个圆相离。

图1是一个相离的示例,其中圆A和圆B的半径分别为r1和r2,而d表示两个圆心之间的距离。

当r1 + r2 < d时,圆A和圆B相离。

图1:相离的圆2. 相切:当两个圆的半径之和等于两个圆心之间的距离时,两个圆相切。

图2是一个相切的示例,其中圆A和圆B的半径分别为r1和r2,而d表示两个圆心之间的距离。

当r1 + r2 = d时,圆A和圆B相切。

图2:相切的圆3. 相交:当两个圆的半径之和大于两个圆心之间的距离时,两个圆相交。

图3是一个相交的示例,其中圆A和圆B的半径分别为r1和r2,而d表示两个圆心之间的距离。

当r1 + r2 > d时,圆A和圆B相交。

图3:相交的圆需要注意的是,当两个圆相交时,相交部分内部的点到两个圆的距离是不相等的。

此外,两个圆相交部分的形状可能是一个圆、两个相切的圆、一个内切圆或一个外切圆。

除了上述三种基本的圆与圆的位置关系,还有一些特殊情况需要特别注意。

例如,当两个圆的圆心重合时,它们可以是同心圆,其中一个圆包含于另一个圆之中;当两个圆的圆心重合,且半径相等时,它们可以是同一个圆。

总结:圆与圆的位置关系可以分为相离、相切和相交三种情况。

相离表示两个圆没有交集,相切表示两个圆只有一个交点,而相交表示两个圆有两个交点。

在实际应用中,我们常常利用这些关系来解决问题,如确定两个圆是否相交或判断一个点是否在一个圆的内部或边界上。

通过本文的介绍,我们对圆与圆的位置关系有了更深入的了解。

在实际问题中,我们可以根据圆与圆的位置关系来推导出更复杂的几何关系,从而解决更为复杂的问题。

希望本文能对读者对圆与圆的位置关系有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第39讲 圆与圆的位置关系(一)
[复习目标]
使学生了解圆与圆之间的5种位置关系,掌握两圆位置关系的判定方法,了解两圆公切线的有关概念,掌握两圆相交、相切的有关性质,并会应用于解题. [知识要点]
1.两圆的5种位置关系及判定方法. 2.相交、相切两圆的性质;
1) 相切两圆的连心线必过切点,相切两圆有公切线; 2) 相交两圆的连心线必垂直平分公共弦.
注:常见的辅助线是①画相切两圆的公切线②画公共弦和连心线。

[典型例题解析]
例1 选择、填空题:
1) 已知两圆的半径满足方程02222=+-x x ,圆心距为2,则两圆的位置关系为( ) A .相交 B .外切 C .内切 D .外离
2)如果两圆相(内)切,一个圆的半径为3,两圆的圆心距为4,则另一个圆的半径为 1
或7 . 3)相交两圆半径分别为一无二次方程0170272=+-x x 的两根,它们的公共弦长16,则它们的圆心距为 21或9 .
4)如两圆共有三条公切线,那么这两个圆的位置关系为( )
A .外离
B .相交
C .外切
D .内切
5)已知两圆半径分别为12和4,外公切线长是15,则两圆的位置关系为 ,外公切线与连心线夹角的正弦值为 .
例2 如图,⊙O 1和⊙O 2相交于A 、B 两点,且O 1在⊙O 2上,过点A 的直线CD 分别与
⊙O 1和⊙O 2交于点C ,D ,过点B 的直线EF 分别与⊙O 1和⊙O 2交于点E ,F ,⊙O 2的弦O 1D 交AB 于P. 1) 求证:CE ∥DF ;
2) 求证:D O P O OG 112⋅=.
思路 1)画公共弦AB ,证∠E+∠F=180°; 2)证ΔAO 1P ∽ΔAO 1 D 得D O P O OG 112⋅=.
小结 添公共弦AB 对解题起到了桥梁和关键得作用,是两圆相交中常见得辅助线. 思考 1)如何证G 是ΔABD 得内心?2)若PG=1,GD=2,求⊙O 1得半径?
例3 如图,⊙O 1和⊙O 2内切于A ,⊙O 2得弦BC 切⊙O 1于D ,AD 得延长线交⊙O 2于M ,连结
AB ,AC 分别交⊙O 1于E ,F ,连结EF .
A B C
E
F D O 1
O 2 P G
1)求证:EF ∥BC;
2)求证:AM AD AC AB ⋅=⋅;
3) 若⊙O 1的半径为3,⊙O 2的半径为8,BC 是⊙O 2的直径,
求AB ,AC 的长(AB>AC ). 思路 1)画两圆的公切线l ,则∠3=∠1=∠2,∴EF ∥BC,
2)证ΔABD ∽ΔAMC;
3)可利用方程组的方法求出AB=
51024,AC=5
10
8. 小结 当两圆相切时,画两圆的公切线是常见的辅助线. 评注 1)此图中的结论有EF ∥BC ,AD 平分∠CAB (两圆外切时也成立).
2) 若BC 与⊙O 1相交时,同样可得到类似于角平分的结论.
[课内追踪练习]
1.如果两圆有且仅有2条公切线,那么这两个圆共有 2 个交点. 2.如图43—1,⊙O 1和⊙O 2相交于A 、B 两点,CD 分别切⊙O 1、⊙O 2于点C 、D ,则 ( C )
A . ∠CAD 与AC
B 互补; B .∠CAD 与∠ADB 互补
;
C .∠CA
D 与∠B 互余; D .图中没有互补的角
3.巳知⊙O 1和⊙O 2的半径分别是0392=+-x x ,的两
个实根,O 1O 2 =7,则两圆的位置关系是 .
4.如果⊙O 1和⊙O 2的半径分别为4和5,那么,下列表述中错误的是:( C ) A .当O 1O 2=1时,⊙O 1与⊙O 2内切.
B .当O 1O 2=5时,⊙O 1、⊙O 2有两个公共点.
C .当O 1O 2>6时,⊙O 1、⊙O 2必有公共点.
D .当O 1O 2>1时,⊙O 1、⊙O 2至少有两条公切线. 5.已知两圆内切,圆心距为2 cm ,其中一个圆的半径为3 cm ,那么另一个圆的半径为 . 6.和⊙O 3是三个半径为1的等圆,且圆心在同一直线上,若⊙O 2分别与⊙O 1、⊙O 3相交,
⊙O 1与⊙O 3不相交,则⊙O 1与⊙O 3的圆心距d 的取值范围是 2 ≤d<4 .
7.已知两圆的半径分别为t+3和t —3(t>3),圆心距为2t ,则两圆的公切线定有( D ) A .0条 B .1条 C .2条 D .3条
8.半径分别为2 cm 和l cm 的两圆⊙O 1、⊙O 2相交于A 、B ,且O 1A ⊥ O 2A ,则公共弦AB 的长为( C )
A .
55cm B . 552cm C . 5
54cm D .5cm 9.已知相交两圆的半径分别是20 cm 和13 cm ,公共弦长24cm ,则连心线与公切线夹角
的余切值是( A )
l
A .22或
726 B .7
2
6 C .22 D .2或72
10.如图43—8,AB 是⊙O 1的直径,AO l 是⊙O 2的直径,弦MN ∥AB ,且MN 与⊙O 2相切于点C ,若⊙O 1的半径为2,则O l B

BN 、CN 、1O C 所围成的阴影部分的面积是 .
11. 如图43—3,⊙O 1、⊙O 2外切于点P ,AB 分别切⊙O 1、⊙O 2
于A 、B 两点,求证:ΔAPB 是直角三角形(不作证明). 1) 若把两圆外切条件改成相交于C 、D 两点,连心线分别交两
圆于E 、F 两点,AF 与BE 交于点M ,则AF 与BE 是否垂直呢?说明理由. 2) 当两圆相离时,画出图形,请探究AF 与BE 的位置关系?并证明你的结论.
画图,当两圃外离时情况,又是如何的呢?
12.如图43—5,⊙O 1与⊙O 2内切于点P ,⊙O 2的弦AB 交⊙O 1于C 、D 两点,连PA 、 PB 、PC 、FD ,求证:∠BPD=∠CPA .
13.如图43—7,⊙O 1和相交于A 、B 两点,AC 切⊙O 1于点A ,交⊙O 2于点C ,DB 切
⊙O 2于点B ,交⊙O 1于点D ,连AB 、AD 、BC . 1)求证:BC AD AB ⋅=2;
2)若∠C=∠D ,问四边形ADBC 是什么四边形?为什么?
[复习小结]
两圆相切,常见辅助线,是两圆的公切线;两圆相交,常见的辅助线,是两圆的公共弦.两圆之间有5种位置关系;要注意一些多解现象.。

相关文档
最新文档